
This is a repository copy of Comparing the direct normal form and multiple scales methods
through frequency detuning.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/135000/

Version: Published Version

Article:

Elliott, A., Cammarano, A., Neild, S. et al. (2 more authors) (2018) Comparing the direct 
normal form and multiple scales methods through frequency detuning. Nonlinear 
Dynamics. ISSN 0924-090X 

https://doi.org/10.1007/s11071-018-4534-1

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons license, and indicate if changes were made.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Nonlinear Dyn

https://doi.org/10.1007/s11071-018-4534-1

ORIGINAL PAPER

Comparing the direct normal form and multiple scales

methods through frequency detuning

A. J. Elliott · A. Cammarano · S. A. Neild ·

T. L. Hill · D. J. Wagg

Received: 3 August 2017 / Accepted: 22 August 2018

© The Author(s) 2018

Abstract Approximate analytical methods, such as

the multiple scales (MS) and direct normal form (DNF)

techniques, have been used extensively for investigat-

ing nonlinear mechanical structures, due to their ability

to offer insight into the system dynamics. A compar-

ison of their accuracy has not previously been under-

taken, so is addressed in this paper. This is achieved

by computing the backbone curves of two systems:

the single-degree-of-freedom Duffing oscillator and a

non-symmetric, two-degree-of-freedom oscillator. The

DNF method includes an inherent detuning, which can

be physically interpreted as a series expansion about

the natural frequencies of the underlying linear system

and has previously been shown to increase its accuracy.

In contrast, there is no such inbuilt detuning for MS,

although one may be, and usually is, included. This

paper investigates the use of the DNF detuning as the
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chosen detuning in the MS method as a way of equat-

ing the two techniques, demonstrating that the two can

be made to give identical results up to ε2 order. For the

examples considered here, the resulting predictions are

more accurate than those provided by the standard MS

technique. Wolfram Mathematica scripts implement-

ing these methods have been provided to be used in

conjunction with this paper to illustrate their practical-

ity.

Keywords Nonlinear · Vibration · Normal form ·

Multiple scales

1 Introduction

In recent years, there has been substantial interest

in the study of backbone curves, due to their util-

ity in studying lightly damped nonlinear vibrations in

multi-degree-of-freedom (MDOF) mechanical struc-

tures. The motivation for this paper comes from obser-

vations made by the authors when comparing backbone

curves found using the multiple scales (MS) method

(see, for instance, [1]) and those found using the nor-

mal form method, defined in [2].

The normal form method in [2] was developed as

a technique that can be applied directly to systems

of weakly coupled second-order nonlinear differential

equations. This concept is not entirely uncommon, hav-

ing previously been proposed in [3], but it is the matrix

formulation proposed in [2] that is considered particu-
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larly beneficial to the current work. We will call this the

“direct” normal form (DNF) method1 in order to dif-

ferentiate it from the “classical” method described, for

example, by Jezequel and Lamarque [4], Arnold [5],

Murdock [6], Kahn and Zarmi [7] and Nayfeh [8]; the

latter is not investigated here, as similar comparisons

have previously been made, for example, in [2].

In recent years, the DNF method (and other nor-

mal form methods similar to this) has been used exten-

sively to capture the responses of nonlinear systems.

This includes, but is not limited to, describing modal

interactions and bifurcations in backbone curves [9–

12], recognising out-of-unison resonance in a taut

cable [13], reduced-order modelling [14], nonlinear

system identification [15,16], investigating aeroelas-

tic systems under fluid flow [17,18], exploring appli-

cability conditions for nonlinear superposition [19],

and quantifying the significance of nonlinear normal

modes [20]. In contrast with the recent development of

the DNF method, the MS method is well established

in the literature, with thorough discussions regarding

its development readily available, for example, in [21–

26].

Perturbation methods require the repeated applica-

tion of a number of steps, building up an increasingly

accurate solution by addressing smaller terms in each

repetition. In the practical application of these methods,

the steps can require significant computational effort

and produce increasingly complex expressions, which

can, arguably, hide the mathematical insight gained

from employing such a technique. In this paper, we

consider the “accuracy” of these methods by assessing

the result after one or two repetitions of their respective

steps. It is generally recognised that these techniques

converge to the correct solution with many repetitions,

so can ultimately be considered as precise as each other.

A contributing factor in the accuracy of the DNF

method, as shown in [27], is the frequency detuning

which arises in its formulation. In physical terms, this

can be interpreted as a series expansion around the nat-

ural frequency of the underlying linear system. This

is not naturally present in the MS technique; however,

several examples of alternative detunings, applied to

MS technique, can be found in the literature [28–33].

The attempt that most closely resembles the detuning

1 In some previous papers, this method is called “second-order

normal form”, which is a phrase that is open to more than one

possible meaning, so we choose to avoid it here.

of the DNF method is found in [32], although this pro-

posed detuning is only employed in a small number

of papers, such as [34,35]. In [32], an ε-expansion is

applied, not only to time, as is standard, but also to

frequency. The paper presents the updated frequency–

amplitude relationships and suggests that they appear

more accurate, although it was not possible for this

to be verified with numerical data. The motivation for

expanding the frequency is solely to remove the secular

terms in the response, and so the technique lacks the

physical motivation that is present in the DNF method,

as described in detail in the current paper.

Further attempts to detune the MS method have been

proposed, though a number of these focus on the forced

case in which it is common practice to perturb the forc-

ing frequency [28,29]. A more thorough investigation

is given in [30], and a comparison of the MS method

and the generalised method of averaging can be found

in [31]. Additionally, the detuning applied in [32] has

also been applied to the Lindstedt–Poincaré method of

strained parameters and the generalised method of aver-

aging, with these detuned methods producing identical

truncated results [33].

In this paper, a comparison on the DNF and MS tech-

niques is provided, with emphasis placed on the detun-

ing used. Specifically, in Sect. 2, the two techniques are

briefly outlined and compared using the Duffing oscil-

lator as an example system, a system which is adopted

in [27,31–33]. The two techniques are equated by intro-

ducing a detuning step, which is physically interpreted

as a perturbation about the response frequency rather

than the linear frequency, into the MS technique in

Sect. 3. The detuning approach employed in the DNF

method will be applied in the MS method, and it will

be shown that doing so allows the two methods to be

equated. By considering a more general detuning, it is

shown that using MS both the fundamental and the har-

monic response predictions are affected by the detun-

ing. This is in contrast to the DNF technique, in which

only the harmonic response changes. In Sect. 4, the

techniques are compared for a two-mode system, where

it is shown that the techniques give the same results if

the MS method is modified to include the detuning.

Conclusions are drawn in Sect. 5.

2 Approximate methods

This section introduces the DNF and MS techniques,

giving an overview of how they are applied to a single-
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degree-of-freedom (SDOF) oscillator of the following

form

ẍ + ω2
n x + εnx (x) = 0. (1)

Here, x denotes the displacement, ωn represents the

linear natural frequency, and nx (x) is a nonlinear term.

For both techniques, the nonlinear term is assumed to

be small. Here, this is indicated by ε, which may be

thought of as a bookkeeping parameter that allows the

relative size of terms to be tracked [8]. As such, ε is

taken to have a value of unity, such that it does not

alter the equations. The application of the techniques is

described as a series of steps, with the Duffing oscillator

(nx (x) = αx3) being used as an example.

2.1 Direct normal form

The normal form approach is typically used to find peri-

odic solutions to the equation of motion of a system.

The objective of this approach is to apply a transform

to the equation of motion to give a resonant form, in

terms of transformed coordinate u, that can be solved

exactly by using the following form for the solution,

which assumes that system will respond as a single

harmonic

u = u p + um =
Ac

2
ei(ωr t−φ0) +

Ac

2
e−i(ωr t−φ0). (2)

where u p and um are used to denote the positive and

negative parts of the exponents, respectively, and Ac

and ωr represent the initial amplitude and nonlinear

natural frequency, respectively. Time is denoted by t

and φ0 denotes the phase of the response. Once u has

been found, the harmonics of the response can be recov-

ered using the transform equation.

The DNF approach is applied to equations of motion

that are expressed in the linear modal coordinates, q,

where q = x for SDOF systems. This means that x

could be used instead of q in the following equations.

However, q has been kept to allow easier comparison

with the MDOF case discussed in Sect. 4. The trans-

form may be summarised as

q̈ + ω2
nq + εnq(q) = 0

q = u + εh1u∗
1 + ε2h2u∗

2
−−−−−−−−−−−−−−−−−−→

ü + (ω2
r + εδ)u + εnu1u∗

1 + ε2nu2u∗
2 = 0.

(3)

Here, nq(q) represents the small nonlinear terms of

the untransformed equation and, as q = x for a one

degree-of-freedom system, nq(q) = nx (q). In addi-

tion, the detuning ω2
n = ω2

r + εδ, which will later be

utilised in the MS method, is applied. The harmon-

ics are now captured by the product of h1, a 1 × ℓ

vector of coefficients, and u∗
1 , an ℓ × 1 vector consist-

ing of all the combinations of u p and um that arise in

nq(u p + um); these harmonics are also assumed to be

small. The method of finding the harmonics, h1u∗
1 , and

the transformed nonlinear terms nu1u∗
1 require three

steps. These are now discussed, along with their appli-

cation to the Duffing oscillator. An explanation of how

both the steps and the detuning are derived is given in

Appendix A, together with an indication of how they

may be modified for MDOF systems.

By eliminating q from the original differential equa-

tion in Eq. (3) using the transform and then simplifying

using the transformed equation of motion, the εi bal-

ance equation is given by the homological equation:

εi : −hi ü
∗
i − ω2

r hi u
∗
i = nei u

∗
i − nui u

∗
i . (4)

The excitation of these equations, which defines the

vectors u∗
i , is given as

ε1 : ne1u∗
1 = nq(u), (5)

ε2 : ne2u∗
2 = δh1u∗

1 + D{nq(u)}h1u∗
1, (6)

where D{nq(u)} represents the Jacobian of nq(u) and

arises from the Taylor expansion of n(q) = n(u +

εh1u∗
1 + ε2h2u∗

2). These equations are solved using

the following steps (which can be followed in Online

Resource 1), first for the ε1 equation, as illustrated

below, and then for the ε2 terms by making the nec-

essary modification to the first step.

Step 1N F The substitution q = u = u p+um is made

in the nonlinear term to give nq(q) = nq(u p + um) =

ne1u∗
1 . Here, ne1 contains coefficient values and u∗

1 is

defined above.

For the Duffing oscillator, nq(u p + um) = α(u p +

um)3, giving

nq(u p + um) = ne1u∗
1 =

[

α 3α 3α α
]

⎡

⎢

⎢

⎢

⎣

u3
p

u2
pum

u pu2
m

u3
m

⎤

⎥

⎥

⎥

⎦

.

(7)

Step 2N F Using Eq. (2), the variables u p and um in

u∗
1 are written as a series of complex exponentials in

time. The resulting vector is double differentiated with
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respect to time. The second derivative with respect

to time can be expressed as a Hadamard product (◦);

d2u∗
1/dt2 = −dd◦u∗

1 . Further details on this are given

in Appendix A.

For the Duffing example, using Eqs. (2) and (7), u∗
1

may be written as

u∗
1 =

⎡

⎢

⎢

⎣

u3
p

u2
pum

u pu2
m

u3
m

⎤

⎥

⎥

⎦

=
A3

c

8

⎡

⎢

⎢

⎣

ei3(ωr t−φ0)

ei(ωr t−φ0)

e−i(ωr t−φ0)

e−i3(ωr t−φ0)

⎤

⎥

⎥

⎦

, (8)

and so

d2 u∗
1

d t2
= −dd ◦ u∗

1, where dd = ω2
r

[

9 1 1 9
]⊺

.

(9)

Step 3N F Now, h1 and nu1 may be found using

(dd⊺ − ω2
r 11,ℓ) ◦ h1 = ne1 − nu1, (10)

where 11,ℓ is a 1 × ℓ row vector with every element

being one. This expression is derived in Eq. (A.7) in

Appendix A. For each nonzero element in the brack-

eted term, the corresponding value in nu1 is set to zero

and the value in h1 is selected to satisfy the equation.

For the zero elements in the bracketed term, the corre-

sponding terms in nu1 are set to match those in ne1 and

the h1 terms are set to zero. The result of this is a series

of coefficients representing resonant terms in nu1 and

harmonic (i.e. non-resonant) terms in h1.

For the Duffing oscillator, Eq. (10) becomes

(

ω2
r

[

8 0 0 8
])

◦ h1 =

[

α 3α 3α α

]

− nu1.

(11)

This allows us to find the required vectors

h1 =

[

α

8ω2
r

0 0
α

8ω2
r

]

, nu1 =

[

0 3α 3α 0

]

.

(12)

Note that the zeros on the left-hand side of Eq. (11)

correspond to the resonant terms in Eq. (7) being set

to zero, a feature that will also be observed in the MS

method. Furthermore, it is important to note that there

is some freedom of choice between the h1 and nu1

coefficients in Eq. (11). However, one of the advantages

of this method is that the non-resonant terms, and only

the non-resonant terms, in u∗ are removed from the

transformed equation of motion.

The near-identity transform to order ε1 may now be

written as

q = u + εh1u∗
1

=
Ac

2
(ei(ωr t−φ0) + e−i(ωr t−φ0))

+ ε

[

α

8ω2
r

0 0
α

8ω2
r

]

u∗
1

= Ac cos(ωr t − φ0)

+ ε
α

32ω2
r

A3
c cos(3(ωr t − φ0)).

(13)

From Eq. (3), along with Eq. (12), the transformed

equation of motion may be written as

ü + ω2
nu + ε3α

(

u2
pum + u pu2

m

)

= 0. (14)

To get the frequency–amplitude relationship for the

backbone curve, we substitute the base solutions for u p

and um into Eq. (14) and then exactly balance either

the ei(ωr t−φ0) or e−i(ωr t−φ0) terms (there are no non-

resonant terms as these have been removed) to give

ωr =

√

ω2
n + ε

3α

4
A2

c . (15)

This solution can be refined by repeating these steps,

addressing the terms with increasing powers of ε in

turn. While each repetition leads to a more refined solu-

tion, they becoming increasingly onerous to perform

algebraically. Thus, it is desirable to approach the true

solution in the smallest possible number of iterations.

This basis will be used to compare the DNF and MS

methods in later in the paper.

To illustrate this refinement, if the ε2 terms are

included in the near-identity transform by repeating

the steps a second time, the following, more precise,

solution can be obtained:

q = Ac cos(ωr t − φ0)

+ ε
α

32ω2
r

A3
c

(

1 + ε
3α

32ω2
r

A2
c

)

cos(3(ωr t − φ0))

+ ε2 α2

512ω4
r

A5
c cos(5(ωr t − φ0)). (16)

As a result, the frequency–amplitude relationship will

now be given by

ω2
r = ω2

n + ε
3α

4
A2

c + ε2 3α2

128ω2
r

A4
c . (17)

2.2 Multiple scales

The method of multiple scales is an established tech-

nique that is discussed at length in the literature (for
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example, see [22,23,26,31,32] and references therein),

and here we provide a brief summary of this technique

to form a basis on which modifications can be discussed

later.

Following this review of the method, in Sect. 2.3,

solutions found using the frequency detuning proposed

in [32] will be presented; a more thorough investigation

is given in Sect. 3, in which a comparison will be made

between this detuning and that used in the DNF method.

The approach builds on the standard perturbation

method in which the response is split into a series of

terms with reducing significance x = X0 + εX1 +

ε2 X2 +· · · . In MS, each of these time-dependent com-

ponents are treated as functions of multiple timescales.

If these timescales are used, this response is assumed

to be of the form

x(t) = X0(τ, T, Ts) + εX1(τ, T, Ts)

+ ε2 X2(τ, T, Ts) + · · ·
(18)

Here, the prescribed timescales are fast time over which

oscillations occur, τ = ωt , a slower time over which

the amplitudes evolve, T = εt , and a timescale which

is slower still, given by Ts = ε2t . This definition of τ ,

which incorporates frequency, is more typically associ-

ated with the Lindstedt–Poincaré method, but is applied

here to allow a simpler comparison with the DNF

method. These times, τ , T , and Ts , are treated as inde-

pendent variables, such that derivatives with respect to

t can be expressed

dx

dt
= ω

∂x

∂τ
+ ε

∂x

∂T
+ ε2 ∂x

∂Ts

,

d2x

dt2
= ω2 ∂2x

∂τ 2
+ 2ωε

∂2x

∂T ∂τ
+ ε2

( ∂2x

∂T 2
+ 2ω

∂2x

∂Ts∂τ

)

.

(19)

Note that fast time–frequency, ω is typically set to the

linear natural frequency ωn , such that τ = ωt = ωn t .

It is this selection of fast time that is now considered,

and which gives the result listed in Table 1.

Substituting Eq. (19) into a general representation of

an undamped, unforced nonlinear oscillator and using

ω = ωn , gives

ẍ + ω2
n x + εnx (x) = 0

x = x(τ, T )
−−−−−−−−−→

ω2
n x†† + ε2ωn x†‡ + ε2(x‡‡ + 2ωn x†∗)

+ ω2
n x + εnx (x) = 0,

(20)

where •† = ∂•
∂τ

, •‡ = ∂•
∂T

, and •∗ = ∂•
∂Ts

. Now, substi-

tuting Eq. (18) into the right-hand equation in Eq. (20),

removing the terms of order ε3 and higher, and balanc-

ing for ε lead to

ε0 : ω2
n X

††
0 + ω2

n X0 = 0,

ε1 : ω2
n X

††
1 + ω2

n X1 = −2ωn X
†‡
0 − nx (X0),

ε2 : ω2
n X

††
2 + ω2

n X2 = −2ωn X
†‡
1 − X

‡‡
0 − 2ωn X

†∗
0

−D{nx (X0)}X1.

(21)

To find the solution for the components of x , firstly the

ε0 order balance in Eq. (21) is solved to give

X0 = A(T, Ts) cos(τ + φ(T, Ts)), (22)

where A(T, Ts) and φ(T, Ts) are slow time-varying

amplitude and phase functions, respectively, which are

defined by the initial conditions of the system. This

allows the ε1 equation of Eq. (21) to be written as

ω2
n X

††
1 + ω2

n X1 = 2ωn A(T, Ts)
‡ sin(τ + φ(T, Ts))

+ 2ωn A(T, Ts)φ(T, Ts)
‡ cos(τ + φ(T, Ts))

− nx (X0).

(23)

From Eq. (23), A(T, Ts), φ(T, Ts), and X1 may be

calculated using the following steps (as demonstrated

in Online Resource 2), written at ε1 order. These steps

may then be reapplied to the ε2 balance in Eq. (21), to

find the ε2 solution.

Step 1M S The resonant terms, i.e. those that respond

at τ = ωn t in Eq. (23), are removed and equated,

writing

2ωn A(T, Ts)
‡ sin(τ + φ(T, Ts))

+ 2ωn A(T, Ts)φ(T, Ts)
‡ cos(τ + φ(T, Ts))

= Res{nx (X0)},

where Res{nx (X0)} represents the resonant terms in

nx (X0). This equation is then solved to find A(T, Ts)

and φ(T, Ts).

For the Duffing oscillator example, we can write

2ωn A(T, Ts)
‡ sin(τ + φ(T, Ts))

+ 2ωn A(T, Ts)φ(T, Ts)
‡ cos(τ + φ(T, Ts))

= Res
{

αA(T, Ts)
3 cos3(τ + φ(T, Ts))

}

=
3α

4
A(T, Ts)

3 cos(τ + φ(T, Ts)).

(24)

Balancing the sin(τ + φ) and cos(τ + φ) terms gives

A(T, Ts)
‡ = 0, and

2ωn A(T, Ts)φ(T, Ts)
‡ =

3α

4
A(T, Ts)

3,
(25)
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respectively. These can be solved to give

A(T, Ts) = Ac(Ts),

φ(T, Ts) =
3α

8ωn

Ac(Ts)
2T + φc(Ts),

(26)

where φc is an integration constant representing a phase

offset at t = 0. Hence, using Eq. (22), we can write

X0 = Ac(Ts) cos (ωr t + φc(Ts)) ,

with: ωr = ωn + ε
3α

8ωn

Ac(Ts)
2, (27)

where we have recalled that τ = ωn t and T = εt such

that τ + ε 3α
8ωn

Ac(Ts)
2T = ωr t .

Step 2M S The remaining terms in Eq. (23),

ω2
n X

††
1 + ω2

n X1 = −NRes{nx (X0)},

where NRes{nx (X0)} represents the non-resonant

terms in nx (X0) are now considered. Here the right-

hand side may be viewed as an “excitation” of a linear

dynamic system in X1 which can be solved to generate

harmonic responses terms in x .

For the Duffing oscillator example, we have

ω2
n X

††
1 + ω2

n X1 = −NRes{nx (X0)}

= −
α

4
Ac(Ts)

3 cos (3(ωr t+φc(Ts))) .

(28)

where Eq. (27) has been used. Solving this linear dif-

ferential equation gives

X1 =
α

32ω2
n

Ac(Ts)
3 cos (3(ωr t + φc(Ts))) . (29)

Hence, the order ε1 solution, x = X0 + εX1, is given

by

x = Ac(Ts) cos(ωr t + φc)

+
α

32ω2
n

A3
c cos(3(ωr t + φc))

with: ωr = ωn + ε
3α

8ωn

A2
c .

(30)

Here, we have written Ac(Ts) = Ac and φc(Ts) = φc

as the timescale Ts is not used to find the ε1 frequency–

amplitude relationship.

As with the DNF methods, these steps can be

repeated for higher-order ε terms. Applying these to

the ε2 terms, the refined solution is given by

x = Ac cos(ωr t + φc)

+ ε
α

32ω2
n

A3
c

(

1 − ε
21α

32ω2
n

A2
c

)

cos(3(ωr t + φc))

+ ε2 α2 A5
c

1024ω4
n

cos(5(ωr t + φc))

with: ωr = ωn + ε
3α

8ωn

A2
c − ε2 15α2

256ω3
n

A4
c .

(31)

Again, Ac and φc are now a constants, though these

would be functions of higher-order timescales if a

higher ε-order solution was being sought.

2.3 Duffing oscillator backbone curves

It is now possible to compare the expressions for the

frequency–amplitude relationship derived using two

repetitions of the steps in each method. These are given

by

DNF : ω2
r = ω2

n + ε
3α

4
A2

c + ε2 3α2

128ω2
r

A4
c,

MS : ωr = ωn + ε
3α

8ωn

A2
c − ε2 15α2

256ω3
n

A4
c .

(32)

At this point, it is apparent that the DNF method detunes

around the square of the response frequency, whereas

the MS method directly detunes ωr . The correspond-

ing higher harmonic response amplitudes are given in

Table 1. Figure 1 presents the fundamental and third

harmonic backbone curves for the Duffing oscillator at

ε1- and ε2-order, along with the results found using the

numerical continuation software Auto 07p [36]. In this

figure, the influence that the type of detuning has on the

results can be clearly seen. Both at ε1- and at ε2-order

the DNF curve remains close to that of the numeri-

cal solution, whereas the backbone derived from the

MS method diverges from this at higher amplitudes.

Considering panels (a) and (c), it is evident that the ε2-

order solution remains close to the numerical curve for

a greater range of amplitudes, though this introduces

a hardening-to-softening behaviour at higher values of

A1. Further, the harmonic components are poorly cap-

tured by the MS method in both panels (b) and (d).

The results displayed in Fig. 1 demonstrate the dif-

ferences that can occur when a detuning is applied to the

square of ωr , as opposed to directly to the linear term,

and provide motivation for the application of the DNF

detuning in the MS method, as described in Sect. 3.2.

In particular, in contrast to the explicit form for the
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Table 1 Summary of

approximate solutions and

expressions for backbone

curves for the undamped,

unforced Duffing oscillator

Technique Amplitude of

fundamental

Amplitude of

third harmonic

Amplitude of

fifth harmonic

Direct normal form Ac ε
α

32ω2
r

A3
c

(

1 + ε
3α

32ω2
r

A2
c

)

ε2 α2

512ω4
r

A5
c

Multiple scales Ac ε
α

32ω2
n

A3
c

(

1 − ε
21α

32ω2
n

A2
c

)

ε2 α2

1024ω4
n

A5
c

Fig. 1 Comparison of

first-order accurate (ε1)

response curves found using

approximate methods and

numerical continuation for

the undamped Duffing

oscillator in terms of a the

fundamental amplitude, b

the third harmonic and c

other harmonics, using

ωn = 1 and α = 0.5

Numerical Continuation

Direct Normal Form

Multiple Scales

(a)

(c)

(b)

(d)

MS relationship, the DNF method gives an implicit

equation in ω2
r . This can be easily rearranged to give

a quadratic equation in ω2
r which is easily solved and

square rooted to give an explicit equation for ωr . This

process becomes more complicated at higher orders of

ε, at which point it is possible that either a Taylor expan-

sion or numerical continuation would need to be used.

That being said, the accuracy of the curves in Fig. 1 sug-

gests that it is unlikely that these higher orders would

be necessary to obtain a strong approximation of the

true solution.

3 Equating the techniques

In this section, we compare the derivations of the DNF

and MS approaches. To do this, we first consider fre-

quency detuning. The importance of this step for the

DNF method was assessed in [27], in which the Duffing

oscillator was used to demonstrate that it is this detun-

ing which increases the accuracy of the technique in

comparison with the classical normal form method. In

light of the fact that perturbation methods repeat a spe-

cific set of steps to find a solution, as demonstrated in

Sect. 2, we consider whether the same approach may be

used in the MS method to improve the agreement with

the DNF method at the same number of repetitions.

It should be noted that it is possible to introduce the

intrinsic time-dependent amplitudes of the MS method

to the DNF technique to allow transient behaviour to be

captured. This is not investigated further here, as this

paper focuses on the unforced, undamped behaviour of

systems.

3.1 Detuning the MS method

In the derivation of the DNF technique, a frequency

detuning is applied, in which the square of the natural

frequency is assumed to be detuned from the square of
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the response frequency such that the substitution ω2
n =

ω2
r +εδ can be made, where δ is introduced as a detuning

parameter. This is discussed in Appendix A where, for

multiple degrees of freedom, the equation is written

� = Ŵ + εΔ. This allows the linear natural frequency

to be replaced with the response frequency, ωr , and a

detuning term, δ, in the ε1 relationship, Eq. (A.3), and

results in coefficients in (dd⊺ −ω2
r 11,ℓ) expression that

are exactly zero, see Step3N F .

This detuning has been discussed in [37], where

it was shown that the detuning does not affect the

frequency–amplitude relationship, but does improve

the prediction of the third harmonic. The physical inter-

pretation of this is associated with how the underlying

linear system is defined—normally we consider the

Duffing oscillator to have a linear stiffness term ω2
n x

(and hence a natural frequency of ωn), but the same

result can be achieved by treating the linear stiffness

term as ω2
r x and modifying the nonlinear term to com-

pensate for this, giving αx3 +δx , where δ is a detuning

parameter. Adopting the second approach can result in

a smaller nonlinear term which more closely meets the

key assumption that the non-linearity is of order ε1.

Note that this interpretation of the detuning does not

specifically rely on the assumption that δ is small, pro-

vided the new nonlinear term, αx3 +δx , remains small.

3.2 Detuned multiple scales

Now let us consider how frequency detuning, which we

will view as a means to express the equation of motion

in terms of ωr , may be used in a MS approach, resulting

in the detuned multiple scales approach (dMS). Firstly,

when selecting the timescales we set the fast time as

ω = ωr and hence τ = ωr t . The result of this is that

Eq. (20) is modified to

ẍ + ω2
n x + εnx (x) = 0

x = x(τ, T )
−−−−−−−−−→

ω2
r x†† + ε2ωr x†‡ + ε2x‡‡ + ω2

n x + εnx (x) = 0,

(33)

where, now, τ = ωr t , whereas previously, in Eq. (21),

τ = ωn t .

Now, we apply a frequency tuning to remove the ωn

terms. This tuning can take a number of forms, but let us

select the same detuning as used in the DNF approach,

with its link to modifying the linear and nonlinear stiff-

ness terms, and use ω2
n = ω2

r + εδ. Substituting this

and Eq. (18) into Eq. (33) and balancing for εi give

ε0 : ω2
r X

††
0 + ω2

r X0 = 0,

ε1 : ω2
r X

††
1 + ω2

r X1 = −δX0 − 2ωr X
†‡
0 − nx (X0),

(34)

which may be compared with Eq. (21) for the standard

MS approach.

The solution to the ε0 equation is the same as before,

namely Eq. (22), although note that now τ = ωr t ,

whereas, previously, τ = ωn t . The ε1 equation may

be solved using the steps outlined previously. Step1M S

involves balancing the resonant term using the modified

equation

− δA(T ) cos(τ + φ(T ))

+ 2ωr A(T )‡ sin(τ + φ(T ))

+ 2ωr A(T )φ(T )‡ cos(τ + φ(T )) = Res{nx (X0)},

(35)

and for the Duffing oscillator this results in

A(T )‡ = 0,−δA(T ) + 2ωr A(T )φ(T )‡

−
3α

4
A(T )3 = 0.

(36)

These can be solved to give

A(T ) = constant = Ac, φ(T ) = φc, δ = −
3α

4
A2

c .

(37)

Note here, that the frequency shift is captured using

δ, as δ is defined as the detuning parameter, and so

φ(T ) is set to a constant. Using this and recalling that

ω2
n = ω2

r + εδ result in a frequency response equation

given by

ωr =

√

ω2
n + ε

3α

4
A2

c . (38)

This is identical to the expression obtained by the DNF,

as shown in Eq. (15) and Table 1.

Now, Step 2M S is applied to find the harmonics cap-

tured by X1. With the resonant terms removed, the ε1

balance may be expressed as

ω2
r X

††
1 + ω2

r X1 = −NRes{nx (X0)}

= −
α

4
A3

c cos (3(ωr t + φc)) ,
(39)

where X0 = Ac cos(τ + φc) and τ = ωr t has been

used. Solving this differential equation gives

X1 =
α

32ω2
r

A3
c cos (3(ωr t + φc)) . (40)
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Hence the order ε1 solution, x = X0 + εX1, is given

by

x = Ac cos(ωr t + φc) +
α

32ω2
r

A3
c cos(3(ωr t + φc))

with: ω2
r = ω2

n +
3α

4
A2

c . (41)

This is identical to the response predicted using the

DNF approach, see Table 1.

As previously mentioned, a similar detuning of the

MS technique is considered in [32], which introduces

an ε perturbation, ω2 = ω2
0 + εω1 + ε2ω2 + · · · , to

resolve the issues of secular terms in the response.2

Once truncated to order ε1, this expansion can be

seen to be the same as that in the DNF method, though

without the physical interpretation of a series expansion

about the underlying natural frequency. It should be

noted that, in [32], the first term is given as a square

simply because it is convenient.

Note that the steps for the dMS method are illustrated

in Online Resource 3.

3.3 Comparison of detuned multiple scales and direct

normal form

It has been shown that the predicted response using the

DNF method can be matched by the dMS method. Now

we compare these two techniques in more detail for the

case where the amplitude of response is assumed to be

fixed, i.e. A(T ) = Ac. As with all the discussions up

to this point, we will consider the ε1 accuracy case for

a SDOF system.

The form of the response for the methods may be

written as

dMS: x = X0 + εX1

DNF: x = q = u + εh1u∗
1,

(42)

where the ε0 term on the right-hand side of both equa-

tions represents the resonant response and the ε1 term

the harmonic response. The resonant response takes the

form

dMS: X0 = Ac cos(τ + φc), τ = ωr t

DNF: u =
Ac

2
ei(ωr t−φc) +

Ac

2
e−i(ωr t−φc)

= Ac cos(ωr t + φc).

2 Interestingly, it can be seen that ω0 = ωn , even though the ωi

terms are arbitrary in [32].

Here we have set φ(T ) = φc as discussed in the pre-

vious section. In both cases, the expression for the

response frequency is derived by considering the reso-

nant terms in the ε1 equation.

For MS, for the case where A(T ) = Ac and φ(T ) =

φc, Eq. (35) can be simplified to give

− δAc cos(ωr t + φc) = Res{nx (Ac cos(ωr t + φc))},

(43)

and hence, applying this in the dMS method and using

ω2
n = ω2

r + εδ, we get

ω2
r = ω2

n +
1

Ac cos(ωr t + φc)

Res{nx (Ac cos(ωr t + φc))}.

(44)

In the case of the DNF approach, the transformed

dynamic equation is ü + ω2
nu + εnu1u∗

1 = 0 where

nu1u∗
1 is determined using Step3N F . This step solves

(dd⊺ − ω2
r 11,ℓ) ◦ h1 = nq1 − nu1 by consider-

ing the elements term by term. For elements where

(dd⊺−ω2
r 11,ℓ) = 0, the resonant terms, the equation is

satisfied by setting the corresponding elements in nu1

equal to those in nq1. This is equivalent to stating that

nu1u∗
1 = Res{nqu∗

1} = Res{nq(q)}. By substituting

this, along with the solution for u into the transformed

equation of motion and noting that, for a SDOF system,

nq = nx , we can write

(

−ω2
r + ω2

n

)

Ac cos(ωr t + φc)

+ Res{nx (Ac cos(ωr t + φc))} = 0,
(45)

to obtain to the same expression as dMS, Eq. (43).

Now, considering the harmonic contribution, from

Eq. (39), we have

ω2
r X

††
1 + ω2

r X1 = −NRes{nx (X0)}. (46)

Recalling for the dMS technique that fast time is

defined as τ = ωr t , the double derivative of X1 with

respect to τ may be written as X
††
1 = (1/ω2

r )Ẍ1, hence

dMS:
d2

dt2
{X1} + ω2

r X1 = −NRes{nx (X0)}. (47)

In the case of the DNF method, the harmonic terms are

found in Step 3N F where (dd⊺ −ω2
r 11,ℓ)◦ h1 = ne1 −

nu1 is considered. For the non-resonant, or harmonic,

elements this equation is satisfied by setting the left-

hand side of the equation equal to the values in ne1

on an element-by-element basis. From the derivation
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in Appendix A, it can be seen that this solution arises

from Eq. (A.3) and may be expressed as

− h1ü∗
1 − Γ h1u∗

1 = NRes{ne1u∗
1} = NRes{nx (u)}.

(48)

Recalling that, for a SDOF system, Γ = ω2
r and that

h1 is a coefficient matrix, we can rewrite Eq. (48) as

DNF:
d2

dt2
{h1u∗

1} + ω2
r h1u∗

1 = −NRes{nx (u)}. (49)

It can be seen that this is the same as the harmonic

expression for the direct MS approach, Eq. (46), by

following the relationship in Eq. (42) and setting u =

X0 and h1u∗
1 = X1.

From this, we can conclude that, at an accuracy level

of ε1, the prediction of periodic oscillations using the

DNF and MS methods can be made the same. This

requires the MS technique to use τ = ωr t , as in the

DNF method, for fast time and to remove ωn from the

equations of motion using the frequency tuning ω2
n =

ω2
r + εδ. As discussed in [37], this is justified based

on the idea that the system can be linearised about a

stiffness ω2
r x rather than ω2

n x to potentially reduce the

size of the nonlinear term. This may be substituted into

Eq. (41) to give the full solution to order ε1.

3.4 Alternative frequency tunings

So far in this section, we have shown that the MS

and DNF techniques are equivalent, to order ε1, under

the special conditions that the fast time is set to τ =

ωr t and the stiffness term, ω2
n x , in the equation of

motion is rewritten as (ω2
r + εδ)x , where δ can still

be viewed as a detuning parameter. However, this fre-

quency tuning approach raises the question about the

predicted response when a different detuning parame-

ter is selected.

For the case of the DNF method, this has been

addressed in [37] for both single- and multi-degree-of-

freedom systems. Consider the arbitrary frequency tun-

ing ω2
n = ω2

d + δd , where ωd is the detuned frequency

with ωd = ωr for the standard technique described in

2.1. In the MDOF notation used in Appendix A, the

equivalent expression is � = Ŵd + Δd . In [37], it was

shown that the prediction of the response at the funda-

mental frequency is independent of the chosen detuning

at order ε1. The reason for this is that the only change to

the ε1 balance, Eq. (A.3), is that Ŵd , a diagonal matrix

of ω2
ri terms, is replaced by a diagonal matrix of ω2

di

terms. The result is that, in Step3N F , h1 and nu1 are

now found using Eq. (10).

When satisfying Eq. (10) using the arbitrary fre-

quency tuning, we apply the rule defined in Step3N F

to entries that are approximately zero in the brackets,

rather than looking for values which are exactly zero.

The corresponding terms in nu1 are still set to those

in nq1. As these terms are the same as those for the

case where ωd = ωr , the resulting nonlinear function

in u, nu1, also remains the same. Hence, the ε1 order

equation of motion in u, and the subsequent response at

the resonant frequency, is independent of the selection

of ωd . However, the harmonic response prediction is

affected, as each term in this is dependent on the non-

near-zero value of the bracketed term in Eq. (10). The

result is that, for the Duffing oscillator, the vector for

h1 becomes

h1 =

[

α

9ω2
r − ω2

d

0 0
α

9ω2
r − ω2

d

]

(50)

which may be compared to Eq. (12) for the case where

the standard frequency tuning, ωd = ωr , is used. Thus,

in contrast to the fundamental frequency response,

which is not a function of the detuning parameter, the

prediction for the third harmonic amplitude is depen-

dent on the choice of detuning frequency and is given by

A3 =
αA3

c

4(9ω2
r − ω2

d)
. (51)

Figure 2 shows the DNF prediction of the response of

the Duffing oscillator in terms of the first and third har-

monics for a range of frequency tuning frequencies,

ωd = ωr + (ωn − ωr )γ , from γ = 0, corresponding

to the standard detuning used in DNF (i.e. ωd = ωr )

to γ = 1, where no detuning is used (i.e. ωd = ωn).

Figure 2a shows that the prediction of the response at

the resonant frequency is robust to the choice of detun-

ing parameter; however, the third harmonic response is

affected by its choice and is better captured using the

standard DNF detuning (γ = 0) than with no detuning

(γ = 1).

Now, considering MS, we have already seen that the

selection of the fast time–frequency and the subsequent

frequency tuning equation (for the case where this fre-

quency did not match ωn) does affect both the resonant

response and that of the harmonics at order ε1 accu-

racy. In general, if we write the fast time as τ = ωd t ,

where for dMS ωd = ωr , the ε balance equations [see

Eq. (21) for MS and Eq. (34) for dMS] become
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Fig. 2 a Fundamental and

b third harmonic amplitude

response curves for the

undamped Duffing

oscillator, using ωn = 1,

α = 0.5, and γ ∈ [0, 1]
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ε0 : ω2
d X

††
0 + ω2

d X0 = 0,

ε1 : ω2
d X

††
1 + ω2

d X1 = δd X0 − 2ωd X
†‡
0 − nx (X0),

(52)

where the εiω2
n X i terms have been rewritten as

εiω2
d X i + εi+1δd X i prior to the balancing using the

ω2
n = ω2

d + δd frequency tuning expression. In addi-

tion, the Taylor series expansion ωn = ωd +εδd/(2ωd)

has been used to remove ωn in the slow dynamics term

2ωn X
†‡
0 .

Following this approach results in X0 =

A(T ) cos(τ+φ(t)) = A(T ) cos(ωd t+φ(t)) and, using

the ε1 equation, we find that, for the Duffing oscillator,

A(T )‡ = 0,−δd A(T ) + 2ωd A(T )φ(T )‡

−
3α

4
A(T )3 = 0,

(53)

which may be compared to Eqs. (25) and (36) for the

MS and dMS techniques, respectively. Solving the dif-

ferential equations in φ(T ) and A(T ) and substituting

the solutions into the X0 expression give

X0 = A(T ) cos(ωd t + φ(t))

= Ac cos

([

ωd +
δd

2ωd

+
3α

8ωd

A2
c

]

t + φc

)

,
(54)

where Ac and φc are the values of A(T ) and φ(T ) at

t = 0. Recalling that δd is defined in ω2
n = ω2

d + δd ,

this gives the response frequency ωr = ω2
n/(2ωd) +

ωd/2 + 3αA2
c/(8ωd). Writing ωd = ωr + (ωn − ωr )γ

results in the response frequency equation

(1 − γ 2)ω2
r + (2ωnγ 2)ωr

−

(

ω2
n(1 + γ 2) +

3αAc

4

)

= 0,
(55)

and, from solving the ε1 expression, the resulting har-

monic response amplitude is

A3 =
αA3

c

32ω2
d

=
αA3

c

32(ωr + γ (ωn − ωr ))2
(56)

Figure 3 demonstrates that varying γ from 0 to 1 trans-

forms the response from the DNF/dMS to the stan-

dard MS response. For the MS technique, δd = 0 and,

hence, the frequency shift away form ωn is captured by

φ(T ). However, for the dMS technique, ωd = ωr and

so φ(T ) = φc represents the fact that the X0 response is

at response frequency ωr . These represent two special

cases, for a general frequency tuning with fast time

τ = ωd t ; the thin, green curves in Fig. 3 represent

a continuum between these two cases. Note that the

accuracy of the DNF method is only reached when the

detuning from that method is used. Interestingly, the

fundamental response is independent of the detuning

for the DNF method, whereas this is not the case for

MS.

4 Example: non-symmetric, two-mass oscillator

A 2DOF system is considered in this section, allowing

the two methods to be compared using a more com-

plex system, as well as examining the robustness of the

frequency tuning methods.

The system under consideration is the same as that

in [38]. It consists of a two-mass oscillator with a sym-

metric underlying system of linear springs; two cubic

nonlinear springs are added in parallel with the corre-

sponding linear springs, one grounding the first mass
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Fig. 3 a Fundamental and

b third harmonic amplitude

response curves for the

undamped Duffing

oscillator, using ωn = 1,

α = 0.5, and γ ∈ [0, 1]
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and one connecting the two masses. Therefore, the

force-deflection equation for the grounding of the first

mass is F = k1(Δx) + κ1(Δx)3 and the relationship

is similar for the springs connecting the masses, given

by F = k2(Δx) + κ2(Δx)3. Here, ki and κi are the

spring constants of the linear and nonlinear springs,

respectively. As in [38], both techniques are applied

directly to the modal equations of motion to ease the

comparison of solutions. These are given by

q̈ + �q + Nq(q) = 0 (57)

where � is a diagonal matrix of the squared natural

frequencies of the underlying linear system, ω2
ni , and

Nq(q) =
κ1

2m

(

(q1 + q2)
3

(q1 + q2)
3 + βq3

2

)

, (58)

with β = 16 κ2
κ1

.

The application of the methods is largely the same

as for the Duffing oscillator considered in previous

sections, so only a brief overview is given below. For

brevity, solutions will only be considered to order ε1.

In addition, we provide scripts, as supplementary mate-

rial, that allow the equations to be derived symbolically

using Wolfram Mathematica.

4.1 Multiple scales

Standard perturbations are again implemented, giving

the two modal coordinates as

q1(t) = Q10(τ1, T ) + εQ11(τ1, T ) + · · · ,

q2(t) = Q20(τ2, T ) + εQ21(τ2, T ) + · · · .
(59)

The notation τi = ωni t has been introduced to ensure

that the fast time for each mode corresponds to the

appropriate natural frequency. It should be noted that,

for this model, we consider the case τ1 ≈ τ2.

Implementing this perturbation, as well as the corre-

sponding adaptation of the derivative given in Eq. (19),

results in zeroth- and first-order perturbation equations

that take the same form as in Eq. (21), and hence, the

former can be solved to give

Q10 = A1,1(T ) cos(τ1 + φ1(T )),

Q20 = A2,1(T ) cos(τ2 + φ2(T )),
(60)

where Ai, j denotes the amplitude of the j th harmonic

in the i th mode. These solutions can be applied to the

first-order equation [equivalent to the SDOF equation

in Eq. (21)] to give the ε1 equations

ω2
n1 Q

††
11 + ω2

n1 Q11

= 2ωn1 A1,1(T )‡ sin(τ1 + φ1(T ))

+
A1,1(T )

8
(16ωn1φ

‡
1(T )

−3κ1[A1,1(T )2 + 2A2,1(T )2]) cos(τ1 + φ1(T ))

−nq1(Q10, Q20),

ω2
n2 Q

††
21 + ω2

n2 Q21

= 2ωn2 A2,1(T )‡ sin(τ2 + φ2(T ))

+
A2,1(T )

8
(16ωn1φ

‡
2(T ) − 3κ1[A1,1(T )2

+2(1 + β)A2,1(T )2]) cos(τ2 + φ2(T ))

−nq2(Q10, Q20). (61)

The nonlinear terms, nqi (Q10, Q20), are lengthy and

contain fundamental and harmonic terms. Therefore,

they are not shown here.
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Fig. 4 Fundamental

amplitude response curves

for the 2DOF system, using

ωn1 = 1, ωn2 = 1.005,

κ1 = 0.5, and κ2 = 0.05.

Panels a and c show the

response of the first mode,

and panels b and d show the

response of the second

mode
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Collecting the resonant terms allows the amplitudes

and phases to be calculated, as in the SDOF case, so

that

2ωn1 A1,1(T )‡ sin(τ1 + φ1(T ))

+
A1,1(T )

8
(16ωn1φ

‡
1(T )

− 3κ1[A1,1(T )2 + 2A2,1(T )2]) cos(τ1 + φ1(T ))

− Res{nq1(Q10, Q20)} = 0,

2ωn2 A2,1(T )‡ sin(τ2 + φ2(T ))

+
A2,1(T )

8
(16ωn1φ

‡
2(T ) − 3κ1[A1,1(T )2

+ 2(1 + β)A2,1(T )2]) cos(τ2 + φ2(T ))

− Res{nq2(Q10, Q20)} = 0.

(62)

These equations can now be solved to give:

A1,1(T ) = Ac1,

φ1(T ) =
3κ1

16ωn1 Ac1
(Ac1 + Ac2)

3T + φc1,

A2,1(T ) = Ac2,

φ2(T ) =
3κ1

16ωn2 Ac2
((Ac1+ Ac2)

3 + β A3
c2)T +φc2,

(63)

where β = 16κ2
κ1

. Note that the expressions for phase

enforce the condition that neither fundamental ampli-

tude can be equal to zero. Therefore, recalling that

τ1 = ωn1t results in

Q10 = Ac1 cos(ωr t + φc1),

with: ωr = ωn1 + ε
3κ1

16ωn1 Ac1
(Ac1 + Ac2)

3,

Q20 = Ac2 cos(ωr t + φc2),

with: ωr = ωn2

+ ε
3κ1

16ωn2 Ac2

[

(Ac1 + Ac2)
3 + β A3

c2

]

.

(64)

This leads to the following compatibility condition

ωn1ωn2(ωn2 − ωn1)

=
3εκ1

16Ac1 Ac2

[

(Ac2ωn2 − Ac1ωn1)(Ac1 + Ac2)
3

−β Ac1 A3
c2ωn1

]

. (65)

This expression can now be used to find Ac1 in terms

of Ac2, or vice versa. However, the explicit solution is

non-trivial and is not shown here.

The resulting backbone curves from Eq. (64) are

given in Fig. 4 and discussed in Sect. 4.3. Due to

the involved process required to find the harmonics,

analytical solutions for these are not given, but have

been derived using Wolfram Mathematica and solved

numerically to allow comparison between the tech-

niques; this is discussed in Sect. 4.3.

4.2 Direct normal form

This technique also closely mirrors its SDOF counter-

part, so only a brief description of the key differences is
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given. The resonant equations of motion are once again

found in terms of u, with

ui = ui p + uim =
Aci

2
(e+i(ωr t−φi ) + e−i(ωr t−φi )).

(66)

Steps1N F –3N F are followed as previously described

and are not shown here due to the large size of the

matrices involved. Full workings are shown in [38].

The frequency–amplitude relationships that arise are

given by

3κ1(Ac1 + Ac2)
3

8m
+ Ac1(ω

2
n1 − ω2

r ) = 0,

3κ1[(Ac1 + Ac2)
3 + β A3

c2]

8m
+ Ac2(ω

2
n2 − ω2

r ) = 0.

(67)

These results are comparable with Eq. (64) and the

resulting backbone curves are, again, displayed in

Fig. 4. Similarly, the equations for the harmonics are

algebraically complex and are solved numerically.

4.3 Detuned multiple scales

The key difference when applying the dMS in two

degrees of freedom (2DOF) is that separate frequency

tunings are to be applied to each mode

ω2
ni = ω2

r + εδi , for i = 1, 2. (68)

Again, the resonant equations are used to find the ampli-

tude, phase, and now detuning parameter. For the 2DOF

case under consideration, these are given by

A1,1(T ) = Ac1, φ1(T ) = φc1,

δ1 =
3κ1

8ωn1 Ac1
(Ac1 + Ac2)

3,

A2,1(T ) = Ac2, φ2(T ) = φc2,

δ2 =
3κ1

8ωn2 Ac2

[

(Ac1 + Ac2)
3 + β A3

c2

]

.

(69)

Thus, substituting these values into Eq. (68) gives the

frequency–amplitude equations as

3κ1(Ac1 + Ac2)
3

8m
+ Ac1

(

ω2
n1 − ω2

r

)

= 0,

3κ1

(

(Ac1 + Ac2)
3 + β A3

c2

)

8m
+ Ac2

(

ω2
n2 − ω2

r

)

= 0.

(70)

Comparing these with Eq. (67) demonstrates that the

results from the dMS method, once again, match those

from DNF. It should be made clear that, in Figs. 4 and

5, the curve for the dMS method has not been printed

as it is coincident with the DNF curve.

As with the SDOF case, the final forms of qi are

identical, though this is not shown here for reasons of

brevity.

4.4 Comparison of the techniques

The fundamental backbone curves for the first and sec-

ond modal responses are given in Fig. 4. Four backbone

curves are shown for each technique. Panels (a) and

(b) correspond to the first backbone curve of the sys-

tem, that is, the curve which initiates at the first natural

frequency of the underlying linear system, ωn1; pan-

els (c) and (d) represent the second backbone curve.

These results are comparable to those for the Duffing

oscillator in Fig. 1, with the MS curve underestimating

the numerical continuation results and the DNF/dMS

results again remain closer to the numerical continua-

tion results. The difference between the methods grows

significantly with increasing amplitude. In particular,

the MS results diverge noticeably from the numerical

and DNF/dMS counterparts at higher amplitudes. As

verified in [38], this is the result of the loss of influence

of the higher-order terms during the linearisation of the

system.

Interestingly, the third harmonic components of the

backbone curves in Fig. 5 are qualitatively different

from the equivalent curve for the Duffing oscillator.

While the amplitudes of the third harmonics from the

MS method in the SDOF case were greater than those

from numerical continuation, Fig. 5 shows that the

opposite is true for the 2DOF responses. This incon-

sistency suggests that the MS method is less robust

to changes in the system compared to the DNF and

dMS methods, which remains consistent across the two

cases, although higher-order cases have not been con-

sidered in this study.

5 Conclusions and discussion

This paper presents a comparison between the multiple

scales and direct normal form techniques and investi-

gates whether the two methods can produce equiva-

lent results. In particular, the detuning used in the DNF

method was applied in the MS method to investigate
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Fig. 5 Third harmonic

amplitude response curves

for the 2DOF system, using

ωn1 = 1, ωn2 = 1.005,

κ1 = 0.5, and κ2 = 0.05.

Panels a and c show the

response of the first mode,

and panels b and d show the

response of the second

mode
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whether a similar level of accuracy could be achieved.

The frequency detuning, which can be physically inter-

preted as a way of reducing the amplitude of the nonlin-

ear term based on adapting the effective linear stiffness,

is inherent in the DNF method and has been shown to

improve the prediction of the harmonic response con-

tent. In applying this detuning in the MS method, it was

shown that the two methods could be equated, giving

identical solutions up to ε2 order.

The DNF is advantageous insofar as a natural detun-

ing approach is intrinsic in its formulation, whereas this

is not the case for the MS technique. It is, therefore, the

decision of the user as to whether a detuning is utilised

to increase the accuracy of the method. Furthermore, it

has been demonstrated that the fundamental response

prediction is robust to changes in detuning in the DNF

method. Since this is not the case for the MS technique,

we observe that there is room for further optimisation of

the detuning to be applied, which could further increase

the accuracy of the method.

To aid the understanding of these methods, as well

as the differences in their implementation, Wolfram

Mathematica files for the 2DOF case have been pro-

vided as open access data files. These closely follow

the steps defined in Sect. 2 and are designed to be used

in conjunction with this paper to give a practical under-

standing of each procedure.
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Appendix A

Considering a MDOF system, expressed in linear

modal coordinates, the direct normal form, to order ε

accuracy, involves the transform

q̈ + Λq + εnq(q) = 0
q = u + εh1u∗

1
−−−−−−−−−−−→

ü + Λu + εnu1u∗
1 = 0.

(A.1)

Here, Λ is a diagonal matrix with the i th diagonal ele-

ment being the square of the i th linear natural frequency,

ω2
ni . This reduces to Eq. (3) for the case where a single

mode is considered, with q = q, u = u, n = n and

Λ = ω2
n1 = ω2

n to indicate that the terms are now scalar

quantities or functions.

To find vector u∗
1 , we make use of the fact that in

the transformed equation of motion the harmonic terms

have been removed such that the response in the i th

coordinates ui may be expressed as

ui = u pi + umi

=
Aci

2
ei(ωri t−φ0i ) +

Aci

2
e−i(ωri t−φ0i ).

(A.2)
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Using this the nonlinear function nq expressed in terms

of u may be written as nq(u) = nq(up +um) = ne1u∗
1 .

Here u∗ is an ℓ × 1 vector consisting of all ℓ combi-

nations of u pi and umi generated by nq(up + um) and

ne1 is a n × ℓ matrix (for an n degree-of-freedom sys-

tem) that contains coefficient values. The subscript e

in ne1 indicates that this term can be thought of as an

excitation term in the following discussion.

Now, considering Eq. (A.1), the transform can be

substituted into the equation of motion in q. The result-

ing expression can first be simplified using the resonant

equation of motion and then balanced in terms of ε to

give

ε1 : s − h1ü∗
1 − Γ h1u∗

1 = ne1u∗
1 − nu1u∗

1, (A.3)

where Γ is a diagonal matrix with the i th diagonal ele-

ment being the square of the i th response frequency,

ω2
ri . Here, a Taylor series expansion has been used on

the nonlinear function: n(q) = n(u) + O(ε). In addi-

tion, a form of frequency tuning, similar to that used

in [37], is employed: we write Λ = Γ + εΔ when

considering the h1u∗
1 terms.

Now, observing that each element in u∗
1 is made up

of up and um elements which themselves are complex

exponentials in time, if follows that each term in u∗
1 may

be written as complex exponentials in time. Therefore,

when differentiating u∗ twice with time, each element

maps onto a scaled version of itself. So, we may repre-

sent ü∗
1 as

d2 u∗
1

d t2
= −dd ◦ u∗

1 (A.4)

where dd is a vector of length ℓ × 1 and ◦ is the

Hadamard product (element-wise matrix multiplica-

tion). Using this, we can write the first term in Eq. (A.3)

as

− h1ü∗
1 = h1

(

dd ◦ u∗
1

)

=
[(

1n,1dd⊺
)

◦ h1

]

u∗
1,

(A.5)

where 1a,b is an a × b matrix of ones. In addition,

making use of the fact that Γ is a diagonal matrix, the

second term in Eq. (A.3) may be expressed in a similar

form

Γ h1u∗
1 =

[(

Γ 1n,ℓ

)

◦ h1

]

u∗
1. (A.6)

Substituting these into Eq. (A.3) gives

(1n,1dd⊺ − Γ 1n,ℓ) ◦ h1 = ne1 − nu1. (A.7)

It can be seen that this reduces to the equation given in

Step3N F of the normal form description for the SDOF

case (n = 1). Using Step3N F , the equation can be

solved to find h1 and nu1 and hence identify the trans-

form and transformed equation of motion, respectively.
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