
This is a repository copy of Structure and dynamics of crowdion defects in bcc metals.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/134838/

Version: Accepted Version

Article:

Fitzgerald, SP orcid.org/0000-0003-2865-3057 (2018) Structure and dynamics of crowdion
defects in bcc metals. Journal of Micromechanics and Molecular Physics, 3 (03n04). ARTN
1840003. ISSN 2424-9130 

https://doi.org/10.1142/S2424913018400039

(c) World Scientific Publishing Company. This is an author produced version of a paper 
published in Journal of Micromechanics and Molecular Physics. Uploaded in accordance 
with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


August 20, 2018 17:27 WSPC/INSTRUCTION FILE crowdions˙preprint

Journal of Micromechanics and Molecular Physics

c© World Scientific Publishing Company

Structure and dynamics of crowdion defects in bcc metals

SP Fitzgerald∗

Department of Applied Mathematics

University of Leeds, Leeds, UK

Received date

Accepted date

Abstract

Crowdion defects are produced in body centred cubic metals under irradiation. Their structure and

diffusive dynamics play a governing role in microstructural evolution, and hence the mechanical prop-

erties of nuclear materials. In this paper we apply the analytical Frenkel-Kontorova model to crowdions

and clusters thereof (prismatic dislocation loops) and show that the Peierls potential in which these de-

fects diffuse is remarkably small (in the micro eV range as compared to the eV range for other defects).

We also develop a coarse-grained statistical methodology for simulating these fast-diffusing objects in

the context of object kinetic Monte Carlo, which is less vulnerable to the low barrier problem than

naı̈ve stochastic simulation.

Keywords Point defects; bcc metals; multiscale modelling.

1. Introduction

Crowdions [Kosevich, 2006] are the most stable configuration of self-interstitial atomic

defect in the body-centred-cubic (bcc) transition metals V, Nb, Ta, Cr, Mo and W [Derlet

et al., 2007]. They are produced in large quantities under irradiation, and agglomerate into

the prismatic dislocation loops that characterize radiation damage. They are distinguished

from other defect configurations by their effectively one-dimensional nature (along a close-

packed crystal direction; 〈111〉 in bcc metals), and exhibit numerous interesting properties,

most notably their extremely low migration barriers (of order meV). In the next section, we

review the Frenkel-Kontorova / sine- Gordon model for 〈111〉 crowdions, and then discuss

its extension to the more realistic double-sine potential. Then we derive the Peierls poten-

tial, i.e. the effective potential within which the defect diffuses through the crystal. We then

discuss crowdion clusters (aka prismatic interstitial-type dislocation loops), and the pro-

found differences between the Peierls potential experienced by loop and that experienced

by isolated crowdions. Finally we consider the 3D diffusion of crowdions, which is char-

acterized by fast, virtually free diffusion along close-packed 〈111〉 directions, separated by

occasional stochastic changes to other 〈111〉 directions. We show that the anisotropy of the
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diffusion can be neglected on timescales larger than the inverse direction-changing rate,

and suggest an efficient simulation algorithm.

2. Frenkel-Kontorova model

The Frenkel-Kontorova model was originally developed to treat dislocation lines moving

through a “washboard” potential, and it has since found applications in areas as diverse

as long Josephson junctions in superconductors and the dynamics of DNA [Braun and

Kivshar, 2004]. The starting point is the Lagrangian

L =

∞
∑

n=−∞

{

mż2n
2

− β

2
(zn+1 − zn − a)

2 − V (zn)

}

,

→
∫

∞

−∞

{

m

2

(

∂u

∂t

)2

− βa2

2

(

∂u

∂z

)2

− V (u(z, t))

}

dz, (1)

where the sum runs over the close-packed string containing one additional atom, which

have mass m, position zn, and are connected by harmonic springs with constant β. The

interaction with the surrounding “perfect” lattice is encoded in the periodic potential V (zn).

Assuming the atomic displacement un ≡ zn − na varies slowly with the atomic index n,

it can be described by a continuous function u(z, t), with boundary conditions u(−∞) =

a, u(∞) = 0, corresponding to the single additional atom in the string. a is the equilibrium

spacing, and is given by r0
√
3/2 for the 〈111〉 direction in a bcc crystal with lattice constant

r0. The simplest choice for the lattice potential is V0 sin
2 (πz/a), and if we seek a static

solution to the Euler-Lagrange equation corresponding to Eq.(1), we find

u(z; z0) =
2a

π
tan−1 e−µ(z−z0), (2)

where µ2 = 2π2V0/βa
4. This displacement profile smoothly varies from 0 to a as z goes

from −∞ to ∞, with the variation taking place over a lengthscale 1/µ. Thus µ encodes the

width of the crowdion, reflecting the relative strengths of the intra-string (β) and surround-

ing lattice (V0) interactions. z0 is the crowdion centre-of-mass coordinate, i.e. its position

in the 〈111〉 string.

In the continuum limit, the energy of a static crowdion can be calculated by inserting

the displacement profile Eq.2 into the (static) Hamiltonian [Kosevich, 2006]

E0 =

∫

∞

−∞

{

βa2

2

(

∂u

∂z

)2

+ V (u(z, t))

}

dz =

(

βa4µ2

2π2
+ V0

)

2

aµ
=

2a

π

√

2V0β.

(3)

Note how the two terms in the energy, corresponding to the intra-string (β) and surrounding

lattice (V0) interactions, are equal at every point. Also, E0 is independent of z0, and so

is independent of position. This is an artefact of the continuum limit we have taken, and

discreteness can be approximately reintroduced by assuming the crowdion’s profile remains

fixed as it moves through the crystal, and exploiting the equipartition of the energy between
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string and lattice to write

Ediscrete =
∞
∑

n=−∞

(

β

2
(zn+1 − zn − a)

2
+ V (zn)

)

→ 2
∞
∑

n=−∞

V (un); un = u(na),

(4)

i.e. the continuum solution is evaluated at each discrete atom. The Poisson summation

formula then leads to a Fourier series for the Peierls potential for the defect:

E = E0 +
2V0π

2

µ2a2

∞
∑

n=1

n cos
2πnz0
a

cosech
π2n

µa
. (5)

This is the potential in which the defect moves, and the cosech(π2n/µa) factor strongly

suppresses its magnitude when µa < 1, which is the case for crowdions. This is delo-

calization: the intra-string interaction is greater than the lattice interaction, meaning the

displacement is spread over many atoms. Moving the defect centre-of-mass one lattice pa-

rameter corresponds to tiny motions of many atoms, leading to a suppressed migration

barrier. The first term in the series is adequate, and the magnitude of the migration barrier

Emig = Emax − Emin is given to this approximation by

Emig ≈ 8V0π
2

µ2a2
cosech

π2

µa
, (6)

which is in the µeV range for reasonable values of the parameters (see [Fitzgerald and

Nguyen-Manh, 2008] V0 ∼ 1eV, βa2 ∼ 50-100 eV).

3. Double sine-Gordon model

Atomistic simulations [Derlet et al., 2007] suggest that, whilst very low, the crowdion mi-

gration barrier is in the meV rather than µeV range, indicating that the model described

above is not the whole story. In fact, the assumption that the lattice potential is sinusoidal

is not always accurate, as density functional calculations show. Particularly for the group

VI metals Cr, Mo and W, the potential shows a local minimum midway between the main

a-period minima, as can be seen in Fig. 2, [Fitzgerald and Nguyen-Manh, 2008].
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Fig. 1. Atomic positions for crowdions in the single- (top) and double-sine (bottom) models. Parameters are for

vanadium and tungsten respectively.
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Fig. 2. Lattice potential (left) and atomic displacement gradients (right) for crowdions in the bcc transition

metals (DFT; data from [Fitzgerald and Nguyen-Manh, 2008]). Solid lines: double sine fits; dashed line: single

sine fit.

These curves can be well-fitted by a double-sine potential

V (z) = V0

(

sin2
(

πz

a

)

+
α2 − 1

4
sin2

(

2πz

a

))

, (7)

and the analysis carries forward, leading to a displacement solution

u(z; z0) =
a

π
arctan

[

α

sinh (µα(z − z0))

]

, (8)

and the width of the crowdion is now encoded by the combination µα. A similar, yet more

involved, calculation yields the Peierls potential

E(z0) = E0 +

∞
∑

j=1

Ij cos

(

2πjz0
a

)

, (9)

where

Ij =
2V0απ

µa
cosech

(

ξπ

2

)

×
{

ξ cos

(

ξ

4
ln
q+
q−

)

− 1

α
√
α2 − 1

sin

(

ξ

4
ln
q+
q−

)}

, (10)

and ξ = 2πj/αµa and q+,− = 1 − 2α2 ± 2α
√
α2 − 1. The input parameters can be

determined from density functional calculations, and the results for the migration barrier

heights for V, Nb, Ta are 6.8× 10−4, 0.25× 10−4 and 0.087× 10−4 eV respectively, and

those for Cr, Mo, W are 12 × 10−3, 2.4 × 10−3 and 2.6 × 10−3 eV respectively. A clear

group-specific trend emerges, with the group VI metals having a deeper local minimum,

and hence a larger migration barrier, than their group V counterparts. Still, all these barriers

are remarkably low. In a crowdion cluster, the magnitude of the lattice potential experienced

by a defected string depends on how many of its neighbours are undefected, as we discuss

below.

Most defects migrate stochastically through the crystal with a diffusivity D that takes

the form D = D0 exp(Emig/kBT ), corresponding to hops through the lattice that occur

with an Arrhenius rate proportional to exp(Emig/kBT ) (T is the temperature, Emig is the
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migration barrier and kB is Boltzmann’s constant). This expression depends on the implicit

assumption that Emig ≫ kBT , i.e. the hops are rare events. This clearly does not apply

to crowdions for all but cryogenic temperatures. Indeed, for Emig ≪ kBT , the diffusion

is effectively free, and the diffusivity grows linearly with temperature. For 1D motion in a

sinusoidal potential, an exact solution for the hop rate exists for all temperatures, see e.g.

[Swinburne et al., 2013].
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Fig. 3. Effect of number of undefected neighbour strings on crowdion Peierls barriers Emig = Emax − Emin

given by Eqs. (6) and (10). An isolated crowdion has 6, whereas most boundary crowdions in a cluster have 2.

4. Multi-crowdion solutions

Crowdions cluster together to form b = 1
2 〈111〉 prismatic dislocation loops, and the

Frenkel-Kontorova model can be extended to treat these clusters [Dudarev, 2003]. Using the

single-sine form for simplicity, the interaction potential between two crowdions in neigh-

bouring parallel 〈111〉 strings with displacement fields u0 = u(z; 0), u1 = u(z;x) can be

written

Eint(x) =

∫

∞

−∞

V0
6

sin2
(π

a
(u0 − u1)

)

dz

=
2V0
3µ

tanh
µx

2

(µx

2
sech2

µx

2
+ tanh

µx

2

)

, (11)
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where x is the separation between the crowdions’ centres of mass. This assumes that the

profile of the crowdions, encoded by µ, does not change as they interact. A more detailed

calculation [Fitzgerald, 2015] shows that this does not affect the results. The factor of 1/6

arises because V0 was defined as the lattice potential for an isolated crowdion, surrounded

by 6 neighbours. Each member of a crowdion pair has 5 undefected neighbour strings, so its

µ→
√

5/6µ compared to an isolated crowdion.This small correction has important effects

due to the extreme nonlinearity of the Peierls potentials given in Eqs.(6) and (10). For tung-

sten, the 2-crowdion interaction potential above is a slight (maximum 0.3eV) repulsion for

large distances, and an attractive well when the separation is less than about 12 atomic spac-

ings. The well depth is ∼3eV (DFT gives somewhat less than this [Marinica et al., 2013],

but the agreement for the single sine model is reasonable), so crowdions bind strongly to-

gether. The consequence for their displacement profile is that their µ is reduced, and hence

they are more spread out down the 〈111〉 string. For large clusters, only crowdions near the

edge experience strong interactions with the undefected lattice. Crowdions in the interior

are delocalized to such an extent that they are indistinguishable from perfect lattice, and

the cluster becomes a prismatic dislocation loop, with strain localized to the perimeter. At

the perimeter, each boundary crowdion has 2 or 3 undefected neighbour strings (depending

on the geometry of the loop – small b = 1
2 〈111〉 loops are typically hexagonal, so “corner”

crowdions have 3 perfect neighbours, whilst “edge” crowdions have 2). Fig.3 shows the

effect this has on the Peierls potential for crowdions in tungsten. The enhanced delocal-

ization reduces the Peierls potential by at least 4 orders of magnitude, rendering it zero to

all intents and purposes. This suppression comes again from the cosech(.../µ) term, which

is an extremely nonlinear function of µ. This completely outweighs the increased number

of boundary crowdions experiencing the Peierls potentiala therefore prismatic dislocation

loops have an energy barrier to migration lower even than isolated crowdions. This does

not imply that their diffusivity is greater, but rather that the temperature dependence of the

loop diffusivity deviates from the Arrhenius form at an even lower temperature than that

of an isolated crowdion. The greater number of degrees of freedom in a loop mean that the

the diffusivity is reduced.b

5. 3D diffusion of single crowdions

Molecular dynamics simulations [Derlet et al., 2007] confirm the fast 1D nature of crow-

dion migration, but also show the defects changing from one 〈111〉 direction to another.

This occurs at a slower rate, comparable to the “rare event” hops of other crystal defects.

This allows the crowdion to explore the entirety of the crystal, and in this section we cal-

culate the effect on 3D diffusion, and outline a Monte Carlo algorithm for its simulation.

Firstly assume that the direction-changing transition is a Poisson process with rate Γ.

Then the time intervals between changes of direction will be exponentially distributed,

aLoops would need to contain several million defects to have the >10,000 boundary crowdions required.
bThis can be seen by considering the normal modes of the perimeter crowdions which interact with the surround-

ing lattice: only the “centre-of-mass” degree of freedom translates the cluster, with the rest of the fluctuations

corresponding to internal configuration changes.
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with pdf ψ(t) = Γ exp(−Γt). If we further assume that, during the time interval t spent

between direction changes, the crowdion diffuses normally with diffusivityD, then the hop

lengths x, conditioned on the time interval t, will have the normal distribution Λ(x|t) =

exp(−x2/2Dt)/
√
2πDt. Since the hops are independent, we can reorder the series of hops,

treat each 〈111〉 direction independently in 1D, and project onto 3D space at the end. The

fact that the directions along which the crowdion can diffuse are linearly dependent is

immaterial, as shown below. This analysis can be similarly applied to any crystal structure.

In the bcc lattice, there are four (unsigned) 〈111〉 directions along which crowdions can

move, with unit vectors ê1,2,3,4. The final position of the crowdion is xf =
∑4

i=1 siêi,

where si is the sum of the signed hop lengths in the i direction. Each of these hop lengths

is normally distributed with zero mean and variance D∆t (and the ∆ts are exponentially

distributed, though that is not required). The total time t =
∑4

i=1 ti where ti is the time

spent hopping in each direction, i.e. the sum of the ∆ts for each direction. The expected

value for |xf |2 is given by

E
(

|xf |2
)

= E

(

4
∑

i=1

siêi

)2

= |êi|2E
(

s21
)

+ ...+ 2ê1 · ê2E(s1s2) + ...

= Dt1 +Dt2 +Dt3 +Dt4 + 0

= Dt, (12)

where in the second line we used the fact that variances add in sums of normally distributed

random variables, and that E(s1s2) = E(s1)E(s2) = 0 by independence. The êis need not

be orthogonal.

Fig. 4. Left to right: increasing magnification views of an example trajectory from crowdion Monte Carlo. Only

at the smallest scales is the anisotropy of the diffusion evident. The time t spent on a particular 〈111〉 direction is

drawn from an exponential distribution, then the distance diffused on that direction prior to the change is drawn

from a normal distribution with variance Dt.

With the above assumptions, the pdf W for the crowdion position x at time t satisfies
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the Chapman-Kolmogorov equation [Montroll and Lebowitz, 1987]

W (x, t) =

∫ t

0

∫

∞

−∞

ψ(t−t′)Λ(x−x′|t−t′)W (x′, t′)dx′dt′+

(

1−
∫ t

0

ψ(t)dt

)

W (x, 0).

(13)

This reflects the sum over all possible hop lengths and times, and the second term is the

probability density for the particle remaining at x = 0 until time t, W (x, 0) = δ(x).

Inserting the above forms for ψ and Λ then taking Fourier transforms in x and Laplace

transforms in t, W (x, t) →W (k, s), leads to

W (k, s) =
2s+ Γk2D

(s+ Γ)(2s+ k2D)
. (14)

Now, since

∂2W (k, t)

∂k2
≡
∫

∞

−∞

eikx(−x2)W (x, t)dx, (15)

we can differentiate W (k, s) twice with respect to k and set k = 0 to get (minus) the

Laplace-transformed expected value for x2. Inverting the transform gives

〈x2〉 = D

(

t− 1− exp(−Γt)

Γ

)

∼ Dt when t≫ 1

Γ
. (16)

So for sufficiently large times, the effective diffusivity is that of the 1D fast motion, but how

long until this approximation is reasonable is controlled by the rate of direction changes,

Γ. Indeed, for t≪ 1/Γ, 〈x2〉 ∼ DΓt2/2. The MD simulations of [Derlet et al., 2007] give

a rate

Γ = 6.59× 1012 exp(−0.385 eV/kBT )/sec (17)

for crowdions in tungsten, whereas the migration energy for vacancies is found to be

1.78eV. This suggests that, on the timescale of vacancy diffusion, crowdion diffusion is ef-

fectively isotropic, and the 1D nature of hops can be neglected. Crowdion clusters/prismatic

loops, on the other hand, stick to single 〈111〉 directions for much longer. Whilst rotations

for very small loops are not impossible [Arakawa et al., 2006], the activation energy is

much higher.

Stochastic computer simulations are most efficient when the events being sampled have

rates as similar as possible. A kinetic Monte Carlo simulation of, say, crowdion and vacancy

hopping would spend the vast majority of its time moving crowdions since their barriers

are so low compared to those for vacancies (this is known generically as the low barrier

problem). A more efficient approach would be to sample the direction-changing events,

and then draw the crowdion’s 1D motion from a normal distribution with appropriate time-

dependent variance, as in the analytical approach above. Fig. 4 shows an example trajectory

from a million step simulation of this type, which can be performed in under a minute

on an ordinary laptop. The 1D 〈111〉 hops are only apparent when ‘zoomed in’, and at

larger scales are indistinguishable from standard diffusion. Indeed, given that crowdions’

diffusion rate is typically many orders of magnitude higher than any other species’, it may

be advantageous to treat the crowdions using a density functional, in analogy with the DFT
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treatment of electrons. The approach could be extended to model the nucleation and growth

of prismatic loops from a population of crowdions and vacancies formed by a cascade.

Here, the 1-D nature of the motion is likely to still play a role, since crowdions in adjacent

parallel strings interact via the potential of Eq.(11). Such an approach would maintain full

discrete defect resolution, along with spatial distribution information, and as such would

by complementary to existing techniques such as stochastic cluster dynamics [Marian and

Bulatov, 2011].

6. Conclusions

In this paper, we have derived the surprising result that clusters of crowdions (aka prismatic

dislocation loops) can move through a bcc crystal lattice virtually unimpeded (aside from

dissipation). The periodic (Peierls) potential in which they move is fractions of a micro

eV: several orders of magnitude lower than even that for an isolated crowdion. The rea-

son for this is delocalization – the lattice displacement induced by the additional atoms

is spread over many atoms, meaning the translation of its centre of mass corresponds to

the tiny motions of many more atoms. This is analogous to how the existence of dislo-

cations allows the plastic deformation of crystals at far lower applied stresses than their

“theoretical strength” would suggest. We then showed that the highly anisotropic diffusion

of crowdions, which atomistic simulations have demonstrated, can be safely neglected at

timescales sufficiently far above the timescale for direction changes. This will aid the de-

velopment of hybrid mesoscale Monte Carlo simulations of defect structure evolution, by

avoiding the low barrier problem associated with the suppression of the Peierls potential.

As a one-dimensional analytical approach, the model presented here cannot hope to

match the full quantitative accuracy of many-atom techniques such as DFT. Whilst the

double-sine form for the lattice potential captures very well the corresponding DFT cal-

culation, the assumption of harmonic nearest-neighbour interactions along the string is a

clear idealization. Nevertheless, the model offers insights unavailable to more sophisticated

numerical approaches, in particular the explanation of the smallness of the Peierls barriers.

As far as the author is aware, these are inaccessible to numerical approaches as the numbers

are simply too small. Some quantitative shortcomings could also be overcome by indepen-

dently adjusting the model parameters to fit values obtained by more precise methods (e.g.

the depth of the crowdion-crowdion pair potential could simply be set equal to the DFT

value). Moreover, the computational efficiency afforded by this approach allows simula-

tions with individual defect resolution to be extended to length- and time-scales far greater

than that available to molecular dynamics.
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