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The complexity of eukaryotic cells is underscored by the compartmentalisation of 

chemical signals by phospholipid membranes. A grand challenge of synthetic biology 

is building life from the ‘bottom2up’, for the purpose of generating systems simple 

enough to precisely interrogate biological pathways or for adapting biology to 

perform entirely novel functions. Achieving compartmentalisation of chemistries in an 

addressable manner is a task exquisitely refined by Nature and embodied in a 

unique membrane remodelling machinery that pushes membranes away from the 

cytosol, the ESCRT2III complex. Here we show efforts to engineer a single ESCRT2

III protein merging functional features from its different components. The activity of 

such a designed ESCRT2III is shown by its ability to drive the formation of 

compartments encapsulating fluorescent cargo. It appears that the modular nature of 

ESCRT2III allows its functional repurposing into a minimal machinery that perform 

sophisticated membrane remodelling, therefore enabling its use to create eukaryotic2

like multicompartment architectures. 

 

¶ These authors equally contributed to this work. 

§ Corresponding authors. 
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A major challenge in bottom2up synthetic biology is the engineering of artificial cells 

[123]. Inspired by biological cells, these are compartmentalised architectures 

containing functional chemistries in communication with their external environment 

[4]. Development of artificial cells promises novel, highly adaptive and multifunctional 

chemical systems with wide2ranging potential applications in the chemical [5], 

biotechnological [6] and medical industries [7]; as well as contributing to our 

developing rudimentary understanding of these fundamental units of life [8]. Most 

commonly, compartmentalisation strategies for artificial cells closely mimic the 

natural membrane architectures of their living counterparts with much of the early 

work in the endeavour focused on single membrane2bound compartments, 

comparable to a prokaryotic cell [9]. More recently, however, the spotlight has 

started to shift towards multicompartment systems, analogous with eukaryotic cells, 

with the prospect of increased sophistication and complexity of function [10213]. 

 

In Nature, membrane compartmentalisation is controlled by the action of ordered 

protein assemblies that can bend, push or pull the phospholipid bilayer and 

ultimately bud away vesicles [14]. This provides inspiration for ������� fabrication of 

multicompartment membrane2based systems by repurposing these natural protein 

complexes ��� ���	�. We focus our attention on the ESCRT complex (Endosomal 

Sorting Complex Required for Transport) involved in the formation of multivesicular 

bodies (MVB), which have architectural similarity to the systems we wish to 

engineer. In particular, ESCRT2III is strongly implicated in the membrane remodeling 

capabilities of ESCRTs [15]. 

 

ESCRT2III proteins assemble on the cytosolic face of MVB to perform membrane 

remodeling and scission of newly formed intraluminal vesicles (ILVs) (Figure 1) [162

18]. ESCRT2III is evolutionary conserved and its complexity decreases going from 

�
��	��� to �	����, where there are only three components to the complex [19]. In 

������	������ ��	������, the complex consists of core subunits namely, Vps20, 

Snf7, Vps24, and Vps2 [20]. The main component Snf7 is able to assemble into 

spiral filaments when in contact with phospholipid membranes (Figure 1A; 
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‘filament’) but in the cytoplasm, all ESCRT2III maintain an autoinhibited conformation 

that keeps them soluble [21]. The Snf7 filament is held into place by short N2terminal 

regions that contain hydrophobic aminoacid sequences capable to insert into the 

membrane [22]. However, it is upstream complexes such as ESCRT2II (Figure 1A; 

‘seed’) that initiate membrane invagination and bind to ‘initiator’ Vps20 nucleating 

ESCRT2III assembly at regions of negative membrane curvature (Figure 1A) [23226]. 

Vps20 is the only ESCRT2III component that appears to be myristoylated ��� ����, 

possibly to increase its membrane binding affinity and nucleate complex assembly. 

Upon binding to Vps20, Snf7 is capable of self2oligomerisation into circular filaments 

growing radially, a process that is ‘capped’ by the subunits Vps24 and Vps2 [27] 

(Figure 1A; ‘cap’). Vps2 molecules work as strong binders [28] (Figure 1A; ‘adaptor’) 

for the AAA+ ATPase Vps4 (Figure 1A; ‘motor’). �������, Vps4 hexamers formed in 

the presence of ATP, use N2terminal microtubule interacting and trafficking (MIT) 

domains to anchor the type I MIT interacting motifs (MIM) of Vps2. MIM motifs are 

also present in Snf7 and Vps20 but have lower affinity for Vps4 (type II MIM) [29,30]. 

ATP hydrolysis induces inter2subunit conformational changes within Vps4, which 

mechanically extracts ESCRT2III components from the assembled filament. To date, 

two possible mechanisms have been proposed for membrane remodelling. In the 

‘purse2string’ model, flat ESCRT2III spirals accumulate elastic energy, which is 

released upon ESCRT2III disassembly by Vps4 and used to deform membranes [31]. 

In the ‘dome’ model, ESCRT2III form cylindrical spirals ending in dome2shaped 

structures, with the spirals’ external surfaces interacting with the membrane. The 

domes are lined with Vps2 and Vps24 molecules, which would drive disassembly of 

the dome by recruiting Vps4 [32,33]. Ultimately, these processes dynamically 

remodel nanoscale ESCRT2III spirals into structures with supposedly incrementally 

smaller size, which restrict the neck of the vesicle performing scission of the 

membrane at this point.  Membrane invagination and bud formation by ESCRT2II 

coupled to bud neck restriction by ESCRT2III and Vps4 action result in ILV formation 

within endosomal organelles ��� ���� [23,34]. Recycling of ESCRT2III filaments by 

Vps4 makes the complex competent for a second round of membrane remodelling 

and ILV formation [29]. It is possible to reconstitute membrane remodelling [35] and 

ILV formation from Giant Unilamellar Vesicles (GUVs) using purified ESCRT2III and 

ESCRT2II components, ��� ���	� [18,36]. Furthermore, Vps4 recycling action on 

ESCRT2III has the potential to afford multiple rounds of ILVs, opening the possibility 
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to exploit these proteins to generate multi2compartment architectures within a larger 

membrane structure, segregating different chemical cargo.  

 

The complexity of the ESCRT system does not make it readily amenable to large 

scale preparation for ������	� remodelling of GUVs. Therefore, we set out to create an 

all2in2one ESCRT component capable to perform membrane budding and scission. 

Here we show encouraging data suggesting that a very basic design incorporating 

the key elements for membrane insertion and oligomerisation can indeed remodel 

phospholipid membranes ������	�. 

 

����	
��

!�����
������	����������	�������"������	����
�� ��#�����	���The synthetic gene 

for the Snf72Vps2 chimera (Supplementary data), with the ������	������

��	������� N2myristyl transferase (NMT) recognition sequence MGQKSS replacing 

the first 11 residues of Snf7, was synthesised and subcloned by DC Biosciences 

(Dundee, UK) into a modified pET32a with a C2terminal hexa2histidine tag. Plasmids 

containing genes encoding the Vps4 (pGST2Vps4; Addgene plasmid # 21495), 

Snf7(pMBP2HIS22Snf7; Addgene plasmid # 21492), Snf72Vps2 chimera and NMT 

(pNMT; Addgene plasmid # 42578) [37] were transformed into competent JM109 

cells and grown for 16 hours at 25ºC in 2xYT autoinduction media, containing trace 

metals (Formedium). For the chimera to be myristoylated the media was 

supplemented with myristic acid (10 mg/L) and ZnSO4 (0.1 mM).  

 

Cells from 1L of culture were resuspended in 15ml of ice cold PBS (50 mM NaPO4 

pH 7.4, 150 mM NaCl) with EDTA2Free protease inhibitor cocktail (Roche). Cells 

were sonicated on ice for 30” with 30’’ rest on ice and clarified by centrifugation at 

30,000 x g for 30’ at 4ºC. For the Snf72Vps2 chimera, the supernatant was applied to 

Profinity IMAC Ni2charged resin (Biorad) pre2equilibrated in PBS and incubated at 

4oC for one hour with gentle rotation. The resin was washed with at least five column 

volumes of PBS and a final wash of one column volume of PBS with 50 mM 

imidazole. The bound protein was eluted with PBS containing 300 mM imidazole and 

then applied to a pre2equilibrated (PBS) Superdex 75 30/100 GL (GE Healthcare) 
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size2exclusion column. The peak corresponding to the monomeric protein was 

separated into aliquots, flash frozen in liquid nitrogen and stored at 280ºC. 

 

The supernatant from bacterial cells overexpressing the Snf7 protein fused to 

Maltose2Binding2Protein (MPB) was filtered through a 0.45PM membrane and 

applied to 5 x 1 ml MBPTrap HP (GE Healthcare) at a flow rate of 1ml/min. After 7 

column volumes of PBS MBP2Snf7 was eluted with 3 column volumes of PBS 

containing 10 mM maltose. The MBP tag was removed by incubation overnight with 

excess TEV protease and 1 mM DTT. After cleavage, the tag and TEV were 

removed by passing through a Ni2+ column (both TEV and MBP contain a histidine 

tag) monomeric protein was resolved from aggregates using SEC. 

 

 

$�% �
����	���	�����������������	������&$���'�	#���	����� 

Prior to mass spectrometry proteins were separated on an Agilent 260 Infinity liquid 

chromatography instrument. 1µl of protein sample (in PBS) was injected onto a 

Phenomenex Aeris Widepore column (3.6u, XB2C18, 50mm x 2.2mm) with a flow 

rate of 0.4ml/min. Proteins were eluted by performing a linear gradient from 95% 

solvent A (0.1% formic acid) to 95% solvent B (Acetonitrile/0.1% formic acid) over 15 

minutes. 

 

Mass spectrometry was performed on an in line Aglient 6530 Q2ToF mass 

spectrometer in electrospray(+ESI) ionization mode (with source settings as follows: 

drying gas temperature 350oC, 11L/min; nebuliser 45 psig; capillary voltage 4000v). 

Data was analysed using Agilent MassHunter Qualitative Analysis B.06.00 software 

with a maximum deconvolutiom algorithm. 

 

 

�	���
��������	��������������(	�������	�	����� 

Folch homogenates from bovine brain extracts were purchased from Sigma Aldrich. 

Liposomes were by dehydration and rehydration in PBS, sonicated for 5 min and 

passed through 5 freeze2thaw cycles. 3 PM protein and 5 Pl of 1 mg/ml liposome 

solution were incubated for 15 min and directly centrifuged in a TLA2100 (Beckman 

Coulter) for 15’ at 100,000 rpm at 4°C. The supernatant (S) and pellet (P) were 
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immediately separated and analysed using SDS2PAGE and proteins identified with 

Sypro Ruby protein gel stain (Sigma). 

 

 

������	#	�����	��	#�)�����*�����������+��������&)*+�'� 

15 µL of a 0.7 mM solution of the desired lipid mixture (12palmitoyl222oleoyl2��2

glycero232phosphocholine (POPC, 61.9 mol%), 12palmitoyl222oleoyl2��2glycero232

phospho2L2serine (POPS, 10 mol%), cholesterol (25 mol%), 1,22dioleoyl2��2glycero2

32phospho2(1'2myo2inositol23'2phosphate) (PI(3)P, 3 mol%), and lissamine2

rhodamine2PE (0.1 mol%), from Avanti Polar Lipids) in chloroform was applied to the 

conductive surface of Indium2Tin Oxide (ITO) coated glass slides (surface resistivity 

8212 X/sq, Sigma2Aldrich Product no. 703192), using a syringe in a meandering 

pattern so as to achieve an even coating of lipids. The resulting lipid deposits were 

briefly dried using a stream of dry N2 gas. Two such slides were applied to a silicon 

rubber gasket with their conductive, lipid coated, sides facing the interior of the 

resulting chamber, approximate volume 500 µL, and held in place with a clip. A 

length of copper tape applied to the gasket provided electrical contact between the 

conductive sides of each slide, but isolated from the interior of the chamber. The 

chamber was then filled with an approximately 600 mM sucrose solution and the 

aperture in the gasket was sealed with a silicon rubber plug. The copper contacts 

were attached to a function generator and an AC voltage of 3 V (peak2to2peak) was 

applied to the chamber, at a frequency of 10 Hz sinusodial and maintained for 2 

hours. The frequency was then reduced to zero incrementally over approximately 10 

minutes, before the solution in the chamber was harvested using a syringe needle. 

 

 

�	�#	��������	��	����$+��	 ���������� 

82well glass bottom imaging chambers (ibidi GmbH) were prepared by passivation of 

the interior glass surface by incubation overnight in 10 % bovine serum albumin 

(BSA) solution, followed by copious rinsing with MilliQ water. 

 

Tris buffer solutions containing the desired mixtures of proteins and a membrane2

impermeable fluorescent dye (Cascade blue labelled dextran, Mr ~10,000) were 

prepared in Eppendorf tubes to give a final volume of 160 µL, to which was added 40 
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µL of GUV suspension. The resulting 200 µL solution of GUVs and proteins was 

gently mixed by repeated inversion of the tube before being transferred to the 

imaging chambers. After an incubation period of 20 minutes, imaging was conducted 

using a Zeiss LSM 880 laser scanning confocal microscope. A tile scanning 

technique was employed to capture a cross section of a large number of GUVs and 

avoid double counting of fast2moving intraluminal vesicles as can be the case when 

imaging an entire GUV using a z2stack experiment. The pinhole was adjusted to give 

a section depth of 3.1 µm. A manual count was performed of intraluminal vesicles 

with cascade blue fluorescence in their lumen, indicating that they formed after the 

addition of the proteins and contain extravesicular bulk medium. 

 

The total volume of GUV lumens observed was determined using the Fiji image 

analysis software to determine the total GUV lumen volume (total combined lumen 

area, multiplied by the section depth of 3.1 µm) and was then divided by the volume 

of a typical 20 µm diameter GUV (volume of a 20 µm sphere) to give the number of 

“GUV volume equivalents” observed, one volume equivalent being the volume of an 

idealised 20 µm diameter spherical vesicle. The number of ILVs is thus expressed as 

ILVs per GUV volume equivalent. 

 

Additionally, the number of mature ILVs versus nascent ILV buds was assessed by 

counting ILVs that appear to be free2floating in the GUV lumen and those that are 

clearly in contact with, or in close proximity to the ‘parent’ GUV membrane. ‘Free 

floating’ ILVs were counted as those more than 1 µm from the GUV membrane and 

those closer as ‘buds’. Total numbers of free floating ILVs vs buds were then used to 

calculate a percentage for each sample. 

 

��� ����

��#,�+��-���������
����� The modular nature of ESCRT2III components is such 

that it is possible to swap between the proteins’ functional features such as 

membrane binding, and recognition motifs for Vps4 and still end up with active 

ESCRT2III chimeras [38]. We hypothesised that a unique ESCRT2III component 

could be designed by combining the element of membrane recognition by Vps20 
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(Figure 1B), into the oligomerisation potential offered by the Snf7 sequence. The 

ESCRT2III component that seeds the complex, Vps20, is myristoylated at its N2

terminus region providing an additional feature that confers high affinity for 

membrane binding. We therefore swapped the N2terminal hydrophobic helical 

segment of Snf7 [22]  with the Vps20 myristoylation sequence. The residues 

removed provide the natural insertion motif that is being replaced with the lipidation 

to increase stability at the membrane. This sequence is modified by the enzyme N2

myrstoyl transferase to transfer a myristoyl mojety onto the glycine present in the 

sequence. Additionally, we sought to introduce a higher affinity for Vps4 binding. The 

MIM motif of Vps2 was fused at the C2terminus of the Snf7 molecule in order for this 

chimera to bind to the MIT domain of Vps4 (Figure 1C).  This sequence was fused to 

the C2terminal of Snf7 via a flexible linker to provide accessibility to the Vps4 

ATPase. The myristoylation of this designed ESCRT2III should confer more stability 

on the membrane than the wild2type Snf7 has on its own via the N2terminal helix and 

make ESCRT2II function redundant. 

 

 

��#,�+��-���������������	�����	�� The covalent attachment of myristic acid to an 

N2terminal glycine residue of a protein is called N2myristoylation. The ESCRT2III 

subunit Vps20 is myristoylated in yeast, a modification that appears to be necessary 

for its localisation and membrane association [39]. An octapeptide grafted in the N2

terminal sequence of Vps20 acts as recognition sequence for the N2

myristoyltransferase NMt1. This enzyme attaches a myristate moiety to the glycine 

contained within the recognition motif MGQKSS [40]. N2myristoylation of proteins in 

������� cells is achieved by coexpression of heterologous NMt1 with the target protein 

[41]. Plasmids capable to co2express proteins NMt1 and the Snf72Vps2 protein were 

used to produce the myristoylated chimera. Lipidation of the overexpressed protein 

occurs upon addition of myristic acid and ZnSO4 to the bacterial culture medium as 

previously demonstrated [37]. The non2myristoylated and myristoylated proteins can 

be isolated at high purity and are indistinguishable by molecular weight (Figure 2A), 

with the lipidated form purifying as a monomer and higher oligomeric forms (Figure 

2B). Mass spectrometry of purified protein samples identifies the myristoyl chain 

successfully covalently bonded to the Snf72Vps2 with a molecular weight of 29,809.6 

Da (Figure 2C).  
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����������	�����
���#,�+��-������������
���	�(	�������	�	���� We sought to 

confirm the ability of binding to membranes by the myristoylated chimera using a co2

sedimentation assay with Folch liposomes. Folch homogenates from bovine brain 

extract contain a mixture of lipids including phosphatidyl2inositol and phosphatidyl2

serine, which are both believed to be required for ESCRT2III binding to membranes. 

In the assay, the non2myristoylated chimera is retained in the soluble fraction of the 

centrifugate when not in the presence of Folch liposomes but co2sediments with 

liposomes when these are present (Figure 2D) showing a partial interaction with 

lipids. This result is surprising given that the short N2terminal helical region 

responsible for Snf7 anchoring to membranes was replaced with a myristoylation 

sequence. However, the myristoylation sequence itself is partially hydrophobic, and 

ESCRT2III proteins interaction with membrane is in large part due to electrostatics, 

which may account for the membrane affinity of the unmodified protein. In contrast, 

the myristoylated chimera is present in the sedimented fraction also in the absence 

of liposomes, thus suggesting a propensity to form supramolecular assemblies 

capable to sediment in the conditions of the assay. In the presence of liposomes, the 

myristoylated protein completely partitions in the sedimented fraction thus confirming 

the ability the lipid tail to increase the affinity for phospholipid membranes.  It is clear, 

however, that co2sedimentation assay cannot resolve the difference in affinity 

between the unmodified and myristoylated protein as both show significant binding to 

the membrane fraction. 

 

 

���� ������	�����
� ��#,�+��-� �������� ���#	���� �	��� �##������� ���������

���	
���������������������������������	��	�������#,� The membrane binding 

ability showed by both lipidated and non lipidated Snf72Vps2 chimeras prompted us 

to investigate if these proteins were capable of performing membrane remodelling 

and the extent of the remodelling process. We therefore compared the ability of 

myristoylated and non2myristoylated chimeras to generate ILVs filled with bulk2phase 

within micron2size GUVs. The bulk2phase uptake GUV2based assay has been 

previously used to quantify ESCRT complexes activity [18]. In our assay, 0.1 mol% 

rhodamine labelled PE2lipids (red) were incorporated within electroformed GUVs with 
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a composition of 61.9:10:3:25 POPC:POPS:PI(3)P:cholesterol. Snf7 or Snf72Vps2 

chimeras were added, in separate experiments, to a solution of GUVs of matched 

osmolarity, containing 10 kDa dextran molecules labelled with cascade blue (false 

coloured green in images in Figure 3) and the formation of ILVs filled with cascade 

blue dextran was observed.  

 

Incorporation of bulk2phase solution within internal compartments within a giant 

vesicle implies that: (a) the proteins can invaginate the GUV membrane to generate 

inward budding and, (b) the membrane buds, which contain the extravesicular 

medium, are closed and in some cases severed at the neck. The efficiency of 

membrane remodelling and encapsulation of dextrans was quantified by scoring the 

number of green ILVs in a fixed size volume of solution containing GUVs (see 

methods).  The quantification of ILVs filled with the fluorescent dextran is therefore 

reported as ILVs per GUV volume equivalent. GUVs in a solution of dextrans prior to 

addition of protein (Snf7 or chimeras) did not contain any detectable green ILVs 

(Figure 4A). However, upon addition of 200 nM Snf7, an average of 1.4 ILVs (per 

GUV volume equivalent) containing fluorescent dextrans were generated. In 

comparison, an average of 5 ILVs per GUV volume equivalent were formed by a 

similar concentration of non2myristoylated Snf72Vps2 chimera. Strikingly, 

myristoylation does make a notable difference to ILV generation, doubling the 

number of ILVs, in assays run with two different concentrations of lipidated protein 

versus the non2lipidated chimera (Figure 4A). Interestingly, Snf72Vps2 chimeras 

operate with a higher efficiency of dextran encapsulation, at concentrations that are 

25% lower than the one required for Snf7 to give a similar number of green ILVs (56 

nM vs. 200 nM; Figure 4A). In contrast, Vps20 wild2type or a constitutively activated 

version of this subunit do not induce any ILV formation at 160 nM, a concentration 

similar to the highest tested for the chimeras [18]. 

 

ILVs formed by both Snf7 and the chimeras were typically in the range 122 µm in 

diameter, although smaller and larger individual ILVs can also be observed. We 

aimed to form mixed complexes by combining the chimeras with Snf7 in a 1:9 ratio 

based on the concept that the native filament forming Snf7 might form more active 

complexes when doped with lower chimera compositions. This turned out not to be 

the case (Figure 4B), where Snf7/chimera complexes tended to present less ILV2
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forming activity than the equivalent concentration of pure chimera. However, these 

activities were still much enhanced when compared to Snf7 alone, demonstrating 

that Snf7 and chimeras do form mixed complexes with enhanced activity compared 

to Snf7 only. Despite this, there is no advantage gained in using this more complex 

mixture compared to the simpler, single2component chimera2only system. 

 

We also observed a certain proportion of green ILVs still attached to the membrane 

both in the Snf7 only and in the chimeras GUV population. This motivated us to 

perform an analysis of the proportion of vesicles still attached versus those free2

floating within GUVs, which revealed no apparent difference between the ability of 

the chimeras and Snf7 to perform vesicle scission (Figure 4C). This may indicate a 

thermally2driven stochastic fission probability for nascent ILV buds (~30240% in this 

case) that is dominated by the properties of the membrane rather than the different 

properties of protein assemblies that drive the initial budding process. Note that for ���

���� ESCRT systems, the ATPase Vps4 is required for efficient neck scission of ILV 

buds. 

�	��� ��	���

The membrane remodelling action of the ESCRT2III complex is unique in that this is 

the only known protein assembly capable of generating inward budding of the 

membrane, away from the side of the membrane from which the complex binds. ���

����, this topological process generates new membrane compartments 

encapsulating transmembrane protein cargo within multivesicular bodies. This 

process can be reconstituted ������	� using purified protein components, generating 

intraluminal compartments within GUVs that encapsulate constituents from the 

external media. ESCRT2III function requires the concerted action of four core 

subunits in addition to a AAA+ ATPase that is crucial to maintain the complex 

homeostasis. However, here we have shown preliminary data suggesting that cargo 

encapsulation can be efficiently performed ��� ���	� on model membranes using a 

single protein, engineered by merging functional motifs from some of the core 

ESCRT2III subunits.  
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This initial design does not appear to be capable of binding to the ATPase VPS4, as 

tested by standard protein pulldown assays (Supp. Figure 1). Using our current 

chimera protein, approximately ~60280% of membrane invaginations do not sever at 

the neck to form full ILVs. This indicates that neck scission can occur with 

acceptable efficiency in a lipid bilayer GUV, likely due to the energy barrier for the 

scission step being thermally accessible with a moderate probability. However, 

based on the inferred ������� role of Vps4 in the final energy2dependent scission at 

the neck of ESCRT2generated membrane invaginations, a chimera capable of 

binding Vps4 might improve the efficiency of formation of fully mature ILVs ������	�.  

 

Our current work is an encouraging starting point towards our goal of engineering a 

simple and efficient molecular machinery for on2demand generation of new 

membrane compartments within artificial cells, inspired by the function of native 

ESCRT2III proteins. We have shown that an ESCRT2III chimera protein is more 

efficient at forming ILVs than the core Snf7 subunit of ESCRT2III alone, which forms 

supramolecular spiral assemblies on the membrane. This is suggestive that an 

efficient ��� ���	� machinery should be attainable using a very minimal number of 

engineered components, thus making it a viable approach for the wider bottom2up 

synthetic biology community. While our current chimera can generate ILVs, the 

efficiency of neck scission of bud2like invaginations can be improved. This 

encourages further engineering of an ESCRT2III chimera competent to bind the Vps4 

ATPase as an efficient two2component membrane remodelling tool for artificial cell 

systems. 
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FIGURE 1 2 (A) The core membrane scission machinery ESCRT2III generates ILVs. 

(I) Membrane bending by ESCRT2II and seeding of ESCRT2III assembly. (II) The 

subunit Vps20 initiates Snf7 polymerization into a spiral filament (rectangle shaded 

blue) and induces membrane budding. Vps24 stops filament elongation and the 

spiral filament drives membrane buckling into an ILV. (III) Neck constriction of the 

budded vesicle occurs via Vps42mediated ESCRT2III polymer shortening. (IV) Full 

ESCRT2III disassembly in preparation for a second round of intraluminal vesicle 

formation. (B) The myristoylated Snf72Vps2 chimera is labelled as ‘chimera (+)’ in all 

figures for clarity (‘chimera (2)’ indicates the absence of myristoylation). Chimera (+) 

should anchor the membrane via a N2terminal myristoyl group, assemble on the 

membranes via the full2length Snf7 domain and have the ability to bind the Vps4 

enzyme. (C) The chimera protein is designed by fusion of the Vps4 binding region of 

Vps2 (MIM type I) to the C2terminus of the filament subunit Snf7, via a flexible linker. 

An N2myristoyl transferase recognition sequence replaces the first eleven residues of 

the Snf7 N2terminus. 

 

FIGURE 2 2 (A) SDS2PAGE showing the purity of chimera (2) and chimera (+) 

proteins. (B) Size exclusion chromatography of chimera (+). The fractions 

corresponding to the indicated peak have been used for GUV assays. (C) Mass 

spectrometry shows the addition of a myristoyl chain to chimera (2) to give chimera 

(+). (D) Co2sedimentation assays of chimera proteins with Folch liposomes. Chimera 

(2) is soluble in the absence of liposomes but sediments with liposomes when 

present. Chimera (+) solubility is reduced by the myristoyl tail but completely 

sediments with liposomes, indicating binding to membranes. 

 

FIGURE 3 2 Representative confocal microscopy images of ILVs observed after the 

addition of chimera (+), chimera (2) or Snf7 at a concentration of 225 nM. Green = 

Cascade Blue labelled Dextran (~10,000 Da), red = lissamine2rhodamine2PE, 

section depth = 3.1 µm, 40x objective. 

 

FIGURE 4 2 Quantitative analysis of ILV formation 2 ILVs observed per typical GUV 

volume (20 µm diameter sphere). (A) Comparison of the extent of ILV formation by 
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Snf7, non2myristoylated chimera (2) or myristoylated chimera (+), Control = no 

protein addition. The chimera (+) counts were analysed using a one2way ANOVA 

with Tukey multiple comparisons test (p<0.05 for the 56.25 nM and 225 nM chimera 

(+) categories when compared to either control or 200 nM Snf7). (B) Pairwise 

comparison of the activity of pure Chimera protein with a mixture of 90 mol% Snf7 + 

10% Chimera protein (p<0.05 for the 22.5 nM + 202 nM Snf7 chimera (+) category 

when compared to 200 nM Snf7). (C) Analysis of the proportion of ILV ‘buds’; those 

observed to be visibly incident on, or within 1 µm of the parent GUV membrane, as a 

percentage of the total ILVs observed. 

 

 

Page 19 of 23

http://mc.manuscriptcentral.com/rsfs

Under review for Interface Focus

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review Only

Lipid-inserting tail – Filament (Snf7) – Hook (Vps2)

A B

Snf7

NMT recognition sequence

Vps2 
MIM

MGQKSS

Flexible linker 
GGGGSGGGGSGGGGS

12 240 218 232

Seed – ESCRT-II

Initiator – Vps20

Filament – Snf7 Motor – VPS4

Hook – VPS2 Cap – VPS24

Key:

MIM type I MIM type II MIT domain myristoylation

Chimera (+)

Motor – VPS4

Chimera (+) domain structure
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