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ABSTRACT  

MicroRNAs and RNA-binding proteins exert regulation on >60% of coding genes, yet 

interplay between them is little studied. Canonical microRNA binding occurs by base-

pairing of microRNA 3’-ends to complementary “seed regions” in mRNA 3’UTRs, 

resulting in translational repression. Similarly, regulatory RNA-binding proteins bind to 

mRNAs, modifying stability or translation. We investigated post-transcriptional 

regulation acting on the xenobiotic pump ABCB1/P-glycoprotein, which is implicated in 

cancer therapy resistance. We characterised the ABCB1 UTRs in primary breast 

cancer cells and identified UTR sequences that responded to miR-19b despite lacking 

a canonical binding site. Sequences did, however, contain consensus sites for the 

RNA-binding protein HuR. We demonstrated that a tripartite complex of HuR, miR-19b 

and UTR directs repression of ABCB1/P-glycoprotein expression, with HuR essential 

for non-canonical miR-19b binding thereby controlling chemosensitivity of breast 

cancer cells. This exemplifies a new cooperative model between RNA-binding proteins 

and microRNAs to expand the repertoire of mRNAs that can be regulated. This study 

suggests a novel therapeutic target to impair P-glycoprotein mediated drug efflux, and 

also indicates that current microRNA binding predictions that rely on seed regions 

alone may be too conservative. 

 

Keywords: breast cancer; post-transcriptional regulation; RNA-binding protein; miRNA; 

chemo-resistance; P-glycoprotein. 
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1 Introduction 

 

Many different molecular mechanisms converge to regulate gene expression at post-

transcriptional levels. Tight control of cellular protein levels is critical for regulation of 

protein function, and post-transcriptional control may allow particularly rapid 

responses to urgent stimuli (Patel et al., 2017) as well as providing overall fine-tuning 

of levels (Arcondeguy et al., 2013, Vallejo et al., 2011) and regulatory redundancy to 

reduce functional consequences of aberrant cellular signalling (He, 2010, Fischer et 

al., 2015).  

 

MicroRNAs (miRNAs), a family of >1500 single-stranded RNAs of ~22 nucleotides in 

length, provide a prevalent mechanism of post-transcriptional control of protein 

expression (Griffiths-Jones et al., 2008, Griffiths-Jones, 2004), with the majority of 

mRNAs subject to their influence (Landgraf et al., 2007). The canonical pathway for 

miRNAs to exert regulation is via base-pairing to mRNAs within their 3’ untranslated 

regions (UTRs). This binding typically comprises perfect base-pairing near the 5’ end 

of the miRNA to a 6-8 nucleotide “seed region” in the target mRNA, with sparse 

pairing throughout the rest of the sequence (Wightman et al., 1993, Grimson et al., 

2007). MiRNA binding results in loading of the mRNA into the miRNA Induced 

Silencing Complex (miRISC), leading to translational repression and/or mRNA 

destabilisation (Hammond et al., 2000). However, subtlety in these regulatory binding 

events is now evident, with some non-canonical miRNA-mRNA interactions being 

recognised (Flamand et al., 2017), meaning that classical seed region recognition 

does not cover the entire range of miRNA-induced regulation.  
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HuR (gene name ELAVL1) is a RNA-binding protein that increases the stability of its 

target mRNAs through binding to AU-rich elements within 3’UTRs (Mukherjee et al., 

2011, Peng et al., 1998, Fan and Steitz, 1998). Interestingly, in addition to this well-

characterised role through which HuR targets thousands of transcripts (Lebedeva et 

al., 2011), HuR has been shown to modify miRNA function for a few specific genes. A 

conceptually simple example of this is that HuR competes with miRNAs for binding to 

overlapping or adjacent mRNA target sites, resulting in inhibition of miRNA binding 

and up-regulation of expression (Lu et al., 2014). More complex, and poorly 

understood, is the observation that HuR can enhance binding of the miRNA let-7 to 

MYC transcripts, resulting in repression of c-myc translation (Kim et al., 2009). This 

cross-talk between RNA-binding proteins and miRNAs underlines the potential 

complexity of interactions between different regulatory molecules that converge on the 

3’UTR. 

 

P-glycoprotein (P-gp; gene name ABCB1) represents a notable paradigm as a target 

of extensive post-transcriptional regulation. Post-transcriptional regulatory 

mechanisms that act on it include usage of alternative 5’UTRs with differing secondary 

structures and consequences for expression (Randle et al., 2007), alternative 3’UTRs 

and polyA sites (Hsu et al., 1990), and binding by stability modulating RNA-binding 

proteins (Boyerinas et al., 2012) or miRNAs (Bao et al., 2012, Kovalchuk et al., 2008). 

Importantly, P-gp is critically involved in the response of many cancer types to 

chemotherapy (Ueda et al., 1987), especially the response of breast cancer (Turton et 

al., 2001, Trock et al., 1997, Tulsyan et al., 2016). P-gp is capable of exporting a 

range of xenobiotics from cells and is found over-expressed in drug-resistant breast 

cancer cell lines and in primary breast tumours, especially when exposed to 

chemotherapy (Kim et al., 2013). However, therapeutics designed to enhance 
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chemotherapy responses based on inhibition of P-gp protein function have broadly 

failed (Crowley et al., 2010), due in part to side-effects linked to P-gp’s critical role in 

normal physiology. Therefore, furthering understanding of post-transcriptional 

regulation of P-gp in cancer is of considerable interest both as a paradigm of 

regulatory complexity, and in order to identify cancer-specific regulation that could 

allow therapeutic manipulation of P-gp expression. Our aim here was to identify 

sequences and mechanisms allowing post-transcriptional regulation of P-gp 

expression in breast cancers with a view to satisfying both these areas of interest. 
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2. Materials and Methods  

 

2.1 Rapid amplification of cDNA ends (RACE) 

Ethical approval was obtained from Leeds East research ethics committee 

(09/H1306/108). RNA was extracted using Reliaprep (Promega; Madison, WI, USA) 

from four primary breast samples comprising non-tumour, and tumours of subtypes 

luminal A, luminal B, and triple negative basal-like. 5’ and 3’ RACE was performed 

using kits from Invitrogen (Carlsbad, CA, USA) following the manufacturer’s protocols 

and using primers listed in Table S1. Products were analysed by agarose gel 

electrophoresis (Tris-acetate EDTA buffer), excised under UV visualization, extracted 

using Zymed DNA gel extraction kits, and cloned into TA cloning vectors (both 

Invitrogen; Carlsbad, CA, USA). Inserts were sequenced using the BigDye™ 

Terminator Sequencing Kit (Thermo Fisher; Waltham, MA, USA). 

 

2.2 Cloning and site directed mutagenesis  

To generate the ABCB1 “full 5’+3’’ GFP reporter construct, the ABCB1 5’UTR was first 

cloned into pTH-GFP immediately upstream of the GFP ORF and downstream of the 

CMV promoter. The bulk of the 5’UTR encoded by exon 1b (see Fig 2) was amplified 

by PCR from genomic DNA using a forward primer with an added SacI site and a 

reverse primer with an added SalI site. The PCR products were cloned into pTH-GFP 

using SacI/SalI (New England Biolabs; MA, USA) to generate 5’-UTR-pTH-GFP. The 

ABCB1 3’UTR sequences were amplified by PCR from genomic DNA with BamH1 

added to a common forward primer and HindIII added to each of the reverse primers 

in order to generate full 5’+3’ and Δ1. Fragments were cloned BamH1/HindIII into 5’-

UTR-pTH-GFP to generate constructs with the GFP ORF flanked by ABCB1 UTRs. 

Correct sequence insertion was confirmed in both directions by sequencing as above. 
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The region of the 5’UTR encoded by exon 2 (see Fig 2) was then added using the Q5 

Site Directed Mutagenesis kit (E0554S New England Biolabs; MA, USA) with primers 

designed using the manufacturer’s online design tool. Mutation of the canonical miR-

19b site was performed using Q5 SDM, changing the seed region from TTTGCATA to 

ATAGCTAA. Deletion constructs Δ2-6 were generated with a common forward primer 

and a series of reverse primers at 50bp intervals culminating in complete deletion of 

the ABCB1 3’UTR for the Δ6 construct. All primer sequences are detailed in Table S1. 

 

2.3 Cell culture and transfections 

Cell lines were obtained originally from the European Collection of Animal Cell 

Cultures. Cell line identities were confirmed (STR profiles, Leeds Genomics Service) 

and lines were consistently negative for mycoplasma (MycoAlert Mycoplasma 

detection assay, Lonza, Basal, Switzerland). MCF7 and HB2 cells were maintained in 

DMEM supplemented with 10% FCS (Thermo Fisher; Waltham, MA, USA) and 

maintained between 20 and 80% confluence. Transfections for translational efficiency 

were performed in duplicate wells of a 6-well plate using Lipofectamine 2000 (Thermo 

Fisher; Waltham, MA, USA) according to manufacturer’s guidelines. 900ng of 

pcDNA3.1 empty vector was used as a carrier for 100ng of GFP reporter (amount of 

each reporter was corrected for its size in base pairs relative to the GFP control to 

ensure equi-molar transfections) mixed in Optimem (Thermo Fisher; Waltham, MA, 

USA) with Lipofectamine 2000 at 7.5:1 ratio. MiR-inhibitors, mimics and controls were 

purchased from Thermo Fisher (Waltham, MA, USA) and were used at final 

concentration of 30nM (miR-19b inhibitor: 4464084; inhibitor control: 4464076; miR-

19b mimic: 4464066; mimic control: 4464058). SiRNA were purchased from Santa-

Cruz (Dallas, TX, USA) and were used at final concentration of 10nM (siHuR: sc-

35619; siControl: sc-37007). Assays were performed in duplicate wells of a 6-well 
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plate on 2.5x105 cells using 5μl RNAiMAX following manufacturer’s protocols (Thermo 

Fisher; Waltham, MA, USA). For co-transfection, 900ng pcDNA3.1 carrier and 100ng 

GFP reporter were combined with miR-inhibitor or control, or siRNA, and mixed with 

RNAiMAX in Optimem. For HB2 cells, transfection complexes were added to cells in 

the absence of serum. All transfection complexes were incubated with cells for 16h 

before replacing with fresh medium, and were performed on 2.5x105 cells/well of a 6-

well plate, except for siHuR pull-down experiments where a 50% confluent T150 

tissue culture flask was used.  

 

2.4 Expression analysis of mRNA and miRNA in cell lines 

For mRNA expression analysis, RNA was isolated using Reliaprep kits and reverse 

transcribed using GoScript (both from Promega; Madison, WI, USA) with oligo-dT 

primers. qPCR was performed in duplicates with 300nM primers (sequences: Table 

S1) and GoTaq SYBR Green PCR Master Mix (Promega; Madison, WI, USA) on the 

7500HT qPCR machine (Applied Biosystems; Warrington, UK). Expression was 

normalised to reference gene 36B4 using the ΔΔCt method (Satheesha et al., 2011). 

For miRNA expression analysis, RNA was extracted using the mirVana miRNA 

Isolation Kit (Thermo Fisher; Waltham, MA, USA) and miRNAs were reverse-

transcribed with gene specific primers (Thermo Fisher; Waltham, MA, USA). qPCR 

analyses were performed on 7500HT machines (Applied Biosystems; Warrington, UK) 

in triplicate using gene specific Taqman assays (Thermo Fisher; Waltham, MA, USA). 

Relative miRNA expression was determined using ΔΔCt against the geomean of 

normalisers U6 and RNU48. 

 

2.5 Translational efficiency assay 
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We have described this assay in detail previously (Smith et al., 2010b, Satheesha et 

al., 2011). In brief, relative GFP protein and mRNA levels were used to assess GFP 

protein produced per unit mRNA. Illustrative data for GFP protein expression, and 

GFP mRNA levels are shown in Fig S1. Following transfection, RNA was purified 

using Reliaprep (Promega; Madison, WI, USA) with on column DNAse digestion 

followed by two additional TURBO DNase I digestions (Thermo Fisher; Waltham, MA, 

USA). cDNA was synthesized and analysed as above. For analysis of GFP protein 

expression, cells were suspended in phenol-red free RPMI with 1% FCS and 

fluorescence quantified (geometric mean fluorescent intensity of 2.5x105 events after 

exclusion of debris/dead cells on forward activated light scatter/side scatter) at 525 nm 

using an LSRII machine (BD Biosciences; Oxford, UK). 

 

2.6 Western blots 

Proteins were extracted using RIPA buffer (10mM Tris-HCl pH8, 140mM NaCl, 0.1% 

SDS, 1% Triton X-100, 0.1% sodium deoxycholate, 1mM EDTA, 0.5mM EGTA) with 

1mM PMSF and 1mM DTT added immediately prior to use. Without prior heating 

proteins were loaded onto Novex 4-12% gradient gels (Thermo Fisher; Waltham, MA, 

USA), transferred to PVDF membranes, and blocked (P-gp: 5% milk 30min followed 

by 1% milk 45min; actin: 5% milk). Proteins were probed with anti-Pgp C219 (EMD 

Millipore; Billerica, MA, USA; 1/100 overnight at 4°C), anti-HuR D9W7E rabbit 

monoclonal (cat. number 12582, Cell Signalling Technologies; Danvers, MA, USA; 

1/500 overnight at 4°C), or mouse anti-β-actin (A5441, Sigma; Gillingham, Dorset - or 

- 8H10D10, cat. number 3700, Cell Signalling Technologies; Danvers, MA, USA; both 

at 1/10,000 overnight at 4°C). They were then blocked and probed in 1% milk with 

HRP-conjugated secondary antibodies (Santa Cruz Biotech; CA, USA) at 1/10,000, 

and signal was visualised with West Pico (Thermo Fisher; Waltham, MA, USA), or with 
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secondary antibodies (IRDye 800CW goat anti-mouse cat. number 926-68170, IRDye 

680RD donkey anti-rabbit cat. number 926-68171; LI-COR; Lincoln, NE, USA) and 

image acquired using LI-COR equipment (LI-COR; Lincoln, NE, USA). 

 

2.7 MiRNA in silico screening 

208 miRNAs were predicted to bind to the longest ABCB1 3’UTR (NM_000927) 

according to microRNA.org, and these were included in the initial analysis. miRNAs 

with duplex free energies of >-9 were excluded so as to account for poor site 

accessibility (Kertesz et al., 2007), a single wobble and a single mismatch were 

allowed, and a minimum seed region of 6 was specified. MiRNAs under further 

consideration were limited to those expressed in breast tumour tissue, and those 

demonstrating a significant inverse correlation (greater than coefficient 0.2) with 

ABCB1 mRNA in breast tumour tissue (TCGA data (Cancer Genome Atlas, 2012) 

downloaded via the cBioPortal platform (Cerami et al., 2012, Gao et al., 2013).  

 

2.8 Molecular pathology: immunohistochemistry and laser micro-

dissection/qPCR  

Ethical approval was obtained from Leeds East research ethics committee 

(06/Q1206/180, project specific; 09/H1306/108, Leeds Breast Tissue Bank). 9 cases 

of invasive ductal breast carcinoma of no special type, where matched normal-

adjacent, DCIS and invasive carcinoma appeared within the same archival (formalin-

fixed, paraffin-embeded) block, were identified and marked up by consultant breast 

histopathologist RM-S from haemotoxylin and eosin stained slides. The histo-

pathological details for these individuals/tumours have been described in Table 1 of a 

previous publication (Smith et al., 2015). All patients were chemotherapy naïve at the 

time of resection. For analysis of protein expression, immunohistochemistry was 
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performed as previously described (Kim et al., 2013). Briefly, tissues were sectioned 

at 5µm onto SuperFrost Plus slides (Menzel-Glaser; Braunschweig, Germany). 

Sections were dewaxed and rehydrated. Epitope retrieval was not performed. 

Endogenous peroxidase activity was blocked using 0.3% H2O2. Non-specific binding 

activity was blocked using casein solution (SP5020 Vector Labs; Burlingame, USA). 

Slides were incubated with anti-Pgp (sc-73354 Santa Cruz Biotech; CA, USA) at 

1:2000 in antibody diluent solution (Invitrogen, Paisley, UK) for 1h at room 

temperature. Staining was visualised using Envision reagents (Dako; Gostrup, 

Denmark). Sections were stained in Mayer’s haematoxylin, dehydrated and mounted 

in DPX (Fluka; Gillingham, UK). Sections were digitally scanned using Scanscope XT 

and were observed and analysed using Imagescope (Aperio; Vista, CA, USA). The 

mouse monoclonal antibody against P-gp used here has been used previously for IHC 

on breast tissue by us and others (Mechetner et al., 1998, Kim et al., 2013) and its 

specificity has been validated previously using Western blotting on breast cell lines -

(Mechetner and Roninson, 1992). Positive staining within breast epithelial cells 

(normal, DCIS, or invasive cancer) was assessed semi-quantitatively. Weighted 

histoscores (van Nes et al., 2012) were generated by two independent observers 

(JLT, and LMW [a histopathologist]). The observers counted and quantitatively 

assessed staining in the same 3 separate high power fields. Histoscores (of 0–300) 

were (1×% of tumour cells weakly stained)+(2×% moderately stained)+(3×% strongly 

stained). The inter-observer intraclass correlation coefficient (ICC) for the independent 

scoring was 0.86 (Fig S2), which represents ‘almost perfect agreement’ (Barry et al., 

2010). The average score for each sample from the two observers was used for 

analyses. For analysis of miRNA expression, laser micro-dissection of epithelial breast 

cells was performed as previously described (Verghese et al., 2013) using a 

Zeiss/PALM microdissection microscope and 10µm sections. Areas of 5-10mm2 for 
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each compartment of normal, DCIS or invasive cells (as identified above) were 

digitally outlined and cells were collected in sterile adhesive caps. Areas selected 

were devoid of visible cells other than epithelial cells. Representative images of this 

microdissection have been published as Figure 2 in a previous publication (Smith et 

al., 2015). RNA was extracted using the mirVana miRNA Isolation Kit (Thermo Fisher; 

Waltham, MA, USA) and miRNAs were reverse-transcribed and pre-amplified using 

the MegaPlex RT primers and pre-amplification (Thermo Fisher; Waltham, MA, USA). 

qPCR analyses were performed on 7500/7900HT machines (Applied Biosystems; 

Warrington, UK) in triplicate with Taqman assays (Thermo Fisher; Waltham, MA, 

USA). Relative miRNA expression was determined using the geomean of normalisers 

U6 and RNU48. 

 

2.9 RNA immuno-precipitation assay 

2x107 MCF7 cells per immuno-precipitation were washed in ice cold PBS twice before 

resuspension in a volume equal to the size of the pellet of ice-cold CLB (100mM KCl, 

5mM MgCl2, 10mM HEPES pH7, 0.5% NP40) supplemented with 1mM DTT and 

100U/ml of RNAse Out (Promega; Madison, WI, USA), Protease Inhibitor Cocktail 

(1697498 Roche; Basel, Switzerland) and protein phosphatase inhibitor at time of use. 

Cells were mixed and left on ice for 10 min. Lysates were spun and supernatant 

collected in a fresh tube for pre-clear with IgG1 bound to Dynabeads Protein G 

(Thermo Fisher; Waltham, MA, USA) following the manufacturers recommendations. 

Lysates were diluted in 800µl PLB buffer with additives and 30µl of HuR ([D9W7E] 

New England Biolabs; MA, USA) or IgG ([DA1E] New England Biolabs; MA, USA) 

bound beads in 100µL NT buffer (50mM TRIS pH 7.4, 150mM NaCl, 1mM MgCl2, 

0.05% NP40 with RNAse inhibitor). The mixture was rotated end over end for 4h at 

4°C followed by 5 washes in 1ml aliquots of NT2 buffer. Beads were then 
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resuspended in 100µl NT2 with 10U DNASe I at 37°C for 10 min. Supernatant was 

discarded and for mRNA extraction beads resuspended in BLTG (Promega; Madison, 

WI, USA), or for miRNA extraction in miRVana buffer (Thermo Fisher; Waltham, MA, 

USA). 

 

2.10 UTR pull-down assay 

50µl of MyONE C1 Dynabeads (Thermo Fisher; Waltham, MA, USA) were mixed with 

250pmol of oligos (Sequences: Table S1) biotinylated at the 5’ end corresponding to 

either the responsive (R; positions 5-54) or non-responsive (nR; positions 55-104) 

regions (Integrated DNA Technologies; Leuven, Belgium) for 12 min at 37°C with 

gentle rotation. Beads were then washed in WB (5mM Tris-HCl pH 7.5, 0.5mM EDTA, 

1M NaCl, 0.05% Tween) and resuspended in 50µl NT buffer. Lysates were extracted 

from MCF7 cells by resuspending in PLB as above, in the presence or absence of 

Queretin at 10µM, or after transfection with siHuR or siControl. 850µl of NT buffer was 

added to 100µl cell lysate in PLB, and 50µl set aside for input sample. 50µl of bead-

oligo complex was added and the mixture incubated for 2 h at room temperature with 

end-over-end rotation. Beads were washed three times in NT buffer, and resuspended 

in 20µl TE (1mM EDTA pH 7.5, 10mM Tris-HCl pH 7.5). This was heated to 70°C at 

0.5°C/s, and then immediately allowed to return to room temperature. Supernatant 

containing the eluted RNA was resuspended in miRVana buffer. 

 

3 Results 

 

3.1 ABCB1 UTRs are single majority species with little variation across different 

breast epithelial cells 
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In order to investigate post-transcriptional regulation of ABCB1/P-gp in breast cancer, 

our aim was first to identify accurately the UTR sequences expressed on ABCB1 

transcripts in breast epithelial cells, as the UTRs act as targets for most post-

transcriptional regulation. “Rapid amplification of cDNA ends” (RACE) was employed 

to amplify ABCB1 UTRs from samples of normal breast tissue, a luminal A primary 

breast cancer, a basal primary breast cancer, and the MCF7 breast cancer cell line, 

and these were then cloned and sequenced. 

 

At the 3’ end of the transcript, three different species were identified as common to 

each sample (Fig 1A). Sequencing revealed that these represented different lengths 

of 3’UTR, aligning with the 3’ of exon 29 (the final coding exon of the gene), and each 

terminating at different alternative polyadenylation sites (Fig 1B). Product 1 was 

produced from the most 3’ polyadenylation site therefore generating the longest UTRs 

(a range of 378-384 bases for individual molecules), product 2 was shorter (a broader 

range of 242-298 bases), and product 3 represented the most proximal 

polyadenylation event (119 bases). Notably, we did not identify expression of an even 

longer potential 3’UTR previously investigated by Bao et al and Kovalchuk et al, 

potentially produced by polyadenylation further downstream (p(A)long; Fig 1B) (Bao et 

al., 2012, Kovalchuk et al., 2008). The lack of this species is of relevance as 

expression from it is apparently regulated by miR-298 (Bao et al., 2012) or miR-451 

(Kovalchuk et al., 2008) in breast cancer. When interpreting these data, it was 

important to consider that RACE does not give relative quantitation of species 

because of variation in product amplification dynamics. Therefore, we next used 

qPCR to assess relative expression of UTRs compared to the ABCB1 open reading 

frame (Fig 1C). In all samples, the UTR produced from polyadenylation site 1 (labelled 

“1”) accounted for the vast majority of transcripts. We were unable to detect any 
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expression above background of the potential longer UTR (“long”) (Bao et al., 2012, 

Kovalchuk et al., 2008), with background defined as expression from 5kb downstream 

of the gene (“d/s”). Unfortunately, we were not able to design specific primers to 

assess expression of the shorter UTRs because of the repetitive and AU-rich nature of 

the sequence. Nevertheless, we concluded that the majority of ABCB1 3’UTRs in 

breast epithelial cells are between 378-384 bases long, as encoded by exon 29.  

 

We also performed similar analysis of 5’UTRs (Fig 2). We observed only a single 

RACE product (Fig 2A), the start of which aligned close to the previously reported 

exon 1b (Fig 2B), although the transcriptional start site (TSS 1) was apparently 12-14 

bases further 3’ than previously reported (Ueda et al., 1987) (full sequence in Fig S3). 

An upstream transcriptional start site (TSS -1) has previously been reported in breast 

cells, allowing expression of sequences from exons -1 and 1a (grey in Fig 2B) (Chen 

et al., 1990), however we did not identify their expression by RACE. qPCR was again 

used to give quantitative insights (Fig 2C), and this confirmed that expression of exon 

1b accounted for the vast majority, or even an excess, of transcripts relative to the 

open reading frame, while expression of sequences from TSS -1 (labelled “-1” and 

“1a”) was negligible. We concluded that 5’UTRs in breast cells are overwhelmingly 

129-131 bases in total, encoded by exon 1b spliced to the first coding exon (exon 2). 

 

3.2 MiR-19b expression inversely correlates with ABCB1 and P-gp expression in 

breast cancer 

Next, we were interested to identify miRNAs that could potentially act on these UTRs. 

Initially, we performed an in silico screen using bioinformatics predictions of miRNA 

binding and using publically available gene expression datasets. MiRNAs that were 

predicted to bind to the majority ABCB1 3’UTR identified above were identified using 
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tools at microRNA.org, with defined criteria for strength and nature of the predicted 

interaction (see methods); 81 different miRNAs were identified that were predicted to 

bind at 146 different seed regions. MiRNAs of interest were further reduced to 49 by 

focusing only on those expressed in breast tumours, as assessed from TCGA breast 

tumour expression dataset (ATLAS, 2012). Finally, since miRNAs can cause reduced 

stability in their target mRNAs, we tested for negative correlations between expression 

of miRNA and ABCB1 transcript. We identified 8 that showed a significant correlation 

of at least -0.2 (weak) in Pearson rank correlation tests. These were let-7a and miR-

19a, -19b, -30c, -34a, -148b, -200c, and -455; predicted binding characteristics and 

correlations with ABCB1 are shown in Table S2 and Fig S4 respectively.  

 

This in silico screen had two notable drawbacks. Firstly, the expression data used are 

from whole tissue samples, containing variable and likely considerable contributions 

from stromal cells as contaminants for assessment of epithelial expression. Secondly, 

analysis was limited to transcripts, which does not take into consideration miRNA 

translational inhibition capability, as protein expression would. In order to address 

these concerns, we carried out further screening. We identified 9 breast cancer cases 

(histological subtype: ductal carcinoma, no special type) where matched invasive 

carcinoma, pre-invasive ductal carcinoma in situ (DCIS), and normal epithelial cells 

were present. Epithelial cells of each of these three types were purified by laser 

microdissection from tissue sections, allowing assessment of expression of our 8 

miRNAs of interest in these epithelial compartments by qPCR (Fig 3A). In addition, P-

gp protein expression was detected in matched tissue sections using 

immunohistochemistry and was quantified as histoscores in the same epithelial 

compartments (Fig 3B). Of note was that miR-19b expression was significantly lower 

in invasive cancer cells when compared to matched normal cells (p<0.05) hinting at a 
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potential tumour suppressor role for miR-19b, with no other miRNAs showing 

significant differences. In addition, P-gp expression was progressively up-regulated 

during cancer development from normal cells, through matched DCIS (p<0.01), to 

matched invasive cancer (p=0.01). Finally, correlations between miRNAs and P-gp 

protein were tested (Fig 3C); miR-19b and P-gp showed the only significant 

correlation, with a correlation coefficient of -0.36 (p<0.05). We concluded that miR-19b 

is a strong candidate as a negative regulator of ABCB1/P-gp in breast cancer. 

 

3.3 MiR-19b regulates P-gp expression and influences chemotherapy response 

Next, we performed functional experiments in breast cell lines to investigate whether 

miR-19b has direct regulatory influences on ABCB1/P-gp expression and function. 

MiR-19b mimics or control non-targeting mimics were transfected into MCF7 cells (a 

representative luminal A breast cancer cell line) or HB2 cells (immortalised breast 

epithelial cells from a non-cancer origin) and Western blots were performed to quantify 

P-gp and qPCR to quantify ABCB1 transcript (Fig 4A). P-gp protein expression was 

strongly reduced by miR-19b over-expression, while ABCB1 transcript levels were not 

significantly altered (although there was a suggestion of up-regulation in HB2 cells); 

this change at the level of protein but not mRNA was potentially indicative of 

regulation at the level of translation. Furthermore, MCF7 cells transfected with miR-

19b mimic showed significantly increased drug loading when treated with the 

chemotherapeutic doxorubicin as assessed using flow-cytometry (p<0.004), and 

reduced survival after treatment with doxorubicin in colony forming assays (p=0.028; 

Fig 4B), results indicative of reduced P-gp function. We concluded that miR-19b 

regulates P-gp expression and function.   
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A reporter assay was employed to establish whether ABCB1/P-gp was a direct target 

of miR-19b, acting at the level of translational regulation (Smith et al., 2010a, Smith et 

al., 2010b, Satheesha et al., 2011). A reporter was constructed to allow over-

expression of transcripts with both the 5’ and 3’UTRs identified above as the prevalent 

species in breast cells flanking the GFP open reading frame; this reporter is termed 

“full 5’+3’”. This was compared to a control reporter (“con”) lacking these specialised 

UTR sequences. MCF7 or HB2 cells were transfected with these reporters along with 

miR-19b inhibitor or an inhibitor control, and translational efficiency of GFP messages 

was assessed, by measuring the ratio of GFP fluorescence to GFP mRNA (Fig 4C). 

Note that this assay is insensitive to regulation acting at the level of mRNA stability, as 

protein is assessed relative to amounts of mRNA, and to changes in target protein 

stability, as a reporter protein is used. Under control conditions, the full 5’+3’ reporter 

demonstrated significant inhibition of translational efficiency by 50-70% as compared 

to the non-specialised UTR reporter (p<0.01; compare open bars in each panel). 

Inhibition of miR-19b caused significant and almost complete derepression of 

translation (p<0.02; compare full 5’+3’ open and filled bars), demonstrating that miR-

19b directly targets the ABCB1 UTRs, and that its expression is required for these 

UTRs to specify strong translation repression. Therefore, we concluded that miR-19b 

regulates P-gp/ABCB1 expression at the levels of translation (Fig 4C), and – 

potentially in cancers - mRNA stability (Fig S4). As an interesting aside, the 5’UTR 

contains two SNPs, rs2214102 and rs3213619, at positions -1 and -127 relative to 

start codon. Both variants are represented in the population at frequencies of 

approximately 10% (Poupon et al., 2008, Calado et al., 2002). The minor allele at 

rs2214102 associates with reduced survival in breast cancer patients (Vaclavikova et 

al., 2012) and the minor allele at rs3213619 associate with decreased P-gp 

expression (Tanabe et al., 2001) and decreased chemotherapy clearance (Yamaguchi 
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et al., 2006). However, the variants (alone or in combination) did not impact directly on 

translational efficiency, even though rs2214102 is within the Kozak translational start 

consensus (Fig S5).  

 

3.4 The canonical miR-19b seed region is dispensable for miR-19b dependent 

translational repression 

We next wanted to assess whether the canonical miR-19b binding site, seed region 

bases 340 to 347 within the most prevalent 3’UTR, was directly responsible for miR-

19b mediated translational repression as might be expected. To this end, the miR-19b 

seed region was mutated within the full 5’+3’ reporter, to destroy the canonical miR-

19b site (5’-TTTGCATA-‘3 changed to ATAGCTA [Fig 5A]). Contrary to our 

expectations, translational repression was not alleviated by the mutations, and 

inhibition of miR-19b continued to derepress translation (Fig 5B). To analyse this 

unexpected observation further, the binding site was entirely removed, by deletion of 

the most 3’ 50 bases from the 3’UTR of the reporter (D1 construct; see Fig 5C). As 

before, this did not result in derepression of translation under control conditions, or in 

loss of sensitivity to miR-19b inhibition (Fig 5D). We concluded that the canonical miR-

19b site was not responsible for the miR-19b dependent regulation. A series of 

progressively larger 3’ deletions were made within the reporter in order to identify the 

UTR region responsible for the miR-19b mediated translational repression (Fig 5C). 

Derepression was not seen with constructs Δ2 through to Δ5 (Figs 5E-F) and the 

smallest of these constructs, Δ5, with only 54 bases of 3’UTR remaining, remained 

responsive to inhibition of miR-19b (p<0.001). However, a final deletion of the entire 

ABCB1 3’UTR did result in a significant derepression (p=0.002), and loss of response 

to miR-19b inhibition. We concluded that the 54 bases of 3’UTR in the Δ5 construct 

must contain elements capable of responding to miR-19b. 
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3.5 HuR is required to load miR-19b onto the 3’UTR at a non-canonical site and 

to direct translational repression   

We examined potential binding sites within this 54 base sequence manually, testing 

for poor sites that would not meet automated consensus searches. We noted it 

contained an extremely poor potential binding site for miR-19b, with 14 

complementary bases, 7 mismatches, 2 G/T wobbles and one bulge over the entire 

miRNA 21 base sequence, but no recognisable seed region. The predicted binding 

free energy was calculated with UNAfold (Markham and Zuker, 2008) (see Fig S6 for 

the predicted binding structure) as only -7.9kcal/mol, which is considerably less 

favourable than a typical canonical predicted miR-19b site (eg -13.7kcal/mol for the 

site further down-stream in this UTR). The binding was so poor that we have not been 

able to identify it with any prediction tools (miRWalk, microRNA.org, miRanda, Pictar2, 

Targetscan). We also noted that this potential binding site overlapped with a strong 

consensus binding site (Lopez de Silanes et al., 2004) for the RNA-binding protein 

HuR (Fig 6A).  

 

First, we investigated whether this 3’UTR sequence could potentially bind miR-19b. 

We performed a pull down experiment using biotinylated RNA containing the potential 

binding site (3’UTR bases 3-52, the miR-19b responsive section; “R”) and compared 

this, as a control, to an adjacent section of the same 3’UTR of a similar length (bases 

67-116, non-responsive; “non-R”) for which there was no suggestion of translational 

repression activity (see Fig 5). We used qPCR to assess whether these sequences 

were able to bind endogenous miR-19b from lysates of MCF7 cells. MiR-19b was 

significantly recovered on the responsive RNA sequence (p<0.001; Fig 6B). We also 

assessed whether HuR expression or activity was required for this miR-19b binding. 
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Specific binding of miR-19b to the responsive sequence was completely abolished 

when endogenous HuR expression was reduced by transfection with siRNA, or when 

cellular HuR activity was inhibited with the flavonoid quercetin that reduces HuR 

binding to its AU-rich target sites (Chae et al., 2009) (Fig 6B). We also confirmed the 

efficacy of the siRNA knockdown of HuR by qPCR and Western blot (Fig 6C). 

 

Next, we assessed whether HuR could bind, either directly or indirectly, to miR-19b, 

again using endogenous molecules where possible. An experimentally validated 

antibody against HuR (Zhu et al., 2016, Chu et al., 2013) was chosen to 

immunoprecipitate HuR complexes from MCF7 lysates, and recovery of miR-19b was 

assessed, relative to a control immunoprecipitation (Fig 6D). Endogenous miR-19b 

was pulled down by immunoprecipitation of endogenous HuR as compared to control. 

Finally, we examined whether HuR expression impacted on the translational 

repression associated with the ABCB1 UTRs. MCF7 cells were co-transfected with the 

reporter construct allowing expression of the minimal miR-19b responsive translational 

repression sequences, the Δ5 construct, along with either HuR targeted siRNA or 

control non-targeting siRNA (Fig 6E). Reduced HuR expression (see Fig 6C) was 

associated with translational derepression (Fig 6E), similarly to inhibition of miR-19b 

itself (see Fig 5D). Overall, we concluded that HuR was required to allow miR-19b to 

bind to this non-canonical binding site, and thereby repress translation of P-gp. As a 

final test, we examined whether HuR (ELAVL1) expression correlated with ABCB1 

expression in publically available gene expression datasets for breast cancer. HuR 

(ELAVL1) showed a significant negative correlation with ABCB1 expression 

(Spearman’s rho -0.32, p<0.0001; Fig S7), in accordance with the role we have 

defined in loading miR-19b onto ABCB1 and thereby destabilising the transcript, and 
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in marked contrast to the well-understood role of HuR as a RNA-stabilising factor (for 

which a positive correlation would be expected).  

 

4. Discussion 

We set out to investigate post-transcriptional regulation of the multi-drug resistance 

gene ABCB1/P-gp in breast cancer. We have used a number of thorough approaches, 

which we believe had a critical influence on our findings, and explain why these differ 

from some published data. An example of this is our use of RACE and qPCR 

reactions to identify and quantify the UTRs expressed in our cells of interest (Fig 1 

and 2). This step appears to be surprisingly rare in studies of post-transcriptional 

regulation, despite widespread differential expression of alternative 5’UTRs (Hughes, 

2006), through multiple transcriptional start sites or alternative splicing, and 3’UTRs 

(Di Giammartino et al., 2011) through use of alternative polyadenylation sites. Of note 

is the fact that using this approach we have failed to identify as significantly expressed 

regulatory sequences previously reported as of interest in breast cancer (Bao et al., 

2012, Raguz et al., 2008, Kovalchuk et al., 2008), thereby casting doubt on their 

physiological relevance. A second example is our screening strategy to identify 

potential miRNA regulators of P-gp. We have started, as is typical, with bioinformatics 

predictions of binding to the 3’UTR, but we have supported this with an analysis of 

potential negative correlations between miRNA and target at mRNA level and protein 

level in two separate groups of patient samples, as well as subsequent functional work 

in cell lines mapping the relevant binding sites. We hope that this strategy increases 

our chances of identifying regulation that both can occur in both experimental 

systems, and in vivo. Finally, we have used laser microdissection to isolate epithelial 

cells from tissue samples, thereby limiting our analysis to the specific cells of interest. 

This may explain why we found miR-19b to be significantly down-regulated during 
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cancer progression (Fig 3A), while it has previously been found to be up-regulated in 

breast cancer as compared to matched normal samples using whole tissues (Li et al., 

2017). 

 

Through these analyses, we have identified miR-19b and HuR as novel negative 

regulators of ABCB1/P-gp in breast cancer, acting at the levels of translational 

regulation (Fig 4) and, potentially, mRNA stability (Fig S4). Of note is the fact that the 

negative correlations between ABCB1 and these two regulators are also present in 

prostate cancer, but not in colorectal or lung cancers, hinting at regulation that may be 

specific to certain tumour types (Fig S8). Regulation of ABCB1 by HuR is further 

supported by the fact that it has previously been identified as a direct HuR target using 

pull-down and sequencing approaches (Mukherjee et al., 2011). MiR-19b has been 

implicated as a potential oncomiR in many cancers (Olive et al., 2009, Jin et al., 

2013), and it has been assigned potential cancer-promoting functions in breast cancer 

via negative regulation of tumour suppressor genes such as PTEN (Li et al., 2014), 

PTPRG (Liu et al., 2016) and BRCA2 (Mogilyansky et al., 2016). In contrast, our data 

support a tumour suppressor role for miR-19b in breast epithelial cells, in accordance 

with some data in prostate cancer (Ottman et al., 2016) and hepatocellular carcinoma 

(Hung et al., 2015). HuR has also been defined as an oncogene, with higher 

expression associated with poor survival in breast and other cancers (Zhu et al., 2013, 

Denkert et al., 2004, Wang et al., 2013), and it is the focus of ongoing work to develop 

novel targeted therapeutics (Huang et al., 2016, Muralidharan et al., 2017, Wu et al., 

2015). Strangely, expression levels of HuR and P-gp have previously been shown to 

correlate positively in breast cancer (Zhu et al., 2013), in direct contrast to the 

regulation we have identified, although this previous observation may be 

compromised by the lack of antibody validation.  
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Most interestingly, we established that miR-19b regulates ABCB1/P-gp via non-

canonical miRNA binding in concert with adjacent binding of HuR. In this role, HuR 

binding does not lead to mRNA stabilisation as is typical (Mukherjee et al., 2011), but 

facilitates loading of miR-19b to the adjacent non-canonical site thereby allowing miR-

19b-dependent down-regulation of P-gp expression. Of note is the fact that the paired 

miR-19b/HuR sites appear to be conserved in both murine homologs of the ABCB1 

gene, Abcb1a and Abcb1b (Fig S9). Within the literature, we have identified one 

related observation, in which HuR similarly stabilised the loading of the miRNA let-7 to 

the MYC 3’UTR (Kim et al., 2009), although in this example the miRNA binds to a 

canonical site and its binding is stabilised, rather than HuR allowing use of a site that 

is otherwise not suitable, as we see with ABCB1. From our data, we are not able to 

comment on whether HuR directly binds to these miRNAs in the absence of the target 

mRNAs, however HuR has been reported to bind directly to miR-21, in this case 

apparently acting as a microRNA ‘sponge’ (Poria et al., 2016). While HuR-induced 

loading of miRNAs remains exceptional within the literature, we believe HuR-induced 

loading of miR-19b may be more commonplace. In a comprehensive review of the role 

of HuR in breast cancer (Kotta-Loizou et al., 2016), HuR was reported in functional 

experiments to act at post-transcriptional levels directly to increase expression of 31 

individual target genes and to reduce expression of 4. Excitingly, we have identified 

cryptic miR-19b binding sites adjacent to the HuR binding site in 3 (75%) of the 

3’UTRs from the genes that are down-regulated by HuR (present in WNT5A, IGF1R 

and TP63, but not in BRCA1). Furthermore, expression of these 3 genes, but again 

not BRCA1, demonstrated significant inverse expression correlations with both HuR 

and with miR-19b in breast cancer patients (Fig S10) – observations that are 

compatible with HuR/miR-19b acting in concert in all these cases. If regulation by a 
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functional combination of RNA-binding protein and miRNA is indeed a generic 

regulatory mechanism, this may have substantial implications for our understanding of 

post-transcriptional regulation, necessitating both experimental analysis of exactly 

which RNA-binding proteins and miRNAs combine, and a reassessment of 

bioinformatic prediction for miRNA binding sites to take into account adjacent sites for 

RNA-binding proteins and seed regions that do not conform to the current paradigm.   

 

 

5 Conclusion  

The data presented herein demonstrate that the P-glycoprotein mRNA transcript is 

regulated by cooperation between miR-19b and the RNA-binding protein HuR. Our 

data support of the hypothesis that HuR allows miR-19b to regulate protein expression 

through tethering to a non-canonical seed region thus widening its repertoire of 

binding sites. Whether such non-canonical regulation is a feature specific to the 

miR19b-ABCB1 pair, or if other miRNA-transcript pairs are regulated in this manner 

remains to be investigated. Future research should explore if tripartite regulatory 

complexes are formed at other non-canonical seed-regions and if so, miRNA binding 

prediction should be re-evaluated.  
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Fig 1. Breast epithelial cells express three alternative ABCB1 3’UTRs. A) 3’RACE 

for ABCB1 was performed on RNA from normal breast tissue, a luminal A tumour, a 

basal-like tumour, and MCF7 cells as shown. An agarose gel is shown with RACE 

products from samples as labelled, loaded into two lanes each. The numbers demark 

three major RACE products, representing 3’UTRs of 384 (1), 252-259 (2), and 119 

bases (3). B) RACE products were sequenced and analysed to align with genomic 

DNA. A scaled schematic showing the positions of poly(A) sites 1, 2 and 3 that 

produce the same numbered different UTR lengths. Also illustrated in grey is the 

longer 3’UTR previously reported (Bao et al., 2012, Kovalchuk et al., 2008). C) 

Expression relative to the ABCB1 open reading frame (ORF) was determined by 

qPCR in the samples as labelled for various actual or potential UTR sequences. 1 

represents sequences terminating at p(A) site 1, ‘long’ represents the longer 3’UTR 

sequence previously studied, and d/s represents background expression of a 

sequence >5kb downstream of the gene. Mean of three biological replicates with SEM 

are displayed. 
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Fig 2. Breast epithelial cells express one ABCB1 5’UTR. A) 5’RACE for ABCB1 

was performed on RNA from normal breast tissue, a luminal A tumour, a basal-like 

tumour, and MCF7 cells as shown. An agarose gel is shown with RACE products as 

labelled. 1 denotes the only specific product representing a 5’UTR of 132-134 bases, 

while * denotes a non-specific product. B) RACE products were sequenced and 

analysed to align with genomic DNA. A schematic is shown demonstrating how the 

UTR identified maps onto exon structure. Also illustrated in grey is the previously 

reported upstream exon structure. Alterative transcription start sites (TSS) are 

indicated. C) Expression relative to the ABCB1 open reading frame (ORF) was 

determined by qPCR in the samples as labelled for various actual or potential UTR 

sequences. Sequences from exon -1, 1a and 1b were tested. Mean of three biological 

replicates with SEM are displayed. 
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Fig 3. Expression of P-gp, the protein product of ABCB1, is inversely correlated 

with expression of miR-19b. A) Laser microdissection of epithelial cells from 9  

breast cancer cases with matched samples of normal epithelium, ductal carcinoma in 

situ (DCIS), and invasive cancer was performed.  Expression of miRNAs as labelled 

was assessed by qPCR. Boxes show 25th-75th percentiles, whiskers show range and 

median is shown as the line (Wilcoxon matched-pairs rank test two-tailed). B) The 

same tissues were stained for P-gp expression by immunohistochemistry and 

expression within epithelial cells was quantified as histoscores. Representative 

immunohistochemistry images (top) and P-gp histoscore (bottom). Whiskers show 

range and median is shown as the line (Wilcoxon matched-pairs rank test two-tailed). 

C) MiRNA expression and P-gp histoscores were paired for every sample and tested 

for correlation (Spearman’s rank, coefficient, r, and significance, p). 



 37 

 

Fig 4. MiR-19b directly suppresses P-gp translation and enhances doxorubicin 

mediated cell death. MCF7 or HB2 cells, as labelled, were transiently transfected 

with miR-19b mimics, inhibitors or appropriate controls, or with luciferase reporters as 

shown. A) Western Blots showing P-gp expression (and expression of a loading 

control) after 48h after transfection with miR-19b mimic or control. Blots are 

representative of 2 biological repeats. qPCR analysis showing relative expression of 

ABCB1 after the same transfections. Data represent means (+/- SEM) of 2 biological 

repeats. B) MCF7 cells were transfected with miR-19b mimic or control, and 24h later 

were treated with 10 nM doxorubicin for 24h. Intra-cellular loading with doxorubicin 

was measured by flow-cytometry (left), while survival was assessed in colony forming 

assays (right). C) Plasmids were cloned to allow expression of GFP transcripts flanked 

by control non-specialised UTRs (con) or the 5’ and 3’ UTRs identified as expressed in 

breast cells on ABCB1 transcripts (full 5’+3’). Cells were transfected with plasmids and 

miR-19b inhibitor or inhibitor control and translation efficiency (GFP protein produced 

relative to GFP transcript) was assessed using flow-cytometry and qPCR. Mean of at 

least 3-5 biological replicates with SEM is presented. Two-tailed Student’s t-test was 

performed.  
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Fig 5. MiR-19b response of the ABCB1 3’UTR requires sequences adjacent to 

the reading frame, while the more distal canonical miR-19b site is superfluous. 

A) Schematic of the ABCB1 3’UTR showing positions of the 3 alternative 

polyadenylation sites [p(A) 1, 2 and 3], and the canonical miR-19b binding site. 

Mutations introduced in the binding site in reporter assays in (B) are shown in lower 

case. B) The predicted miR-19 binding site was mutated, as shown in (A), in the 

context of the full 5’+3’ reporter. MCF7 cells were transfected with either the control, 

non-specialised reporter (con) or the mutated full 5’+3’ reporter (mut) along miR-19b 

inhibitor (19b inh) or inhibitor control (con). Translation efficiency was assessed using 

flow-cytometry and qPCR. C) A schematic showing the series of GFP reporters 

expressing ABCB1 3’UTRs with progressively larger deletions. The position of the 

canonical miR-19b binding site is shown on the “full” sequence. D-F) MCF7 cells were 

transfected with either the control, non-specialised reporter (con) or the ABCB1 UTR 

reporter indicated, along with miR-19b inhibitor or inhibitor control (D and F only). 

Translation efficiency was determined. All bars show mean of 2-4 biological replicates 

with SEM. Two-tailed Student’s t-tests were applied. 
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Fig 6. MiR-19b association with the ABCB1 3’UTR is dependent on HuR. A) 

Schematic of the ABCB1 3’UTR showing positions of a potential binding site for miR-

19b, which does not conform to any consensus, and a consensus binding site for the 

RNA-binding protein HuR. Numbers denote base position relative to start of UTR. B) 

Biotinylated oligos corresponding to either the miR-19b responsive region (R; bases 3-

52 of the 3’UTR), or the adjacent non-responsive region (non-R; bases 67-116) were 

used in a pull-down assay with nuclear lysates from MCF7 cells that had been either 

transfected with siRNA against HuR or control siRNA, or treated with the chemical 

inhibition of HuR, quercetin (10μM). Recovery of miR-19b was assessed by qPCR. C) 

MCF7 cells were transfected with siRNA against HuR or control siRNA and expression 

of HuR was assessed using qPCR and Western blot. D) Immunoprecipitations were 

performed from nuclear lysates of MCF7 cells using an antibody directed against HuR, 

or an isotope control antibody. Recovery of miR-19b was assessed by qPCR.  E) 

MCF7 cells were transfected with the minimal miR-19b-responsive ABCB1 UTR 

reporter (Δ5), along with siRNA against HuR or control siRNA. Translation efficiency 

was assessed using flow-cytometry and qPCR. (D) and (E) show mean and SD of two 

technical replicates. (B) and (C) show mean and SEM of two biological replicates. 
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Fig S1 Representative data showing quantification of GFP protein and transcript 

for assessment of translational efficiency. Flow cytometry was used to quantify 

Mean Fluorescence Intensity (GFP protein expression; A) and qPCR to quantify 

relative GFP transcript expression (B). These were used to calculate translational 

efficiency (protein per unit transcript). Data shown represent means of technical 

replicates (+/- SD) for one biological experiment comparing translational efficiency of 

the GFP control construct with the delta 5 deletion mutant (see Fig 5C) in MCF7 cells. 

 

 

Fig S2. Interclass correlation between independent observers for scoring of P-

gp immunohistochemistry. Scores given by scorer 1, LW, are plotted against scorer 

2, JT. The inter-class correlation was calculated using Pearson’s correlation: r2 0.86; 

p<0.0001. 
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Fig S3. ABCB1 5’UTR sequences aligned to the previously reported exon 1b-

derived sequence. Two different lengths of 5’UTR products were identified by 

5’RACE from breast epithelial cells.  These are represented by product 1, and product 

2 of 129 or 131 bases respectively. These sequences are aligned to the slightly longer 

5’UTR sequence identified in Ueda et al (Ueda et al., 1987). The positions and 

variants for SNPs rs3213619 and rs2214102 are highlighted (see Fig S5), with the 

major variant present within the sequence in both locations. The start codon is 

indicated by additional text ATG and M (for methionine) above the sequences. 

 

 

Fig S4. 8 miRNAs were shortlisted as potential regulators of ABCB1 expression. 

Pearson rank correlations were calculated for miRNA expression (x-axis) vs ABCB1 

expression (y-axis). Those with significant negative correlations are shown as scatter 

plots with a linear regression line plotted. Correlation coefficients, r, and significance 

values, p, are shown.  
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Fig S5. SNP variants at rs3213619 and rs2214102 within the ABCB1 5’UTR do 

not affect translational efficiency. SNP variants at rs3213619 and rs2214102 were 

created in the context of ABCB1 UTR reporters, as indicated (rs3213619, either T or C 

in the first position; rs2214102, either A or G, in the second position). MCF7 cells were 

transfected with either the GFP reporter lacking specialised UTRs (GFP) or ABCB1 

UTR reporters and relative translation efficiency of reporter transcripts was assessed 

using flow-cytometry and qPCR. 

 

 

Fig S6. Predicted base-pairing structure of miR-19b and ABCB1 non-canonical 

site. Bases 30 to 70 of the ABCB1 3’UTR and the mature hsa-miR-19b sequence 

were aligned using the UNAfold two-state hybridization tool (Markham and Zuker, 

2008). Binding occurs with free energy of -7.9 kcal/mol. 
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Fig S7. ABCB1 (P-gp) and ELAV1 (HuR) mRNA expression levels negatively 

correlate in breast tumours. Log transformed expression data from previously 

published TCGA RNA-Seq datasets were downloaded from the Broad Institute’s 

TCGA Firehose site. Data represent 774 breast cancers for which matching mRNA 

and miRNA-Seq data were available. Data were plotted on a scatter graph, and a 

Pearson’s correlation test was performed. 
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Fig S8. ABCB1 (P-gp) expression negatively correlates with ELAV1 (HuR) mRNA 

expression and with miR-19b expression in prostate, but not colorectal or lung 

tumours. Log transformed expression data from previously published TCGA RNA-

Seq datasets were downloaded from the Broad Institute’s TCGA Firehose site. Data 

represent 496 prostate cancers, 223 colorectal cancers, and 453 lung cancers. Data 

were plotted on scatter graphs, and Pearson’s correlation tests were performed. 

Pearson’s correlation was performed. Correlations in prostate cancers were highly 

significant (p<0.0001). Correlation between ABCB1 and miR-19b in colorectal cancers 

was significant at p<0.05, but this is excluded using a Bonferroni-corrected target p 

value of 0.008 to take into account multiple tests. 
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Fig S9. Overlapping potential miR-19b and HuR binding sites are present in the 

3’UTR regions of both murine genes encoding P-gp proteins, Abcb1a and 

Abcb1b. Schematics showing alignments locating, in terms of bases from the start of 

the 3’UTR, potential binding sites for miR-19b and HuR in the two murine homologues 

of the human ABCB1 gene.  
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Fig S10. mRNAs reported to be targets of HuR-mediated repression that contain 

cryptic miR-19b seed regions adjacent to a HuR binding site are inversely 

correlated with HuR (A) and miR-19b (B). Expression data for the mRNAs and miR-

19b were downloaded from TCGA and Pearson’s rank correlation analyses 

performed; p values and r values for significant correlations are shown.  
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 5’-3’ 

qPCR 

36B4 (+) GAAACTCTGCATTCTCGCTTCC 

36B4 (-) GATGCAACAGTTGGGTAGCCA 

ABCB1 ORF (+) TGGTTCAGGTGGCTCTGGAT 

ABCB1 ORF (-) CTGTAGACAAACGATGAGCTATCACA 

ABCB1 3’UTR 1 (+) ACATCATCAAGTGGAGAGAAAT 

ABCB1 3’UTR 1 (-) GGCAGTCAGTTACAGTCCAA 

ABCB1 3’UTR Bao (+) tggctctcaaacccaaaacacagatcg 

ABCB1 3’UTR Bao (-) cataattgtgcctcaccccacctcc 

ABCB1 3’UTR d/s (+) gaggtggagcccctcccagg 

ABCB1 3’UTR d/s (-) agcaccccctctctgacagcc 

HuR (+) CGAAGCCTGTTCAGCAGCATTG 

HuR (-) GTTCACAAAGCCATAGCCCAAGC 
 

RACE 

3’RACE +4103 (+) TGCTGGCACAGAAAGGCATC 

5’RACE +5 nested (-) ATTGCGGTCCCCTTCAAGA 

5’RACE -32 RT (-) CTTGGAACGGCCACCAAGAC 
 

3’UTR cloning/deletions 

ABCB1 3'-UTR (+) GGATCCACTCTGACTGTATGAGA 

ABCB1 3'-UTR full (-) GCAAGCTTCCAGTCACATGAAAGTTTAG 

ABCB1 3'-UTR full d1 (-)  GCAAGCTTTATCTTTTAAAATCTACTTTAATTCTGTT 

Forward primer d2-6 (+) GCTTGGGCCCGAACAAAA 

ABCB1 3'-UTR full d2 (-) TTTAAACTATGATTTCTCTCCACTTG 

ABCB1 3'-UTR full d3 (-) ATTACGAAGTCTCTGAAGACTC 

ABCB1 3'-UTR full d4 (-) ATACCTCTTCATAATTCTGTAAGTGTTTG 

ABCB1 3'-UTR full d5 (-) CATATCTAAACAAATATTAAAAAGTATTTAACATCTC 

ABCB1 3'-UTR full d6 (-) TCTTACTTGTACAGCTCGTC 
 

Sequencing 

5’UTR confirmation  

CMV (+) CGCAAATGGGCGGTAGGCGTG 

EGFP (-) CTGGTCGAGCTGGACGGCGACG 

3’UTR confirmation  

BGH-R (+) CCTCGACTGTGCCTTCTA 

EGFP (-) CATGGTCCTGCTGGAGTTCGTG 
 

UTR-pulldown assay 

NonR (67-116) /5Biosg/rArArArGrCrArArArCrArCrUrUrArCrArGrArArUrUrArUr

GrArArGrArGrGrUrArUrCrUrGrUrUrUrArArCrArUrUrUrCrCrU 

Res (3-52) /5Biosg/rCrUrCrUrGrArCrUrGrUrArUrGrArGrArUrGrUrUrArArA

rUrArCrUrUrUrUrUrArArUrArUrUrUrGrUrUrUrArGrArUrArUrG 
 

Site-Directed Mutagenesis of miR-19b seed region 

Q5SDM (+) gctaAAAGTGTCTATAATAAAACTAAACTTTC 

Q5SDM (-) tatcaTTTCAATACTTTTTGCTACTTCTATAAT 

 

Table S1 Primer and Oligo sequences 



 48 

 

 

 

 

 

 

Table S2. MiRNAs predicted to bind the ABCB1 3’UTR. miRNA name and strand 

are shown in the first column. The mature sequence is given and the first base-pairing 

site is shown as “position”. Position 1 would denote the first base of the 3’UTR after 

the end of the open reading frame. The “quality” of the seed site is given as n:w:m 

where n=number of base-pairs; w=wobbles; m=mismatches. All seed regions with 7 

matches and over are listed, while 6-mer seed regions are listed only if they contain 

no mismatches and no wobbles. The free energy of miRNA:UTR binding is given and 

binding events are considered more likely when the ratio of ddG:dGopen is close to 1.  

 

 

 


