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Abstract

This paper presents a two dimensional convex irregular bin packing problem
with guillotine cuts. The problem combines the challenges of tackling the com-
plexity of packing irregular pieces, guaranteeing guillotine cuts that are not always
orthogonal to the edges of the bin, and allocating pieces to bins that are not nec-
essarily of the same size. This problem is known as a two-dimensional multi bin
size bin packing problem with convexirregular pieces and guillotine cuts. Since
pieces are separated by means of guillotine cuts, our study is restricted to convex
pieces. A beam search algorithm is described, which is successfully applied to
both the multi and single bin size instances. The algorithm is competitive with
the results reported in the literature for the single bin size problem and provides
the first results for the multi bin size problem.

Keywords: cutting; packing; heuristics; beam search; guillotine cuts.

1 Introduction

This paper tackles the two-dimensional (2D) multi bin size bin packing problem
with irregular pieces and guillotine cuts (MBSBPPGC) and can also solve the
single bin size version of the problem (SBSBPPGC). Guillotine cuts arise due to
the cutting process of certain materials, where cuts are restricted to extend from
one edge of the stock sheet to another. Research on guillotine cuts can be divided
into two main groups: one where all the pieces are rectangular, thus the obvious
cuts are orthogonal to the stock sheet; and the other where pieces are irregular
convex polygons. For this case, allowing both orthogonal and non-orthogonal
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cuts are the best option for minimising the waste. Our research focuses on the
second, less studied, version of the problem. The algorithm we present in this
research successfully solves two versions of the problem; the multi bin size and
the single bin size problem. This extends the literature in this problem, which
only tackles the single bin size version.

The 2D-cutting and packing problem with guillotine cuts and rectangular
pieces was first introduced by Gilmore and Gomory (1965) and has been widely
studied ever since. Lodi et al. (1999b) surveys 2D rectangle bin packing, including
algorithms that handle guillotine constraints. Their approach consists of packing
pieces onto shelves along the width of the bin. Lodi et al. (1999a, 2015, 2017)
consider the case where no rotation is allowed. Charalambous and Fleszar (2011)
use an alternative approach and generate patterns across the width of the bin, and
then within the free rectangle areas. Pieces may be rotated in order to maximise
the area of the biggest free rectangle. Fleszar (2013) propose a constructive
heuristic where the insertion decision is made by first-fit, best-fit or critical-fit
criteria. Note that in most cases, when dealing with rectangle cutting the number
of transitions between horizontal and vertical cuts, called stages, is restricted. At
each stage several guillotine cuts can be performed. The problem is known as the
n-stage two dimensional bin packing problem, see Puchinger and Raidl (2007),
Alvelos et al. (2009) or Malaguti et al. (2014).

When cutting more complex shapes, cutting problems face new challenges
due to the geometry of the pieces. The problem is then known as an irregular
packing problems. For many years, the literatures focused on the open dimension
version of the problem, called irregular strip packing problems. A useful review
of methods can be found in Bennell and Oliveira (2009). Moreover, the solution
approaches were largely heuristic. More recently researchers have been develop-
ing exact methodologies for these problems. One of the recent exact methods for
irregular strip packing is the one from Cherri et al. (2016) where they apply a
mixed integer linear programming model. Their model builds on the linear pro-
gramming compaction approaches (for example Bennell and Downsland (2001))
and adds binary variables to activate and deactivate constraints. Larger prob-
lems are solved by Rodrigues and Toledo (2017) where their integer programming
model approximates the stock sheet by discrete points. A compromise between
the two approaches is proposed by Leao et al. (2016) who discretise the stock
sheet in the y-axis but allow continuous translations in the x-direction.

A further advancement in the literature is the consideration of multiple fixed
dimension stock sheets; irregular bin packing. This is the problem solved by
Martinez-Sykora et al. (2017) using exact and heuristic methods. This problem
is also tackled by Abeysooriya et al. (2018) who apply a pure heuristic. Both
these papers allow any angle of rotation of the pieces. The irregular packing
literature provide important findings to consider in our algorithm design, but we
point out that none of these papers consider guillotine constraints.

Han et al. (2013) introduce the irregular bin packing problem with guillotine
cuts into the literature, and propose a one-stage approach that matches pieces
into clusters, enclosed in their convex hull to create a block. The clusters are built
using a forest search structure where the forest is populated by matching pieces
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with pieces, pieces with clusters, and clusters with clusters. The forest is complete
once there are no further matches for the blocks. The bin packing sequentially
selects the block with the greatest summed area of pieces, while removing blocks
that contain common pieces to those already selected.

Mart́ınez-Sykora et al. (2015) is the only other paper, to the best of our
knowledge, that tackles the problem considered in this research. They use a
metaheuristic where the relative position of pieces in the bin and guillotine con-
straints are calculated via mixed integer programming (MIP). The MIP consists
of containment constraints, non-overlapping constraints and guillotine cut con-
straints. It not only determines whether a piece can feasibly be inserted into the
bin, but also where to place it. Every time a new piece is inserted, the MIP
may change the position of the pieces already in the bin, respecting the guillotine
cut structure defined in previous steps. The formulation assumes that pieces are
orientated at a certain angle. Hence, the model is solved several times for each
piece to be inserted, trying different rotation angles and the reflection of the piece.
Pieces are sorted by a certain criterion, and if the next piece in the list does not
fit in the current bin, the algorithm tries to insert any of the remaining pieces
before opening a new bin. Clearly, since they solve a MIP for each piece inserted
in a bin, and the number of constraints grows with the number of pieces in the
bin, this heuristic slows down when dealing with instances where there are many
pieces per bin.

The authors present new lower bounds, and some of the results obtained are
proven to be optimal, improving those on Han et al. (2013). The lower bounds
are determined by a simple MIP model that minimises the number of bins needed
to allocate all the pieces where only the area of the pieces and the area of the bin
are considered as the packing constraint.

The contributions of this paper are as follows. It is the first paper that solves
a multi bin size (MBS) bin packing problem with convex irregular pieces and
guillotine constraints. It also presents an effective beam search algorithm which
obtains fast and competitive solutions without the aid of specialist software, so
it can provide small businesses a tool for their cutting operations. Our method
produces better results for the single bin size (SBS) problem than those shown
on Han et al. (2013), and the results are competitive when compared with those
obtained in Mart́ınez-Sykora et al. (2015) while having shorter execution times.

The remainder of the paper is structured as follows: Section 2 describes the
problem in detail, and introduces the relevant notation that is used in this paper.
Section 3 describes the beam search heuristic. First it gives a general overview
of the method and, in Section 3.2, it focuses on how the method is applied to
solve this particular problem. Sections 4 and 5 detail the main steps of the beam
search heuristics, including how a node is generated, and how a global solution
is constructed. Computational results are shown in Section 6. The paper ends
with summary and conclusions in Section 7.
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2 Problem Description

The problem objective is to cut a set of pieces from the minimum number of stock
sheets, hence it is an input minimization problem. There are sufficient rectangular
stock sheets available to meet the demand, and these may be of different sizes.
Let P be the demand set of pieces, and each piece is considered to be unique.
According to the typology proposed by Wäscher et al. (2007) this is a multiple
bin size (MBS) bin packing problem. Further refinements are that all pieces are
convex, usually irregular, can be freely rotated and reflected and only guillotine
cuts are allowed.

A guillotine cut is defined as a straight line cut that begins at an edge of the
stock sheet and ends at another edge. A cut divides the stock sheet creating
two component stock sheet with boundaries that can define the start and end of
the next guillotine cut. In our case, the cuts are not constrained to be parallel
to the edges of the stock sheet. Usually when considering guillotine constraints,
pieces must be cut free from the stock sheet with a maximum number of cuts; in
our problem there are no limits to the number of cuts. The order of the cuts is
important to track in order to successfully execute the cutting plan.

Let B be the set of bins, and B ∈ B denote a particular bin with width
WB and length LB. We consider T different bin sizes. Let P be the set of
pieces, where p ∈ P denotes a piece, which is characterized by an ordered list
of vertices (v1, . . . , vnp), and let the edges be expressed by ej = (vj , vj+1), where
j = 1, . . . , np − 1 and the last edge is enp = (vnp , v1). Each piece can be freely
rotated and reflected.

The objective is to maximise the total bin utilization (U), which is equivalent
to minimising total waste. Utilization can be calculated as:

U =

∑

p∈P Ap
∑

B∈B
AB

(1)

where Ap denotes the area of piece p and AB is the area of bin B. In practice
residual material of a partially packed bin can be reused in subsequent operations.
The residual appears when practitioners perform a horizontal or vertical cut to
a bin, to separate the packed and unpacked areas. We assume that only the last
bin may have a residual. Let LR be the length of the packed area, and WR its
corresponding width, then the area of the last bin is either LR ·WB or LB ·WR,
whichever is smallest.

3 Beam Search

In this section we explain in detail the beam search heuristic to solve the 2D
MBSBPPGC. This heuristic uses a tree search structure of nodes and branches
analogous to branch and bound, but only a subset of nodes is evaluated in the
search tree. At any level, only the nodes considered to be promising are kept for
further branching and the remaining nodes are pruned permanently. Its structure
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lends itself to modeling problems where the solution of the problem may be
constructed sequentially.

Beam search was first applied for scheduling problems in Sabuncuoglu and
Bayiz (1999) and Ghirardi and Potts (2005). More recently, it has been applied
to cutting and packing problems as in Akeb et al. (2009) and Akeb et al. (2011)
to solve the circular packing problem, or in Bennell and Song (2010) where an
irregular shape packing problem is solved by means of beam search. In both
cases, they only deal with the packing of one bin, and the beam search will find
the best sequencing of pieces based on a placement procedure. To the best of
our knowledge, within the field of cutting and packing problems, only Song and
Bennell (2014) use beam search when there are multiple bins. They tackle a
2D cutting stock problem. Beam search is used as part of a column generation
procedure to pack the pieces into a single bin but not as the main procedure that
deals with multiple bins.

In the next sections we present a general overview of this heuristic followed
by a description of how it has been applied to our particular problem.

3.1 General Framework

The algorithm alternates between searching the tree breadth first and then depth
first, with aggressive pruning of the branches at each stage according to a local
and global evaluation function respectively. There is no backtracking and the
number of branches at each level of the tree is user defined. Hence, the user
somewhat controls the running time of the algorithm and it is polynomial in the
size of the problem (Sabuncuoglu and Bayiz, 1999). Below we describe in detail
the main ideas of the beam search, and give a general idea of how this procedure
has been implemented to solve our particular problem.

Beam search searches the tree from each parent node, creating multiple chil-
dren. A filtering method discards some children from each parent to reduce the
computational burden while ensuring that only promising children are kept for
evaluation. The number of children kept at this stage is called the filter width

(α), and nodes are selected by a local evaluation function that only takes into
account the performance of the partial solution represented by that node, with-
out considering its impact on the final solution. For each of the filtered nodes,
a global evaluation is performed by constructing a final solution of the problem,
with initial conditions set by the filtered nodes. In our problem, it corresponds
to a complete packing scheme, where a subset of pieces have already been used
to pack some bins. All of the complete solutions are compared, and only β nodes
with the best value for the global evaluation function are kept for further investi-
gation. These nodes are called beam nodes, and the value β is known as the beam
width. Once the global evaluation function is performed, and the β nodes are
selected, the search returns to the partial solutions at the local evaluation level
and the β nodes become the new parents. Note that when performing the local
evaluation, child nodes will only compete with other children branching from the
same parent node. However, for global evaluation all children are compared with
each other.
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Figure 1: Illustration of a beam search tree

In Figure 1 we illustrate a beam search tree for the SBS problem. The MBS
problem beam search tree, only differs in that it will contain T times more child
nodes, where T is the number of bin sizes. In this explanatory tree, there are 5
possible children (for the MBS problem, there would be 5 ·T children). From each
parent node, the best two are selected, α = 2 (shaded nodes), and the remaining
three are pruned. The filtered nodes are globally evaluated and the best β = 3
across all branches are kept. Usually α < β to ensure that at least one node from
a different parent is selected, aiming for diversity in the subsequent nodes. Note
that the global evaluation is not needed for pruning branches until there are at
least a total of β filter nodes on a level. Clearly, the larger the value of α and β
the greater the computational time required and also the greater the potential of
finding better solutions.

3.2 Overview of Beam Search for the proposed prob-

lem

In our implementation of beam search, each node represents a complete packed
bin. A child node is created by first selecting a bin size. A constructive algorithm
packs the bin, which is deterministic with respect to the selection of the first
piece and its orientation. We can create different patterns in the same size bin
by changing the orientation of the first piece, or selecting a different piece. Hence
for each bin size, multiple children are created from the same parent that can
be divided in two groups: those with a different initial piece, and among them,
children with a different orientation of the first piece.

For the local evaluation the obvious function would be maximizing the bin
utilization, which works well when solving SBS instances. However, when dealing
with MBS instances, this approach may be too greedy. Instead, the filter width
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takes into account the number of different bin sizes, T , that are available and,
for each bin size, it selects α nodes as child nodes. This way nodes are only
competing among their own bin type.

As reported in Bennell and Oliveira (2009), most construction algorithms
share a strategy of placing difficult to place pieces early in the process, such as
large pieces so that small ones can fill the gaps. In order to encourage this be-
haviour the local evaluation function (F ) computes the ratio between the squared
area of the pieces on the bin, and the area of the bin as in (2), where P (B) denotes
the set of pieces placed in bin B:

F =

∑

p∈P (B)A
2
p

AB

(2)

It then selects the set of nodes with maximum F among all children with the
same initial piece; and among these children it finally selects the best α children,
using the same criteria. In case of a tie, the algorithm choses the node with more
pieces in it. Since this is done for each bin size, each parent keeps α · T children.

Once the filter nodes are selected, the beam search creates a global solution for
each of them. For a given node the global solution packs the remaining unpacked
pieces bin by bin by generating one bin of each size using the same construction
algorithm. The algorithm selects the largest unpacked piece that fits for each
bin size as the first piece. The bin with maximum value of F is kept and the
algorithm repeats this procedure until all pieces are placed. Hence, the global
solution will reflect the advantages of having different bin sizes.

Global evaluation identifies the greedy decisions made at the filter stage that
leads to suboptimal complete solutions. It keeps the β branches that lead to the
best global solution previously created, discarding all remaining branches. Our
implementation of the beam search algorithm uses U , equation (1), as the global
evaluation function.

One characteristic of beam search is that, even though we construct complete
solutions at each level of the tree, these solutions are discarded and only the
information of which nodes led to the best values of the objective function is
kept. However, we keep track of the best solution found so far, which allows us
to validate the beam search by confirming that the best solution improves as the
search progress.

Thus the beam search for the 2-dimensional multiple bin size bin packing
problem with guillotine cuts can be summarize as follows:

Step 1: Generation of nodes. Order pieces in descending order of their area.
Select the first M pieces from set P ⊂ P, set of unplaced pieces. For each
pj ∈ M apply r orientations (rotations and reflections). Let pkj be the k-th
orientation of pj . For each of the T bin sizes, generate M · r child nodes,
with pkj as the initial piece. For each new node, update P .

Step 2: Filtering. For each of the T bin sizes, select the best α children according
to F . Prune the remaining nodes for that bin size. Go to Step 1 until there
are at least β nodes at the current level.
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Step 3: Global solution generation. From each filtered child, construct a global
solution.

Step 4: Global evaluation. Apply the global evaluation function, U , and keep
the best β branches. Prune the remaining ones.

Step 5: Repeat steps 1 - 4 until all branches have placed all pieces. At the final
level of each branch, calculate the residual to obtain the utilization of that
branch. Select the branch with best overall utilization.

4 Generation of Nodes

In this section we describe in detail how the nodes are generated. As stated
before, each node of the tree represents a packed bin. During the beam search
procedure, from each node, multiple children are created. To ensure diversity of
the proposed solutions, we must ensure that they are different and distributed
across the solution space.

We follow the findings of Mart́ınez-Sykora et al. (2015), who show that sorting
pieces in non-increasing area provides better solutions for this problem. The
packing procedure is deterministic in the sense that we obtain the same solution
if the first piece and its orientation are the same. Thus, to create different children
from each parent node, a subset of pieces is selected as the initial piece for each
child and, for each of the initial pieces selected, children are created with different
rotations and reflections of this initial piece.

The heuristic to create child nodes will be evaluated in terms of bin utilization,
thus it tries to fill the bin as much as possible. However, guillotine constraints
limit available positions for pieces. In this paper we define two types of guillotine
cuts. The first one follows the ideas of the best match found in Han et al. (2013),
where a guillotine cut is defined by the concurrent edges when matching two
edges of two convex shapes. It is guaranteed that the matching edge is a valid
guillotine cut, however, the limits of this cut are not defined by the edges of the
bin, but by the convex hull of the two pieces. The second cut we define, we call
a separation cut and it follows the ideas found in Mart́ınez-Sykora et al. (2015)
where a guillotine cut is performed across the bin to separate the bin into two
sections. Combining both methods ensures a better utilization of the bin.

Figure 2 shows the advantages of combining these two cuts. Pieces p1 and p2
are placed using the best match method. The edges of the convex hull defined
by p1 and p2 set the limits of the guillotine cut as shown in Figure 2(a). In the
case where p3 is the next piece, this cannot be placed in the bin by matching the
edges of p3 with the convex hull because it will break the containment constraint
of the bin. Piece p3 can only fit in the bin if it is placed beyond the right-hand
boundary of the top edge of the convex hull, which is not permitted by this
approach. Alternatively, if only separation cuts were defined, the guillotine cut
creates two sections, as shown in Figure 2(b), which also prevents piece p3 being
placed. Combining the two types of cut, allows us to separate pieces p1 and p2
by a best match cut (g1), whose limits are the edges of the convex hull, and then

8



Figure 2: Advantages of combining two methods to place pieces in the bin.

separate p3 by a separation cut (g2) as shown in Figure 2(c) allowing us to place
piece p3.

Placement heuristics usually order pieces under a certain criterion and try to
place a piece following that order. Our approach uses a more dynamic selection
of pieces, which draws the next piece to be placed from a restricted candidate list,
Q. The candidate list is a dynamic ordered subset of L pieces that are eligible to
be placed next. It is more efficient than forcing a certain piece to be placed next,
since it takes into account the particular features of the bin as well as the pieces
that are already placed. To create the candidate list, we take into account the
free area in the bin, and also the quality of the match between the edges of the
convex hull of the pieces already placed. The match degree, introduced by Han
et al. (2013), is a measure of the similarity between the edges of the pieces we are
comparing. Let md(m,n) be the match degree between edge em of the candidate
piece and edge en of the partial solution:

md(m,n) = 1−
||em| − |en||

max{|em|, |en|}
(3)

where |em| and |en| represent the length of edges em and en respectively. The
greater the value of md(m,n) the more similar edges en and em are in length. We
only accept a piece as a candidate, if the match degree is greater than a threshold
(md(m,n) ≥ θ1), based on the idea that the more similar the edges are, the less
waste the convex hull will generate. Algorithm 1 describes how the candidate list
is created.

Note that within this algorithm, line 4 refers to the area of SB
i , a section of a

bin which is created after a separation cut is applied. Initially the first section we
consider is the entire bin (SB

1 = B). CSB
i
represents the convex hull of the pieces

already placed in section SB
i . Next we describe the algorithms to find the best

match, or the best separation cut. The final procedure will select one of these
two methods to place one of the candidates.
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Algorithm 1 Candidate List

1: Q = ∅

2: while |Q| < L do

3: for all p ∈ P do

4: if Area(CSB
i
) + Area(p) ≤ Area(SB

i ) then
5: for all em ∈ p and en ∈ CSB

i
do

6: if md(m,n) > θ1 then

7: Q = Q ∪ {p}
8: end if

9: end for

10: end if

11: end for

12: end while

4.1 Finding the Best Match

The function that finds the best match between two polygons is partially derived
from the best match function found in Han et al. (2013). It is based on the
fact that, because of the guillotine cut constraint, only convex shapes can be
cut. When matching two edges of two convex shapes, the concurrent edge is
guaranteed to be a valid guillotine cut. However, the resulting shape might not
be convex, so an immediate waste is generated. The convex hull is used as an
approximation of the union of the two polygons, p1 and p2. The utilization of the
convex hull is defined as:

U (p1,p2)
cov =

Area(p1) +Area(p2)

Area(C(p1, p2))
(4)

where C(p1, p2) represents the convex hull of pieces p1 and p2 respectively. Han
et al. (2013) packing strategy first clusters pieces and then attempts to fit those
clusters into bins, so they look for matches that are more similar to a rectangle
shape. Thus they also consider the rectangle enclosure utilization, defined in a
similar way as the convex hull utilization, as a criteria for matching. They use
a weighted averaged utilization ratio of the two to define the best match. To
release pieces from the bin, guillotine cuts must be performed in reverse order to
the one created by the algorithm, meaning that the first cut will separate the last
piece added to the cluster, and the last cut releases the first and second pieces
placed. The main limitation with their procedure is that, because pieces are first
clustered outside the bin, when placed into it, an immediate waste is generated
between the big block of pieces and the edges of the bin.

Our heuristic also matches pieces together, but since pieces are sequentially
placed in the bin, we do not need to consider the rectangle enclosure because the
boundary of the bin is taken into account when evaluating the feasibility of a
match. When we place a piece in the bin, we do not modify its position, so rather
than considering the convex hull utilization of two pieces matched together we
consider the convex hull of all the pieces already placed in the bin. Let us denote
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by CB the convex hull of all the pieces already placed in the bin, and C(CB, p)
the convex hull formed after placing piece p in bin B. The convex hull utilization
will be defined as:

Up
CB

=
Area(CB) +Area(p)

Area(C(CB, p))
. (5)

Once a piece p is matched with CB, we can determine its convex hull utiliza-
tion. However, the convex hull generated when matching two polygons is strongly
dependent on the relative position of the two polygons as shown in Figure 3, where
different convex hulls C(CB, p) are created depending on the rotation of p, even
if they are both matched with the same edge of CB.

Figure 3: Convex hulls created when matching polygons CB and different
positions of p.

To match two pieces together we use the two heuristics that were first intro-
duced in Han et al. (2013): Attach and Slide. The Attach procedure places edge
en of p concurrent with edge em of CB. Initially, the starting vertex of em is
matched with the end vertex of en. The Slide procedure defines a finite number
of points along the edge em distance ǫ apart, where the quality of the match is
tested.

Since CB is already fixed in the bin, we can find all edge matches by rotating
and translating p. Before sliding along a certain edge, we perform two tests: one
is for containment feasibility, which means that we only perform these operations
if the resulting polygon lies entirely inside the bin; the second is to check the
match degree md(m,n). The match degree was defined in equation (3) and used
to restrict the candidate list. Recall that we ensure that candidates have at
least one edge with md(m,n) > θ1; however, the corresponding match may not
lie entirely in the bin. Since we still want matching edges with similar length,
to minimise the waste of the convex hull, we relax the threshold parameter to
θ2 < θ1 and proceed to the attach operation if md(m,n) ≥ θ2. Note that it is
possible to find the relative position of two polygons such that the area of their
convex hull is minimized, by identifying breakpoints in the shape of the convex
hull as explained by Grinde and Cavalier (1995). Since we fix the position of one
of the polygons and need to respect the boundaries of the bin, this method will
frequently identify infeasible configurations.

This procedure is summarize in Algorithm 2. Note that this algorithm only
identifies the candidate piece, edge match and slide distance that gives the max-
imun convex hull utilization, but does not implement this before checking for
separation cuts.
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Algorithm 2 Select Best Match

1: U∗
C = −1

2: for all p ∈ Q do

3: for all em ∈ p and en ∈ CSB
i
do

4: if md(m,n) > θ2 then

5: for d = 0 to d = max{0, |em − en|} step ǫ do

6: Attach(CSB
i
, p, en, em)

7: Slide(CSB
i
, p, en, em)

8: if C(CSB
i
, p) fits in SB

i then

9: U
p
C

SB
i

=
Area(C

SB
i
)+Area(p)

Area(C(C
SB
i
,p))

10: if U
p
C

SB
i

> U∗
C then

11: pbest = p, best(n) = en,
12: best(m) = em , best(d) = d

13: U∗
C = U

p
C

SB
i

14: end if

15: end if

16: end for

17: end if

18: end for

19: end for

4.2 Finding the Best Separation Cut

Once the best utilization of the convex hull is calculated, we explore the utilization
of the best separation cut, to then decide which method to use to place the next
piece. In this section, we explain how to find the best separation cut.

A different approach to place pieces in a bin, is to perform a guillotine cut
that will separate the pieces already placed from the rest of the bin. This type
of guillotine cut separates the bin in two sections: SB

i which contains the pieces
already packed, and SB

i+1 which is empty, thus we will call it a separation cut.
Then, we can start placing pieces in section SB

i+1. Each time a separation cut is
performed, we need to update the edges and vertices of the sections involved. At
the end of the procedure the bin is sectioned and can be obtained as the union
of all the sections. All the sections are convex areas, and only have, at most,
one edge in common. When the bin has not been divided B = SB

1 . To decide
whether to apply this kind of cut, we need to take into account the utilization
of the packed area, considering the area already in use, and therefore the convex
hull of the pieces already placed in that section: CSB

i
. A cut will be concurrent

with an edge of the convex hull of pieces already placed. Thus, let us define gi as
the separation cut that separates sections SB

i from SB
i+1 by performing the cut

along one edge of CSB
i
. The utilization of a section when cut gi is applied can be

calculated as:
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Ugi = 1−
Area(SB

i )−Area(CSB
i
)

Area(SB
i )

. (6)

Figure 4: Sections created with different separation cuts from the same con-
vex hull CSB

1

.

Figure 4 shows the different sections created when performing each of the
possible separation cuts where initially only two pieces are placed. In this figure,
we consider the convex hull of the two pieces CSB

1
, and for each edge, we perform

a cut g1. Since we do not take into account edges concurrent with the bin,
there are four possible cuts. Each cut generates two sections SB

1 and SB
2 . The

procedure will keep the separation cut with best utilization of the packed section
as described in equation (6). In this particular example this is defined by the cut
in Figure 4(b), so the procedure will select this cut. It will compare its utilization
with the utilization of the convex hull defined by finding the best match of one
of the candidates pieces, as described in the previous section. If the utilization of
the separation cut is greater, the procedure will place pieces in SB

2 . Otherwise it
places the piece selected in Section 4.1.

Algorithm 3 shows how the procedure to find the best separation cut is imple-
mented. Note that to select the best separation cut, we do not need to consider
the piece that we are placing next, but only the utilization of the section we are
cutting.

Algorithm 3 Select Best Separation Cut

1: U∗
g = −1

2: for all em ∈ CSB
i
do

3: Let SB
i(m) be the section obtained by performing cut gi along edge em.

4: Ugmi
= 1−

Area(SB
i(m)

)−Area(C
SB
i
)

Area(SB
i(m)

)

5: if Ugmi
> U∗

g then

6: best(g) = gmi
7: U∗

g = Ugmi

8: end if

9: end for
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4.3 Packing One Bin

We are now in a position to explain in detail the heuristic designed to pack a bin.
The packing algorithm takes into account the two functions: best match and best
separation cut. It starts by ordering the pieces by non-increasing area. The first
piece is placed in the bottom left corner of the bin, with a rotation such that
the number of edges concurrent with the bin is maximum. Ties are broken with
total edge length concurrent with the bin. There may be degenerate cases where
a piece can only fit in a bin in a few orientations that do not include matching
edges with the bin. For those cases, we use the original rotation of the piece,
assuming it is set with the rotation that will fit.

Using Algorithm 1 we create a candidate list. This is updated every time a
new piece is placed in the bin because the free area in the bin is reduced. Another
reason for this update, is the match degree as an acceptance criterion. Once the
new piece is added, the convex hull of placed pieces changes, and so does its edges.
So previous candidates, even if they fit in terms of area, may be discarded for not
having a match degree greater than the threshold.

Each candidate is assessed by Algorithm 2, which identifies the best match
candidate. We compare the utilization of the best match convex hull and the best
separation cut and select the strategy that gives the maximum. If the separation
cut is selected, then section SB

i+1 will be created and we place the first candidate
in the list that fits, with a rotation such that the number of concurrent edges
between the piece and the section is maximal. In case of a tie, we consider
maximum edge length.

Figure 5 - 8 illustrate this strategy with an example. The first piece, p1, is
placed in the bottom left corner, so that the sum of the lengths of the edges
matching the bin is maximum. Then we consider all possible separation cuts
g1 and keep the one with maximum value of Ugi given in (6). In this case, the
maximum utilization is given by the cut represented in Figure 5 (b1).

Figure 5: Packing the second piece in a bin.
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The algorithm also calculates the maximum convex hull utilization between
CB = p1 and all pieces pc ∈ Q, maxUpc

CB
using equation (5). It is clear, as shown

in (b3), that for this example, there exists a piece such that its convex hull has a
greater utilization than performing a guillotine cut.

Figure 6: Matching a piece to the convex hull of the pieces already placed.

Now that p1 and p2 are matched we consider CB = C(p1, p2), and we can
start placing the third piece in the bin. Figure 6 shows how to place the third
piece: the second row shows the four possible separation cuts and the sections
that arise from them. Only the best separation cut, shown in Figure 6 (c), is kept
for comparison against the utilization of the different convex hulls created by the
candidates. Figure 6 (e) shows that the best option to place the third piece, is to
select p3 ∈ Q and match it with the existing convex hull.

Piece p4 is placed using the same principle and does not result in a separation
cut. Note that piece p4 is a small piece. It is towards the end of the sorted list
of pieces, and therefore usually not considered for packing until the very end of
the algorithm. Since we are creating the candidate list, a lot of big pieces have
been discarded at this point, mainly due to the area constraint, however p4, apart
from being a small piece also has edges of similar size as CB, as can be seen in
Figure 7 (a).

For the next piece, there is only one separation cut as shown in Figure 7 (b).
The utilization of this cut is greater than the utilization of the convex hull gen-
erated by attaching piece p5 to CB. Thus the procedure applies the separation
cut, updates the limits for SB

1 and SB
2 and places a candidate piece in SB

2 , as
shown in Figure 7 (b). The heuristic continues in this manner until no further
candidates will fit in the bin. The final bin is illustrated in Figure 8.
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Figure 7: Packing pieces p4 and p5.

As a result of using the best match or best separation cut criteria, the order of
the guillotine cuts is not straight forward, and depends on which criteria we use
to place the piece. In our example, the bin is divided into 5 sections: SB

1 contains
pieces p1, p2, p3 and p4; S

B
2 only contains piece p5; the third section SB

3 contains
piece p6 and sections SB

4 and SB
5 contains pieces p7 and p8 respectively. Thus

the guillotine cuts must separate first each section, in the order they are created.
Then inside each section, guillotine cuts are performed in reverse of the order the
pieces are placed, since pieces from the same section are placed using the best
match criteria. Figure 8 shows the order in which the pieces are placed with
this heuristic; and the order, set by the subscript, in which each guillotine cut
must be performed at the end of our example. The guillotine cuts that separate
the sections, are numbered with subscript 1 to 4, indicating the order of the
cuts. Inside section 1, we need to perform 3 cuts, numbered with superscript 1,
indicating the section, and subsubscript 1 to 3 also indicating the order in which
the cuts are made.

Figure 8: Packing a bin: order in which pieces are placed and the guillotine
cuts must be done to separate the pieces.

To summarise the above procedure, let us call P the set of unplaced pieces,
|em| the length of edge em, and Q the set of piece candidates to be placed next.
This set is restricted to be of size L. The placing algorithm is as follows:

Placing Procedure:
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Step 1: (Initialization) Order pieces in descending order of their area, and place
the first piece p1 in the bottom left corner of the bin. Update P = P−{p1},
i = 1, SB

i = B and CSB
i
= p1.

Step 2: (Create Candidate List) Apply Algorithm 1 to create a candidate list Q
of size L.

Step 3: (Selection of Best Match) If Q 6= ∅ then apply Algorithm 2 to calculate
the best utilization of the convex hull, U∗

C . If it is not possible to select any
candidate with this criterion, U∗

C = −1.

Step 4: (Selection of the Best Separation Cut) Apply Algorithm 3 to select the
best separation cut with maximum utilization, U∗

g . If it is not possible to
perform any separation cut set U∗

g = −1.

Step 5: (Place Candidate) If U∗
C ≥ U∗

g then piece pbest, from Algorithm 2, will
be attached to the existing convex hull. Else, if it is possible to perform a
separation cut and there is a candidate pc that fits in section SB

i+1, then we
update values P = P − {pc} and reset the boundaries of SB

i and SB
i+1.

Step 6: (Stopping Criterion) If there are still pieces to be placed, and sections
to be explored go back to Step 2. If all the pieces have been placed or no
candidate could be placed with any of the criteria, then the algorithm stops.

The placing heuristic stops for two main reasons: either there are no more
pieces to place, or there are no more candidates that fit in the bin. Recall that this
procedure is used to generate nodes of the beam search tree. We are interested in
nodes with maximum utilization, as this is the objective of the local evaluation.
The fact that there are no candidates that fit in the bin, does not mean that no
other piece could be placed. So, at the node generation step, once the bin has
been filled up to a certain utilization, we apply the procedure with Q = P , i.e.
all pieces are eligible as candidates.

When selecting the best separation cut, we always move to the next section,
discarding empty areas that could still allocate pieces. Thus a final test is done,
by dividing each existing section further and trying to place a piece in the new
empty areas. With this final test, we ensure that there is no other possibility
to place a piece in the bin before declaring it complete and computing its local
evaluation function value.

Once child nodes are created and selected through the local evaluation func-
tion, beam search constructs the global solution. In the next section we explain
how this solution is generated.

5 Global Solution Generation

Once a level of the tree is completed, beam search selects the beam nodes that will
determine which branches to keep and explore further, and which ones to discard.
To select the beam nodes complete solutions to the problem are constructed,
taking the partial solution represented by each node as a starting point. Then, a
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global evaluation function will select those child nodes that lead to the best final
solution.

The proposed beam search was designed to solve both MBS and SBS prob-
lems. The placing procedure described in the previous section can be applied
irrespective of the bin size. However, when creating a global solution, we need
to differentiate whether we are solving a MBS or a SBS problem, as there are
features for each problem that can be exploited. In the following sections we
explain how the solution is constructed for each problem.

5.1 Multi Bin Size Bin Packing Problem

Recall that, in Section 3.2 we explain that the global solution for the MBS prob-
lem, packs pieces bin by bin. At each stage of the procedure it generates a bin
from each bin size, using the construction algorithm described above, and selects
the bin with maximum value of F . The algorithm repeats this procedure until
all pieces are placed.

Once the global solution is created beam nodes are selected as the ones with
maximum value for U , as that is the final objective function. In case of a tie, we
select the one with lowest utilization of the last node of the global solution, as
the residual cut left on this last bin may ensure a better utilization.

5.2 Single Bin Size Bin Packing Problem

The single bin size problem does not require a bin selection problem to be solved.
Hence, the construction algorithm can follow a first fit type strategy where more
than one bin can be open at a time. Thus we modify our constructive algorithm
to compare this approach with the MBS approach and found that the modified
approach performs a little better for the SBS problem.

The procedure to construct a global solution opens a new bin if no piece from
Q can be placed in any of the available bins, ensuring that the first piece on each
bin is the largest of the remaining pieces. The key difference is that the algorithm
does not expand Q to all the unplaced pieces and instead opens a new bin. On
each iteration, we update the candidate list for all open bins. This update may
accept or discard different pieces based on those already placed on each bin.

We declare a bin closed if there are no more possibilities of placing pieces in it.
This occurs when no candidate can be placed using the best match procedure. We
also explore empty sections of the bin and the possibility of adding new separation
cuts, before declaring a bin closed.

Because we are dealing with single bin sizes, it is useful to compute the total
number of bins. If R∗ denotes the ratio of the packed area after applying the
guillotine cut that removes the residual, then R∗ = min{LR/L,WR/W}. The
objective is to minimise the fractional number of bins, N − 1 + R∗, where N
denotes the number of bins used in the solution. In this case the residual is a
measure of the utilization of the last bin that helps differentiate between solutions
with the same number of bins.
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Beam nodes are then selected as the ones with minimum fractional number
of bins. Thus, on each global solution created, we calculate the utilization on the
last bin by rearranging the pieces to prioritise horizontal and vertical placements,
and keeping the one with the best fractional number of bins after the residual cut
is made.

6 Computational Experiments

In this section, we present the results obtained with the beam search algorithm
for both the MBS and SBS packing problems. Since the MBS version of the
problem has not been studied in the literature, we first present results for the
SBS and compare our results with the best in the literature in terms of solution
quality. Then we present some test to validate the MBS version, and the benefits
of using a range of bin sizes.

Beam search, as many other heuristics, has some parameters that need to be
fixed, specifically filter width α and beam width β. Experimental tests show that
the quality of the solution is not very dependent on these parameters. Choosing
α = 2 and β = 3 gave the best results, and increasing these parameters only
increased the running time but did not improve the quality of the solutions. For
the MBS problem, we want a diversity of bins on each level of the tree so we force
the algorithm to choose α nodes for each bin size, increasing the filter width to
α · T .

To determine how many nodes we are generating from each parent, we select
10 pieces, as the initial piece for each bin. For each of the first pieces and their
reflection, we select three rotations. These rotations are chosen so that the num-
ber of edges matching the bin is maximum, and ties are broken by selecting those
with maximum sum of the lengths of the edges matching the bin. From each
parent node, we then create a maximum of 60 children for each bin size, resulting
in a total of 60T nodes per parent.

The packing heuristic also has a few parameters to set. First, is the size of the
candidate list L. We tested different values of L that range from L = 1, which
means that we are always placing the next piece in the list, to L = |P| which
means that all pieces are available to be candidates. The acceptance criterion for
a candidate is also restricted by the match degree. We only accepted candidates
with a match degree greater than a threshold 0 < θ1 ≤ 1. Values of θ1 closer to 0,
result on either candidates that did not satisfy the acceptance criterion to apply
the best match algorithm, or poor utilization of the convex hull after applying
this algorithm. Values of θ1 closer to 1 restrict the candidate list in terms of edge
similarity, ensuring a better utilization of the convex hull, but we may not find
all L candidates. After several experiments on different instances, we found that
L = 5 and θ1 = 0.8 were the best values to restrict the candidate list.

The match degree is also used as a restriction to accept attach operations
when placing a selected candidate in the bin, θ2. Using the same threshold as for
the candidate list may results in placements that do not lie entirely in the bin.
Thus we relax the threshold to accept a matching edge when placing in the bin,
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and select θ2 = 0.5, ensuring that all candidates will be tested, and possibly with
more than one edge matching.

It is important to mention that, although beam search discards all global
solutions constructed, we keep the best solution found at any time, as is usual for
other local search strategies. However, in most cases, this solution was replicated
or improved during the tree search, confirming that our local and global evaluation
functions together do not prune nodes that will lead to the best solution.

These parameters were used throughout our computational experiments, for
both the SBS and MBS versions of the problem. When applicable, we compare our
results against the best in the literature (CA1-2Ph-Imp) presented in Mart́ınez-
Sykora et al. (2015). To present a fair comparison, we run their code and our
heuristics on the same machine: an Intel Core i7 with 2.8 GHz MacBook Pro
with 4 GB of RAM. Parameters were tuned using the original instances for this
problem, found in Han et al. (2013), and the heuristic was run over all irregular
convex instances found on the ESICUP website (http://paginas.fe.up.pt/

~esicup/datasets).

6.1 Results for the single bin size problem

In this section we present the results obtained when all bins are identical in size.
We only report results from Mart́ınez-Sykora et al. (2015) (CA1-2Ph-Imp) as
they outperform those from Han et al. (2013). In Tables 1 and 2 we show the
total number of bins used, the percentage utilization, calculated as in (1), and the
fractional number of bins, as described in Section 5.2. While the equal number
of bins and the percentage utilization provide the same comparative measure, in-
cluding the utilization indicates the overall quality of the packing. The fractional
number of bins, is only meaningful in practice when offcuts are retained and
used. However, it help distinguish between solutions that have an equal number
of bins, and compare our results with those in the literature. For each instance,
we highlight the column with minimum fractional number of bins.

Table 1: Results for single bin instances in Han et al. (2013)

MBS Algorithm SBS Algorithm CA1-2Ph-Imp
Total

% Util
Frac No Time Total

% Util
Frac No Time Total

% Util
Frac No Time

Bins of Bins (secs) Bins of Bins (secs) Bins of Bins (secs)
J40 8 75.99 7.23 56 7 86.84 6.99 39 7 86.84 6.92 168
J50 9 84.97 8.99 85 9 84.97 8.84 51 9 84.97 8.97 344
J60 11 78.68 10.23 115 10 86.54 9.97 79 10 86.54 9.99 204
J70 12 82.24 11.79 144 12 82.24 11.32 114 12 82.24 11.54 703
H80 10 81.62 9.45 290 10 81.62 9.32 166 10 81.62 9.21 1275
H100 16 83.82 15.67 407 16 83.82 15.27 266 16 83.82 15.27 1412
H120 16 85.84 15.89 587 16 85.84 15.41 376 16 85.84 15.37 2406
H150 22 87.41 21.96 1044 22 87.41 21.45 595 22 87.41 21.59 3314

There are two sets of irregular convex instances on the ESICUP website.
Table 1 shows the results for the first set of instances, which corresponds to
those introduced in Han et al. (2013). It compares the results obtained with
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both versions of the beam search, the one designed for MBS and the one for
SBS. Appendix A shows the solution obtained for the J40 instance with both
MBS and SBS algorithms. It is clear that the modification made to the global
solution generation for the SBS version of the problem reduces the number of
bins in some instances and the fractional number of bins in all instances. In
terms of the number of bins, the SBS algorithm matches the best results to date,
and there are small differences in the fractional number of bins. Beam search
obtains slightly better results than CA1-2Ph-Imp in half of the instances, and
the deviation between the single bin size version of the beam search and CA1-
2Ph-Imp is not, in any case, greater than a 22% improvement on the last bin. The
most notable difference in performance is in the execution times of the algorithms.
Note that the beam search execution is a function of the size of the tree. The
fastest instance (J40) in beam search takes less than a minute, while CA1-2Ph-
Imp heuristic takes almost three minutes to run. The runtime advantage is more
notable for the bigger instance such as H150, where CA1-2Ph-Imp takes just
under one hour, and in less than 13 minutes the beam search finds a slightly
better result.

The ESICUP website also contains some irregular shaped instances with only
convex pieces from Terashima-Maŕın et al. (2010). The results for these instances
are in Table 2. Each class from TA to TR has 30 instances. Mart́ınez-Sykora
et al. (2015) do not report results for these instances but we were able to run their
code, and the results are given in Table 2. We have stated above that running
the MBS version of the beam search does report worse results for instances with
a single bin size, thus we only run this latter algorithm for these instances.

Table 2: Results for convex irregular instances in Terashima-Maŕın et al. (2010)

CA1-2Ph-Imp SBS Algorithm

Class
Instances Total

% Util
Frac Bins Time Total

% Util
Frac Bins Time

Solved Bins Avge Avge Bins Avge Avge
TA 30 120 75.00 3.57 31 120 75.00 3.71 8
TB 30 340 88.57 10.94 3 330 90.91 10.45 2
TC 30 220 82.00 6.93 20 211 85.00 6.76 20
TD 30 120 75.00 3.65 691 120 75.00 3.91 30
TE 22 88 75.00 3.69 355 88 75.00 3.76 24
TF 30 90 66.67 2.43 53 90 66.67 2.57 6
TG 30 424 84.78 13.73 8 408 88.81 13.05 5
TH 30 417 86.62 13.47 5 391 92.31 12.50 4
TI 30 120 80.00 3.41 99 120 80.00 3.59 4
TJ 30 150 80.00 4.71 196 150 80.00 4.96 16
TK 30 210 85.71 6.72 38 210 85.71 6.76 22
TL 26 104 75.00 3.61 25 104 75.00 3.61 6
TM 18 108 83.33 5.8 28 108 83.33 5.74 14
TN 30 90 66.67 2.45 757 90 66.67 2.79 17
TO 20 159 88.26 7.59 4 160 87.50 7.42 3
TP 12 112 85.93 9.03 71 108 88.89 8.89 46
TQ 30 452 99.58 15.03 7 508 88.15 16.54 37
TR 30 313 86.45 10.06 42 301 90.00 9.89 39

Our first observation, is that CA1-2Ph-Imp cannot solve all instances. Specif-
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ically, there are five classes where this approach fails to produce a solution for
all the instances. This is mainly due to the placement of the first piece, when
edges are longer than the bin length or width, and the piece must be placed with
a certain angle. This is most notable in class TP where only 12 out of the 30
instances are solved. For comparison purposes, we then only report results on
those instances that CA1-2Ph-Imp solves, although beam search is able to solve
all instances for all classes. In terms of total number of bins, there are 10 ties
out of the 18 instance classes; in 6 of them the beam search uses less bins than
CA1-2Ph-Imp heuristic and only on class TQ the beam search performs worse
than the CA1-2Ph-Imp heuristic. For class TO, although CA1-2Ph-Imp used
one bin less than the beam search, we note that the average fractional number
of bins is smaller for the beam search algorithm. This is mainly because, al-
though CA1-2Ph-Imp finds two optimal solutions with 100% utilization, for the
remainder of the instances the fractional number of bins used, is always greater
than the solution obtained with the SBS algorithm. From those instances where
there is a tie in the number of bins, we look at the fractional number of bins. In
most of these instances the CA1-2Ph-Imp heuristic works better than the beam
search proposed, however, the difference between both solutions is, on average,
less than 0.2, which represents a 20% improvement on the utilization of the last
bin. Comparing the computational time for both algorithms to run, CA1-2Ph-
Imp is worse, since for some classes it took more than 10 minutes to solve, on
average. The total running time for the 488 instances CA1-2Ph-Imp was able
to solve is around 19 hours, whereas the beam search took, on average, no more
than 40 seconds for any instance, and solved all 540 instances in 2.3 hours. This
is a significant improvement on time, with very little, or sometimes no, difference
in solution quality. On the other hand, we can see the advantages of using a
MIP as part of the heuristic in class TQ, which was created by cutting the pieces
out of a square by means of guillotine cuts. In this class CA1-2Ph-Imp found 28
out of the 30 optimal solutions very quickly, whereas the beam search performed
less well for this particular class, although it was capable of finding 1 optimal
solution. Also note, that for classes TB, TH and TR the utilization with the SBS
algorithm is greater than 90%, while CA1-2Ph-Imp only achieves greater than
90% utilization in class TQ.

These examples show the strength of our beam search heuristic, and its com-
petitive performance when compared with the best solutions found in the litera-
ture. It demonstrates we have met the aim of our research, which is to develop
an efficient tool to solve the proposed problem without the aid of specialist com-
mercial software and obtain competitive results.

6.2 Results for the multi bin size problem

The MBS version of the two-dimensional bin packing problem with guillotine cuts
has not been studied before, and all instances for convex irregular pieces available
to the community only deal with SBS. Thus we need to create some instances to
test our algorithm. To compare the efficiency of our algorithm, we need to create
different bin sizes and use them with the existing convex pieces in the literature.
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We worked with three bin sizes: small (S), medium (M) and large (L), where the
medium size bin is the same as the single bin size in the literature. To create a
small bin, each side of the original bin is multiplied by

√

2/3, and to create the
large bin the multiplying factor is

√

3/2.

Table 3: Beam search results for MBS instances vs. SBS instances

Class
Multi Bin Size

Single Bin Size Single Bin Size
(Bin M) (Bin L)

%Util Time %Util Time %Util Time
J40 88.5 202 85.3 39 83.9 59
J50 88.5 250 86.6 57 86.3 101
J60 87.6 355 85.3 80 83.7 140
J70 88.2 550 85.9 105 84.4 170
H80 90.1 773 87.8 185 85.6 235
H100 89.8 1538 87.1 290 86.3 436
H120 90.1 2119 88.2 409 86.5 575
H150 90.5 4162 88.9 719 87.4 1010

To present the results, we run the MBS algorithm to pack the same sets of
pieces under two scenarios: multiple size bins are available, and just one size
bin is available. Using the MBS algorithm for both scenarios allows us to assess
the benefit of having multiple bin sizes. Appendix A also shows the solution
obtained on these scenarios. For the SBS instances, we are presenting results
with a medium and a large bin size. Here we only report the utilization since
number of bins does not provide a meaningful comparative metric. For example,
it will take many more bins to pack the same set of pieces if small and medium
bins are used, as opposed to using large bins, but may give a higher utilization.
We do not present results for a small bin size, as not all the pieces fit in this
bin size making some instances infeasible. The rationale for this comparison is
to show the competitiveness of the algorithm and the benefits of having different
bin sizes in terms of bin utilization. Table 3 shows the results for the first set of
instances.

For this case, we can see a small improvement on using different bin sizes, with
respect to using all bins of size M. However, when it comes to bins of size L, the
improvements are greater. This may be explained by our observation that using
large bins generates clusters of big pieces in a bin along with unused spaces where
small or medium pieces will not fit. Then, extra bins are needed just for these
pieces. When using bins of size M, big pieces are spread across bins and small
and medium pieces can fit in the gaps. When compared with using multiple bins
to only using bins of size M, the improvements range between a 1.6 and 3.2%,
whereas if we compare with a large bin the range widens between a 2.2 and a
5.5%. Execution times reflect the difficulty of having more bins, however solving
the multi bin instance, is never less than 6 times the time it takes to solve the
fastest SBS problem. Recall that all times reported in this paper are in seconds.

Similar results can be seen in Table 4 where we present the same comparison
for the second set of instances. For this set of instances the improvement observed
when using multiple bins to using only bins of size M are much smaller than on
the previous set. This is because, for these instances, pieces were created by
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Table 4: Beam search results for MBS instances vs. SBS instances

Class
Multi Bin Size

Single Bin Size Single Bin Size
(Bin M) (Bin L)

%Util Time %Util Time %Util Time
TA 87.6 62 86.6 11 75.8 3
TB 95.1 41 93.6 6 78.3 9
TC 91.7 144 91.3 28 80.1 5
TD 84.0 207 83.1 39 70.9 3
TE 87.1 129 86.1 26 78.1 3
TF 86.9 45 85.1 8 70.6 2
TG 94.1 61 90.5 9 78.3 10
TH 95.1 63 92.7 8 77.6 10
TI 92.1 26 90.5 5 80.7 2
TJ 86.8 132 84.0 21 76.9 3
TK 92.4 158 91.8 32 82.1 5
TL 90.2 35 88.3 7 80.4 2
TM 90.5 77 89.2 15 83.5 4
TN 84.7 122 83.1 22 67.7 2
TO 95.7 33 96.0 3 81.8 6
TP 91.7 251 90.4 45 85.9 6
TQ 92.6 209 92.0 31 76.8 13
TR 92.6 314 91.3 57 82.8 7

taking a medium bin as a starting point and extracting pieces from it like a
jigsaw puzzle. Thus it is expected that this bin will provide the best fit for pieces
in these instances. We are not obtaining 100% utilization in any case, since not
all of the pieces could be separated with guillotine cuts, when the instances were
created. When compared with a large bin, improvements are considerably larger,
ranging from a 6% to a 17%. Although we do not show the mix of bin sizes, there
is a majority of medium size bins used and all solutions take advantage of having
different sizes available and report at least one extra bin size (S or L), and many
of them use the three available sizes.

These results show the efficiency of the algorithm proposed in this paper, to
solve both the MBS and SBS problems. The beam search developed to solve
the MBS problem is competitive when dealing with SBS instances, but we have
proved that a slight modification in the global solution construction leads to
better results that are competitive with the best ones found in the literature,
and outperforming them for some cases. There are no references for solving the
two-dimensional bin packing problem with guillotine cuts and MBS, we have
created different bin sizes, and compare our results to instances when only one
bin size could be used. Using multiple bin sizes reports better solutions in terms
of utilization, being more notable when the selected bin size is not the initial bin
reported in the original instances.

7 Conclusions

We have presented a new heuristic to solve the two-dimensional multi bin size
bin packing problem with irregular pieces and guillotine cuts. This heuristic is
based on a beam search implementation, where each node represents a partial
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solution, in the form of a packed bin. The constructive heuristic designed to pack
the bins, take ideas of best match and best guillotine cut presented previously in
the literature, and combines them to build a cutting pattern inside a bin. The
constructive heuristic is fast, so packing a bin is not time consuming. Taking
advantage of this fact, we decided to build many bins, and select a subset that
may lead to good final solutions.

Beam search has been used before in cutting and packing problems, but did
not play an important role in bin packing until now. To the best of our knowledge
this is the first paper that uses this heuristic entirely to solve a bin packing
problem, with highly competitive results. We have tested the implementation
in the benchmark instances that are available for this problem, obtaining very
similar results than the best heuristic up to date, in shorter time and without
the aid of additional specialised software. All the parameters are adjustable, so
the user can set them to their needs. We have also created new instances to test
our implementation for the multi bin size problem. Results showed that using
different bin sizes reports benefits in terms of bin usage, specially when compared
to bins that are different to the original ones reported in the given instances.

A Selected Layouts

Here we present some layouts for the J40 instance run under the different scenarios
presented in this paper. They correspond to the solutions presented in Tables 1
and 3.

First, we present the solutions obtained for the J40 instance run on a single bin
size M with the MBS algorithm (Figure 9) and with the SBS algorithm (Figure
10). These examples correspond to the solutions presented in Table 1. Since we
are working with single bin sizes, we compute the residual in the last bin and the
utilization reported also considers this fact.

Figure 9: J40 instance, bin size M, MBS algorithm. Utilization: 84.1%
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Figure 10: J40 instance, bin size M, SBS algorithm. Utilization: 86.9%

Figure 11: J40 instance, different bin sizes. Utilization: 88.5%

We then show the results presented in Table 3 where we compare the effect of
having more than one bin size. These instances were run with the MBS algorithm.
In this case, we do not compute the residual of the bin, thus the difference between
the solutions in Figures 9 and 12. We show in Figure 11 the layout obtained when
having three bin sizes: small (S), medium (M) and large (L). We can observe that,
although there is a majority of medium bins, the algorithm takes advantage of
the other bin sizes to improve the utilization. In Figure 12 we use only medium
bins, and in Figure 13 the pieces are placed in large bins.
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Figure 12: J40 instance, bins of size M. Utilization: 85.3%

Figure 13: J40 instance, bins of size L. Utilization: 83.9%

27



Acknowledgements

This work has been funded by UK’s Royal Society - Newton Advance Fellowship
under grant NA150409.

References

R. P. Abeysooriya, J. A. Bennell, and A. Martinez-Sykora. Jostle heuristics for
the 2d-irregular shapes bin packing problems with free rotation. International
Journal of Production Economics, 195:12 – 26, 2018.

H. Akeb, M. Hifi, and R. M’Hallah. A beam search algorithm for the circular
packing problem. Computers & Operations Research, 36(5):1513 – 1528, 2009.

H. Akeb, M. Hifi, and S. Negre. An augmented beam search-based algorithm for
the circular open dimension problem. Computers & Industrial Engineering, 61
(2):373 – 381, 2011.

F. Alvelos, T. Chan, P. Vilaca, E. Silva, and J. M. V. de Carvalho. Sequence
based heuristics for two-dimensional bin packing problems. Engineering Opti-

mization, 41(8):773 – 791, 2009.

J. A. Bennell and K. A. Downsland. Hybridising tabu search with optimisation
techniques for irregular stock-cutting. Management Science, 47(8):1160 – 1172,
2001.

J. A. Bennell and J. F. Oliveira. A tutorial in irregular shape packing problems.
Journal of the Operational Research Society, 60:S93 – S105, 2009.

J. A. Bennell and X. Song. A beam search implementation for the irregular shape
packing problem. Journal of Heuristics, 16:167 – 188, 2010.

C. Charalambous and K. Fleszar. A constructive bin-oriented heuristic for the
two-dimensional bin packing problem with guillotine cuts. Computers & Op-

erations Research, 38:1443 – 1451, 2011.

L. H. Cherri, L. R. Mundim, M. Andretta, F. M. Toledo, J. F. Oliveira, and M. A.
Carravilla. Robust mixed-integer linear programming models for the irregular
strip packing problem. European Journal of Operational Research, 253(3):570
– 583, 2016.

K. Fleszar. Three insertion heuristics and a justification improvement heuristic
for two-dimensional bin packing with guillotine cuts. Computers & Operations

Research, 40:463 – 474, 2013.

M. Ghirardi and C. N. Potts. Makespan minimization for scheduling unrelated
parallel machines: A recovering beam search approach. European Journal of

Operational Research, 165:457 – 467, 2005.

28



P. C. Gilmore and R. E. Gomory. Multistage cutting stock problems of two and
more dimensions. Operations Research, 13(1):94–120, 1965.

R. B. Grinde and T. M. Cavalier. A new algorithm for the minimal-area convex
enclosure problem. European Journal of Operational Research, 84:522 – 538,
1995.

W. H. Han, J. A. Bennell, X. Zhao, and X. Song. Construction heuristics for two-
dimensional irregular shape bin packing with guillotine constraints. European

Journal of Operational Research, 230:495 – 504, 2013.

A. A. Leao, F. M. Toledo, J. F. Oliveira, and M. A. Carravilla. A semi-continuous
mip model for the irregular strip packing problem. International Journal of

Production Research, 54(3):712–721, 2016.

A. Lodi, S. Martello, and D. Vigo. Approximation algorithms for the oriented two-
dimensional bin packing problem. European Journal of Operational Research,
112:158 – 166, 1999a.

A. Lodi, S. Martello, and D. Vigo. Heuristics and metaheuristic approaches
for a class of two-dimensional bin packing problems. INFORMS Journal on

Computing, 11(4):345 – 357, 1999b.

A. Lodi, M. Monaci, and E. Pietrobuoni. Partial enumeration algorithms for two-
dimensional bin packing problems with guillotine constraints. Discrete Applied

Mathematics, 2015.

A. Lodi, M. Monaci, and E. Pietrobuoni. Partial enumeration algorithms for two-
dimensional bin packing problem with guillotine constraints. Discrete Applied

Mathematics, 217:40 – 47, 2017.

E. Malaguti, R. M. Durán, and P. Toth. Approaches to real world two-dimensional
cutting problems. Omega, 47:99 – 115, 2014.
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