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ABSTRACT 

Background: Evidence from observational studies of telomere length (TL) has been conflicting 

regarding its direction of association with cancer risk. We investigated the causal relevance of TL for 

lung and head and neck cancers using Mendelian Randomization (MR) and mediation analyses. 

Methods: We developed a novel genetic instrument for TL in chromosome 5p15.33, using variants 

identified through deep-sequencing, that were genotyped in 2051 cancer-free subjects. Next, we 

conducted an MR analysis of lung (16396 cases, 13013 controls) and head and neck cancer (4415 

cases, 5013 controls) using 8 genetic instruments for TL. Lastly, the 5p15.33 instrument and distinct 

5p15.33 lung cancer risk loci were evaluated using two-sample mediation analysis, to quantify their 

direct and indirect, telomere-mediated, effects. 

Results: The multi-allelic 5p15.33 instrument explained 1.49-2.00% of TL variation in our data 

(p=2.6×10-9). The MR analysis estimated that a 1000 base pair increase in TL increases risk of lung 

cancer (OR=1.41, 95% CI: 1.20-1.65) and lung adenocarcinoma (OR=1.92, 95% CI: 1.51-2.22), but 

not squamous lung carcinoma (OR=1.04, 95% CI: 0.83-1.29), or head and neck cancers (OR=0.90, 

95% CI: 0.70-1.05).  Mediation analysis of the 5p15.33 instrument indicated an absence of direct 

effects on lung cancer risk (OR=1.00, 95% CI: 0.95-1.04). Analysis of distinct 5p15.33 susceptibility 

variants estimated that TL mediates up to 40% of the observed associations with lung cancer risk.  

Conclusions: Our findings support a causal role for long telomeres in lung cancer etiology, 

particularly for adenocarcinoma, and demonstrate that telomere maintenance partially mediates the 

lung cancer susceptibility conferred by 5p15.33 loci.  
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KEY MESSAGES 

 Genetic predisposition to long telomeres increases risk of lung cancer, predominately lung 

adenocarcinoma  

 Genetic determinants of long telomeres are not associated with squamous carcinomas of the 

lung or head and neck 

 Using two-sample mediation analysis we determined that the novel 5p15.33 instrument for 

telomere length does not have direct effects on the outcome, and demonstrated that the 

association between 5p15.33 lung cancer susceptibility variants is partially mediated by 

telomere length, suggesting the presence of other relevant mechanisms  
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INTRODUCTION 

Telomeres are highly conserved stretches of tandem repeats of the TTAGGG sequence, 

which protect chromosome ends from degradation and maintain genome stability(1, 2). Due to the 

incomplete replication of chromosomes during cell division, human telomeres lose between 50 and 

200 base pairs with each replication(1-3). In checkpoint proficient cells critically short telomeres 

trigger senescence, followed by apoptosis, which represents a barrier against cancer initiation by 

limiting cellular proliferation(4, 5). As telomeres shorten their ability to maintain chromosomal stability 

also diminishes, which may increase cancer susceptibility(6, 7). However, long telomeres may also 

promote cancer development through an accumulation of mutations due to prolonged cell survival 

and proliferation. In fact, cancer cells are characterized by such a proliferative advantage, often 

through reactivation of telomerase, which is normally silent in somatic cells(4, 5, 8).  

Telomere length (TL) has been studied extensively in relation to cancer risk. However, 

findings of epidemiologic studies have been conflicting (6, 9-11). Observational studies investigating 

TL measured after cancer diagnosis are particularly vulnerable to reverse causation and residual 

confounding, therefore shorter TL observed in cancer cases is likely to reflect underlying disease or 

the impact of cancer treatment (12, 13). It is also difficult to isolate the influence of TL on cancer risk 

from that of other risk factors that influence both TL and cancer susceptibility, including biological or 

replicative age (10, 14, 15).  

Mendelian Randomization (MR) is an approach for evaluating causality by using single 

nucleotide polymorphisms (SNPs) in relevant genes as instrumental variables (IVs) (16). Genome-

wide association studies (GWAS) identified a number of genetic regions involved in TL regulation, 

including genes encoding the catalytic subunit of telomerase (TERT) in chromosome 5p15.33 and its 

RNA template (TERC) in 3q26.2 (17-21). By leveraging these associations, MR can provide a valid 

test of the causal hypothesis assuming the genetic IVs only affect cancer risk through TL regulation. 

Previous studies using genetic proxies for TL suggest that longer telomeres confer an 

increased risk of lung cancer, especially adenocarcinoma (22-24), which is consistent with the 
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findings of prospective observational studies (25-27). Lung cancer case-control studies report both 

increased (28) and inverse (6, 29) associations for long TL, and some implicate high TL variability in 

lung cancer susceptibility (30). For head and neck cancers (HNC), which are predominantly 

squamous carcinomas, short TL is consistently associated with increased risk in case-control studies 

(6, 31, 32), whereas a recent MR analysis (24) did find evidence supporting a causal relationship.  

The overarching aim of this study is to investigate the causal relationship between TL and 

risk of lung and upper aero-digestive tract cancers. First, we developed a novel genetic instrument 

for TL in chromosome 5p15.33, given the extensive pleiotropy in this region and potential for violating 

MR assumptions (22, 33). Next, we conducted the largest two-sample MR analysis of lung and HNC 

risk to date. Lastly, we quantified the direct and telomere-mediated effects of 5p15.33 genetic variants 

on cancer risk using a two-sample mediation analysis approach (Figure 1).  

METHODS 

Study populations 

We used individual-level data from 23 pooled studies of lung cancer, with 16396 cases (5690 

adenocarcinoma, 4045 squamous carcinoma) and 13013 controls; and 11 HNC studies with 4415 

cases and 5013 controls, all part of the OncoArray collaboration (34) (Supplementary Tables 1-2). 

Descriptions of studies and genotyping methods have been previously published (34, 35) (details in 

Supplementary File 1). Analyses were restricted to individuals of predominantly European ancestry 

(≥80% lung, >70% HNC)(34, 36). Studies received approval from institutional research ethics review 

boards and informed consent was obtained from the participants.  

The novel 5p15.33 instrument was developed using data from two studies: the cancer-free 

controls from the Mount Sinai and Princess Margaret Hospital (MSH-PMH) case-control study in 

Toronto(37), and cancer-free individuals from the Copenhagen General Population Study 

(CGPS)(38), a population-based prospective cohort (Table 1). TL was measured in DNA from 

peripheral blood leukocytes using previously described quantitative polymerase chain reaction 

assays performed in MSH-PMH (37) and CGPS (23, 38) (details in Supplementary File 2). 
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Statistical Analysis 

Mendelian randomization analysis 

 The genetic instruments for TL included independent SNPs showing strong prior evidence of 

association with TL, such as p<5×10-8 in the discovery stage of at least one GWAS and replication in 

a separate GWAS or meta-analysis (17-21). In addition to the new 5p15.33 instrument described 

below, we selected 7 additional loci involved in telomere maintenance: rs10165485 (proxy for 

rs11125529, r2=1.0) in ACYP2 (2p16.2), rs6772228 in PXK (3p14.3), rs10936599 in TERC (3q26.2), 

rs11100479 (proxy for rs7675998, r2=0.99) in NAF1 (4q32.2), rs9420907 in OBFC1 (10q24.3), 

rs10419926 in ZNF676 (19p12), and rs755017 near RTEL1 and ZBTB46 (20q13).  Only genotyped, 

non-imputed variants were used. 

For the purpose of developing a new instrument in the 5p15.33 region, TL values were 

converted to Z-scores in MSH-PMH (n=879) and CGPS (n=1172) studies separately, and pooled to 

increase statistical power. Linear regression was used to estimate the association between 899 

variants in 5p15.33 and TL, adjusting for age, sex, study, and the top 5 genetic ancestry principal 

components (PCs).  

Selection of variants for the 5p15.33 instrument was based on statistical significance, 

consistency across the two studies, and instrument strength, measured by the F statistic, which 

depends on the variance in TL explained by the genetic predictors (R2), sample size (n), and number 

of instruments (k): 繋 噺 岾津貸賃貸怠賃 峇 岾 眺鉄怠貸眺鉄峇┻ Variants were considered for inclusion in the 5p15.33 

instrument if they met the following criteria: 

i. F≥5 and p<0.05 in the Toronto and Copenhagen combined dataset (n=2051) 

ii. F<5 and p<0.05 overall (n=2051) and F>5 among never smokers (n=848) 

iii. Consistent direction of allelic effects in MSH-PMH and CGPS 

iv. Minor allele detected in at least 2 individuals 
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Independent genetic variants (r2<0.2) that met the selection criteria were combined into an allele 

score representing the 5p15.33 region to increase the power of the resulting instrument (39, 40). 

The MR analysis combined summary statistics across the genetic IVs to estimate the causal 

parameter , which is the log odds ratio (OR) describing the causal effect of increasing TL on 

cancer risk (Supplementary Figure 1).  Parameters for the MR analysis included  and , where 

 is a vector of SNP-TL associations and is a vector of per-allele cancer log ORs for each 

instrument. For genetic instruments outside of 5p15.33, and corresponding standard errors (SE) 

were obtained from the literature and scaled to represent a 1000 base pair (kbp) increase in leukocyte 

TL, a proxy for TL in relevant tissues(19-21). For all instruments, and corresponding SE were 

estimated directly using individual-level OncoArray lung and HNC data. Logistic regression models 

were adjusted for age, sex, study, and 10 PCs. 

The causal parameter  was estimated using the maximum likelihood-based (ML) 

approach and the inverse-variance weighted (IVW) method (41, 42). This was complemented by 

sensitivity analyses using the weighted median estimator (WME), which provides valid estimates of 

the causal parameter even when up to 50% of the statistical weights are contributed by genetic 

instruments violate MR assumptions (43).  

Mediation analysis 

The aim of the mediation analysis was to quantify how much of the lung cancer association 

in the 5p15.33 region is mediated by TL. First, we validated the 5p15.33 instrument by decomposing 

its total effect on lung cancer into direct and indirect effects, mediated by TL. Next, we extended this 

analysis to independent (r2<0.20) variants that capture the lung cancer association signal in 5p15.33 

(details in Supplementary File 3).  

Our mediation approach is based on the counterfactual framework(44, 45) and extends the 

sensitivity analysis using two randomized controlled trials proposed by Vanderweele, which allows 

b
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b
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the mediator-outcome ( ) and exposure-mediator ( ) relationships to be estimated in separate 

studies (46). Application of this approach in the present context assumes that a valid estimate for the 

mediator-outcome relationship can be obtained from an independent MR or cohort studies. Based on 

previously published formulas for mediation analysis (44, 45), the total effect (TE) of increasing the 

exposure from reference level a* to level a on lung cancer (桁) conditional on covariates c can be 

decomposed into natural direct effects (NDE) and natural indirect effects (NIE): 

頚迎銚┸銚茅】頂脹帳 噺 鶏岫桁銚 噺 な】潔岻【岶な 伐 鶏岫桁銚 噺 な】潔岻岼鶏岫桁銚茅 噺 な】潔岻【岶な 伐 鶏岫桁銚茅 噺 な】潔岻岼 噺 頚迎銚┸銚茅】頂朝彫帳 抜 頚迎銚┸銚茅】頂 朝帖帳  岫な岻 

Assuming a rare outcome and absence of exposure-mediator interaction, mediated effects are 

given by: 頚迎銚┸銚茅】頂朝彫帳 蛤 exp 岶肯態 抜 紅怠岫欠 伐 欠茅岻岼  岫に岻 

where is log-OR per one unit increment in TL and is the effect of the 5p15.33 instrument on TL. 

Based on equation 1, NDE can be obtained by subtracting the NIE from the total effect: log 岫頚迎銚┸銚茅】頂朝帖帳 岻 蛤 log 岫頚迎銚┸銚茅】頂脹帳 岻 伐  log 岫頚迎銚┸銚茅】頂朝彫帳 岻   岫ぬ岻 

In the presence of interaction between the exposure and mediator, the NIE is given by: 頚迎銚┸銚茅】頂朝彫帳 蛤 exp 岶岫肯態 抜 紅怠 髪 肯戴 抜 紅怠欠岻 抜 岫欠 伐 欠茅岻岼   岫ね岻 

where now represents the main effect of the mediator, TL, and  is the exposure-mediator 

interaction parameter, with NDE having a more complicated form given by Valeri and 

VanderWeele(45). Formulas for a dichotomized mediator are provided in Supplementary File 4. 

The  parameter for the 5p15.33 instrument is equivalent to  estimated in the cancer-

free subset of the MSH-PMH and CGPS studies, adjusting for appropriate covariates. For 5p15.33 

cancer susceptibility variants, estimates were selected from Bojesen et al. (47), the largest fine-

mapping analysis of common 5p15.33 loci and TL with 15567 cancer-free controls. Per allele 

associations were reported as percent increase in TL and base-pair change. ORTE for all variants was 

estimated in 23 lung cancer OncoArray studies, and is equivalent to for the 5p15.33 instrument.  

q
2
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External estimates of the mediator-outcome relationship ( ) were substituted into the 

equation (2) to avoid estimating the effect of TL on lung cancer risk directly using MSH-PMH case-

control data, which are likely to be biased due to the post-diagnostic timing of TL measurement. The 

effect of TL on lung cancer risk was obtained from two studies: an MR analysis TL by Zhang et al.(22), 

and a meta-analysis of prospective studies by Zhu et al. (11) (Supplementary Figure 2).  

Since interaction between the 5p15.33 instrument and TL is plausible, we conducted 

sensitivity analyses under different magnitudes of 
 
(details in Supplementary File 4). Confidence 

intervals for the NIE and NDE were approximated as Bayesian credible intervals. Analyses were 

conducted using R version 3.3.3. 

RESULTS 

Characteristics of the combined Toronto and Copenhagen dataset (n=2051), used to develop 

the 5p15.33 instrument, are summarized in Table 1. The cancer-free participants in the MSH-PMH 

and CGPS studies were of similar mean age, 61.0 and 61.30 years, respectively. Age was the 

strongest predictor of TL (p=2.6×10-30), while sex, smoking status, and cigarette pack-years among 

smokers were not associated with relative TL (Supplementary Table 3).  

Novel 5p15.33 instrument for telomere length 

The 5p15.33 variants comprising this instrument were not used in any previous MR studies 

of TL. After excluding 17 singletons and other SNPs that did not meet our criteria, 14 variants were 

included in the multi-allelic instrument for 5p15.33 (Table 2; regional plot and LD illustrated in 

Supplementary Figure 3). Most variants were located in non-coding intronic regions of several genes, 

including SLC6A3, TERT, LPCAT1, and a long-noncoding RNA (LINC01511) except for rs35033501, 

a synonymous TERT variant. The resulting multi-allelic 5p15.33 IV accounted for 1.49% of variation 

in the telomere Z-score in all subjects (F = 35.83; = 0.14, SE=0.02) and 2.00% in never smokers 

(F = 20.81), but was not predictive of smoking status (p=0.19) or cigarette pack-years among smokers 

(p=0.59) (Table 3). The 5p15.33 instrument was positively associated with lung cancer (OR=1.04, 

q
2

q
3

b
TL
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95% CI: 1.01-1.07) and lung adenocarcinoma (OR=1.06, 1.03-1.10), but not squamous lung 

carcinomas (OR=1.03, 0.98-1.07). An inverse association was observed for HNC (OR=0.95, 0.90-

1.00) and oral cavity cancer (OR=0.93, 0.87-0.98). 

Telomere length and cancer risk 

Results of the MR analysis based on 8 genetic instruments are presented in Table 4 and 

Figure 2. The likelihood-based model estimated a 41% increase in lung cancer risk per kbp increase 

in TL (ORML=1.41, 95% CI: 1.20-1.65). Estimates of the causal OR for lung cancer remained 

consistent across MR estimation methods. Genetic determinants of TL were predominantly 

associated with adenocarcinoma (ORML=1.92, 1.51-2.45), and appeared unrelated to squamous 

carcinoma (ORML=1.04, 0.83-1.29) and small cell carcinoma (ORML=1.03, 0.76-1.39). 

The effect of long TL on lung cancer risk was larger in magnitude among never smokers  

(ORML=1.78, 1.22-2.61) compared to smokers (ORML=1.36, 1.14-1.63), although the former was 

attenuated in sensitivity analyses (ORWME=1.55, 95% CI: 0.98-2.46). Effects on adenocarcinoma risk 

were also substantial in never smokers (ORML=2.68, 1.70-4.24). Genetic determinants of long 

telomeres conferred a 68% increase in lung cancer risk (ORML=1.68, 1.07-2.62) in subjects aged 50 

years or younger. In contrast to lung cancer, genetic predisposition for longer TL did not seem related 

to risk of HNC overall (ORML= 0.90, 0.70-1.05), oral cavity (ORML=0.88, 0.65-1.19) and oropharynx 

cancers (ORML=0.83, 0.59-1.16).  

Several additional sensitivity analyses were undertaken to further interrogate the MR results. 

Since smoking is an established risk factor for both HNC and lung cancer, MR analyses were 

repeated with adjustment for cigarette pack-years and smoking status. No appreciable changes were 

observed in the causal effect estimates for lung cancer overall (ORML=1.50, 1.27-1.78), lung 

adenocarcinoma (ORML=1.95, 1.53-2.49), HNC (ORML=0.91, 0.67-1.23), oral cavity (ORML=0.82, 

0.57-1.18) or oropharynx cancers (ORML=0.86, 0.57-1.31).  

The potential for directional pleiotropy was evaluated by checking for asymmetry in the plots 

depicting ratio estimates for each instrument, , plotted against instrument strength, b
Y

b
TL
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 (Supplementary Figure 4). These results were not suggestive of pleiotropy and none of 

the genetic instruments were associated with cigarette smoking status or pack-years (Supplementary 

Table 4). Lastly, selected causal effects were re-estimated using the weighted mode-based estimator 

(MBE), which is robust to horizontal pleiotropy when the largest number of similar causal effect 

estimates are based on valid instruments, even if the majority of instruments are invalid (48). 

Estimates for lung cancer overall (ORMBE=1.34, 1.08-1.66), lung adenocarcinoma (ORMBE=1.55, 1.14-

2.12), and adenocarcinoma in never smokers (ORMBE=2.04, 1.04-4.04), were consistent with the 

primary results in Table 4. 

Mediation analysis of the 5p15.33 instrument 

We conducted mediation analyses to quantify direct (ORNDE) and indirect effects (ORNIE) of 

the 5p15.33 instrument on lung cancer. The ORNIE we report is the proportional change in the odds 

of lung cancer for a change in TL that occurs when the 5p15.33 allele score increases by one from 

the reference level, corresponding to the mean of the allele score distribution. The estimate of the TL 

effect on lung cancer ( ) was selected from the strict model reported by Zhang et al.(22) (OR per 

kbp increase: 1.37, 95% CI: 1.12-1.68), which excluded rs2736100 (TERT). ORTE for the 5p15.33 IV 

was re-estimated after removing overlapping subjects (n=3498) between the OncoArray and Zhang 

et al.(22). Assuming no interaction between the 5p15.33 IV and TL, the lung cancer effect appeared 

to be almost entirely mediated by TL (ORNIE=1.05, 1.01-1.08), whereas the direct effects of the 

5p15.33 IV appeared null (ORNDE=1.00, 0.95-1.04) (Figure 3; Supplementary Table 5). For lung 

adenocarcinoma, the 5p15.33 effects mediated by TL were larger in magnitude (ORNIE=1.11, 1.05-

1.18) than direct effects, which were close to unity (ORNDE=0.97, 0.90-1.03). 

Interaction sensitivity analyses for the NIE and NDE were carried out across three levels of 

: 0.10, 0.20 and 0.30. As the magnitude of the interaction parameter increased, so did the NIE, 

while TL-independent effects were not observed (Figure 3). Indirect effects on lung cancer risk 

mediated by TL ranged from ORNIE=1.06 (95% CI: 1.03-1.10) for =0.10, to ORNIE=1.09 (95% CI: 

b
TL
SE(b

Y
)

q
2

q
3

q
3
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1.05-1.15) for = 0.30. For adenocarcinoma, increasing the magnitude of interaction between the 

5p15.33 IV and TL was also associated with increasing NIE and diminishing direct effects. 

The prospective meta-analysis estimate of from Zhu et al.(11) reported an OR of 1.28 

(95% CI: 1.09-1.50) for lung cancer comparing long vs. short TL. Based on this binary mediator, the 

NIE mediated by TL was attenuated, but remained statistically significant (ORNIE=1.01, 1.00-1.03). A 

positive direct effect on lung cancer risk was also observed (ORNDE=1.03, 1.00-1.06). Assuming 

interaction between the 5p15.33 instrument and TL, the mediated effects ranged from ORNIE=1.02 

(95% CI: 1.01-1.03) when =0.10, to ORNIE=1.03 (95% CI: 1.01-1.05) when =0.30, while the direct 

effects decreased (Figure 3; Supplementary Table 5). 

Mediation analysis of 5p15.33 lung cancer susceptibility loci 

Five common (MAF>0.05), independent (r2 <0.20) variants were selected to represent the 

lung cancer susceptibility signal in 5p15.33 (details in Supplementary File 3): rs7705526 

(PAdeno=4.6×10-13; PLung=8.0×10-7), rs2736108 (PAdeno=1.7×10-12; PLung=1.8×10-11), rs421629 

(PAdeno=6.2×10-9; PLung=1.2×10-16), rs13167280 (PAdeno=1.4×10-8; PLung=1.1×10-6), and rs56345976 

(PAdeno=2.2×10-7; PLung=3.6×10-9). These variants have been associated with lung cancer and lung 

adenocarcinoma in previous studies (37, 49-51), and are representative of the genetic susceptibility 

architecture in this region.  

Estimates of  were obtained from Bojesen et al.(47), and three TERT lung cancer risk 

variants were significantly associated with TL: rs7705526 (PTL=2.3×10-14), rs2736108 (PTL=5.8×10-7), 

and rs13167280 (PTL=1.2×10-5). Estimates of were selected from the MR analysis (22) and ORTE 

were re-estimated for each variant after removing the overlapping subjects. For all variants, the TL-

increasing allele was positively associated with cancer risk, and both direct and indirect, TL-mediated 

effects were significant (Supplementary Table 6).  

For lung cancer, the proportion mediated (PM) by TL was the largest for rs13167280 

(ORNIE=1.05, 1.03-1.07; PM=40.5%), followed by rs7705526 (ORNIE=1.03, 1.01-1.05; PM=28.7%) 

q
3

q
2

q
3

q
3

b
1

q
2
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and rs2736108 (ORNIE 1.02, 1.01-1.03; PM=13.7%). The magnitude and proportion of the SNP effects 

that were mediated by TL were larger for adenocarcinoma compared to lung cancer overall: 

rs7705526 (ORNIE=1.07, 1.04-1.10; PM=36.5%), rs13167280 (ORNIE=1.05, 1.03-1.07; PM=24.8%), 

and rs2736108 (ORNIE=1.04, 1.03-1.06; PM=22.9%). 

DISCUSSION 

We observed an association between genetic determinants of long telomeres and increased 

risk of lung, but not head and neck cancers. Our findings lend support to a causal relationship between 

longer leukocyte TL and increased risk of lung adenocarcinoma, but not squamous or small cell 

carcinoma. The magnitude of the increased risk was larger in never smokers and participants aged 

50 or younger, consistent with a stronger influence of genetic susceptibility in individuals with a lower 

burden of modifiable risk factors (52). Although histology and smoking status are closely linked, our 

results suggest that the associations were histology-specific for adenocarcinoma (53, 54). Lastly, our 

mediation analysis demonstrated that mechanisms resulting in long telomeres mediate a proportion 

of the increase in lung cancer and lung adenocarcinoma risk conferred by 5p15.33 loci, and that the 

proportion of genetic susceptibility attributed to telomere maintenance differs between distinct 

5p15.33 susceptibility loci. 

Other analyses using multi-SNP telomere scores have also observed excess risks of lung 

cancer(22-24) and lung adenocarcinoma(22, 24), but did not observe an effect of TL on oral cancer 

risk (23, 24). Opposite directions of effect for the 5p15.33 instrument on lung and HNC are consistent 

with earlier reports of opposing allelic effects for 5p15.33 SNPs on lung and oral cancer, respectively 

(35, 55). Leukocyte TL and functional TERT variants were previously reported to be unrelated to 

squamous HNC risk(56), although one study linked short TL to increased HNC risk based on 

rs2736100, which may be an invalid instrument(22, 57). With the exception of the 5p15.33 IV, the 

instruments used in this study overlap with those used in other MR analyses of TL (22-24). 

Our findings lend support to the hypothesis that a greater number of telomere-increasing 

alleles increase lung cancer susceptibility. Although the precise molecular mechanisms remain to be 

elucidated, telomere maintenance may promote carcinogenesis by enabling prolonged cell survival 
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and accumulation of mutations. This is supported by the hallmark observation that telomerase is 

overexpressed in 85-90% of adult tumors(8, 58), as well as recent data showing that long telomeres 

increase chromosomal instability(59) and promote immortalization of cancer cells(60). Excessively 

long telomeres may also be more fragile and dysfunctional, which is supported by the observation 

that TERT not only replenishes telomeres, but also regulates a trimming process to maintain TL 

homeostasis (61-63).   

Differences in the effect of TL persisted after stratifying by smoking status, suggesting that 

underlying mechanisms differ across tissues and histological types. Longer TL does not appear to 

increase risk of small cell lung cancer or squamous lung carcinoma, the histology that also comprises 

90% of HNC tumours, and for which the causal effect of tobacco smoking is the strongest(64). Since 

our genetic instruments are unrelated to smoking, confounding is unlikely to account for these 

differences. It is plausible that genetic predisposition for telomere maintenance offers some protection 

against genomic instability due to oxidative stress, declining regenerative capacity and immune 

function(7, 65, 66). Although human papillomavirus (HPV), a known cause of oropharynx cancer(67), 

has been reported to correlate with TL(31), the similarity of associations observed for oropharynx and 

oral cancers, only 2% of which are attributed to HPV(68), suggests that HPV infection is unlikely to 

modify the influence of TL.  

This analysis has several important strengths. Genetic instruments represent are unaffected 

by reverse causality and are more likely to reflect causality due to the independence of genotypes 

from confounding factors. In addition to the large sample size, our analysis leveraged rich genetic 

data in 5p15.33, including rare sequence variations, to develop a robust, novel instrument. 

Furthermore, the use of multiple genetic instruments from essential genes for telomere maintenance 

mitigates the possibility for weak instruments bias and genetic confounding due to pleiotropy. The 

association between genetic predisposition to long TL and increased lung cancer risk persisted in 

analyses using the weighted median and mode-based estimators, which further supports the causal 

interpretation of these results. 



 17 

Our mediation analysis offers insight not only by validating the new 5p15.33 instrument, by 

demonstrating an absence of direct effects, but also by formally quantifying the contribution of 

telomere-related mechanisms to the observed association between the established lung and 

adenocarcinoma susceptibility loci and lung cancer risk in this region. Although we confirmed that TL 

is an important molecular mechanism underlying the associations observed for 5p15.33 lung cancer 

risk loci, our results also indicated that only a fraction of these genetic effects operate through 

telomere maintenance. For instance, only 3-8% of the total effect of rs421629 (CLPTM1L) was 

mediated TL, and approximately half of the association between the TERT loci and lung cancer risk 

can be attributed to telomere mechanisms.  

These findings are consistent with our knowledge that 5p15.33 is a complex susceptibility 

locus for multiple cancers(33, 55, 69) and GWAS peaks in this region also encompass non-cancer 

traits, such as red blood cell counts, prostate-specific antigen levels, and lung diseases(69-72). In 

addition, non-canonical functions of TERT, related to proliferation and differentiation via regulation of 

Wnt/く-catenin and Myc signaling, have been proposed(73). Therefore, although telomere 

maintenance is clearly an important 5p15.33 mechanism, cancer susceptibility loci in this region likely 

invoke additional pathways. 

Several limitations of this work should be acknowledged. The time lag between genotype 

assignment at conception and the assessment of genetic effects on TL and cancer risk, as well as 

the time-varying nature of TL, pose challenges for interpreting MR estimates of the causal effect (74). 

However, while genetic instruments do not recapitulate all aspects of telomere function and dynamics, 

they can still provide a valid test of the causal hypothesis that inherited predisposition to telomere 

maintenance increases lung cancer susceptibility (75). Secondly, genetic instruments for leukocyte 

TL may not be accurate proxies for TL in target tissues, which would reduce the power of our genetic 

instruments. However, the validity of instruments based on leukocyte TL is supported by correlation 

between TL in leukocytes and other tissues, including lung, and comparable rates of telomere 

shortening across somatic tissues (76-78). Thirdly, our MR analysis may be affected by winner's 

curse, with the magnitude and strength of association with TL observed in the discovery dataset likely 
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to be exaggerated, particularly the 5p15.33 instrument. However, since the instrument discovery and 

MR analysis populations are independent, any potential bias in the causal parameter due to winner’s 

curse or limited instrument strength will be towards the null (79). A related concern involves our ability 

to detect subtle effects of TL on cancer risk due to the modest proportion of variation in TL explained 

by our genetic instruments (approximately 5%), which is comparable to most genetic instruments for 

complex phenotypes (80-82). Based on our power calculations, this analysis was adequately 

powered (>80%) to detect effects with OR of 1.5 and above for all lung and HNC histological subtypes 

and smoking-stratified analyses.  

Lastly, the validity of our mediation analysis depends in part on the validity of the published 

estimates of the mediator-outcome relationship. MR-based estimates of the mediator-outcome 

relationship are likely to satisfy the assumption of no unmeasured confounding, but must assume that 

all instruments used in Zhang et al. (22) were valid. While observational studies are more susceptible 

to confounding and bias due measurement error in the molecular mediator (83), a synthesis of 

prospective studies provides complementary evidence that does not depend on MR assumptions, 

and is less vulnerable to reverse causation than case-control designs.  

In summary, we demonstrated that genetic determinants of long telomeres are associated 

with an increased risk of lung cancer, particularly adenocarcinoma. The associations observed for 

HNC were less consistent with a causal relationship, however we cannot preclude the possibility of a 

very subtle telomere effects (OR<1.5). Using mediation analysis that incorporates independent 

published data, we validated the novel 5p15.33 instrument and quantified the proportion of the lung 

cancer association signal in 5p15.33 that is mediated by TL. While this work provides insight into the 

role of TL in cancer etiology, further research is needed to identify appropriate ways of utilizing this 

complex biomarker in the context of disease prevention or clinical intervention. 

  



 19 

ACKNOWLEDGMENTS 

The authors would like to acknowledge all of the participants involved in this research and the funders 

and support. 

Linda Kachuri is a fellow in the Canadian Institutes of Health Research (CIHR) Strategic Training in 

Advanced Genetic Epidemiology (STAGE) program and is supported by the CIHR Doctoral Research 

Award from the Frederick Banting and Charles Best Canada Graduate Scholarships (GSD-137441). 

Transdisciplinary Research for Cancer in Lung (TRICL) of the International Lung Cancer Consortium 

(ILCCO) was supported by the National Institutes of Health (U19-CA148127, CA148127S1). 

Genotyping for the TRICL-ILCCO OncoArray was supported by in kind genotyping at Centre for 

Inherited Disease Research (CIDR) (26820120008i-0-6800068-1). Genotyping for the Head and 

Neck Cancer OncoArray performed at CIDR͒ was funded by the US National Institute of Dental and 

Craniofacial Research (NIDCR) grant 1X01HG007780-0.   

CAPUA study was supported by FIS-FEDER/Spain grant numbers FIS-01/310, FIS-PI03-0365, and 

FIS-07-BI060604, FICYT/Asturias grant numbers FICYT PB02-67 and FICYT IB09-133, and the 

University Institute of Oncology (IUOPA), of the University of Oviedo and the Ciber de Epidemiologia 

y Salud Pública. CIBERESP, SPAIN. 

The work performed in the CARET study was supported by the National Institute of Health (NIH) / 

National Cancer Institute (NCI): UM1 CA167462 (PI: Goodman), National Institute of Health UO1-

CA6367307 (PIs Omen, Goodman); National Institute of Health R01 CA111703 (PI Chen), National 

Institute of Health 5R01 CA151989 (PI Doherty). 

The Liverpool Lung Project is supported by the Roy Castle Lung Cancer Foundation. 

The Harvard Lung Cancer Study was supported by the NIH (National Cancer Institute) grants 

CA092824, CA090578, CA074386. 

The Multiethnic Cohort Study was partially supported by NIH Grants CA164973, CA033619, 

CA63464 and CA148127 

The work performed in MSH-PMH study was supported by The Canadian Cancer Society Research 

Institute (020214), Ontario Institute of Cancer and Cancer Care Ontario Chair Award to R.J.H. and 

G.L. and the Alan Brown Chair and Lusi Wong Programs at the Princess Margaret Hospital 

Foundation. 

The Norway study was supported by Norwegian Cancer Society, Norwegian Research Council 

The work in TLC study has been supported in part the James & Esther King Biomedical Research 

Program (09KN-15), National Institutes of Health Specialized Programs of Research Excellence 

(SPORE) Grant (P50 CA119997), and by a Cancer Center Support Grant (CCSG) at the H. Lee 



 20 

Moffitt Cancer Center and Research Institute, an NCI designated Comprehensive Cancer Center 

(grant number P30-CA76292) 

The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical 

Center’s BioVU, which is supported by institutional funding and by the Vanderbilt CTSA grant UL1 

TR000445 from NCATS/NIH. Dr. Melinda Aldrich is supported by the by NIH/National Cancer Institute 

5K07CA172294. 

The Copenhagen General Population Study (CGPS) was supported by the Chief Physician Johan 

Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. 

The NELCS study: Grant Number P20RR018787 from the National Center for Research Resources 

(NCRR), a component of the National Institutes of Health (NIH). 

Kentucky Lung Cancer Research Initiative (KLCRI) was supported by the Department of Defense 

[Congressionally Directed Medical Research Program, U.S. Army Medical Research and Materiel 

Command Program] under award number: 10153006 (W81XWH-11-1-0781). Views and opinions of, 

and endorsements by the author(s) do not reflect those of the US Army or the Department of Defense. 

This research was also supported by unrestricted infrastructure funds from the UK Center for Clinical 

and Translational Science, NIH grant UL1TR000117 and Markey Cancer Center NCI Cancer Center 

Support Grant (P30 CA177558) Shared Resource Facilities: Cancer Research Informatics, 

Biospecimen and Tissue Procurement, and Biostatistics and Bioinformatics. 

The research undertaken by M.D.T., L.V.W. and M.S.A. was partly funded by the National Institute 

for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily 

those of the NHS, the NIHR or the Department of Health. M.D.T. holds a Medical Research Council 

Senior Clinical Fellowship (G0902313). 

The Tampa study was funded by Public Health Service grants P01-CA68384 and R01-DE13158 from 

the National Institutes of Health. 

The University of Pittsburgh head and neck cancer case–control study͒ is supported by US National 

Institutes of Health grants P50 CA097190 and P30 CA047904.  

The Carolina Head and Neck Cancer Study (CHANCE) was supported by the National Cancer 

Institute (R01CA90731).  

The Head and Neck Genome Project (GENCAPO) was supported by the Fundação de Amparo à 

Pesquisa do Estado de São Paulo (FAPESP; grants 04/12054-9 and 10/51168-0). The authors thank 

all the members of the GENCAPO team.  

This publication presents data from the Head and Neck 5000 study. The study was a component of 

independent research funded by the National Institute for Health Research (NIHR) under its 

Programme Grants for Applied Research scheme (RP-PG-0707-10034). The views expressed in this 



 21 

publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the 

Department of Health. Human papillomavirus (HPV) serology was supported by a Cancer Research 

UK Programme Grant, the Integrative Cancer Epidemiology Programme (grant number: 

C18281/A19169). 

The Alcohol-Related Cancers and Genetic Susceptibility Study in Europe (ARCAGE) was funded by 

the European Commission’s fifth framework programme (QLK1- 2001-00182), the Italian Association 

for Cancer Research, Compagnia di San Paolo/FIRMS, Region Piemonte and Padova University 

(CPDA057222).  

The Rome Study was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) 

awards IG 2011 10491 and IG 2013 14220 to S.B. and by Fondazione Veronesi to S.B.  

The IARC Latin American study was funded by the European Commission INCO-DC programme 

(IC18-CT97-0222), with additional funding from Fondo para la Investigación Científica y Tecnológica 

(Argentina) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (01/01768-2).  

The IARC Central Europe study was supported by the European Commission’s INCO-COPERNICUS 

Program (IC15-CT98-0332), US NIH/National Cancer Institute grant CA92039 and World Cancer 

Research Foundation grant WCRF 99A28. 

The IARC Oral Cancer Multicenter study was funded by grant S06 96 202489 05F02 from Europe 

against Cancer; grants FIS 97/0024, FIS 97/0662 and BAE 01/5013 from Fondo de Investigaciones 

Sanitarias, Spain; the UICC Yamagiwa-Yoshida Memorial International Cancer Study; the National 

Cancer Institute of Canada; Associazione Italiana per la Ricerca sul Cancro; and the Pan-American 

Health Organization. Coordination of the EPIC study is financially supported by the European 

Commission (DG SANCO) and the International Agency for Research on Cancer.   



 22 

References 

1. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569-73. 

2. de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21(4):532-40. 

3. Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, et al. Telomere extension 

occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell. 

2009;138(3):463-75. 

4. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-

span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349-52. 

5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-

74. 

6. Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, et al. Telomere dysfunction: a 

potential cancer predisposition factor. J Natl Cancer Inst. 2003;95(16):1211-8. 

7. Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging. 

Trends in genetics : TIG. 2013;29(9):513-20. 

8. Newbold RF. The significance of telomerase activation and cellular immortalization in 

human cancer. Mutagenesis. 2002;17(6):539-50. 

9. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length 

and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2011;20(6):1238-50. 

10. Prescott J, Wentzensen IM, Savage SA, De Vivo I. Epidemiologic evidence for a role of 

telomere dysfunction in cancer etiology. Mutat Res. 2012;730(1-2):75-84. 

11. Zhu X, Han W, Xue W, Zou Y, Xie C, Du J, et al. The association between telomere length 

and cancer risk in population studies. Scientific reports. 2016;6:22243. 

12. Benitez-Buelga C, Sanchez-Barroso L, Gallardo M, Apellaniz-Ruiz M, Inglada-Perez L, 

Yanowski K, et al. Impact of chemotherapy on telomere length in sporadic and familial breast 

cancer patients. Breast Cancer Res Treat. 2015;149(2):385-94. 

13. Li P, Hou M, Lou F, Bjorkholm M, Xu D. Telomere dysfunction induced by 

chemotherapeutic agents and radiation in normal human cells. Int J Biochem Cell Biol. 

2012;44(9):1531-40. 



 23 

14. Huzen J, Wong LS, van Veldhuisen DJ, Samani NJ, Zwinderman AH, Codd V, et al. 

Telomere length loss due to smoking and metabolic traits. J Intern Med. 2014;275(2):155-63. 

15. Bojesen SE. Telomeres and human health. J Intern Med. 2013;274(5):399-413. 

16. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference 

in epidemiological studies. Human molecular genetics. 2014;23(R1):R89-98. 

17. Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang SJ, Chen W, et al. Genome-wide 

association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl 

Acad Sci U S A. 2010;107(20):9293-8. 

18. Prescott J, Kraft P, Chasman DI, Savage SA, Mirabello L, Berndt SI, et al. Genome-wide 

association study of relative telomere length. PLoS One. 2011;6(5):e19635. 

19. Mangino M, Hwang SJ, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, et al. Genome-

wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in 

humans. Human molecular genetics. 2012;21(24):5385-94. 

20. Pooley KA, Bojesen SE, Weischer M, Nielsen SF, Thompson D, Amin Al Olama A, et al. A 

genome-wide association scan (GWAS) for mean telomere length within the COGS project: 

identified loci show little association with hormone-related cancer risk. Human molecular genetics. 

2013;22(24):5056-64. 

21. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of 

seven loci affecting mean telomere length and their association with disease. Nat Genet. 

2013;45(4):422-7, 7e1-2. 

22. Zhang C, Doherty JA, Burgess S, Hung RJ, Lindstrom S, Kraft P, et al. Genetic 

determinants of telomere length and risk of common cancers: a Mendelian randomization study. 

Human molecular genetics. 2015;24(18):5356-66. 

23. Rode L, Nordestgaard BG, Bojesen SE. Long telomeres and cancer risk among 95 568 

individuals from the general population. International journal of epidemiology. 2016;45(5):1634-43. 

24. The Telomeres Mendelian Randomization Collaboration. Association Between Telomere 

Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study. 

JAMA Oncology. 2017;3(5):636-51. 



 24 

25. Seow WJ, Cawthon RM, Purdue MP, Hu W, Gao YT, Huang WY, et al. Telomere length in 

white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer 

research. 2014;74(15):4090-8. 

26. Lan Q, Cawthon R, Gao Y, Hu W, Hosgood HD, 3rd, Barone-Adesi F, et al. Longer 

telomere length in peripheral white blood cells is associated with risk of lung cancer and the 

rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. 

PLoS One. 2013;8(3):e59230. 

27. Shen M, Cawthon R, Rothman N, Weinstein SJ, Virtamo J, Hosgood HD, 3rd, et al. A 

prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk 

of lung cancer. Lung cancer. 2011;73(2):133-7. 

28. Sanchez-Espiridion B, Chen M, Chang JY, Lu C, Chang DW, Roth JA, et al. Telomere 

length in peripheral blood leukocytes and lung cancer risk: a large case-control study in 

Caucasians. Cancer research. 2014;74(9):2476-86. 

29. Jang JS, Choi YY, Lee WK, Choi JE, Cha SI, Kim YJ, et al. Telomere length and the risk of 

lung cancer. Cancer science. 2008;99(7):1385-9. 

30. Sun B, Wang Y, Kota K, Shi Y, Motlak S, Makambi K, et al. Telomere length variation: A 

potential new telomere biomarker for lung cancer risk. Lung cancer. 2015;88(3):297-303. 

31. Zhang Y, Sturgis EM, Dahlstrom KR, Wen J, Liu H, Wei Q, et al. Telomere length in 

peripheral blood lymphocytes contributes to the development of HPV-associated oropharyngeal 

carcinoma. Cancer research. 2013;73(19):5996-6003. 

32. Bau DT, Lippman SM, Xu E, Gong Y, Lee JJ, Wu X, et al. Short telomere lengths in 

peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and 

oral squamous cell carcinoma. Cancer. 2013;119(24):4277-83. 

33. Wang Z, Zhu B, Zhang M, Parikh H, Jia J, Chung CC, et al. Imputation and subset-based 

association analysis across different cancer types identifies multiple independent risk loci in the 

TERT-CLPTM1L region on chromosome 5p15.33. Human molecular genetics. 2014. 



 25 

34. Amos CI, Dennis J, Wang Z, Byun J, Schumacher FR, Gayther SA, et al. The OncoArray 

Consortium: a Network for Understanding the Genetic Architecture of Common Cancers. Cancer 

Epidemiol Biomarkers Prev. 2016. 

35. Lesseur C, Diergaarde B, Olshan AF, Wunsch-Filho V, Ness AR, Liu G, et al. Genome-wide 

association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat 

Genet. 2016;48(12):1544-50. 

36. Li Y, Byun J, Cai G, Xiao X, Han Y, Cornelis O, et al. FastPop: a rapid principal component 

derived method to infer intercontinental ancestry using genetic data. BMC bioinformatics. 

2016;17:122. 

37. Kachuri L, Amos CI, McKay JD, Johansson M, Vineis P, Bueno-de-Mesquita HB, et al. Fine 

mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density 

genotyping identifies novel lung cancer susceptibility loci. Carcinogenesis. 2016;37(1):96-105. 

38. Weischer M, Bojesen SE, Cawthon RM, Freiberg JJ, Tybjaerg-Hansen A, Nordestgaard 

BG. Short telomere length, myocardial infarction, ischemic heart disease, and early death. 

Arterioscler Thromb Vasc Biol. 2012;32(3):822-9. 

39. Burgess S, Thompson SG. Use of allele scores as instrumental variables for Mendelian 

randomization. International journal of epidemiology. 2013;42(4):1134-44. 

40. Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for 

Mendelian randomization studies using multiple genetic variants. International journal of 

epidemiology. 2011;40(3):740-52. 

41. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple 

genetic variants using summarized data. Genetic epidemiology. 2013;37(7):658-65. 

42. Thompson JR, Minelli C, Abrams KR, Tobin MD, Riley RD. Meta-analysis of genetic studies 

using Mendelian randomization--a multivariate approach. Statistics in medicine. 2005;24(14):2241-

54. 

43. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian 

Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic 

epidemiology. 2016;40(4):304-14. 



 26 

44. VanderWeele TJ. A three-way decomposition of a total effect into direct, indirect, and 

interactive effects. Epidemiology. 2013;24(2):224-32. 

45. Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions 

and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. 

Psychol Methods. 2013;18(2):137-50. 

46. VanderWeele TJ. Explanation in Causal Inference: Methods for Mediation and Interaction. 

New York, NY: Oxford University Press; 2015. 

47. Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, et al. Multiple 

independent variants at the TERT locus are associated with telomere length and risks of breast and 

ovarian cancer. Nat Genet. 2013;45(4):371-84, 84e1-2. 

48. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian 

randomization via the zero modal pleiotropy assumption. International journal of epidemiology. 

2017;46(6):1985-98. 

49. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, et al. Lung cancer 

susceptibility locus at 5p15.33. Nat Genet. 2008;40(12):1404-6. 

50. Pande M, Spitz MR, Wu X, Gorlov IP, Chen WV, Amos CI. Novel genetic variants in the 

chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis. 2011;32(10):1493-9. 

51. McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale 

association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic 

susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126-32. 

52. Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. The lancet 

oncology. 2011;12(4):399-408. 

53. Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, Thun MJ, et al. Lung 

cancer in never smokers: clinical epidemiology and environmental risk factors. Clinical cancer 

research : an official journal of the American Association for Cancer Research. 2009;15(18):5626-

45. 

54. Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ. Lung cancer in never smokers--a 

review. European journal of cancer. 2012;48(9):1299-311. 



 27 

55. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence 

variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 

2009;41(2):221-7. 

56. Liu Z, Ma H, Wei S, Li G, Sturgis EM, Wei Q. Telomere length and TERT functional 

polymorphisms are not associated with risk of squamous cell carcinoma of the head and neck. 

Cancer Epidemiol Biomarkers Prev. 2011;20(12):2642-5. 

57. Gu Y, Yu C, Miao L, Wang L, Xu C, Xue W, et al. Telomere length, genetic variants and risk 

of squamous cell carcinoma of the head and neck in Southeast Chinese. Scientific reports. 

2016;6:20675. 

58. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. European journal 

of cancer. 1997;33(5):787-91. 

59. Bull CF, Mayrhofer G, O'Callaghan NJ, Au AY, Pickett HA, Low GK, et al. Folate deficiency 

induces dysfunctional long and short telomeres; both states are associated with hypomethylation 

and DNA damage in human WIL2-NS cells. Cancer prevention research. 2014;7(1):128-38. 

60. Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB, et al. Cancer. TERT promoter 

mutations and telomerase reactivation in urothelial cancer. Science. 2015;347(6225):1006-10. 

61. Zheng YL, Zhang F, Sun B, Du J, Sun C, Yuan J, et al. Telomerase enzymatic component 

hTERT shortens long telomeres in human cells. Cell Cycle. 2014;13(11):1765-76. 

62. Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, McNees C, et al. Increased 

telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and 

increased cancer in mice. Genes & development. 2009;23(17):2060-75. 

63. Rivera T, Haggblom C, Cosconati S, Karlseder J. A balance between elongation and 

trimming regulates telomere stability in stem cells. Nat Struct Mol Biol. 2017;24(1):30-9. 

64. Pai SI, Westra WH. Molecular pathology of head and neck cancer: implications for 

diagnosis, prognosis, and treatment. Annu Rev Pathol. 2009;4:49-70. 

65. von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative 

senescence. Ann N Y Acad Sci. 2000;908:99-110. 



 28 

66. Hohensinner PJ, Goronzy JJ, Weyand CM. Telomere dysfunction, autoimmunity and aging. 

Aging Dis. 2011;2(6):524-37. 

67. Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of Human 

Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. Journal of clinical oncology : 

official journal of the American Society of Clinical Oncology. 2015;33(29):3235-42. 

68. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable 

to HPV by site, country and HPV type. International journal of cancer Journal international du 

cancer. 2017. 

69. Wu YH, Graff RE, Passarelli MN, Hoffman JD, Ziv E, Hoffmann TJ, et al. Identification of 

Pleiotropic Cancer Susceptibility Variants from Genome-Wide Association Studies Reveals 

Functional Characteristics. Cancer Epidemiol Biomarkers Prev. 2018;27(1):75-85. 

70. Gudmundsson J, Besenbacher S, Sulem P, Gudbjartsson DF, Olafsson I, Arinbjarnarson S, 

et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci 

Transl Med. 2010;2(62):62ra92. 

71. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, et al. Genome-wide 

association study of hematological and biochemical traits in a Japanese population. Nat Genet. 

2010;42(3):210-5. 

72. Fingerlin TE, Murphy E, Zhang W, Peljto AL, Brown KK, Steele MP, et al. Genome-wide 

association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet. 

2013;45(6):613-20. 

73. Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. 

Trends Biochem Sci. 2013;38(9):426-34. 

74. Swanson SA, Tiemeier H, Ikram MA, Hernan MA. Nature as a Trialist?: Deconstructing the 

Analogy Between Mendelian Randomization and Randomized Trials. Epidemiology. 

2017;28(5):653-9. 

75. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in 

mendelian randomization. Epidemiology. 2014;25(3):427-35. 



 29 

76. Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U. Telomere length in different 

tissues of elderly patients. Mech Ageing Dev. 2000;119(3):89-99. 

77. Saferali A, Lee J, Sin DD, Rouhani FN, Brantly ML, Sandford AJ. Longer telomere length in 

COPD patients with alpha1-antitrypsin deficiency independent of lung function. PLoS One. 

2014;9(4):e95600. 

78. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al. Telomeres shorten at 

equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597. 

79. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-

forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. 

The American journal of clinical nutrition. 2016;103(4):965-78. 

80. Hartwig FP, Borges MC, Horta BL, Bowden J, Davey Smith G. Inflammatory Biomarkers 

and Risk of Schizophrenia: A 2-Sample Mendelian Randomization Study. JAMA psychiatry. 

2017;74(12):1226-33. 

81. Carreras-Torres R, Johansson M, Haycock PC, Wade KH, Relton CL, Martin RM, et al. 

Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian 

randomization study. PLoS One. 2017;12(6):e0177875. 

82. Dimitrakopoulou VI, Tsilidis KK, Haycock PC, Dimou NL, Al-Dabhani K, Martin RM, et al. 

Circulating vitamin D concentration and risk of seven cancers: Mendelian randomisation study. Bmj. 

2017;359:j4761. 

83. Richmond RC, Hemani G, Tilling K, Davey Smith G, Relton CL. Challenges and novel 

approaches for investigating molecular mediation. Human molecular genetics. 2016;25(R2):R149-

R56. 

 


