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Abstract 
Better Life Index (BLI), the measure of well-being proposed by the OECD, contains many metrics, which 

enable it to include a detailed overview of the social, economic, and environmental performances of 

different countries. However, this also increases the difficulty in evaluating the big picture. In order to 

overcome this, many composite BLI procedures have been proposed, but none of them takes into 

account societal priorities in the aggregation. One of the reasons for this is that at the moment there is 

no representative survey about the relative priorities of the BLI topics for each country. Using these 

priorities could help to design Composite Indices that better reflect the needs of the people. The largest 

collection of information about society is found in social media such as Twitter. This paper proposes a 

composite BLI based on the weighted average of the national performances in each dimension of the 

BLI, using the relative importance that the topics have on Twitter as weights. The idea is that the 

aggregate of millions of tweets may provide a representation of the priorities (the relative appreciations) 

among the eleven topics of the BLI, both at a general level and at a country-specific level. By combining 

topic performances and related Twitter trends, we produce new evidences about the relations between 

people’s priorities and policy makers’ activity in the BLI framework. 

 Keywords: Big Data; Better Life Index; Composite Indicators; Twitter 
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1.!Introduction 
These days, there is a general consensus about the limits of the Gross Domestic Product (GDP) in 

predicting societal well-being. After the seminal work of Easterlin (1974), which clearly shows that GDP 

and happiness are not always positively correlated, this point has been largely discussed (among others 

UNDP, 1996; Fleurbaey, 2009; Stiglitz et al. 2010; Frey, Stutzer, 2010; Bleys, 2012; Fioramonti, 2013; 

Costanza et al. 2014; De Beukelaer, 2014; Coyle, 2014; Karabell, 2014; Costanza et al. 2016; Partizii et al. 

2016). In particular, as reported in Costanza et al. (2016), UNDP (1996) identifies five main negative 

consequences of growth in GDP: ‘jobless growth’, ‘voiceless growth’, ‘ruthless growth’, ‘rootless 

growth’, and ‘futureless growth’.  

To resolve this, an increasing number of alternative measures of well-being have recently been proposed 

by the main international institutions, as well as by the national statistics offices (Costanza et al. 2014; 

2016). Among them, one of the most influential is the Better Life Index (BLI), launched by the OECD in 

2011, and measured in 37 countries in 2016. The BLI is based on the idea of Stiglitz et al. (2010), that well-

being is multi-dimensional and has eight key aspects of life to take into account simultaneously: (i) 

Material living standards; (ii) Health; (iii) Education; (iv) Personal activities including work; (v) Political 

voice and governance; (vi) Social connections and relationships; (vii) Environment; (viii) Insecurity of 

an economic as well as a physical nature. 

Based on the framework of Stiglitz et al. (2010), the BLI is composed of eleven topics: Housing, Income, 

Jobs, Community, Education, Environment, Civic engagement, Health, Life Satisfaction, Safety, and 

Work-Life Balance. Performances in all these topics are measured in 37 countries by means of 24 

different metrics.1  On a dedicated website2, the OECD presents national performance (i.e. at the country 

level) on the whole set of topics, rather than a single Composite Index. This is a deliberate choice by the 

OECD to share information without any statement about the overall well-being. The information is 

presented in such a way that users can bring their own relative importance for each topic, and estimate 

their personal composite BLI, combining performance on topics with relative personal preferences 

(OECD, 2015). The interactive website enables people to create their own index by weighting the 

performance on topics according to their own viewpoint. Participants have been encouraged to create 

and share their own composite Better Life Index since its launch in 2011. At the time of this paper, the 

OECD has received and collected more than 100,000 opinions from 180 different countries.  

The opinions related to the different topics (the relative appreciations) are one of the most important 

factors in multidimensional well-being for at least two reasons. First, the preferences of people 

interested in the measurement are themselves part of the phenomenon (Helliwell, 2003; Helliwell, 

                                                        
1 The metrics are: dwellings without basic facilities, housing expenditure, rooms per person, household net 

adjusted disposable income, household net financial wealth, employment rate, job security, long-term 

unemployment rate, personal earnings, quality of support network, educational attainment, student skills, years 

in education, air pollution, water quality, consultation on rule-making, voter turnout, life expectancy, self-

reported health, life satisfaction, assault rate, homicide rate, employees working very long hours, and time 

devoted to leisure and personal care. 
2 www.oecdbetterlifeindex.org 
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Barrington-Leigh, 2010), since the BLI is a metric to assess “the level of well-being of individuals with 

different preferences” (Stiglitz et al. 2010, p. 143). Second, people’s preferences are eventually translated 

into policies by means of some mechanism of preference aggregation, so that they drive policy makers 

towards providing specific representations of multidimensional well-being. This issue is far more 

relevant when a Composite Index (CI, Nardo et al. 2008) is designed. The focal point in the literature 

related to CIs is that in order to aggregate many dimensions into one index, a choice must be made 

about the relative importance of each dimension, as different weights may give rise to relevant 

differences in the final synthetic evaluation, and thus in the ranking of countries (Sharpe, 2004; Saisana 

et al. 2005; Cherchye et al. 2008; Permanyer, 2011; OECD, 2014; Patrizii et al. 2016; Costanza et al. 2016; 

Greco et al. 2017).  

Recently, several CIs based on the BLI have been proposed, e.g. Mizobuchi (2014), Marković et al. (2016), 

Patrizii et al. (2016), and Lorenz et al. (2016). However, none of the previous CIs has taken into account 

the relative appreciations in the aggregation. One of the reasons for this shortcoming is that although 

their relevance is widely recognized, at present there is no representative survey about the relative 

preferences of the various BLI dimensions. The opinions collected by the OECD’s Better Life Index are 

not representative, since there is an intrinsic self-selection in people visiting this dedicated website 

(mainly economic experts). 

Nowadays the largest collection of information about society available is in social media (Maynard 

et al. 2017). Twitter has become one of the most popular social media sites in the political arena. In 

terms of traffic, in June 2018 twitter.com is the fourth most popular social media platform in the 

world, after facebook.com, youtube.com, and instagram.com (SimilarWeb, 2018). In April 2018 

Twitter has 330 millions of active users, ranking 12-th among the most famous social network sites 

worldwide (Statista, 2018). Although each tweet (an individual user post) is limited to only 140 

characters, the aggregate of millions of tweets may provide a representation of public mood and 

sentiment about priorities (the relative appreciations)3. This idea has led to the development of real-time 

sentiment-tracking indicators such as “Pulse of Nation”4, and “Mood of the Nation”5 (Lansdall-Welfare 

et al. 2012; Lampos, 2012). 

The aim of this paper is to estimate the societal relative appreciations of the eleven topics of the BLI, 

using the importance (the volume of trends) that these topics have on large-scale collections of daily 

Twitter posts. In other words, we use the public interest in the different topics as a proxy of societal 

relative appreciations. Then we propose a composite BLI based on the weighted average of country-

level performances in each topic (estimated by the OECD) in relation to the relative importance that the 

topic has on Twitter. This procedure allows us to estimate at country level a composite BLI reflecting 

both the societal relative appreciation and the relative performance for each topic. As a pilot experiment, 

we have collected and processed a set of tweets related to BLI topics from 30 May 2017 to 30 June 2017.  

                                                        
3 Recently Twitter started testing the 280-character tweets, doubling the 140 characters limit. 
4 www.ccs.neu.edu/home/amislove/twittermood 
5 http://geopatterns.enm.bris.ac.uk/mood/about.php 
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Among the different measures of well-being based on sets of indicators, as the Human Development 

Index (firstly developed by the UNDP in 1990) and the Happy Planet Index (launched by Marks et 

al. 2006), the BLI is particularly suitable for this kind of analysis because the indicators are not 

hierarchically ordered (Kerényi 2011; Lind 2014). BLI avoids the legitimacy by allowing the end user 

to select the relevant variables. In other words, BLI does not force one to accept a given interpretation 

of well-being. 

It is worth noting that the analysis proposed here has the disadvantages to consider a “convenience 

samples” that may not be entirely representative, since it depends on who has a Twitter accounts 

and decides to tweet. The main problem is that what is reflected in Twitter is not necessarily what 

majority of people looking for it, since Twitter users consist only of a small fraction of the 

population. Our results can be therefore biased toward opinions of a particular group in society. 

However, Twitter posts are available at high frequency and granularity compared with other 

traditional source of data. Moreover, many traditional surveys are not immune to bias concerns 

(Einav, Levin, 2014). For instance, as mentioned, the opinions collected by the OECD’s Better Life 

Index website may be mainly given by economists and policy experts.  

The analysis shows that both the general and the country-level (using geo-localization) Twitter trends 

make a difference in the composite BLI. This affects both synthetic evaluation and the ranking of 

countries. The combination of information about Twitter trends and topic performances produces new 

evidence about the relations between people’s priorities and policy makers’ activity. Although the pilot 

study presented in this paper is only small, it nevertheless provides a framework on which further 

studies could be based.  

The paper is organized as follows: Section 2 presents a literature review on the use of big data in social 

sciences; Section 3 introduces the framework and the dataset; Section 4 presents the analysis; and in 

Section 5 we end with discussion and conclusions. 

2.!Big Data in social sciences 
The term Big Data is used to define the unstructured mass of data generated every day from sources 

such as text, voice, and video. As McAfee et al. (2012) mention, we are “walking data generators”, 

since our Mobile phones, online shopping, social networks, and electronic communications produce 

torrents of data every day. According to Laney (2001), ‘Big’ refers to three main characteristics of these 

data: high speed of generation and use, high variety in terms of range and sources, and high volume in 

terms of amount of data. Currently there is an increasing interest in these innovative sources among 

social scientists, since Big Data contains information for complex phenomena that may be difficult to 

observe using traditional surveys (di Bella et al. 2016; Einav, Levin, 2014). According to Einav, Levin 

(2014), what characterizes Big Data for economic and policy research is that they are available in real 

time, at a larger scale, on novel types of variables, and with less structure than traditional surveys.  

One of the most influential papers using Big Data for social phenomena is Ginsberg et al. (2009), in which 

influenza epidemics are detected using counts of relevant Google searches. For the first time, this paper 
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made clear that new opportunities are available in real time for social scientists, and opened a debate 

about the usefulness of Big Data analytics (Boyd and Crawford, 2012). On the one hand, the increasing 

interest in Big Data comes from its low cost and its possibility to be processed in real-time, closing the 

time gap between observation and analysis which is a typical problem of studies made on traditional 

surveys (Giannone et al. 2008). On the other hand, some important issues remain unsolved in the use of 

Big Data in social science, involving in particular the definition of quality measures, and problems of 

privacy and transparency (di Bella et al. 2016). 

Big Data allows social scientists to make use of timely and geo-localized information. A prominent 

application in economics is the Billion Prices Project (BPP) at MIT, that has been experimenting with 

daily online price indexes in an increasing number of countries since 2008 (see Cavallo, 2013; Cavallo, 

Rigobon, 2016). After BPP, both National Statistical Offices and academic research have started to 

consider the use of online data in official Consumer Price Indices, in the study of price competition, 

market segmentation, price stickiness, international relative prices, and real exchange rate dynamics 

(Cavallo, 2017). Choi, Varian (2012) show that some measures of economic time series such as 

unemployment claims and consumer confidence can be retrieved by means of Google search engine 

data. Einav et al. (2013; 2014) use eBay data to estimate the effect of sales taxes on Internet commerce, 

the degree of price dispersion, residual demand curves, and how consumers respond to potentially 

nontransparent charges such as shipping fees. Other relevant applications of Big Data in economics 

involve the estimates of local poverty and socio-economic status (Elvidge et al. 2009; Smith-Clarke et al. 

2014; Blumenstock et al. 2015; Mao et al. 2015), food security (Dutta et al. 2014), and social unrest 

(Manrique et al. 2013).  

The most frequent sources of Big Data among social science papers are social networks (di Bella et al. 

2016). Social media has emerged as a promising source of societal information such as political 

participation, brand perception, and stock trading (Bond et al. 2012; Bollen et al. 2011); has been used for 

monitoring public health and health perceptions (UNICEF 2013; Garcia-Herranz et al. 2014; Stoové and 

Pedrana, 2014), forecasting immigration and mobility flows (Zagheni et al. 2014; Lenormand et al. 2014), 

and measuring criminal violence (Monroy-Hernández et al. 2013). 

Among the social science papers using social networks, Twitter is the most frequent source of data (di 

Bella et al. 2016). Chang and Chu (2013) use Twitter to detect tourism preferences. Rill et al. (2014) detect 

political trends in Germany on Twitter, collecting about 4 million tweets before and during the 2013 

parliamentary election. Yazdani and Manovich (2015) use Twitter images to predict socio-economic 

characteristics. Seabold et al. (2015) use Twitter data to analyze public perception of the 2011 reform to 

the propane gas subsidy in El Salvador. Usherwood and Wright (2017) monitored the three main groups 

that made extensive use of social media during the UK European Union membership referendum 

(Brexit referendum). Maynard et al. (2017) used Twitter data for the long-term monitoring of UK 

Members of Parliament and parliamentary candidates throughout the 2015 UK election campaign, and 

for short-term intensive monitoring of tweets with particular hashtags during the televised leaders’ 

debates during the same period. The content of social media is dynamic, following trends driven by 
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these events (sport, celebration, crises, articles), and topics such as global warming, terrorism, and 

immigration (Maynard et al. 2017). 

3.!Framework and dataset 
The majority of analytic tools used in this paper are based on GATE (Cunningham et al. 2002), an open 

source framework for Natural Language Processing (NLP) developed by the University of Sheffield, 

and the social media analysis toolkit developed within it (Maynard et al. 2017). Our analysis has three 

main stages: in the first we identify topics and sub-topics related to the eleven dimensions of BLI; in the 

second we collect tweets containing the topics and related sub-topics selected in the first stage; and in 

the last we analyze the tweets and estimate two new Composite Indexes of well-being using the Twitter 

trends as weights. 

3.1 Topic identification 

The aim of this stage is to select the most relevant topics related to the eleven dimensions in the BLI 

(first column in Table 1). The starting point for this is the set of topics used by the OECD on their website 

dedicated to BLI. The website has been translated by the OECD from English into 6 other languages: 

Spanish, French, Russian, German, Portuguese, and Italian. This is a robust source for our analysis, since 

the 11 topics and their official translations can be used as baseline definitions (Table 1). These 

translations, however, do not cover all the languages spoken in OECD areas, but only the official 

languages of 21 of the 37 countries in which BLI is measured.6 This is one of the major problems of 

analyzing the priorities of the BLI, because there are no official definitions of the 11 topics that are 

understandable to everyone in the relevant countries. This results in two main problems: (1) part of the 

OECD population does not have the possibility to understand, and they cannot vote on the OECD 

website; (2) studies that want to infer priorities in BLI with alternative tools have no set of pre-defined 

topics in all the languages. Nonetheless, in terms of representativeness, the seven languages 

considered here cover almost 1230 million people out of 1685 million people living in the 37 countries 

included in the BLI project (73%), and 67.4% of tweets (Hong, 2011).  

                                                        
6 The languages in which the OECD website is translated cover Australia, Austria, almost 50% of Belgium, Brazil, 

Canada, Chile, France, Germany, Ireland, Italy, Luxembourg, Mexico, New Zealand, Portugal, Russia, South 

Africa, Spain, Sweden, Switzerland, United Kingdom, United States. The remaining countries: Czech Republic, 

Denmark, Estonia, Finland, Greece, Hungary, Iceland, Israel, Japan, Korea, Latvia, Netherlands, Norway, Poland, 

Slovak Republic, Slovenia, and Turkey are instead not covered by translation in OECD website (Ethnologue, 

2017).  
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Table 1. Baseline Topics and translations for Better Life Index on the OECD website  
English Spanish French Russian German Portuguese Italian 

 Housing  Vivienda  Logement  Жилищные условия  Wohnverhältnisse  Moradia  Abitazione 

 Income  Ingresos  Revenu  Доход  Einkommen  Renda  Reddito 

 Jobs  Empleo  Emploi  Работа  Beschäftigung  Empregos  Occupazione 

 Community  Comunidad  Liens sociaux  Общество  Gemeinsinn  Comunidade  Relazioni sociali 

 Education  Educación  Éducation  Образование  Bildung  Educação  Istruzione 

 Environment  Medio ambiente  Environnement  Экология  Umwelt  Meio ambiente  Ambiente 

 Civic Engagement  Compromiso cívico  Engagement civique  Гражданские права  Zivilengagement  Engajamento cívico  Impegno civile 

 Health  Salud  Santé  Здоровье  Gesundheit  Saúde  Salute 

 Life Satisfaction  Satisfacción  Satisfaction  Удовлетворенность  Lebenszufriedenheit  Satisfação pessoal  Soddisfazione 

 Safety  Seguridad  Sécurité  Безопасность  Sicherheit  Segurança  Sicurezza 

 Work-Life Balance  Balance vida-trabajo  Équilibre travail-vie  Работа / Отдых  Work-Life-Balance  Vida/Trabalho  Equilibrio lavoro-vita 

Source: http://www.oecdbetterlifeindex.org (Accessed 23 June 2017)  
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The main problem with the topics in Table 1 is that they may be represented in different ways in the 

text. For instance, the topic “housing” includes mentions of words such as “landlord”, “rent”, 

“homebuilding” etc., while the topic “environment” comprises words like “climate change”, “global 

warming”, “sustainability” and so on. To deal with this, after the selection of topics in Table 1, we make 

an expansion for each of them by following a two-step procedure. In the first step, we use the lists of 

political sub-topics used in Maynard et al. (2017) for monitoring the UK 2015 Election. The topic 

detection there is performed by means of gazetteer lists manually created and then extended semi-

automatically. Terms are matched in text under any morphological variant, including also hyponyms 

and hypernyms. Since these lists are only available for English, we translate them into all the remaining 

six languages with Google Translate, and manually check them for possible mistakes.  

After this process, we follow the procedure in (Maynard et al. 2017) for expanding them using Word2vec 

(Mikolov et al. 2013). Word2vec finds words semantically similar to others by means of similarity 

measures. The similarity is measured on a large unlabeled corpus, based on the notion that semantically 

similar words have similar context. The main output of Word2vec is a fixed-length vector for each word 

(word representation). These vectors are then used to find similarity among words with standard 

similarity measures. In this study we use the approach proposed by Bojanowski (2016), which is based 

on the skip-gram model, where each word is represented as a bag of character !-grams.  This method 

outperforms the baseline (Mikolov et al. 2013), since it takes into account sub-word information, rare 

words, and morphologically rich languages (Bojanowski, 2016).  

We use the pre-trained word vectors, trained on Wikipedia by Bojanowski et al. (2016), which are 

available for 294 languages. This source allows us to use Word2vec for each of the 11 topics in each of 

our 7 languages. To prevent over-generation, we limit our expansion to 10 sub-topics for each topic in 

each language, so that we end up with 770 topics and sub-topics in total (11 topics for 7 languages for 

10 sub-topics). These are then used as keywords for our Twitter collector. 

3.2 Data collection 

We collected the tweets using the GATE Twitter Collector.7 This is an easy-to-use service which enables 

tweets to be collected based on a number of different criteria such as keywords, hashtags, geolocations, 

authors etc. Topics in tweets are often denoted by hashtags, e.g. #OlympicGamesLondon2012, and so 

we manually converted all our topics into hashtags in order to use them as input for the Twitter 

collector. This transforms for example “Life Satisfaction” to “#LifeSatisfaction”. The tweet collector finds 

and stores tweets containing at least one of these 770 hashtags (the complete lists of hashtags are in 

Appendix A.1).  

We collected in this way all tweets containing at least one of these selected hashtags from 30 May 2017 

to 30 June 2017. The root-level data structures for Tweet activities, are made of 15 elements: 1. id: a 
unique IRI for the tweet; 2. actor: an object representing the twitter user who tweeted; 3. verb: the 
type of action being taken by the user (e.g., Tweets, Retweets, and Deleted Tweets); 4. generator: an 
object representing the utility used to post the Tweet; 5. provider: a JSON object representing the 

                                                        
7 https://cloud.gate.ac.uk/info/about/twitter.html 
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provider of the activity; 6. inReplyTo: a JSON object referring to the Tweet being replied to, if 
applicable; 7. location: a JSON object representing the Twitter "Place" where the tweet was created; 
8. geo: point location where the Tweet was created; 9. twitter_entities: the entities object from 
Twitter's data format which contains lists of urls, mentions and hashtags; 10. 
twitter_extended_entities: an object from Twitter's native data format containing "media"; 11. link: a 
Permalink for the tweet; 12. body: the tweet text; 13: objectType: "activity"; 14. object: an object 
representing tweet being posted or shared; 15. postedTime: the time the action occurred, e.g. the time 
the Tweet was posted.  

GATE Twitter Collector makes use of the statuses/filter API, which allows the user to specify certain 
constraints and then delivers up to a maximum of around 50 tweets per second that match those 
constraints (sleeted hashtags in our case). Since we have been collecting tweets from different GATE 
collectors (one of which having a certain number of hashtags), the tweets containing keyword stored 
by different collectors have been collected twice or more times. Before performing the text mining 
and further processing the data, we excluded tweet collected more than one time by means of the id 
element (the unique IRI for the tweet). After this cleaning procedure, the analysis presented in 
section 4 is made on the body element of each tweet. 

3.3!Composite Index of Well-Being 

Following the OECD Handbook on Composite Index (Nardo et al, 2008), we have the set "	of 37 

countries to be evaluated on the set $ of topics (the 11 dimensions of the BLI): 

(1) " = )*, … , )- 	 

(2) $ = /*, … , /0  

Where 1 = 23 and 4 = 55. The performance in each of the 11 topics is estimated by the OECD by 

means of 24 variables. Each topic is composed of one or more of the 24 variables (see Table A.4.1 in the 

Appendices), of which 16 have a positive effect on well-being (e.g. rooms per person) and 8 have a 

negative effect on well-being (e.g. long-term unemployment rate). In order to group 24 variables into 11 

topics, the OECD first normalizes the value each variable takes, so that they all are in the 0: 1  range 

(min max method): 

(3) 9!:;< =
=>?;@A;:	A)BC; − E9!9ECE	A)BC;

E)<9ECE	A)BC; − E9!9ECE	A)BC;
 

Secondly, variables that have a negative effect on well-being undergo a unit translation 1 − 9!:;<  in 

order to make the complement to one comparable with the variables that have a positive effect on well-

being. Thirdly, the indices so obtained are aggregated into 11 topics by simple average:  

(4) /G =
9!:;<H

I
HJ*

K
;	 9 = 1,… , !  

Where M represents the number variables in the N-th topic (see Table A.4.1 in the Appendices). The 

individual function that aggregates topics can be assumed as the weighted sum of topic performance 
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multiplied by the relative weight (relative appreciation). Given the individual relative appreciations 

expressed by a vector of weights O = 	 O*, … , O0 ; O9
!
9=1 = 1 , for each country )P ∈ ", we can 

estimate the following individual composite BLI: 

(5) ST )P , O = OG/G )P

0

GJ*

; 	U = 1,… ,E 

where OG  reflects the importance that the citizen gives to the topic 9, and /G )P  is the performance of 

the country )P in the topic 9. The problem is that the order of importance changes among people across 

countries, which implies that we do not have the vector of O. 

The simplest way would be to assume that each citizen gives the same importance to each topic. In this 

case, a composite BLI can be obtained by the simple arithmetic mean; this assumption would amount 

to having O* = OV = OW = ⋯ = 	OG in equation (5). This is the baseline Composite Index used by the 

OECD, and one of the most popular ways to build Composite Indices (see among others Floridi et al. 

2011). However, this method implicitly assumes equal preferences among the 11 dimensions related to 

well-being. If this is not the case (as we assume), then the weights should also be different. 

To estimate the composite BLI on the basis of trends detected on Twitter, we (a) determine the frequency 

YG of hashtags associated with the 9th topic in the body element of each tweet collected; and (b) compute 

a weighted average using the relative frequency: 

(6)
YG

YG
0
GJ*

 

The relative frequency (6) is used as weight (OG) associated to the 9th topic: 

(7) ST )P , Y = Y
9

Y
9

!

9=1

/G )P

0

GJ*

 

where YG YG
0
GJ*  reflects the relative importance that the topic 9 has on Twitter, and /G )P  is the 

performance of the country )P in the topic 9.  

There are two ways in which we can use Twitter relative appreciations in our CI model. The first is to 

assume that the importance of each topic is the same for all countries, and to use the general trend. 

However, a better way might be to assume that each country has a potentially different relative 

appreciation, e.g. that people in France might consider jobs their top priority, but people in Germany 

might consider health. In economic theory, this point has been partially addressed with the seminal 

work of Tiebout (1956) regarding the public services. Adapting the Tiebout’s framework to 

multidimensional well-being, we argue that citizens/voters have their optimal subjective mix of well-

being, and that policy makers act in providing a specific proportion among the single dimensions of 

well-being (mix of well-being). For instance, in the same country there could be a relevant share of 

people interested in a specific aspect of well-being, such as health care, and at the same time there could 

be policy makers who are devoting more resources to education than to health. In this context, since the 
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objective function of the policy maker is to be (re-)elected, policy makers should act according to local 

preferences (for a broad review of political economic models see Persson and Tabellini, 2002; Dranzen, 

2004; Alesina and Giuliano, 2009).  

With this model in mind, the best way to evaluate the overall national BLI should be using local 

preferences. However, the provision of some dimensions of the BLI go beyond national borders (the 

sustainability topics are the most evident case), and indeed many of them are regulated by 

supranational institutions. Moreover, in our dataset only a small proportion (approximately 2.5%) of 

tweets is geo-localized (which is in line with other findings, see Jurgens et al. 2015). We therefore decided 

to estimate the composite BLI with both global and local trends, as follows:  

1. we estimate the general YG YG
0
GJ*  for the whole dataset, and we use this to estimate a ST )P , Y  that 

reflects relative importance in the whole Twitter community;  

2. we estimate the country level YG YG
0
GJ*  using the geo-localizations associated with tweets, and use 

them to estimate a ST )P , Y  in which each country is ranked on the basis of the relative importance in 

tweets from people living in that country. 

In the next section we present the results of the analysis, showing the composite BLI for both methods.  

4.!Analysis 
Our final dataset contains 7,905,317 tweets, of which 197,612 (2.5%) are geo-localized. We first introduce 

the analysis without geo-localization, proposing a Composite Index of well-being using the general 

frequency representing the BLI relative importance in all the tweets (section 4.1). Then, using the subset 

of geo-located tweets, we propose a Composite index in which each country is evaluated with relative 

importance based on the people tweeting from that country (section 4.2). We assume that most people 

tweeting from a country are living there. 

4.1 Composite index using general frequency  

In order to estimate the Composite index with general frequency, we estimate first the topic frequency 

in the 7,905,317 tweets using (6). In Figure 1 we show the topic frequency of all the collected tweets. In 

our tweet collection, the most frequent topic is Jobs (23%), followed by Environment (18%), Health 

(16%), Housing (9%), Safety (7%), Civic Engagement (7%), Community (6%), Education (6%), Income 

(4%), Life Satisfaction (3%), and Work Life Balance (0.05%).  

These global trends are roughly in line with the two main existing large-scale surveys about priorities 

and views on multidimensional well-being: “the Values of Europeans”, and “MY World”. 

“The Values of Europeans” (Eurobarometer, 2012) is a 2012 study conducted in the 27 Member States 

of the European Union, the 6 candidate states, and in the Turkish Cypriot Community, about the values 

of Europeans. In the section “the idea of happiness”, the value which Europeans consider the most 

important to their happiness is Health (75%), followed by Love (41%), and Work (40%). While Love is 

not in the BLI, Health and Jobs are also in the first three positions in our dataset.  
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“MY World” is a global survey for citizens led by the United Nations, that asks people which six of 

sixteen possible issues they think would make the most difference to their lives.8 Currently, MY World 

has more than 9 million votes from all over the world. Globally, the top 3 topics in this survey are: good 

education, better healthcare, and better job opportunities. Again, 2 of our top 3 topics are in the top 3 

ranks in MY World. 

The results from our dataset are thus similar to these two surveys, but quite different from the main 

results of the OECD dataset. In order to compare our results with this data, we downloaded the OECD 

dataset (127,136 relative appreciations in 23 June 2016) and estimated the average and median for each 

topic (Table A.2.1 in the Appendices). Comparing the averages in Table A.2.1, people voting on the 

OECD website put Health in first place, then Life Satisfaction, Education, Work-Life Balance, Safety, 

Environment, Jobs, Housing, Income, Community, and Civic Engagement. The main difference 

between Twitter trends and the OECD data lies in four topics: Jobs, Environment, Life Satisfaction, and 

Work Life Balance. Jobs and Environment are in the first two ranks on Twitter, but 7th and 6th on the 

OECD website. On the other hand, Life Satisfaction and Work Life Balance are in the last two ranks in 

Twitter trends, and in 2nd and 4th rank in the OECD dataset. 

One of the explanations for the high frequency of the topic Jobs in our dataset is that a significant 

number of vacancies and job offers are posted with the hashtag #jobs. While this can be perceived as a 

problem for our analysis, it shows that the jobs are nevertheless an important dimension in our lives, 

maybe more than people’s perception when they are directly asked about their priorities on the BLI 

website. One confirmation of this is the relevant role of topics related to jobs and immigration in the 

successful Donald Trump presidential campaign in 2016 in the USA (e.g. “put American workers first”), 

and in the successful Brexit campaign in 2016 in UK (Usherwood and Wright 2017; Maynard et al. 2017). 

The high frequency of the environment topic in our dataset is another outlier. This may be partly due 

to the timing of our collection, which coincides with the period in which Donald Trump pulled the US 

out of the Paris climate agreement. This event triggered a huge reaction in the Twitter community, and 

results in a massive increase of tweets containing hashtags such as #climatechange and related sub-

topics. In line with Maynard (2017), this confirms that the BLI opinions detected on Twitter are dynamic, 

and fluctuate according to recent events. Nonetheless, this shows that people care about the 

environment, maybe again more than is reflected by the BLI website. A larger study over a more 

extended time period should help smooth out these temporal biases. 

                                                        
8 The sixteen dimensions are: Better job opportunities, Support for people who can´t work, A good education, 

Better healthcare, Affordable and nutritious food, Phone and internet access, Better transport and roads, Access 

to clean water and sanitation, Reliable energy at home, Action taken on climate change, Protecting forests, rivers 

and oceans, Equality between men and women, Protection against crime and violence, Political freedom, An 

honest and responsive government, and Freedom from discrimination and persecution.  
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Figure 1 Better Life Index Topics frequency in Twitter (percentage) 

  

Using the topic frequency in Figure 1, we estimate the composite BLI for each of the 37 countries 

included in the OECD dataset. In Figure 2 we present the composite BLI using Twitter trends as weights, 

and the one using equal weights (as the baseline presented by the OECD). Surprisingly, there is a 

pervasive difference both in the indices and in the rank that countries obtain with the different 

assumptions (rank correlations are shown in Table A.3.1 in the Appendices). Comparing the composite 

BLI using Twitter trends with the one using equal weights, there emerges a huge improvement (at least 

3%) in the composite BLI of 21 countries.9 Some of these countries, in particular the Scandinavian ones, 

New Zealand, and Australia, score well in topics that are more frequent on Twitter (Jobs and 

Environment). The improvement in Mexico, Brazil, and Turkey is instead due to their low performances 

in topics less frequent on Twitter (Life Satisfaction and Work Life Balance). In general, countries that 

have improvement in the composite BLI have relative performance among topics that reflect general 

frequency on Twitter. In other words, they have high performance in topics more frequent on Twitter, 

and low performance in topics less frequent.  

                                                        
9 Mexico, Turkey, Iceland, Portugal, Australia, Brazil, Slovenia, United Kingdom, New Zealand, Japan, Norway, 

Estonia, Hungary, Korea, Chile, Latvia, Sweden, Austria, Canada, Ireland, and United States 
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Figure 2 Composite BLI using global Twitter trends as Weights and using Equal Weights, black bar means gain 

in using Twitter frequency, white bar means loss in using Twitter frequency 

 

Four countries in Figure 2 show differences between the indices that are not statistically significant (less 

than 1%): Denmark, Slovak Republic, Italy, and South Africa. This is partly due to their low variability 

among performances on different topics, which mitigates the impact of differentiating weights on the 

composite BLI. 

Relevant worsening in the composite BLI when the Twitter trends are taken into account are seen for 

Russia, Belgium, Greece, and Spain. The relative performance of these countries is unbalanced on topics 

less frequent on Twitter. For instance, in Greece and Spain, this is due to their low performance in Jobs 

(which is the most important topic on Twitter).  

In Figure 3 we show the difference in rank between the composite BLI using equal weights, and the one 

using Twitter frequency as weights. The differences between the two ranks are significant. Sixteen 

countries show a gain in the rank10. Six countries show no difference11. The remaining sixteen have losses 

in the rank12. 

                                                        
10 Iceland, United Kingdom, New Zealand, Japan, Turkey, Australia, Luxembourg, Israel, Poland, Portugal, 

Hungary, Chile, Mexico, Slovenia, Estonia, and Brazil 
11 Sweden, Austria, Ireland, France, Latvia, and South Africa 
12 Norway, Canada, United States, Finland, Netherlands, Czech Republic, Korea, Switzerland, Germany, Slovak 

Republic, Belgium, Italy, Spain, Russia, Denmark, and Greece 

0.25

0.35

0.45

0.55

0.65

0.75

0.85

A
u

st
ra

li
a

N
o

rw
ay

Ic
el

an
d

N
ew

 Z
ea

la
n

d

C
an

ad
a

S
w

ed
en

S
w

it
ze

rl
an

d

D
en

m
ar

k

U
n

it
ed

 S
ta

te
s

F
in

la
n

d

L
u

x
em

b
o

u
rg

N
et

h
er

la
n

d
s

U
n

it
ed

 K
in

g
d

o
m

G
er

m
an

y

A
u

st
ri

a

Ir
el

an
d

B
el

g
iu

m

F
ra

n
ce

S
lo

v
en

ia

Ja
p

an

E
st

o
n

ia

C
ze

ch
 R

ep
u

b
li

c

S
p

ai
n

Is
ra

el

P
o

la
n

d

S
lo

v
ak

 R
ep

u
b

li
c

It
al

y

P
o

rt
u

g
al

K
o

re
a

L
at

v
ia

H
u

n
g

ar
y

C
h

il
e

T
u

rk
ey

B
ra

zi
l

M
ex

ic
o

R
u

ss
ia

G
re

ec
e

S
o

u
th

 A
fr

ic
a

Composite BLI General Twitter Frequency Composite BLI using Equal Weights



15 

 

Figure 3 Rank in Composite BLI using global Twitter trends as Weights and using Equal Weights 

 

The main result in this section is that the general Twitter trends make a difference to the composite BLI. 

Measuring performance taking into account Twitter trends affects both the level of Composite Indices 

and the rank obtained by countries. The directions of these differences can provide information about 

the relationship between relative performance and the relative trends in the Twitter community. They 

can help us understand the extent to which policy makers act to provide a mix of well-being that is in 

line with the global societal priorities. Losses (or gains) in the composite BLI when Twitter trends are 

taken into account reflect a mismatch (or match) between people’s priorities and policy makers’ activity. 

Since policy makers are supposed to act in the interests of their citizens, in the next section we propose 

a composite BLI that takes into account only the local preferences for each country.    

 

Table 2 Better Life Index Topics frequency at county level in Twitter (percentage)  

Country HO IN JO CO ED EN CE HE LS SA WLB 

Australia 7.98 3.19 14.01 2.35 3.72 26.86 11.04 7.58 20.66 2.62 0.00 

Austria 5.58 1.40 7.44 0.00 1.86 65.58 8.84 4.19 3.72 1.40 0.00 

Belgium 5.84 2.35 11.24 10.71 6.10 30.05 13.50 4.97 7.58 7.49 0.17 

Brazil 5.55 1.18 11.22 2.07 5.40 43.75 10.64 4.79 13.75 1.63 0.02 

Canada 41.70 1.09 10.99 7.26 3.48 19.10 3.96 4.80 3.38 4.17 0.07 

Chile 7.85 2.22 16.51 1.26 4.07 34.79 9.25 7.70 13.69 2.66 0.00 

Czech Republic 9.90 0.50 5.94 3.47 3.96 47.52 11.88 4.95 5.45 6.44 0.00 

Denmark 5.50 0.61 7.95 2.14 3.36 52.91 10.70 7.03 7.03 2.75 0.00 

Estonia 7.96 0.00 7.96 1.77 4.42 59.29 6.19 1.77 3.54 7.08 0.00 

Finland 2.43 1.62 46.81 1.62 1.82 32.15 5.36 2.33 3.44 2.43 0.00 

France 6.88 1.55 34.27 2.56 2.50 26.39 10.40 4.73 6.38 4.30 0.04 

Germany 4.44 0.93 54.37 1.74 1.62 21.16 6.75 2.76 3.60 2.23 0.39 
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Greece 5.20 0.78 4.29 1.69 2.34 67.62 5.98 1.82 9.75 0.52 0.00 

Hungary 7.26 0.99 10.23 1.98 4.95 33.99 19.47 9.24 3.63 8.25 0.00 

Iceland 2.89 0.00 1.24 1.65 0.00 89.26 2.07 0.41 2.07 0.41 0.00 

Ireland 11.07 1.72 7.71 7.99 5.44 41.65 6.81 8.35 4.90 4.26 0.09 

Israel 7.37 4.21 7.89 4.74 8.42 30.53 7.37 2.11 8.42 18.95 0.00 

Italy 6.60 1.21 9.12 3.05 3.70 51.36 8.10 4.30 9.07 3.47 0.02 

Japan 3.78 0.69 4.98 1.55 4.12 57.90 9.79 3.78 11.00 2.41 0.00 

Korea 16.79 0.73 8.03 2.19 5.84 43.80 7.30 5.84 6.57 2.92 0.00 

Latvia 8.93 1.79 3.57 0.00 9.82 61.61 4.46 1.79 6.25 1.79 0.00 

Luxembourg 3.64 5.45 20.91 8.18 7.27 27.27 10.91 3.64 6.36 6.36 0.00 

Mexico 5.71 0.87 12.22 1.96 3.36 42.22 10.77 8.05 12.22 2.62 0.00 

Netherlands 8.23 1.71 7.77 3.89 5.03 42.06 12.46 4.69 6.86 7.20 0.11 

New Zealand 8.42 1.63 7.34 4.08 3.80 50.00 4.62 7.34 10.33 2.17 0.27 

Norway 3.59 0.60 5.09 5.39 1.80 68.56 4.49 2.40 5.09 2.99 0.00 

Poland 6.26 1.50 8.03 0.82 2.04 59.18 6.53 8.98 4.76 1.90 0.00 

Portugal 8.29 1.11 9.53 2.35 3.84 54.08 8.42 2.72 8.66 0.87 0.12 

Russia 4.28 2.02 7.05 1.51 1.76 58.94 12.59 2.27 6.80 2.77 0.00 

Slovak Republic 6.06 3.03 5.05 2.02 6.06 43.43 22.22 2.02 5.05 5.05 0.00 

Slovenia 5.26 0.66 4.61 0.66 1.97 62.50 5.26 15.79 3.29 0.00 0.00 

South Africa 6.31 1.99 14.94 6.64 9.63 31.87 5.23 8.80 11.04 3.57 0.00 

Spain 7.02 3.50 12.64 2.43 4.69 39.33 10.09 8.13 9.66 2.51 0.01 

Sweden 4.45 0.77 4.61 5.38 3.99 59.75 8.60 6.14 3.69 2.46 0.15 

Switzerland 6.31 1.99 14.94 6.64 9.63 31.87 5.23 8.80 11.04 3.57 0.00 

Turkey 5.03 0.24 8.53 5.70 2.27 61.75 3.81 4.69 7.31 0.66 0.00 

United Kingdom 10.38 3.74 8.42 10.53 7.03 26.70 11.85 10.04 4.26 6.90 0.15 

United States 5.21 1.57 14.06 5.07 4.59 27.68 6.15 18.99 4.61 11.99 0.06 

No-Geol. 9.15 4.35 23.01 5.90 5.76 17.83 7.31 16.03 3.14 7.48 0.05 

Notes: HO=Housing, Income, JO=Jobs, CO=Community, ED=Education, EN=Environment, CE=Civic 

engagement, HE=Health, LS=Life Satisfaction, SA=Safety, WLB=Work-Life Balance; Red represents High 

Value and blue represents Low Value 

 

4.2 Composite index using country-specific frequency  

In this section, we estimate the composite BLI using differentiated weights for different countries. The 

weights used here are the relative frequency of tweets geo-localized in the country. In this case each 

country is evaluated on the basis of internal trends. Note that this analysis involves just a small part of 

our dataset: 197612 tweets (2.5%) containing geo-localizations13. 

In Table 2, we show the country-level relative frequency of BLI topics on Twitter. There are significant 

differences among countries. In the geo-localized tweets, the most frequent topic is “Environment”. 

                                                        
13 The selected geo-localized tweets are: Australia 3,370, Austria 202, Belgium 1,094, Brazil 5,700, Canada 9,657, 

Chile 1,209, Czech Republic 184, Denmark 307, Estonia 104, Finland 954, France 9,773, Germany 6,066, Greece 725, 

Hungary 279, Iceland 234, Ireland 1,045, Israel 183, Italy 11,321, Japan 560, Korea 129, Latvia 104, Luxembourg 

103, Mexico 3,972, Netherlands 829, New Zealand 349, Norway 304, Poland 673, Portugal 751, Russia 369, Slovak 

Republic 90, Slovenia 143, South Africa 1,148, Spain 7,969, Sweden 566, Switzerland 887, Turkey 2,578, United 

Kingdom 18,444, and United States 65,661. 7,707,705 tweets are no geo-localized. 
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High frequency on this topic (above 60%) is found in Iceland, Norway, Greece, Austria, Slovenia, 

Turkey, and Latvia. Relatively low frequency (less than 30%) is found in United States, Luxembourg, 

Australia, United Kingdom, France, Germany, Canada, and in the non-geo-localized tweets. The topic 

“Jobs” is the second most important topic on average among the geo-localized tweets, but with much 

variation among countries. Its relative frequency is more than 40% in Germany and Finland, and less 

than 5% in Japan, Sweden, Slovenia, Greece, Latvia, and Iceland. Work Life Balance is confirmed as the 

least frequent in all countries (possibly because people only talk about this topic implicitly).  

 

Figure 4 Composite BLI using national Twitter trends as weights and using equal weights, black bar means gain 

in using Twitter frequency, white bar means loss in using Twitter frequency 

  

In Figure 4 we show the composite BLI using national Twitter trends as weights, and the composite BLI 

using equal weights. The black bar represents a gain in using Twitter frequency, whereas a white bar 

represents a loss. As in the case of general trends (section 4.1), there are huge differences both in the 

indices and in the rank that countries obtain with the different assumptions (rank correlation 

coefficients are in Table A.3.1 in the Appendices). Comparing the composite BLI using national Twitter 

trends with the composite BLI using equal weights, there emerges a huge improvement (more than 3%) 

in the composite BLI of Iceland, Mexico, Portugal, Norway, Estonia, Latvia, Australia, New Zealand, 

Brazil, United Kingdom, Turkey, Sweden, Finland, Germany, Ireland, Slovenia, Slovak Republic, 

Denmark, South Africa, Chile, and United States. The multi-dimensional BLI performance in these 

countries is in line with the order of importance given by their (Twitter community) citizens. 

Five countries in Figure 4 do not show statistically significant differences between the indices (less than 

1%): Poland, France, Luxembourg, Greece, and Switzerland. Relevant worsening in the composite BLI 

when the country-level Twitter trends are taken into account are in seven countries: Netherlands, Spain, 
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Korea, Belgium, Israel, Italy, and Russia. The mix of well-being provided in these countries is not in line 

with the importance given by their (Twitter community) citizens. 

In Figure 5 we show the difference in rank between composite BLI using equal weights and composite 

BLI using country-level Twitter frequency as weights. Comparing Figure 5 and Figure 3, it emerges that 

the difference between the ranks is more significant using local trends than global trends. Using local 

trends, Iceland, Mexico, Portugal, Brazil, Estonia, United Kingdom, Latvia, New Zealand, Ireland, 

Chile, Finland, Sweden, Germany, and Austria show a gain in the rank. Turkey, South Africa, Australia, 

France, Slovenia, Slovak Republic, Poland, and Hungary show no difference. Norway, United States, 

Czech Republic, Luxembourg, Japan, Denmark, Canada, Spain, Greece, Israel, Switzerland, Belgium, 

Russia, Netherlands, Italy, and Korea have losses in the ranking. 

Figure 5 Rank in Composite BLI using local Twitter trends as Weights and using Equal Weights 

 

Once again, these results confirm that the Twitter trends make a significant difference to the composite 

BLI. The directions of this differences can be used to compare the internal relative appreciation of the 

eleven topics of BLI, and the multi-dimensional performance of the country. When there is a gain in 

composite BLI, the national proportions among the performances of the eleven dimensions of the BLI 

are in line with the internal relative appreciation. When there is a loss, the national performance mix 

does not reflect the internal relative appreciation of the BLI. 

5.!Conclusions and discussion 
This paper has proposed a composite Better Life Index by weighting the national performance in each 

topic according to their relative trends on Twitter. The idea behind this analysis is that the aggregate of 
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millions of tweets submitted to Twitter may provide a representation of the priorities (the relative 

appreciations) among the eleven topics of the BLI. Since the relative appreciations are themselves part 

of multi-dimensional well-being, using them as weights can help us to design Composite Indices in a 

more targeted way than previous proposals.  

The majority of analytics tools used in this paper are based on freely available open source NLP and 

social media analysis tools developed by the University of Sheffield, and thus are easily reusable by the 

community. The analysis has three main stages: in the first, we identify topics and sub-topics related to 

the eleven dimensions of the BLI; in the second, we collect tweets containing the topics and related sub-

topics selected in the first stage; and in the last stage, we analyze the tweets and estimate two new 

Composite Indexes of Well-Being using the Twitter trends as weights.  

The Twitter trends are used to build two different composite BLIs. The first is based on the general 

trends on the whole dataset, and reflects the relative priorities of the whole Twitter community. The 

second is based on the national Twitter trends, estimated using the geo-localizations associated with 

tweets, and reflects the relative appreciations of users located in the country.  

The main results show that both the general and national Twitter trends make a difference to the 

composite BLI. Measuring performance taking into account Twitter trends affects both the level of 

Composite Indices and the rank obtained by countries. The directions of these differences can provide 

information about the relationship between relative performances and the relative trends in the Twitter 

community. When there is a gain in the composite BLI, the country mix of BLI is in line with the Twitter 

community’s relative appreciation. When there is a loss, the country performance mix does not reflect 

the relative priorities given by the Twitter community. In general, relative gains when Twitter trends 

are taken into account are in the composite BLI of Scandinavian countries, South America, Australia, 

New Zealand, and Turkey. On the opposite side, Russia, Greece and Spain show losses in the composite 

BLI when Twitter trends are considered. These results are confirmed with both global and local trends. 

The pilot study we have reported has a number of issues which could be improved in future work. First, 

there are language problems: the OECD website dedicated to the BLI has only seven official translations, 

which cover only 21 of the 37 countries in which the BLI is measured. This means that part of the OECD 

population may not be able to understand, and therefore cannot vote on the OECD website. 

Consequently, studies like this have no baseline in all the languages. An extension to this research 

requires translations of topics into the other languages.  

Second, the size of our collection is limited, since we only collected one month of tweets, which makes 

our analysis sensitive to temporary trends caused by recent events in that time period. The high interest 

in the topic Environment, due to the timing of our collection which coincided with Trump’s decision to 

leave the Paris agreements, is a clear signal of this. Longer collections would help smooth these temporal 

outliers.  

Third, there is a significant number of vacancies and job offers that our model recognizes as people’s 

interest in #jobs. Machine learning approaches could be used to classify (and exclude) such tweets, as 

well as an author categorization tool to separate tweets authored by people from those authored by 

organizations (Fernandez et al. 2016).  
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Fourth, there is only a small set of geo-located tweets in our collection. Recently, methods have been 

proposed for estimating the geo-location when it is not reported, mainly using follower networks (for a 

review see Jurgens et al. 2015). These could be used to expand the geo-located tweet collection.  

Finally, with the 770 selected keywords and related hashtags, there are clearly missing relevant tweets. 

The Twitter collection should ideally be expanded with more hashtags and potentially other keywords 

in the body of the tweet (for example, people who talk about work-life balance do not always use that 

hashtag). The identification of “interest in a topic” could thus be made more complex than just counting 

tweets containing relevant hashtags, although we believe this is a good baseline. Despite these flaws, 

we believe that this analysis clearly demonstrates how Twitter trends can be used to approximate the 

relative appreciations and values of people, which in turn can be represented in the Composite Index. 

Future research in economics should manage the multi-dimensionality of the phenomena interacting 

with societal behavior in a holistic approach. The UN Sustainable Development Goals (SDGs) clearly 

go in this direction (Costanza et al. 2016). This pilot study has shown promising results, which can be 

easily replicated using the framework proposed, and has demonstrated the benefit of big data as a 

support for these objectives.  
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Appendices 

A.1 Selected hashtags 

A. 1.1 Baseline hashtags (from words used in OECD website dedicated to BLI) 

 #housing; #income; #jobs; #community; #education; #environment; #civicengagement; #health; 

#lifesatisfaction; #safety; #worklifebalance; #vivienda; #ingresos; #empleo; #comunidad; #educación; 

#medioambiente; #compromisocívico; #salud; #satisfacción; #seguridad; #balancevidatrabajo; 

#logement; #revenu; #emploi; #lienssociaux; #éducation; #environnement; #engagementcivique; #santé; 

#satisfaction; #sécurité; #équilibretravailvie; #жилищныеусловия; #доход ; #работа; 

#общество; #образование; #экология; #гражданскиеправа; #здоровье; #удовлетворенность; 

#безопасность; #работаотдых; #wohnverhältnisse; #einkommen; #beschäftigung; #gemeinsinn; 

#bildung; #umwelt; #zivilengagement; #gesundheit; #lebenszufriedenheit; #sicherheit; #moradia; 

#renda; #empregos; #comunidade; #educação; #meioambiente; #engajamentocívico; #saúde; 

#satisfaçãopessoal; #segurança; #vidatrabalho; #abitazione; #reddito; #occupazione; #relazionisociali; 

#istruzione; #ambiente; #impegnocivile; #salute; #soddisfazione; #sicurezza; #equilibriolavorovita. 

A. 1.2 Hashtags related to Civic Engagement 

From Maynard (2017) lists: 
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#right; #rights; #citizenship; #elections; #party; #parliament; #policy; #president; #minister; #derecho; 

#derechos; #ciudadanía; #elecciones; #partido; #parlamento; #política; #presidente; #ministro; #droite; 

#droits; #citoyenneté; #élections; #partie; #parlement; #politique; #président; #ministre; #правый; 

#права ; #гражданство; #выборы; #партия; #парламент; #политика; #президент; #министр; #recht; 

#rechte; #staatsangehörigkeit; #wahlen; #parlament; #politik; #präsident; #direito; #direitos; #cidadania; 

#eleições; #diritto; #diritti; #cittadinanza; #elezione; #partito; #politica. 

From Word2vec estimates (Bojanowski et al 2016):  

#volunteerism; #politics; #participation; #fundraising; #solidaridad; #participativo; #cívico; #civisme; 

#volontariat; #solidarité; #гражданской; #конституционные; #неимущественные; 

#sozialengagement; #friedensengagement; #zivilem; #voluntariado; #solidarismo; #cívicos; #civile; 

#solidarietà; #volontariato. 

A.!1.3 Hashtags related to Community 

From Maynard (2017) lists: 

 #communities; #council; #local; #religion; #social; #islam; #muslim; #romancatholics; #neighborhood; 

#comunidades; #consejo; #religión; #musulmán; #católicosromanos; #barrio; #communautés; #conseil; 

#musulman; #catholiquesromains; #quartier; #сообщества; #совет; #местный; #религия; #социальное; 

#ислам; #мусульманка; #римскиекатолики; #окрестности; #gemeinschaften; #rat; #lokal; #soziale; 

#islamismo; #römischkatholisch; #nachbarschaft; #conselho; #religião; #muçulmano; #bairro; 

#comunità; #consiglio; #locale; #religione; #sociale; #musulmano; #cattolici; #quartiere. 

From Word2vec estimates (Bojanowski et al 2016):  

#including; #incluyendo; #intégratifs; #товарищество; #pluralität; #comunitaria; #multiculturalità. 

A. 1.4 Hashtags related to Education 

From Maynard (2017) lists: 

#literacy; #illiteracy; #schools; #teaching; #qualification; #qualifications; #teacher; #school; #pupils; 

#alfabetismo; #analfabetismo; #escuelas; #enseñando; #calificación; #calificaciones; #profesor; #colegio; 

#alumnos; #alphabétisation; #analphabétisme; #écoles; #enseignement; #prof; #école; #élèves; 

#грамотность; #неграмотность; #школы; #обучение; #квалификация; #квалификации; #учитель; 

#школа; #зрачки; #alphabetisierung; #analphabetentum; #schulen; #lehren; #qualifikation; 

#qualifikationen; #lehrer; #schule; #schüler ; #alfabetização; #escolas; #ensino; #qualificação; 

#qualificações; #professor; #escola; #alunos; #alfabetizzazione; #scuole; #insegnamento; #qualificazione; 

#titolidistudio; #insegnante; #scuola; #alunni. 

A. 1.5 Hashtags related to Environment 

From Maynard (2017) lists: 

#landfill; #green; #sustainability; #nature; #natural; #power; #energy; #forest; #sea; #vertedero; #verde; 

#sostenibilidad; #naturaleza; #poder; #energía; #bosque; #mar; #décharge; #vert; #durabilité; #lanature; 
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#naturel; #puissance; #énergie; #forêt; #mer; #полигон; #зеленый; #устойчивость; #природа; 

#натуральный; #мощность; #энергия; #лес; #море; #deponie; #grün; #nachhaltigkeit; #natur; 

#natürlich; #leistung; #energie; #wald; #meer; #aterro; #sustentabilidade; #natureza; #energia; #floresta; 

#discarica; #sostenibilità; #natura; #naturale; #foresta; #mare. 

From Word2vec estimates (Bojanowski et al 2016):  

#climatechange; #ecosystems; #ecology; #cambioclimático; #ecológico; #ecosistema; 

#changementclimatique; #écosystème; #écologie; #изменениеклимата; #экологический; 

#экосистема; #klimawandel; #ökosystemgesundheit; #lebensumwelt; #alteraçõesclimáticas; #ecologias; 

#cambiamentoclimatico; #ecologico. 

 

A. 1.6 Hashtags related to Health 

From Maynard (2017) lists: 

#doctor; #doctors; #healthcare; #nurse; #nurses; #ambulance; #hospital; #emergency; #lifeexpectancy; 

#doctores; #sanitario; #enfermera; #enfermeras; #ambulancia; #emergencia; #esperanzadevida; 

#docteur; #médecins; #soinsdesanté; #infirmière; #infirmières; #hôpital; #urgence; #espérancedevie; 

#врач; #врачи; #здравоохранение; #медсестра; #медсестры; #скораяпомощь; #больница; 

#крайняянеобходимость; #продолжительностьжизни; #arzt; #ärzte; #gesundheitswesen; 

#krankenschwester; #krankenschwestern; #krankenwagen; #krankenhaus; #notfall; #lebenserwartung; 

#médico; #médicos; #cuidadosdesaúde; #enfermeira; #enfermeiras; #ambulância; #emergência; 

#expectativadevida; #medico; #medici; #sanità; #infermiera; #infermieri; #ambulanza; #ospedale; 

#emergenza; #speranzadivita. 

From Word2vec estimates (Bojanowski et al 2016):  

#illness; #enfermedad; #maladie; #болезнь; #krankheit; #doença; #malattia. 

A. 1.7 Hashtags related to Housing 

From Maynard (2017) lists: 

#house; #home; #landlord; #landlords; #rent; #mortgage; #homebuilding; #socialhousing; #casa; #hogar; 

#dueño; #propietarios; #alquilar; #hipoteca; #construccióndeviviendas; #viviendasocial; #alojamiento; 

#maison; #domicile; #propriétaire; #propriétairesfonciers; #location; #hypothèque; 

#constructiondemaisons; #logementsocial; #дом; #главная; #арендодатель; #помещики; #аренда; 

#ипотека; #строительстводома; #социальногожилья; #корпус; #haus; #zuhause; #vermieter; #miete; 

#hypothek; #hausbau; #sozialwohnungen; #gehäuse; #lar ; #senhorio; #senhorios; #aluguel; 

#construçãodecasas; #habitaçãosocial; #habitação; #proprietario; #padronidicasa; #affitto; #mutuo; 

#costruttore; #alloggisociali; #alloggio 

A. 1.8 Hashtags related to Income 

From Maynard (2017) lists: 
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#austerity; #budget; #debt; #debts; #economic; #economy; #prices; #wealth ; #spending; #austeridad; 

#presupuesto; #deuda; #deudas; #económico; #economía; #precios; #riqueza; #gasto; #austérité; #dette; 

#dettes; #économique; #économie; #desprix; #richesse; #dépenses; #строгость; #бюджет; #долг; #долги; 

#экономической; #экономика; #цены; #богатство; #расходы; #strenge; #schuld; #schulden; 

#wirtschaftlich; #wirtschaft; #preise; #reichtum; #ausgaben; #austeridade; #orçamento; #dívida; 

#dívidas; #econômico; #economia; #preços; #gastos; #austerità; #bilancio; #debito; #debiti; #economico; 

#prezzi; #ricchezza; #spesa. 

From Word2vec estimates (Bojanowski et al 2016):  

#poverty; #earners; #salarios; #subsidios; #pauvreté; #salariés; #бедность; #добытчики; #armut; 

#verdiener; #pobreza; #assalariados; #povertà; #percettoridireddito. 

A. 1.9 Hashtags related to Jobs 

From Maynard (2017) lists: 

#unemployment; #apprenticeship; #wage; #wages; #unemployed; #employment; #employees; #work; 

#worker; #desempleo; #aprendizaje; #salario; #desempleados; #empleados; #trabajo; #obrero; #chômage; 

#apprentissage; #salaire; #lessalaires; #sansemploi; #employés; #travail; #ouvrier; #безработица; 

#ученичество; #заработнаяплата; #безработные; #занятость; #сотрудников; #работник; 

#arbeitslosigkeit; #lehre; #führen; #lohn; #arbeitslos; #angestellte; #arbeit; #arbeitnehmer; #desemprego; 

#aprendizagem; #salário; #salários; #desempregado; #emprego; #empregados; #trabalhos; #trabalhador; 

#disoccupazione; #apprendistato; #salari; #disoccupato; #dipendenti; #lavoro; #lavoratore. 

From Word2vec estimates (Bojanowski et al 2016):  

#layoffs; #despidos; #entlassungen; #увольнения; #demissões; #licenziamenti. 

A. 1.10 Hashtags related to Life Satisfaction 

From Word2vec estimates (Bojanowski et al 2016):  

#happiness; #enjoy; #glee; #joy; #prosperity; #pleasure; #felicidad; #disfrutar; #alegría; #prosperidad; 

#placer ; #bonheur; #prendreplaisir; #joie; #prospérité; #plaisir; #приподнятоенастроение; 

#наслаждение; #спокойствиедуха; #удовольствие; #процветание; #glück; #genießen; #freude; 

#wohlstand; #vergnügen; #felicidade; #apreciar; #alegria; #prosperidade; #prazer; #felicità; #godere; 

#allegria; #gioia; #prosperità; #piacere; #satisfactions; #dissatisfaction; #unsatisfaction; #pleasures; 

#friendship; #satisfacciones; #insatisfacción; #insatisfactions; #placeres; #desamparo; #insatisfaction; 

#insatisfacciones; #amitié; #сатисфакции; #неудовлетворенность; #неудовлетворенности; 

#удовольствиядуха; #дружба; #befriedigungen; #unzufriedenheit; #unzufriedene; #freuden; #freunde; 

#satisfações; #insatisfação; #insatisfações; #prazeres; #amigos; #soddisfazioni; #insoddisfazione; 

#insoddisfazioni; #piaceri; #amicizia 

A. 1.11 Hashtags related to Safety 

From Maynard (2017) lists: 
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#crime; #crimes; #prison; #prisons; #drugs; #police; #terrorist; #terrorism; #policemen; #crimen; 

#crímenes; #prisión; #cárceles; #drogas; #policía; #terrorista; #terrorismo; #policías; #criminalité; 

#drogues; #terroriste; #terrorisme; #policiers; #преступление; #преступления; #тюрьма; #тюрьмы; 

#наркотики; #полиция; #террорист; #терроризм; #полицейские; #kriminalität; #verbrechen; 

#gefängnis; #gefängnisse; #drogen; #polizei; #terrorismus ; #polizisten; #prisão; #prisões; #polícia; 

#policiais; #crimine; #crimini; #prigione; #carceri; #droghe; #polizia; #poliziotti; #security. 

A. 1.12 Hashtags related to work Life Balance 

From Word2vec estimates (Bojanowski et al 2016):  

#freetime; #holiday; #holidays; #fun; #hobby; #dayoff; #weekend; #family; #rest; #ocio; #fiesta; 

#vacaciones; #diversión; #díadedescanso; #findesemana; #familia; #resto; #loisir; #vacances; #fêtes; 

#amusement; #jourdecongé; #famille; #repos; #досуг; #праздник; #каникулы; #веселье; #хобби; 

#выходнойдень; #уик-энд; #семья; #отдых; #freizeit; #urlaub; #ferien; #spaß; #ruhetag; #wochenende; 

#familie; #lazer; #feriado; #feriados; #diversão; #passatempo; #diadefolga; #fimdesemana; #família; 

#descanso; #tempolibero; #vacanza; #ferie; #svago; #giornolibero; #finesettimana; #famiglia; #riposo; 

#lifetime; #vidas; #duréedevie; #lebenszeit; #tempodevida; #tuttalavita 

 

A.2 Preferences on the BLI dedicated website 

Table A.2.1 Relative Appreciations of Better Life Index on OECD dedicated website 

 Average Median 

 Health 3.73 4.00 

 Life Satisfaction 3.69 4.00 

 Education 3.54 4.00 

 Work-Life Balance 3.35 4.00 

 Safety 3.32 4.00 

 Environment 3.26 3.00 

 Jobs 3.19 3.00 

 Housing 3.17 3.00 

 Income 3.10 3.00 

 Community 2.90 3.00 

 Civic Engagement 2.41 2.00 

Author’s elaboration on Data downloaded on 23 July 2017 

 

A.3 Correlations among composite BLI 

Table A3.1 Rank Correlations (95 % bootstrap upper and lower bounds) 

 C BLI global trends C BLI local  trends C BLI equal weights 

C BLI global trends 1.000   

LB 0.898   

C BLI local  trends  0.958 1.000  
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UB 0.975   

LB 0.930 0.851  

C BLI equal weights 0.973 0.927 1.000 

UB 0.985 0.953  

Note: LU= lower bound; Ub=Upper Boung; Bootstrap with 1000 replicates using R package by Herve´ (2015) 

 

 

 

 

 

 

 

 

 

 

A.4 Variables and Topics in Better Life Index 

Table A4.1 Dimensions and related variables of the BLI 

Topics Related variables 

Housing 

Dwellings without basic facilities 

Housing expenditure 

Rooms per person 

Income 
Household net adjusted disposable income 

Household net financial wealth 

Jobs 

Employment rate 

Job security 

Long-term unemployment rate 

Personal earnings 

Community Quality of support network 

Education 

Educational attainment 

Student skills 

Years in education 

Environment 
Air pollution 

Water quality 

Civic engagement 
Consultation on rule-making 

Voter turnout 

Health 
Life expectancy 

Self-reported health 

Life Satisfaction Life satisfaction 
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Safety 
Assault rate 

Homicide rate 

Work-Life Balance 
Employees working very long hours 

Time devoted to leisure and personal care 
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