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Abstract 

An Į-D-galactose specific lectin belonging to the family of jacalin-related lectins (JRL) has 

been purified by affinity chromatography on cross-linked guar-gum. NanoESI Q-ToF mass 

spectrometric studies revealed that the protein has two chains like all the members of gJRL; 

the heavier chain consists of 133 amino acids and the lighter chain consists of 20-21 amino 

acids. The heavier chain is glycosylated on Asn21 with two types of oligosaccharide chains; 

one of the glycans is pauci-mannose type GlcNAc2(Fuc)Man3(Xyl)  and the other one is 

complex type GlcNAc2(Fuc)Man3(Xyl)GlcNAc(Fuc)Gal. Circular dichroism spectroscopy 

indicated that the secondary structure of the lectin is made up of predominantly ȕ-sheets, 

whereas the thermal denaturation temperature was found to be 76.6 oC by differential 

scanning calorimetry.  MTT cell viability assays on MCF-7 and MDCK cells showed that the 

lectin is highly cytotoxic towards both the cell lines when dosed at micromolar 

concentrations, suggesting that it may play a role in the defence mechanism of the plant. 

Introduction 

Lectins are a special class of proteins which recognize mono or oligosaccharides in a highly 

specific way using various non-covalent interactions but are devoid of catalytic activity [Lis 

and Sharon, 1973]. These proteins are abundantly found in nature and show significant 

diversity in their structures as well as in carbohydrate specificity. Although in animals lectins 

are known to participate in many cellular communication processes [Kilpatrick, 2002] their 

functions in plants are poorly understood. Some lectins are known to be involved in the 

defence mechanism of plants most likely by interacting with the cell-surface carbohydrate 

structures of fungi or insect herbivores [Peumans and Van Damme, 1995], whereas some 

others accumulate in the vegetative storage organs e.g. seeds, bulb or bark and have been 

proposed to function as storage proteins [Van Damme et al., 2002]. Nevertheless, recognition 
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of a vast array of carbohydrate structures by these lectins and their abundance and ease of 

purification have made them important tools in the field of glycobiology [Wu et al., 2009; 

Ambrosi et al., 2005]. 

Jacalin-related lectins (JRLs) are one of the families of plant lectins which show a 

characteristic subunit fold, known as type-1 ȕ-prism fold. This type of subunit fold has three 

four-stranded ȕ-sheets parallel to each other arranged in a prism [Sankaranarayanan et al., 

1996]. There can be two types of JRLs based on the difference in carbohydrate specificity; 

they are either galactose-specific (gJRLs) or mannose-specific (mJRLs). Both mJRLs and 

gJRLs exhibit similar subunit folds and share high sequence identity but differ from each 

other in their structures of protomers and subcellular localization apart from carbohydrate 

specificity [Raval et al., 2004]. This difference originates due to different post-translational 

modifications. While gJRLs are two-chained protomers located in the cytoplasm, mJRLs are 

vacuolar proteins containing single-chain protomers [Van Damme el al., 2002]. gJRLs show 

a number of interesting properties owing to their carbohydrate specificity. Specific binding to 

the Į-anomeric form of the tumour associated T-antigenic disaccharide, Galȕ1-3GalNAc is 

one of them [Mahanta et al., 1990]. The Thomsen-Friedenreich antigen (T-antigen) is 

expressed on the outer cell surfaces of most human carcinomas [Glinsky et al., 2001]. This 

explains the potential of gJRLs as targeting agents in the detection and development of 

therapeutics for the treatment of cancer. Apart from that, jacalin the first gJRL identified and 

the crystal structure of which was resolved first is known to have other interesting properties 

as well. For instances, it binds to immunoglobulin A1 selectively in human serum, stimulates 

T-cell lymphocytes and also binds to a region of HIV virus [Kabir, 1998]. This particular 

family of plant lectins is known to a lesser extent compared to other families. Over the years 

the number of known JRLs has increased, but very few of them are characterized well 

regarding their structures, carbohydrate specificity and prospective biological function. 
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Therefore, in order to shed light on all these aspects it is important to purify and characterize 

new JRLs. 

The present study was carried out to purify a gJRL from mulberry (Morus indica) latex which 

we shall henceforth refer to as MLGL (Mulberry Latex Galactose-specific Lectin) by affinity 

chromatography and to investigate its structural properties using high resolution mass 

spectrometry, circular dichroism spectroscopy and differential scanning calorimetry. The 

carbohydrate specificity of the lectin was determined by performing hemagglutination-

inhibition assays. The cytotoxic effect of the lectin was assessed towards MCF-7 and MDCK 

cells in order to find out its plausible function in the latex. 

Results 

Purification and carbohydrate specificity 

MLGL was purified by a simple one-step affinity chromatographic method. Crude latex was 

collected in ice-cold 10 mM Tris-HCl (pH 8.0) buffer containing 0.15 M NaCl (TBS), frozen 

at −20 °C for 24 h and then thawed at room temperature. The sample was subjected to 

centrifugation and the supernatant was collected and loaded onto a guar-gum column, washed 

extensively with TBS and then the lectin was eluted with 0.2 M galactose. Approximately 2 

mg of protein was obtained from a 60 mg of crude soluble protein fraction (Fig. S1, 

chromatogram). SDS-PAGE of MLGL revealed a single band at 16׽ kDa both under 

reducing (ș-mercaptoethanol was employed as reducing agent) and non-reducing conditions 

(Fig. 1) indicating that no intermolecular disulfide linkages are present in the protein. In gel 

filtration experiment the elution volume of native MLGL was comparable to that of bovine 

serum albumin (Mr 66׽ kDa), suggesting that the lectin is most likely a homotetramer. This 

is consistent with the observation that jacalin and MornigaG, two other members of the gJRL 
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family that exhibit high sequence homology with MLGL (see below) are also 

homotetramers.. 

 

Figure 1: SDS-PAGE under reducing condition. Lane 1: molecular weight marker; lane 2: 

MLGL purified by guar-gum column. 

The isoelectric point (IEP) of MLGL was determined as 4.35 ± 0.07 by measurement of the 

electrophoretic mobility of the protein evaluating the zeta potential at different pH values (cf. 

Fig. 2).  

MLGL could agglutinate human ABO (+) and rabbit erythrocytes with equal efficiency up to 

concentrations as low as 625 ng/mL. Galactose was a poor inhibitor of the hemagglutination 

activity of MLGL, whereas methyl-Į-D-galactopyranoside (MeĮGal, 31 mM) could readily 

inhibit the activity of MLGL. In contrast, methyl-ȕ-D-galactopyranoside and lactose could 

not inhibit the hemagglutination activity of MLGL even at 250 mM and 125 mM, 

respectively, suggesting that the lectin does not recognize the ȕ–anomer of galactose. The 

preferred stereospecific recognition of galactose in the Į-anomeric configuration is further 

corroborated by the finding that other Į-D-galactose derivatives were also able to inhibit the 

hemagglutination activity of MLGL as shown in Table 1. 
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Figure 2: Determination of isoelectric point (IEP) of MLGL (0.1 mg/ml in PBS) using zeta 

potential measurements (titrated with 0.1 M HCl from pH- 6.0 to 3.0 with pH change steps of 

0.5 ± 0.2 at 25 oC). 

Table 1: Inhibition of hemagglutination activity of MLGL by various sugars. Final 

concentration of MLGL used was 4 µg/ml. 

Sugar1 Minimum Inhibitory 

Concentration (mM) 

4-Methyl-umbellyieryl-Į-D galactopyranoside 0.045 

4-Nitrophenyl- Į-D-galactopyranoside 1.2 

Methyl-Į-D-galactopyranoside 8 

Melibiose  16 

N-Acetyl-D-galactosamine 32 

Galactose 63 

 

1The following sugars did not inhibit the activity of MLG up to the resultant concentrations 

indicated in the parentheses: Glucose, mannose, galactose, fructose, sucrose, lactulose, 

fucose, 2-deoxy-galactose, N-acetyl-glucosamine, methyl- Į-D-glucopyranoside, methyl-Į-

D-mannopyranoside, raffinose (all 250 mM), lactose (125 mM). 
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Primary structure 

The mass spectrum of MLGL obtained under denaturing nanoelectrospray ionization 

(nanoESI) conditions (50% acetonitrile and 2% formic acid) indicates the presence of two 

smaller components with molecular masses of 2163׽ Da and ~2475 Da and a larger one with 16׽ kDa (Fig. 6, vide infra). This observation along with the results of de novo sequencing 

suggests that MLGL comprises two non-covalently linked components, viz. one large 

polypeptide chain of 16׽ kDa and a smaller subunit. De novo sequencing of peptides 

obtained from in-solution as well as in-gel proteolysis by use of various proteolytic enzymes 

(trypsin, chymotrypsin, elastase, thermolysin, endoproteinase Glu-C) yielded the complete 

amino acid sequence of MLGL. Each amino acid has been determined from at least two 

independent proteolytic peptides. Fragmentation of the doubly charged tryptic precursor ion 

at m/z 679.32+2 revealed the N-terminal sequence of the heavier chain of MLGL shown as a 

representative example in Supplementary Fig. S2. The primary structures of the small subunit 

was derived by evaluation of the CID spectrum (Fig. 3) obtained from the doubly charged 

precursor ions at m/z 1082.04+2 (calc. 1082.04+2) representing the most abundant ionic 

species (cf. Fig. 6, vide infra).  

Additionally, an isoform of the smaller subunit elongated by three amino acids gave rise to 

signals of low intensity. However, collisional activation allowed for identification of the first 

3 N-terminal amino acids (cf. Fig. 4). The finally obtained sequences for both chains of 

MLGL and their alignment with two other jacalin-related lectins viz. MornigaG and jacalin is 

shown in Fig. 4. Evaluation of peptide sequences revealed some microheterogeneity present 

in MLGL as a result of some amino acid substitutions (cf. Fig. 4). 
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Figure 3: (A) NanoESI Q-TOF fragment ion spectrum obtained from the doubly charged 

peptide precursor ions at m/z 1082.04+2. The analyte comprises amino acids 4–24 of the 

smaller subunit of MLGL. (B) Corresponding fragmentation scheme. 
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1JAC_A   ------------------------------------------------------------  0 
mlgl      ------------------------------------------------------------  0 
Q8LGR4     MASSSFLSLSFLVLLFSISSANTRKWSLSNGLDQKPISIIEAAIGVSEDLLNLNGMEAKN  60 
Q8LLC9     MASSSFLSLSFLILLFSISSANTRKWSLSNGLDQKPISIIEAAIGVSEDLLNLNGMEAKN  60 
                                                                                                    

 

1JAC_A   -----------------------GKAFDDGAFTGIREINLSYNKETAIGDFQVVYDLNGS  37 
mlgl      -----------------------GVAFDDGSYTGIREINFEYNNETALGSLQVTYDVDGT  37 
Q8LGR4    NQQSGKSQTIVVGTWGAQVTSSNGVAFDDGAYTGIREINFEYNNETAIGSIQVTYDVNGT  120 
Q8LLC9      NQQSGKSQTIVVGTWGAQVTSSNGVAFDDGSYTGIREINFEYNNETAIGSIQVTYDVNGT  120 
                                * *****::*******:.**:***:*.:**.**::*: 

 

1JAC_A   PYVGQNHKSFITGFTPVKISLDFPSEYIMEVSGYTGNVSGYVVVRSLTFKTNKKTYGPYG  97 
mlgl     PFEAKKHASFLTGFTPVKLSLDFPSEYLVEVSGYTGKVSGYLVVRSLTFKTDKETYGPYG  97 
Q8LGR4    PFEAKKHASFIKGFTQVKISLDFPNEYIVEVSGYTGKLSGYTVVRSLTFKTNKETYGPYG  180 
Q8LLC9     PFEAKKHASFITGFTQVKIGLDFPSEYIVEVSGYTGKVSGYTLVRSLTFKTNKETYGPYG  180 
         *: .::* **:.*** **:.****.**::*******::*** :********:*:****** 

 

1JAC_A   VTSGTPFNLPIENGLIVGFKGSIGYWLDYFSMYLSL  133 
mlgl      VTSGTYFKLPLQDGLIVGFKGSVGYWLDYLGFHLSL  133 
Q8LGR4    VTSGTHFKLPIQNGLIVGFKGSVGYWLDYIGFHLSL  216 
Q8LLC9    VTSDTHFKLPIQNGLIVGFKGSVGYWLDYIGFHLSL  216 
         *** * *:**:::*********:******:.::*** 
 

Figure 4: Amino acid sequence of the heavier polypeptide chain of MLGL derived from 

mass spectrometry and its alignment with the known jacalin related lectins, mornigaG 

(accession number-Q8LGR4 and Q8LLC9) and jacalin (accession number – JAC1_A). 

Sequence alignment was established using the online software Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clusalo/) 

 

 

http://www.ebi.ac.uk/Tools/msa/clusalo/
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Figure 5: (A) NanoESI Q-TOF fragment ion spectrum obtained from a CID experiment on 

the triply charged precursor glycopeptide ions with m/z 1268.25+3 derived from a 

chymotryptic in-solution digest. (B) Corresponding fragmentation scheme showing pauci-

mannose type N-glycan and the peptide backbone. 
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Apart from the products of proteolysis, the CID experiments performed on intact species of 

MLGL also helped in deducing the amino acid sequence. The exact mass of each subunit of 

MLGL was also determined from the MS experiments performed on the intact species of 

MLGL. These experiments revealed that MLGL consists of two polypeptide chains in its 

single subunit. The smaller chain exhibits some variety in the length as well as in the 

sequence. However, the most abundant species is NQQSGKSQSIVVGTWGAEVTS which is 

derived from the doubly charged peptide ion at m/z 1082.037+2. The larger polypeptide chain 

is glycosylated and can have a few variants in its sequence. 

 

 

 

Figure 6: Mass spectrum of multiply charged peptide ions obtained from the intact species of 

MLGL. The most abundant species fits perfectly to the sequence depicted in the figure 

carrying a GlcNAc2(Fuc)Man3(Xyl)glycan (∆=3.0 ppm) 
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Elucidation of N-glycosylation 

To this end, N-glycopeptide ions derived from in-solution proteolytic digests were subjected 

to CID analysis and their glycan structure as well as their respective glycosylation site were 

deduced from the observed fragmentation pattern. As a representative example, Fig. 5A 

depicts the fragment ion spectrum of CID experiments on triply charged N-glycopeptide 

precursor ions with m/z 1268.25+3 obtained from an in-solution chymotryptic digest. The 

spectrum reveals the typical fragmentation n pattern of a pauci-mannose type N-glycan [25]. 

Neutral loss of either a pentose (xylose) and/or a deoxyhexose (fucose) from the intact 

precursor ions as well as from fragment ions arising from subsequent cleavage of two 

hexoses (mannoses) was observed. Elimination of a third hexose from the Y3Ș/Y3ș 

fragment ions is not observed, in fact this fragmentation process is preceded by loss of a 

pentose. This observation clearly pinpoints the presence of a xylose linked to the innermost 

mannose. Likewise, cleavage of the proximal N-acetylhexosamine (N-acetylglucosamine, 

GlcNAc) giving rise to Y0 fragment ions appears solely following the elimination of the 

deoxyhexose thus substantiating the expected core fucosylation. Besides characterization of 

the glycan structure the detection of an almost complete b-type fragment ion series along with 

several y-type ions derived from the peptide backbone allowed deduction of the amino acid 

sequence 36TGIREINFEYNN47ETAIGSIQVTY58 proving Asn47 to be glycosylated (Fig. 5B). 

An additional glycopeptide species giving rise to triply charged ions at m/z 1438.61+3 was 

shown to harbor the corresponding complex-type congener attached to the same peptide (cf. 

Supplementary Fig. S3). In addition to proven glycosylation at Asn47, less abundant peptides 

harboring another potential N-glycosylation site at aa-position 61 have been identified. 

However, no evidence for a modification by glycan attachment has been found. Furthermore, 

sequencing of most peptide ions comprising the respective peptide stretch revealed a 

deamidation of Asn61 due to the vicinity to Gly. 
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Besides information on the lighter chain of MLGL, molecular weight (Mr) of the intact larger 

polypeptide glycoforms was obtained from the high resolution mass spectrum of purified 

MLGL ionized under denaturing nanoESI conditions (Fig. 6). Mr was determined by mass 

deconvolution of the centroid distribution in a nearly Gaussian shaped envelope of 

isotopically resolved multiprotonated species (cf. Fig. 6 insets B and C). The resulting values 

are in excellent agreement with the theoretical values calculated from the amino acid 

sequence displayed in Fig. 4 assuming post-translational modification by either a pauci-

mannose (GlcNAc2(Fuc)Man3(Xyl)) or a complex-type (Glc- 

NAc2(Fuc)Man3(Xyl)GlcNAc(Fuc)Gal) glycan. 

Secondary structure 

The far-UV CD spectrum of the native protein (Figure 7) shows a negative peak around 220 

nm and a positive peak around 200 nm indicating high ȕ-sheet content and low Į-helical 

content in the secondary structure of the protein. This interpretation was further confirmed by 

analysing the CD spectral data on the online software Dichroweb 

(www.cryst.bbk.ac.uk/cdweb/html/) using the programme CDSSTR. The content of various 

secondary structural elements in MIL were obtained by this analysis as: 2% Į-helix (0% 

regular and 2% distorted), 34% ȕ-sheet (21% regular and 13% distorted), 23% ȕ-turns and 

39% unordered structures. The calculated fit obtained from this analysis is also shown in 

Figure 7 (dotted line), from which it can be seen that the calculated fit is in good agreement 

with the experimentally obtained CD spectrum. The far-UV CD spectrum in presence of 20 

mM MeĮGal showed only marginal changes indicating that sugar binding does not 

significantly alter the secondary structure of the protein (Figure 7). 

 

http://www.cryst.bbk.ac.uk/cdweb/html/


14 
 

198 209 220 231

-2000

0

2000

4000

253 264 275 286 297

-2.0

-1.5

-1.0

-0.5

0.0

 
[

] 
d

e
g

.c
m

2
.d

m
o

l-1

Wavelength (nm)

(A)

 

(B)

 

 

Figure 7: CD spectra of MLGL and analysis by CDSSTR method in the (A) far UV region 

and (B) near UV region are shown. Solid lines (-) represent experimental spectra, dotted line 

(....) represents the calculated fit and dashed lines (- - -) represent spectra obtained in 

presence of 20 mM MeĮGal.  

 

The near-UV CD spectrum of MLGL is characterized by a minimum at ca. 275 nm and a 

shoulder at 294 nm (Figure 6). In presence of 20 mM MeĮGal, the CD signal decreases a 

little around 275 nm, but around 294 nm it retained its intensity as the native protein. 

Thermal stability 

Thermal stability of MLGL was investigated as a function of pH by differential scanning 

calorimetry at a scan rate of 60 oC /hour. A relatively higher scan rate was used in order to 

avoid sample precipitation after transition temperature, which would preclude accurate 
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determination of the transition enthalpy. At pH 7.4, the transition temperature of MLGL was 

observed to be 77.6 oC and the thermogram obtained could be fit to a non-two state model 

containing a single peak as shown in Figure 8 (thermogram 1). The occurrence of a single 

peak implies that the protein undergoes denaturation in a single step from its tetrameric form 

to completely unfolded form. DSC of MLGL in presence of 100 mM MeĮGal resulted in an 

increased thermal stability with an unfolding temperature at 79.1 oC (Figure 8, thermogram 

2). 
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Figure 8: DSC thermograms of MLGL in the absence and in presence of 100 mM methyl-Į-

D-galactopyranoside. Thermogram 1 corresponds to MLGL alone and thermogram 2 

corresponds to MLGL + MeĮGal. Data points are shown as open circles and the solid bold 

line represents the best fit of DSC data to a non-two state transition model. Concentration of 

MLGL was 31.2 µM. 
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Cytotoxicity 

Cytotoxicity of MLGL towards two different cell lines, namely MDCK and MCF-7 cells, was 

evaluated colorimetrically by measuring the colour intensity formed due to the reduction of 

MTT to purple-coloured formazan by the cellular oxidoreductase enzymes. Two different 

concentrations (1.25 and 0.625 µM) of the lectins were used. Triton X100 (10% w/v) was 

used as the positive control. In addition to MLGL, the cytotoxicity of two well-known lectins, 

WGA and jacalin, was also evaluated to compare their effect with that of MLGL on the two 

different cell lines.  

Wheat germ agglutinin (WGA) is an N-acetyl-D-glucosamine and sialic acid specific lectin 

which is known for its strong binding ability to cell surface glycoproteins and hence it is used 

as a molecular probe in conjugation with a fluorophore in fluorescence microscopy 

[Strathmann et al., 2002; Kostrominova, 2011]. Jacalin, on the other hand, is a gJRL which 

can be expected to have similar properties as MLGL. The cytotoxic effect on both cell lines 

was determined after 72 h of incubation and the relative cell viabilities are shown in Figure 9. 
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 Figure 9: Relative viability of MDCK and MCF7 cells after treatment for 72 hours with two 

different concentrations of MLGL, WGA and jacalin as determined by the MTT assay (n = 

3). WGA (Wheat germ agglutinin) and jacalin have been used as control lectins. Statistical 

significance: Kruskal-Wallis test (* p < 0.05, *** p < 0.001, **** p <0.0001). In each case, 

the difference in relative viability has been compared with the untreated control (negative 

control). 

From the plot, it is clear that after treatment with the lower concentration (0.625 µM) of 

MLGL the viability for both cell lines reached ~35%, whereas the greater dose reduced the 

viability for MDCK cells even more (~17% viability) than for MCF-7 cells (~26% viability). 

In both cases, the differences are statistically significant compared to the untreated control           

(p < 0.0001, Kruskal-Wallis test). The effect of WGA on the cell viability of MDCK cells is 

very pronounced (~ 12% viability) at both concentrations (p < 0.0001, Kruskal-Wallis test), 

whereas for MCF-7 cells this effect is much less marked (~ 50% viability) (p < 0.001 for 1.25 

µM WGA and p < 0.05 for 0.625 µM WGA). In case of jacalin, by contrast, only a slight 

reduction in relative cell viability was observed on the two cell lines at both tested 

concentrations. A significant reduction (~ 75% viability) though, was observed in MCF-7 

cells at the highest tested dose of the lectin (p < 0.05 for 1.25 µM).  

 

Discussion 

The unique ability of lectins to recognize specific carbohydrates in a noncatalytic manner is 

consistent with their involvement in many biological phenomena that are mediated by 

protein-carbohydrate interactions [Lis and Sharon, 1986]. In this study, an Į-D-galactose 

specific lectin has been purified to homogeneity from the latex of mulberry (Morus indica). 

The lectin has an isoelectric point of 4.35, implying that at physiological pH MLGL exists as 
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a negatively charged entity. Hemagglutination-inhibition assays performed with different 

sugars showed that the lectin has rather weak affinity towards simple galactose, but its 

affinity towards methyl-Į-D-galactopyranoside is very high. This observation is similar to 

jacalin which shows a binding affinity almost 50 times higher for MeĮGal than simple 

galactose due to formation of favourable interactions between the methyl group and a 

tyrosine residue in the binding site of the lectin [Sankaranarayanan et al., 1996].  

De novo sequencing of the lectin yielded a sequence which exhibits high homology to 

mornigaG, a well-characterized lectin, isolated from the bark of black mulberry (Morus 

nigra). In mulberry bark, the lectin (mornigaG) remains as a vacuolar storage protein which 

helps in the growth and development of the plant. Homology search on NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) has shown that the leaves of white mulberry (Morus 

alba) also expresses similar type of lectin (accession number - AEE92792). MLGL contains 

two polypeptide chains, the larger one consisting of 133 amino acids and the smaller one has 

20 to 21 amino acids. Crystal structure analysis of two gJRLs, jacalin and Maclura pomifera 

lectin (MPA) has shown that the smaller chain of a gJRL does not have any contribution to 

the ligand binding [Lee et al., 1998; Sankaranarayan et al., 1996], but the N-terminal glycine 

of the larger chain is important for it. Here it is worth mentioning that although initially we 

thought the lectin purified by us is the same protein purified previously from the latex of 

Morus indica ( Morus indica lectin, MIL) using a combination of ammonium sulphate 

precipitation and conventional chromatographic methods [Patel et al., 2011]. However, 

comparison of the partial sequence information obtained for MIL showed significant 

differences with the sequence of MLGL. It was observed that in the two peptides of MIL that 

were sequenced covering 29 amino acid residues there were 9 differences with respect to 

MLGL, suggesting that MLGL is a different protein from MIL. Further the sequence 

comparison shown in Figure 3 clearly indicates that MLGL resembles the bark lectin, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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mornigaG, in its amino acid sequence although it differs slightly from MornigaG in terms of 

carbohydrate specificity. MornigaG was shown to bind D-galactose and MeĮGal with similar 

affinity from hapten inhibition assays [Rouge et al., 2003]. Thus MLGL shows exclusive 

preference for the Į-anomer of galactose and hence it can be used for the selective detection 

of this sugar. 

MLGL is a glycoprotein and contains two types of glycan structures; pauci-mannose type and 

complex type. The site of glycosylation for these two types of glycans is the same residue (N-

21) which indicates the presence of heterogeneity in the protein in terms of its carbohydrate 

structures. The presence of glycosylation might be an indication for the lectin’s dual role 

which is either to act as a lectin or as a receptor for terminal galactose or mannose binding 

lectins. 

The secondary structure of the protein was found to consist of mainly ȕ-sheets, with very 

little Į-helical content. This is one of the characteristics of the type-I ȕ-prism fold proteins. 

Ligand binding does not alter the secondary structure of the protein much. The near-UV CD 

spectrum is characterized by two minima; one at ca. 275 nm and the other at ca. 294 nm 

which are probably due to absorption of Tyr and Trp, respectively. Upon ligand binding, the 

CD signal decreases a little without destroying the character which has also been observed for 

jacalin and MPA [Young et al., 1989]. 

MLGL is stable up to 70 oC and undergoes a cooperative unfolding transition centred at 77.6 

oC. The unfolding appears to be irreversible as a repeat scan did not show any transition up to 

80 oC. In presence of the ligand, the lectin becomes more stable and its denaturation 

temperature increases by about 1.5 oC which might be due to increase of favourable 

interactions between the protein and the ligand.  
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Latex is the milky sap of plants which protects the plants by exuding under mechanical stress 

or while attacked by insect herbivores [Konno, 2011]. Earlier studies have reported that latex 

of white mulberry (Morus alba) accumulates a large amount of defense proteins related to 

biotic stress [Kitajima et al., 2013]. Lectins, on the other hand are proteins which are thought 

to play a role in the plant defense system. There are examples of lectins which are anti-fungal 

or anti-bacterial or possess anti-insect activities [Peumans and Van Damme, 1995]. It has 

been proposed that lectins can interact with the epithelial cells along the digestive tract of 

phytophagous insects or higher animals and exert their cytotoxicity as a part of the plant’s 

defense mechanism. In our study the cell viability assays carried out for MLGL showed that 

the lectin is substantially cytotoxic against the epithelial (MDCK) as well as breast cancer 

cells (MCF-7). As gJRLs are able to bind to the tumor associated T-antigen which is also 

expressed on the cell surface of breast cancer cells [Cazet et al., 2010], the cytotoxicity effect 

might have been exerted due to an interaction between the T-antigen and the lectin. Similarly, 

MLGL shows cytotoxic effect towards MDCK cells possibly by interacting with the cell-

surface glycoconjugates. The cytotoxic nature of the lectin towards epithelial cells might be 

an indication for its involvement in the defense system by protecting the plant from 

phytophagous insects or higher animals. These observations of the preliminary experiments 

are encouraging and provide impetus for further detailed studies in this direction. 

Materials and Methods 

Materials 

Fresh latex was obtained from the mulberry plantation located in the campus of University of 

Hyderabad. Guar gum and all sugars were obtained from Sigma (St. Louis, MO, USA). 

Trypsin, chymotrypsin and endoproteinase Glu-C were obtained from Roche Diagnostics 

GmbH (Mannheim, Germany). Thermolysin was obtained from Sigma Aldrich Chemie 
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GmbH (Taufkirchen, Germany).Zip Tip pipette tips (C18 and C4) were purchased from 

Millipore (Billerica, USA). All the other chemicals used were of highest purity commercially 

available. 

 

Purification of MLGL 

Collection of latex was performed as described by Patel et al [Patel et al., 2011] with a little 

modification. Briefly, fresh latex of mulberry was directely collected by plucking the young 

leaves into ice cold 10mM Tris-HCl buffer conatining 150mM NaCl. The collected latex was 

then kept at -20oC for one day and thawed at room temperature before further processing. 

Subsequently a cross-linked guar-gum column [Kumar et al., 1982] was equilibrtaed with 

Tris-HCl buffer (150mM NaCl) at 4oC. The crude latex was centrifuged at 10,000 rpm for 30 

minutes at 4oC and the supernatant obtained was loaded onto the guar-gum column. The 

unbound proteins were washed with Tris buffer followed by elution of the lectin with 0.2 M 

galactose. The purity of the protein was checked by performing SDS-PAGE according to 

Lamelli [1970]. 

Zeta potential measurements 

The isoelectric point of the lectin was determined by measuring the zeta potential at different 

pH by mixed laser Doppler velocimetry and phase analysis light scattering (M3-PALS). A 

Malvern Zetasizer NanoZS (Malvern Instruments Ltd., UK) fitted with a red laser light (Ȝ = 

632.8 nm) and equipped with a MPT-2 autotitrator was used for this method. A protein 

solution of 0.1 mg/ml in PBS was titrated with 0.1 M HCl from pH – 6.0 to 3.0 with pH 

change steps of 0.5 ± 0.2 at 25 oC. The measurements were done in triplicates using 

disposable folded capillary cell (DTS1070) from Malvern. 
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Hemagglutination and hemagglutination-inhibition assays 

Hemagglutination and hemagglutination-inhibition assays were performed as described 

previouly [Sultan et al., 2004]. In a nutshell, the lectin was serially two-fold diluted in a 

round bottomed 96-well ELISA plate and an equal amount of a 4% erythrocyte suspension of 

human B (+) blood prepared in 20 mM PBS was added. The mixture was incubated at 4oC for 

one hour and the hemagglutination titre was scored visually. Hemagglutination-inhibition 

assays were performed in a similar way. Briefly, the sugar solution of interest was serially 

two fold diluted making 40 µl as the final volume in each well. 10 µl of lectin solution was 

added to each well and the mixture was incubated at 4oC for at least 10 minutes. Then 40 µl 

of the erythrocyte suspension was added to each well which made the resultant volume of 

each well as 100 µl. After one hour of incubation the hemagglutination titre was scored 

visually. 

Preparation of samples for subunit mass determination 

40 µl of MLGL (~ 500 pmol) was reduced to a volume of 10 µl by use of a centrifugal 

evaporator. This type of samples were then processed in two ways. Some samples were 

heated at 95 oC for 5 minutes while some were left untreated. In both heated and not heated 

samples, 10% TFA was added to adjust the final concentration of TFA to 0.1%. Subsequently 

zip-tip procedure was followed using C18 and C4 zip-tip columns. 

In-solution digestion 

About 200 pmol of MLGL was redissolved in 25 mM ammonium bicarbonate buffer using 

Bio-gel P-6 spin columns prior to reduction and alkylation by 10 mM DTT and 55 mM 

iodoacetamide. The reduced and alkylated samples were desalted and reconstituted either in 

water or 25 mM ammonium bicarbonate buffer by using Bio-gel P-6 spin columns. The 
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samples were then evaporated in a centrifugal evaporator and reconstituted in 20 µl water. 

This step was repeated twice. 

In-gel digestion 

SDS-PAGE of MLGL was performed under reducing condition as described earlier. The gel 

was stained using Commassie brilliant blue R-250 and destaining was performed using a 

solution containing 40% methanol and 10% acetic acid. The destained gels were thoroughly 

washed with distilled water prior to performing in-gel digestion. The cut and excised bands 

representing MLGL were subjected to digestion by various proteases according to 

Shevchenko et. al.[Shevchenko et al., 2006] in the following way. Pure acetontrile was added 

repeatedly to the gel pieces and left for 10 minutes until the gel pieces shrink. The protein 

was then reduced and alkylated using 10 mM DTT and 55 mM iodoacetamide, respectively. 

After reduction and alkylation the gel pieces were shrunk again with pure acetonitrile and 

dried. The dried gel pieces were covered with trypsin, chymotrypsin (each 0.1 µg), elastase 

(0.2 µg), thermolysin (0.5 µg) and endoproteinase Glu-C (0.5 µg). Thermolysin digest was 

incubated at 65 0C and all other protease digests were incubated at 37 0C overnight. The 

peptides were extracted using a combination of acetonitrile, formic acid and water. The 

samples were dried in vacuo. 

Mass spectrometry 

The products of proteolysis of in-gel and in-solution digests as well as the intact subunit mass 

samples were redissolved in a mixture containing 49 µl acetonitrile, 49 µl MS water and 2 µl 

formic acid. All the mass spectrometric experiments were carried out on a quadrupole-time of 

flight (q-Tof) mass spectrometer (Micromass, Manchester, UK) equipped with a Z-spray 

atmospheric pressure ionization source in the positive ion mode (ESI+). Typical source 

parameters were: source temperature 80 °C, desolvation gas (N2) flow rate of 75 l/h, a 
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capillary voltage of 1.1 kV, and a cone voltage of 30 V. For sample introduction a direct 

injection into the ionization source by use of home-made nanospray capillaries was 

performed. For low energy collision-induced dissociation (CID) experiments, the 

(glyco)peptide precursor ions were selected in the first quadrupole analyzer and fragmented 

in the collision cell using a collision gas (argon) pressure of 3.0 x 10–3Pa and collision 

energies of 20-40 eV (Elab). 

Circular dichroism spectroscopy 

CD spectra were recorded on an Aviv420 spectrometer (Lakewood, NJ US) equipped with a 

Peltier thermostat. For far-UV region a sample concentration of 1.56 µM and for near-UV 

region a sample concentration of 14 µM were used. All the measurements were performed 

using a rectangular cuvette of 2 mm path length and 700 µl capacity. Buffer scans were 

recorded under similar conditions and subtracted from the sample spectra before further 

analysis. 

Differential scanning calorimetry 

DSC experiments were carried out on a MicroCal VP-DSC differential scanning calorimeter 

(MicroCalLLC, Northampton, MA, USA) equipped with two fixed cells, a reference cell and 

a sample cell. The protein samples were dialyzed extensively against the buffer of desired pH 

before being loaded in the cell. For the different pHs the following buffers were used; 20 mM 

phosphate buffer, pH 6-7.4, 20 mM sodium acetate buffer, pH 4-5, 20 mM citrate phosphate 

buffer, pH 3 and 20 mM KCl-HCl, pH 2. All the buffers contained 150 mM NaCl in order to 

maintain ionic strength. The thermograms obtained were analyzed using DSC Origin as 

provided by the manufacturer. 

Cell culture 
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All the cell cultures were maintained in a 37oC incubator (Sanyo MCO-19AIC, Panasonic 

Biomedical Sales Europe BV, AZ Etten Leur, Netherlands) containing 5% CO2 and humid 

atmosphere. Madine darby canine kidney (MDCK) cells were cultured in 75cm2 cultured 

flasks using MEM supplemented with 10% fetal bovine serum, 1% L-glutamine (200 mM) 

and 1% penicillin-streptomycin (10000 units penicillin, 10000 units streptomycin in 0.9% 

NaCl). Human breast cancer cells (MCF-7) were cultured in the same way but instead of 

MEM, RPMI medium was used with the same supplements. Once the confluence was 

reached the cells were detached using 0.05% trypsin in EDTA. Number of cells per 1ml of 

medium was counted using a counting chamber from Improved Neubauer by diluting the 

cells 20-fold with trypan blue. The cells were subcultured by splitting at ratio of a 1:10 or 

seeded at a number of 5000/well in a 96-well tissue culture plate. 

MTT cell viability assay 

The cytotoxicity of MLGL towards MDCK and MCF-7 cell lines was assessed 

colorimetrically using the MTT assay. Briefly, 100 µl of cell suspension was transferred to 

one each well of 96-well tissue culture plate (5000 cells/well) and allowed to grow overnight. 

One hundred µl of the lectin diluted in supplemented medium was added in two desired 

concentrations (1.25 µM and 0.625 µM) and the plates were incubated at 37 oC for 72 hours. 

After incubation the sample was removed from the cells and 100 µl fresh medium was added 

followed by the addition of 25 µl of 5 mg/ml MTT dissolved in PBS. The plates were 

incubated for about 4 hours and then after removal of the samples, 100 µl of DMSO was 

added to each well to dissolve the dye. After 15 minutes of orbital shaking at 300 rpm the 

absorbance was measured at 570 nm using a microplate reader (Safire, Tecan AG, Salzburg, 

Austria). A 4% solution of Triton X100 was used as the positive control and respective 

mediums were used as the negative control. 
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