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Abstract. Machine learning classifiers are frequently trained on het-
erogeneous multi-modal imaging data, where some patients have missing
modalities. We address the problem of synthesising arterial spin labelling
magnetic resonance imaging (ASL-MRI) -derived cerebral blood flow
(CBF) -features in a heterogeneous data set. We synthesise ASL-MRI fea-
tures using T1-weighted structural MRI (sMRI) and carotid ultrasound
flow features. To deal with heterogeneous data, we extend the kernel
partial least squares regression (kPLSR) -method to the case where both
input and output data have partial coverage. The utility of the synthetic
CBF features is tested on a binary classification problem of mild cog-
nitive impairment patients vs. controls. Classifiers based on sMRI and
synthetic ASL-MRI features are combined using a maximum probability
rule, achieving a balanced accuracy of 92% (sensitivity 100 %, specificity
80 %) in a separate validation set. Comparison is made against support
vector machine -classifiers from literature.

1 Introduction

Arterial spin-labelling magnetic resonance imaging (ASL-MRI) is a non-invasive
blood flow imaging modality that can improve the diagnosis of Alzheimer’s dis-
ease (AD) by providing estimates of cerebral blood flow (CBF) and identifying
regions of chronic cerebral hypoperfusion in individuals. However, ASL-MRI is
still not part of clinical routine; many research databases used to train dementia
classifiers, such as ADNI (Alzheimer’s Disease Neuroimaging initiative), do not
include ASL-MRI as part of their data collection protocol.

Image synthesis refers to the simulation of missing image modalities with ma-
chine learning algorithms using image modalities that are available. Synthetic
image modalities can in some cases provide additional predictive value beyond
the original data used for synthesis [7]. We use kernel partial least squares re-
gression (kPLSR) for synthesising ASL-MRI -based CBF maps using structural
MRI (sMRI) features and carotid ultrasound flow measurements as regressors.
Using partial volumes of cortical and sub-cortical regions as features allows the
relation between cerebral volume loss and reduction in CBF in dementia patients
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to be learned by the model. The synthetic CBF maps are used to generate CBF
maps of patients for whom no ASL-MRI images are available (CBF imputation).

The challenge of building models using multi-modal data is that multiple
cohorts may be required to achieve enough coverage and some cohorts will have
some modalities missing. We refer to this as the heterogeneous data problem.
To address it, we modify the NIPALS algorithm for training the kPLSR model
to work on heterogeneous data, where some features are missing in part of the
input data X, and some of the output data Y are also missing. The synthetic
CBF maps are utilised as classification features in discriminating mild cognitive
impairment -patients (MCIs) from cognitively healthy controls (CHCs).

The MCI vs. CHC -problem is less studied than the AD vs. CHC -problem
(see e.g. the review [1]) because sMRI-derived partial volume -features are less
informative in the prodromal stage of AD. We apply a simultaneous feature
selection and classification strategy based on: (i) use of regional CBF values
averaged over anatomical subregions (instead of voxelwise values), and (ii) elastic
net regression. The proposed classifiers are compared to MCI vs. CHC -classifiers
from literature using different imaging modalities as features.

2 Methods

2.1 Acquisition and pre-processing of imaging data

Data from two clinical centres and three different cohorts were included to in-
crease the number of cases available for training models (Table 1). The combined
data set was heterogeneous with respect to operator, MR field strength, and
modalities available for each case. Three different sets of features were used.
sMRI features: T1-weighted sMRI were acquired and volumes of 141 cortical
and sub-cortical regions were computed by propagating anatomical labels with
the geodesic information flows -algorithm [2]. These features encapsulated gray
matter (GM) atrophy, but did not contain direct information about CBF.
Carotid flow features: Carotid ultrasound measurements were performed in
one of the cohorts. Flow velocity signals were extracted from DICOM images and
used to compute the mean flow rate and flow pulsatility indices (for both ICA-L
and ICA-R separately), for a total of four features. These features encapsulated
the baseline total CBF, but did not contain region-specific effects in the brain.
ASL features: Pseudo-continuous ASL-MRI parameters were: sequence TR/TE,
4,000 ms/14 ms; flip angle, 40; FOV, 240 mm x 240 mm; matrix size, 80x80; 17
slices; thickness, 7 mm; labelling duration, 1.65 s; post-labelling delay, 1.525 s;
and labelling gap, 20 mm. The ASL-MRI CBF maps were registered against
the sMRI using SPM12 and equipped with maximum probability tissue labels
defined on the MNI152 atlas, provided by Neuromorphometrics, Inc. from data
collected in the OASIS project (http://www.oasis-brains.org/), and CBF was
estimated in 144 anatomical regions. Regional CBF values were normalised for
age and sex by using the w-scores method of [3] to obtain the final ASL features:

wn =
CBFn − (β0 + gendern · β1 + agen · β2)

SD of residuals
, (1)
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Fig. 1: Workflow for extracting features from heterogeneous medical imaging
data and training a kPLSR model for CBF feature synthesis. An MCI classifier
is trained with both synthetic and real ASL-MRI features for comparison.

where CBF = β0 + gender · β1 + age · β2 + ε is a linear model trained separately
for all anatomical regions on the sub-population of cognitively healthy controls.

Table 1: Study cohorts contributing data to this work. AD cases not used in
classification were included in the kPLSR-model training to increase coverage.

Cohort Field strength sMRI Carotid ASL AD MCI Controls Age

Cohort 1 3.0T x x 13 14 28 65 ± 11
Cohort 1 3.0T x 13 14 13 66 ± 12
Cohort 2 1.5T x x 0 53 48 74 ± 8
Cohort 3 3.0T x x 0 10 15 75 ± 6
Cohort 3 3.0T x 0 8 4 77 ± 9

Total cases 156 126 132 26 99 108

2.2 Feature synthesis of the regional CBF maps

Given a matrix of inputs X ∈ R
n×p and a matrix of outputs Y ∈ R

n×m, partial
least squares -regression (PLSR) attempts to find a lower-dimensional repre-
sentation of the input-output map using only ℓ ≪ p latent variables. This is
achieved by simultaneous approximate decomposition of the two matrices as:

X ≈ TPT , Y ≈ UQT , (2)

where T, U ∈ R
n×ℓ are the loading matrices for X and Y respectively, and

the scores P ∈ R
p×ℓ, Q ∈ R

m×ℓ maximise the covariance Cov(TTX,UTY ).
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The feature space for synthesising ASL-MRI maps consisted of 3 demographic
features (age, weight, height), 141 sMRI features, and 4 carotid flow -features.
Thus the maximum number of input features was p = 148. A total of n = 249
cases were available for learning a model to predict the m = 137 CBF features.

As the relation between CBF and partial volumes of cortical sub-regions in
the brain was likely nonlinear, the kernel version of PLSR [6] was used. In this
approach, the feature samples X are mapped using a nonlinear map, Ψ(X),
and then the standard linear PLSR is performed in the mapped feature space
(Ψ(X), Y ). The NIPALS algorithm [8] can be formulated in such a way that only
inner products of the type Ψ(xi)

TΨ(xj), for i, j = 1, . . . , n are required. These
can then be obtained using the kernel trick as: K(xi, xj) = Ψ(xi)

TΨ(xj).
In the case of partially missing input data, we divided the features into

two parts X = [X1 X2], where X1 contained the features that are present for
all samples, and X2 = ∅ whenever the remaining features were missing in the
sample X. We then defined the modified kernel function:

[K̃]i,j(X,X) :=

{
Ψ(xi,1)

TΨ(xj,1), if x2
i = ∅ or x2

j = ∅

Ψ([xi,1 xi,2])
TΨ([xj,1 xj,2]), otherwise

, (3)

i.e. in the case of partially missing features the kernel function operated only
on the subset of available features. Similarly, we divided the output matrix as
Y = [Y1;Y2] such that Y2 = ∅ for all of the cases where the output data was
missing, and defined the matrix S ∈ R

n×n1 as having ones on the diagonal and
zero otherwise. It was used to extend the outputs Y1 from the restricted space
to the full space, SY1. The rest of the NIPALS algorithm remained the same,
as shown in Algorithm 1. The kPLSR estimator X̂CBF

n for the CBF features in
the nth patient, learned from the demographic variables (Xdemo

train ), sMRI features
(XsMRI

train ), and carotid flow features (Xcarotid
train ), was then given by the formula:

X̂CBF
n = K̃ (Xn;Xtrain)B, (4)

where X(·) = [Xdemo
(·) XsMRI

(·) Xcarotid
(·) ] was the combined feature vector. Fig. 1

represents our workflow for extracting features, training a kPLSR model for
CBF feature synthesis, and training a MCI vs. CHC binary classifier.

2.3 Simultaneous classification and feature selection

As the amount of available training data was modest and pre-selected anatomical
regions were used instead of voxelwise CBF values, standard elastic net regression
(ENR) -classifier techniques were used to train three different classifier:
(i) In Model A, the sMRI features XsMRI were used to train an ENR-model:

min
β0,β

{
1

2N

N∑

n=1

(
Yn − β0 −XsMRI

n β
)2

+ λR(β;α)

}
(5)

with the elastic net regularisation term defined as R(β;α) := (1−α)
2 ‖β‖22+α‖β‖1.

Here Yn ∈ R is the binary MCI diagnosis for the n’th patient, XsMRI
n denotes the
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Algorithm 1 NIPALS-kPLS algorithm with heterogeneous data

1: K̃(0) = K̃(X,X) ⊲ compute kernel matrix for mapped features
2: Y (0) = [Y1;Y2]
3: for ℓ = 1, . . . , ℓmax do

4: u0 = SY
(ℓ−1)
1 ( : , 1) ⊲ initialise loading vector in restricted output space

5: while ‖∆uℓ‖ > tol do

6: tℓ = K̃(ℓ−1)uℓ, tℓ ← tℓ/||tℓ|| ⊲ iterate in feature space

7: qℓ = [Y
(ℓ−1)
1 ]TST tℓ ⊲ update output score vector

8: uℓ = SY
(ℓ−1)
1 qℓ, uℓ ← uℓ/||uℓ|| ⊲ iterate in restricted output space

9: K̃(ℓ) = (I− tℓt
T

ℓ )K̃
(ℓ−1)(I− tℓt

T

ℓ ) ⊲ deflate K

10: Y (ℓ) = Y (ℓ−1) − tℓt
T

ℓ SY
(ℓ−1)
1 ⊲ deflate Y in restricted output space

11: T = [t1 t2 . . . tℓmax
] ⊲ assemble X loadings

12: U = [u1 u2 . . . uℓmax
] ⊲ assemble Y loadings

13: B = K̃(X,X)U
(
TT K̃(X,X)U

)
−1

TTSY1 ⊲ assemble regression vector

14: return (T, U,B)

sMRI features, β0 is the model intercept, and β are the regression weights. The
continuous model prediction Ŷ A = β0 + XsMRIβ was thresholded to a binary
prediction to obtain the standard ROC-curve. The hyperparameters λ > 0 and
α ∈ (0, 1] were chosen to maximise the area under the ROC-curve.
(ii) In Model B, the synthesised CBF-features were used to train the model:

min
β0,β

{
1

2N

N∑

n=1

(
Yn − β0 − X̂CBF

n β
)2

+ λR(β;α)

}
, (6)

where X̂CBF
n is the kPLSR estimator (5). In order to measure the effect of using

synthetic vs. ASL-MRI -derived CBF values, Model B was trained using two dif-
ferent sets of data. In one case, when CBF features were missing we simply used
synthetic CBF features in their place (MRI + synthetic). In another case, only
the synthetic CBF features were used even if ASL-MRI was available (synthetic
only). Again the continuous probability was thresholded to a binary prediction.
(iii) In Model C, the feature selection was performed simultaneously on both
sMRI and CBF features:

min
β0,β1,β2

{
1

2N

N∑

n=1

(
Yn − β0 − X̂CBF

n β1 −XsMRI
n β2

)2

+ λR([β1;β2];α)

}
. (7)

(iv) In Model D, we combined Models A and B by using the maximum proba-

bility rule, Ŷ C
n = max{Ŷ A

n , Ŷ B
n }. The rationale for this was that a combination

of two diagnostic tests with high specificity but lower sensitivity (typical for
AD classifiers) may provide more sensitive diagnostic tests while avoiding the
problem that simultaneous feature selection favours one set of features over the
other. Models C and D were likewise trained using both synthetic CBF features
alone and by combining ASL-MRI and synthetic CBF features.
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3 Experiments

3.1 Synthetic CBF vs. ASL-MRI reconstructed CBF

The Gaussian kernel, K(x1, x2) = exp(−‖x1 − x2‖
2
2/d), was used in the kPLSR

model. This resulted in two model hyperparameters, the kernel width d and the
number of latent variables ℓ, that had to be tuned using leave-one-out cross-
validation. Only cases where the sMRI features were available (n = 156) were
used in model training and cross-validation. Out of these, carotid ultrasound
and ASL-MRI features were present in 100 and 55 cases, respectively. Hyperpa-
rameter values optimising the R2-statistic were found to be d = 35 and ℓ = 2.
Possible bias and standard deviation of the synthesised CBF from ground truth
w-score values were measured using a Bland-Altman -plot of w-scores averaged
across all regions, separately for the white matter (WM) and gray matter (GM),
see Fig. 2. The mean bias was ∆w = 0.20 (p < 0.001). The w-score is normalised
so that its standard deviation in the normal population equals 1. The kPLS
regressor slightly overestimated CBF in both the WM and GM.
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Fig. 2: Bland-Altman plot of kPLSR-modelled vs. ASL-MRI derived w−scores.
Mean w-scores averagerd over all WM/GM regions reported separately.

3.2 Utility of synthetic ASL in the CBF imputation problem

The MCI classifiers usings Model A, B, C, and D were trained with four-fold
cross-validation (4-FCV) in a training set of n = 123 cases. An additional, ran-
domly selected validation set of n = 20 cases not included in the training was
used to evaluate the balanced accuracy (ACC), sensitivity (SENS), and speci-
ficity (SPEC) of each classifier using hyperparameters and cut-offs obtained in
4-FCV. A heat map of the 46 features chosen by Model B are shown in Fig. 3.

We compared our MCI classification accuracy to results reviewed in [1] with
the following selection criteria: (i) the MCI vs. CHC classification problem was
addressed, (ii) the feature set consisted of sMRI, ASL, or PET features, (iii)
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Table 2: Performance of the classifier in the CBF imputation problem (top half),
compared with studies in the literature with at least 100 cases (bottom half).
ENR = Elastic Net Regression, SVM = Support Vector Machine.

Features used for classification Classifier # of AUC ACC SENS SPEC
cases

sMRI ENR 143 0.76 77% 90% 60%
ASL (MRI+synthetic) ENR 143 0.74 77% 90% 60%
ASL (synthetic only) ENR 143 0.65 77% 90% 60%
sMRI+ASL (joint features, MRI+synthetic) ENR 143 0.77 88% 100% 70%
sMRI+ASL (joint features, synthetic only) ENR 143 0.75 83% 100% 50%
sMRI+ASL (max probability, MRI+synthetic) ENR 143 0.77 92% 100% 80%
sMRI+ASL (max probability, synthetic only) ENR 143 0.72 92% 100% 80%

ASL (Collij et al. 2016 [3]) SVM 160 0.63 60% 60% 60%
sMRI (Liu et al. 2014 [4]) SVM 454 - 85% 82% 88%
PET (Ortiz et al. 2015 [5]) SVM 179 0.74 73% 70% 77%
sMRI + PET (Ortiz et al. 2015 [5]) SVM 179 0.91 86% 90% 82%

the cohort size was at least 100, and (iv) studies that used CSF biomarkers or
neurocognitive test scores as features were excluded. The study with the best
reported accuracy for each feature set was chosen as representative.

Results of the comparison are given in Table 2. Models A and B alone pro-
duced similar results in terms of accuracy, although Model B achieved better
accuracy than was reported for ASL-MRI features in [3]. Model C improved
the results slightly when MRI+synthetic CBF features were used, but the best
results were obtained with Model D regardless or whether MRI+synthetic or
synthetic only CBF features were used.

Fig. 3: Heat map of the coefficients β for the CBF imputation problem. A total
of 46 regions were chosen as features. Regions with largest coefficients identified.
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4 Discussion

Kernel PLS regression on heterogeneous data was used for the robust synthesis
of regional CBF values in cases where no ASL-MRI images were available. As
was reported in [3], CBF features alone were not particularly informative in MCI
classification, but a multi-modal classifier using synthetic CBF features outper-
formed pure sMRI-based classifiers in a validation test. Best classifier perfor-
mance (balanced accuracy 92%, sensitivity 100%, specificity 80%) was achieved
when a maximum probability -rule was used to combine classifiers using differ-
ent feature sets. The benefit of our proposed method is that only basic sMRI
features (partial volumes of subregions) were used and, as a result, synthetic
CBF features can therefore be generated in large-scale brain imaging databases,
such as ADNI, without the need for extensive feature computation. It is possible
that more informative sMRI features, e.g. ventricular and/or hippocampal shape
morphometrics, could increase the accuracy of the resultant classifiers. Provided
more ASL-MRI data were available, the use of convolutional neural networks
on voxelwise CBF values should also be investigated to eliminate the need for
pre-selecting anatomical regions for analysis.
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graphical models of functional and structural connectivity patterns for Alzheimer’s
disease diagnosis. Front. Comput. Neurosci. 9 (2015)

6. Rosipal, R., Trejo, L.J.: Kernel partial least squares regression in reproducing kernel
Hilbert space. J. Mach. Learn. Res. 2, 97–123 (2001)

7. van Tulder, G., de Bruijne, M.: Why does synthesized data improve multi-sequence
classification? In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 531–538. Springer (2015)
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