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The Haldane model on a honeycomb lattice is a paradigmatic example of a system featuring quantized Hall
conductivity in the absence of an external magnetic field, that is, a quantum anomalous Hall effect. Recent
theoretical work predicted that the anomalous Hall conductivity of massive Dirac fermions can display Shubnikov–
de Haas (SdH) oscillations, which could be observed in topological insulators and honeycomb layers with strong
spin-orbit coupling. Here, we investigate the electronic transport properties of Chern insulators subject to high
magnetic fields by means of accurate spectral expansions of lattice Green’s functions. We find that the anomalous
component of the Hall conductivity displays visible SdH oscillations at low temperature. The effect is shown
to result from the modulation of the next-nearest-neighbor flux accumulation due to the Haldane term, which
removes the electron-hole symmetry from the Landau spectrum. To support our numerical findings, we derive a
long-wavelength description beyond the linear (“Dirac cone”) approximation. Finally, we discuss the dependence
of the energy spectra shift for reversed magnetic fields with the topological gap and the lattice bandwidth.

DOI: 10.1103/PhysRevB.98.085409

I. INTRODUCTION

Since its discovery the Hall effect has been the focus of keen
interest of researchers, particularly after the observation of its
exactly quantized version [1]. Thouless et al. [2] and Streda
[3] found that the noninteracting Hall conductance σxy is a
multiple of e2/h, as long as the Fermi energy lies inside a gap
and they derived a formula for σxy involving occupied Bloch
states. Subsequently, it was shown that the Hall conductance
could be rewritten as −e2/h times a sum of Chern numbers
associated with the filled bands [4], which consist of the Berry
curvatures [5] integrated over the whole Brillouin zone. It
then became clear that the Thouless-Kohmoto-Nightingale–
den Nijs (TKNN) formula for σxy is a topological invariant,
and the integer Hall effect a robust topological property of
the noninteracting electron system. Some years later, Haldane
[6] proposed that the integer quantum Hall effect can occur
in the absence of Landau levels (LLs). He considered a
single-orbital tight-binding model on a honeycomb lattice [7]
with a sublattice-staggered on-site potential (orbital mass)
and complex hoppings between next-nearest-neighbor sites
that produce a staggered magnetic field configuration with
vanishing total flux through the unit cell. The phase diagram of
the model bears out two distinct topological phases surrounded
by a conventional insulating phase. Noninteracting systems
hosting integer quantum Hall effect in the absence of an
external magnetic field are referred to as anomalous quantum
Hall insulators, or simply Chern insulators.

The advent of graphene [8] and its remarkable properties
rekindled the interest in Haldane’s predictions, encouraging
both the search for materials that would fulfill the key at-
tributes of his model, as well as inquires into alternative

manifestations of topologically protected states. Kane and
Mele [9–11], for example, have shown that when spin-orbit
interaction is taken into account, it is possible to generate
a quantum spin Hall phase with conducting edge states that
are protected against elastic backscattering by time-reversal
symmetry (TRS). The anomalous quantum Hall effect was
observed in thin films Bi(Sb)2Te3 doped with Cr [12], and a
few years ago the Haldane model was experimentally realized
using ultracold fermionic atoms in a periodically modulated
optical honeycomb lattice [13]. Buckled honeycomb lattices
(e.g., silicene) under in-plane magnetic fields are predicted
to realize the Haldane model requiring only the magnetic
flux induced orbital effect [14]. Furthermore, the possibility
of an experimental realization of Haldane’s model has been
invigorated by recent evidences of strong proximity-induced
SOC in graphene [15–17], which together with the evidence
of proximity-induced exchange interaction in graphene on a
ferromagnetic substrate [18–20] open realistic possibilities
for future realizations of quantum anomalous Hall effect in
graphene. The novel engineering of heterostructures contain-
ing a CrI3 thin film and a transition metal dichalchogenides
monolayer [21] pave the way to the observation of quantum
anomalous Hall effect in van der Waals heterostructures.

Recently, Tsaran and Sharapov [22] predicted that two-
dimensional systems of massive Dirac fermions exhibit strong
Shubnikov–de Haas (SdH) oscillations in the off-diagonal
conductivity that could be observed in the spin or valley Hall
conductivity of Dirac materials. Motivated by these studies,
the present work employs quantum transport simulations to
explore the possible emergence of SdHs in the anomalous
(charge) Hall conductivity. For that purpose, we use the kernel
polynomial method (KPM) [23,24], together with a numerical
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implementation developed by García et al. [25], to calculate
the off-diagonal conductivity. Our numerical results for the
Haldane model show visible quantum magneto-oscillations
in the anomalous component of σxy . However, different from
Ref. [22], the oscillations have origins in a small asymmetry
of high order Landau levels (|n| > 0) under field reversal
B → −B. Although such asymmetry seems to have gone
unnoticed in earlier works, we analytically show that it derives
from quadratic correction to the low-energy spectrum around
the Dirac points, and it can lead to sizable oscillations at low
temperature that are similar to the traditional SdH oscillations
as both depend on the magnetic field and are a consequence of
the Landau levels.

The article is organized as follows. In Sec. II, we review the
tight-binding Hamiltonian for the Haldane model in external
magnetic field, discuss the numerical method, and report the
SdH oscillations in the anomalous part of the Hall conductivity.
Section III uses an extended low-energy approximation of the
Haldane model to analyze the dependence of the asymmetries
with the model parameters. In Sec. V we summarize our
findings and discuss how our analysis can be used in transport
experiments to characterize Chern insulators.

II. MODEL AND RESULTS

We consider the Haldane model on a honeycomb lattice in
a magnetic field

H = −
∑

⟨i,j⟩
t
ij

1 c
†
i cj −

∑

⟨⟨i,j⟩⟩
t
ij

2 eıϕij c
†
i cj +

∑

i

Mic
†
i ci, (1)

where t
ij
a = tae

φij are Peierls’ substitution modified hopping
integrals with phases φij = e/h̄

∫ j

i
A · dl, ϕij = ±ϕ if an elec-

tron hops clockwise (counterclockwise) around a hexagonal
plaquette (Fig. 1) and Mi are on-site potentials that equal
±M on sublattice A(B ). In what follows, we set M = 0 and
ϕ = π/2, so that the system is a Chern insulator in the absence
of external field (B = 0).

In order to assess the density of states (DOS) and the
transverse conductivity of large systems we employ the KPM
[24], which has been extensively applied to investigate the
electronic properties of graphene layers [26–29]. Within this
approach the Green’s functions and spectral operators are
approximated by accurate matrix polynomial expansions.
Chebyshev polynomials of the first kind are the most popular
choice given their unique convergence properties and relation
to the Fourier transform [30]. The expansion coefficients are
computed by means of a highly stable recursive procedure,
which allows one to treat very large system sizes. The first
step is to rescale the energy spectrum of Eq. (1) into the
interval domain [−1, 1] of convergence of the spectral series.
This is easily achieved by defining rescaled operators and
energies variables, that is, H̃ = (H − b)/a, and Ẽ = (E −
b)/a, where a = (ET − EB )/(2 − ϵ), and b = (ET + EB )/2.
Here, ET and EB denote the top and bottom limits of the
energy spectrum, respectively, and ϵ is a small cutoff parameter
introduced to avoid numerical instabilities. To improve the
numerical convergence, we follow Ref. [25] and consider weak
Anderson disorder in our calculations with on-site energies ϵi

randomly distributed between [−γ /2, γ /2] with γ = 0.02t .
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FIG. 1. (a) Hopping phases of the Peierls substitution with a
Landau gauge A = −Byx̂ in the unit cell (n,m). Phases for the NN
hopping are in green. Phases for the NNN hopping in sublattices A

and B are in red and blue, respectively. Here, φ′ = 3
√

3a2eB/4h̄.

(b) Fluxes enclosed by the different paths involving NN and NNN
hoppings for positive B.

The DOS of the system is expanded in terms of Cheby-
shev polynomials Tm(Ẽ) = cos[m arccos(Ẽ)]. The N -order
approximation to the rescaled DOS is

ρ(Ẽ) ≃ 1

π
√

1 − Ẽ2

N−1
∑

m=0

µmgmTm(Ẽ), (2)

where gm is a kernel introduced to damp spurious (Gibbs)
oscillations. The Chebyshev moments are obtained from µm =

Tr ⟨Tm(H̃ )⟩, where ⟨. . .⟩ denotes disorder average. To reduce
the numerical complexity, we employ the stochastic trace
evaluation technique

µm ≃ 1

R

〈

R
∑

r=1

⟨φr |Tm(H̃ )|φr⟩
〉

, (3)

with complex random vectors |φr⟩ = D−1/2 ∑D
i=1 eıθi |i⟩,

where {|i⟩}i=1...D is the original site basis, θi are independent
random phases [24], and R is the total number of random
vectors used in the calculation. The DOS for strong magnetic
fields pointing along the ±ẑ directions is shown in Fig. 2. It
reproduces the spectrum of the Haldane model, as expected.
The particle-hole symmetry breaking is caused by the inclusion
of the next-nearest neighbor hopping integral. Panel (a) shows
that the spectrum is only approximately symmetric under
reversal of the magnetic field direction. This is clearer in panel
(b) depicting a closeup of the DOS around the n = 1, 2 LLs,
where a small shift can be appreciated. Although the effect
is relatively small, it is not due to numerical inaccuracy. The
assymmetry results from competing next-nearest neighbor flux
accumulation inside the plaquettes (see Fig. 1), where closed
loops connecting sites of sublattice A have different phase vari-
ation than the ones connecting sites of sublatticeB that depends
on the sign of the magnetic field. This difference produces a
mismatch between LLs of positive and negative fields and it is
responsible for the emergence of SdH oscillations, as we shall
subsequently see.

085409-2



SHUBNIKOV–DE HAAS OSCILLATIONS IN THE … PHYSICAL REVIEW B 98, 085409 (2018)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
E/t

0

0.1

0.2

0.3

0.4

0.5

0.6

ρ
(E

/t
) 0.3 0.32 0.34

E/t

0

0.1

0.2

0.3

0.4
(a) (b)n =1

FIG. 2. Density of states calculated as a function of energy for
a system described by the Haldane model with 2 × 800 × 400 sites,
t2 = 0.5t

6
√

3
, B = 131 T, and γ = 0.1t . The spectral expansion [Eq. (2)]

employed 4000 polynomials and 70 random vectors. A Jackson kernel
was used to damp Gibbs oscillations [24]. (a) Plot of the full density of
states for positive field configurations (blue dashed line) and negative
field configurations (red solid line). (b) Closeup of the DOS around
the n = 1 and n = 2 LLs.

To calculate the conductivity tensor σαβ , we use an efficient
numerical implementation of the KPM developed by García,
Covaci, and Rappoport [25] based on the spectral expansion
of the Kubo-Bastin formula [31]:

σαβ (µ, T , B ) =
ıe2h̄

!

∫ ∞

−∞
dE f (µ, T ,E)

× Tr

〈

vαδ(E − H )vβ

dG+

dE

− vα

dG−

dE
vβδ(E − H )

〉

. (4)

In the above, µ, T , and B denote the chemical potential,
temperature, and applied magnetic field, respectively. The
Cartesian components of the velocity operator are designated
by vα(β ), with α,β = x, y. G± stands for the retarded (ad-
vanced) single-particle Green’s function and δ(E − H ) is the
spectral operator. Finally, ! is the area and f (µ, T ,E) =

1/{1 + exp[−(µ − E)/kBT ]} is the Fermi-Dirac distribution
function. The Green’s functions and spectral operators in
Eq. (4) are expanded in Chebyshev polynomials as performed
for the DOS. Given the large number of moments retained in
our calculations, the energy resolution is only limited by the
mean level spacing δE of the simulated system [29,32].

The Hall conductivity consists of two parts: (i) a regular
contribution σR

xy antisymmetric with respect to inversion of
magnetic field direction and (ii) an anomalous contribution
σA

xy . These are obtained from σR
xy = 1

2 (σ+
xy − σ−

xy ) and σA
xy =

1
2 (σ+

xy + σ−
xy ) with σ±

xy = σxy (µ, T ,±B ). The results of our
simulations are displayed in Fig. 3. The anomalous contribu-
tion σA

xy to the Hall conductivity is shown in panel (c). The
steps in σxy occur whenever the energy crosses a LL (compare
with DOS in Fig. 2 ). The quantized anomalous Hall plateau is
clearly visible; however, oscillations develop at high electronic
density. Upon comparison with the DOS, it becomes clear
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FIG. 3. Hall conductivity of the Haldane model calculated as
a function of energy. Simulation parameters as in Fig. 2. Panels
(a) and (b) depict the Hall conductivities calculated for B⃗ = ∓Bẑ,
respectively, and panel (c) shows the calculated anomalous part of
the Hall conductivity.

that the SdH oscillations are produced by the shift in the
spectra for B⃗ = ±Bẑ. These results show that the breaking
of electron-hole symmetry has important consequences in the
anomalous part of the Hall conductivity.

III. CONTINUUM MODEL

To shed further light onto the oscillations seen in the quantum
transport calculations, we derive a low-energy continuum
model. To this end, we expand the tight-binding Hamiltonian
Eq. (1) in momentum space around the inequivalent Dirac
points K± in the Brillouin zone [26]. The magnetic field is
included by minimal coupling. We choose the basis (A, B)t

for the four-component spinors with A = (AK+, AK−) (sim-
ilarly for B). To linear order in h̄δk = h̄(k − K±), one obtains
[6]

HL.E. = vF (τz ⊗ πx ⊗ σx + πy ⊗ σy ) + " τz ⊗ σz. (5)

The low-energy Hamiltonian describes the coupling between
the momentum of the particles and the pseudospin in the
long-wavelength limit. π⃗ = h̄δk⃗ − eA⃗ denotes the canoni-
cal momentum with A⃗ = B(−y, 0, 0) in the Landau gauge,
vF = 3t1a/2h̄ represents the Fermi velocity, a is the lattice
constant, and τz = ±1 specifies the choice of Dirac point,
K± = ±(4π/3a)k̂x . Here, " = 3

√
3t2 is referred to as the

Haldane “mass.” The spectrum reads as

E(1)
n = η

√

"2 + 2|n|

(

h̄vF

lB

)2

, for |n| ̸= 0, (6)

E
(1)
0 = −sB", for n = 0. (7)

η = ±1 for electrons (holes), sB = sgn(B ), and lB =

(h̄/e|B|)1/2 is the magnetic length. E(1)
0 changes sign when the

direction of the applied magnetic field is reversed. However, for
|n| ̸= 0, E(1)

n is independent of the field direction, in contrast to
the numerical results. This is true for the expansion up to linear
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order in h̄δk⃗, but the inclusion of higher order terms can provide
further refinements to the LLs energy spectrum [33,34]. We
then include quadratic terms in the low-energy expansion. As
far as the shift in the energy spectra for B⃗ = ±ẑ is concerned, it
suffices to consider the correction to the next-nearest neighbors
hopping. We find

H
(2)
L.E. = HL.E. −

π
2

2m′ τz ⊗ σz, (8)

with m′ = 2h̄2/(t29
√

3a2). The spectrum reads as

E
(2)
n̸=0 = sB

h̄2

2m′l2
B

+ η

√

(

" − h̄2|n|

m′l2
B

)2

+ 2|n|

(

h̄vF

lB

)2

,

(9)

E
(2)
0 = −sB

(

" − h̄2

2m′lB2

)

for n = 0. (10)

The inclusion of second order terms reproduces the LL shift
when the direction of magnetic field is inverted, as found in
our numerical simulations: "E(2)

n = En(|B|) − En(−|B|) =

h̄2/(m′l2
B ) for |n| ̸= 0 is independent of n, and increases

linearly with t2. The inclusion of quadratic terms in the
expansion also reduces the effective contribution from the
Haldane mass by a factor that increases linearly with |n| for
|n| ̸= 0.

The difference between the energy spectra in the two ap-
proximations is shown in Fig. 4. "En increases monotonically
with n due to the character of the second-order correction in
Eq. (8). The dependence of the energy shift with n and t2,
which is related to the size of the topological gap, can be
used to extract the parameters of Chern insulators in transport
measurements.

In the inset of Fig. 4 we compare the shifts determined from
Eq. (9) with the tight-binding results for different values of the
Haldane gap " = 6

√
3t2. They are in excellent agreement,
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FIG. 4. Energy spectra difference "En = E (1)
n − E (2)

n calculated
for positive (red circles) and negative (blue squares) magnetic field.
Inset: energy spectra shift according to continuum model (red line)
and tight-binding calculations (solid circles). Simulation parame-
ters: t2 = 0.2t

6
√

3
, D = 2 × 106 atoms, |B| = 157 T, N = 5000, and

R = 60.

showing that shift is a result of deviations from the linear
dispersion relation in the vicinity of the Dirac points, arising
from a competing next-nearest neighbor hopping integral
introduced by Haldane and the external magnetic field.

IV. ANOMALOUS OSCILLATIONS

The continuum model can provide crucial information on the
anomalous Hall conductivity for realistic magnetic fields not
accessible with our KPM implementation. For this purpose,
we evaluate the transverse conductivity σxy within the empty-
bubble approximation [22,35]

σxy =
e2h̄

2π ı l2
B

∑

n̸=m

⟨vx⟩nm⟨vy⟩mn

δE
(2)
nm(δE(2)

nm + ıγ )
δfnm(µ, T ), (11)

where E(2)
nm = E(2)

n − E(2)
m , δfnm is the respective difference

of occupation factors, and γ is a broadening parameter. The
velocity matrix elements for states around K+ are

⟨vx⟩nm = vF Nn,m[αnδ|n|,|m|−1 + αmδ|n|−1,|m|], (12)

⟨vy⟩mn = ivF Nn,m[−αnδ|m|−1,|n| + αmδ|m|,|n|−1], (13)

with

αn =
E(2)

n − sB
h̄2

2m′l2
B

− " +
h̄2|n|

lB
2m′

√
2|n| h̄vF

lB

, (14)

Nnm =
1

√

1 + (αn)2

1
√

1 + (αm)2
. (15)

Figure 5 shows the predicted anomalous Hall conductivity
at 10 T for selected temperatures, using indicative values of
hopping integrals motivated by a realization with graphene,
that is, t1 = 3 eV and t2 = 3 × 10−2 eV. For example, a
Chern insulator could be induced in graphene by proximity
effect with either monolayer T′-WTe in combination with a
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FIG. 5. (a) Anomalous part of the Hall conductivity calculated
for the Haldane model in the continuum limit, including second
order corrections. Results are obtained for t2 ≈ 0.03 eV, |B| = 10 T,
Ŵ = 0.3 meV, and different temperatures: T = 35 K (blue solid line),
T = 70 K (red dashed line), and T = 140 K (black solid line). Panel
(b) highlights the SdH oscillations in the anomalous part of the Hall
conductivity.
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ferromagnetic insulator or magnetic doped T′-WTe. The WTe
monolayer provides the quantum spin Hall state [36] and
the spin degeneracy is lifted by a ferromagnetic layer [37].The
effect is less visible at higher temperatures due to the smearing
of the quantum Hall steps. It is noteworthy that these SdH
oscillations have a different origin from those discussed in
Ref. [22], which manifest in the valley or spin Hall conductivity
and thus require measurements of the nonlocal resistance [38].
We deal with a different model system, which in the absence of
a magnetic field is a Chern insulator with Chern number C = 1.
Here, the renormalized Haldane mass has opposite signs at
K± and leads to a Hall conductivity σxy ̸= 0 for B = 0. The
predicted SdH oscillations should manifest in charge transport
measurements of σxy (µ, T ,±B ). Furthermore, the present
model also differs from the model in Ref. [22] by the second
order terms. As a result, the two SdH oscillations are not
directly comparable.

V. CONCLUSIONS

We have investigated the transport properties of the Haldane
model in the presence of strong magnetic fields by means
of real-space calculations and low-energy continuum models.
We identified in our numerical calculations a displacement
between the energy spectra for magnetic fields of opposite
directions, verifying that the Landau levels for |n| ̸= 0 are
only approximately symmetric with respect to inversion of
the applied magnetic field B → −B. The mismatch between
the LLs of positive and negative magnetic fields leads to
SdH oscillations in the anomalous contribution to the Hall
conductivity, which can be observed even at liquid nitrogen
temperatures for Chern insulators with large topological gaps.

The presence of the quantum magneto-oscillations in the
anomalous contribution to the Hall conductivity arises as a
direct consequence of competing neighbor flux accumulation
due to broken TRS. Therefore, we expect this phenomenon
to be present in systems that exhibit an anomalous Hall state
and can be modeled by generalized versions of the Haldane
model [39,40]. Furthermore, these oscillations could be used
as a tool to extract properties of the underlying microscopic
mechanism that creates the energy gap in the system, such
as the next-nearest neighbor amplitude in the Haldane model
[6] or the tunneling amplitude between surface states of thin
films mediated by spin-orbit coupling [41–43]. The recent
observation of quantum spin Hall effect in two-dimensional
WTe2 at temperatures of up to 100 K [36] hints at a possible
route for the fabrication of magnetic topological insulators
with large topological gaps, where SdH oscillations in the
anomalous contribution to Hall conductivity as described in
this work could be observed.

ACKNOWLEDGMENTS

We acknowledge the Brazilian agencies CAPES and CNPq
for financial support. T.G.R. and A.F. acknowledge support
from the Newton Fund and the Royal Society through the
Newton Advanced Fellowship scheme (Ref. No. NA150043).
J.H.G. received funding from the European Unions Horizon
2020 research and innovation programme under Grant No.
696656 (Graphene Flagship). ICN2 is supported by the Severo
Ochoa program from Spanish MINECO (Grant No. SEV-2013-
0295) and funded by the CERCA Programme/Generalitat de
Catalunya.

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs,
Phys. Rev. Lett. 49, 405 (1982).

[3] P. Streda, J. Phys. C: Solid State Phys. 15, L1299 (1982).
[4] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
[5] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[6] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[7] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,

S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 (2004).

[9] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[10] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[11] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[12] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K.

Li, Y. Ou, P. Wei, L.-L. Wang et al., Science 340, 167 (2013).
[13] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,

D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).
[14] A. R. Wright, Sci. Rep. 3, 2736 (2013).
[15] Z. Wang, D.-K. Ki, H. Chen, H. Berger, A. H. MacDonald, and

A. F. Morpurgo, Nat. Commun. 6, 8339 (2015).
[16] L. A. Benítez, J. F. Sierra, W. Savero Torres, A. Arrighi, F.

Bonell, M. V. Costache, and S. O. Valenzuela, Nat. Phys. 14, 303
(2018).

[17] T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J. van Wees,
Nano Lett. 17, 7528 (2017).

[18] Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, Phys. Rev.
Lett. 114, 016603 (2015).

[19] A. Hallal, F. Ibrahim, H. Yang, S. Roche, and M. Chshiev, 2D
Mater. 4, 025074 (2017).

[20] V. T. Phong, N. R. Walet, and F. Guinea, 2D Mater. 5, 014004
(2018).

[21] D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas,
B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A.
McGuire et al., Sci. Adv. 3, 1603113 (2017).

[22] V. Y. Tsaran and S. G. Sharapov, Phys. Rev. B 93, 075430 (2016).
[23] R. N. Silver and H. Röder, Phys. Rev. E 56, 4822 (1997).
[24] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod.

Phys. 78, 275 (2006).
[25] J. H. García, L. Covaci, and T. G. Rappoport, Phys. Rev. Lett.

114, 116602 (2015).
[26] A. Ferreira, J. Viana-Gomes, J. Nilsson, E. R. Mucciolo, N. M.

R. Peres, and A. H. Castro Neto, Phys. Rev. B 83, 165402 (2011).
[27] Z. Fan, A. Uppstu, and A. Harju, Phys. Rev. B 89, 245422 (2014).
[28] T. P. Cysne, T. G. Rappoport, A. Ferreira, J. M. V. P. Lopes, and

N. M. R. Peres, Phys. Rev. B 94, 235405 (2016).
[29] N. Leconte, A. Ferreira, and J. Jung, in 2D Materials, edited

by F. Iacopi, J. J. Boeckl, and C. Jagadish, Semiconductors and
Semimetals Vol. 95 (Elsevier, Amsterdam, 2016), pp. 35–99.

085409-5



CANONICO, GARCÍA, RAPPOPORT, FERREIRA, AND MUNIZ PHYSICAL REVIEW B 98, 085409 (2018)

[30] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed.,
Dover Books on Mathematics (Dover Publications, Mineola,
NY, 2001).

[31] A. Bastin, C. Lewiner, O. Betbedermatibet, and P. Nozieres, J.
Phys. Chem. Solids 32, 1811 (1971).

[32] A. Ferreira and E. R. Mucciolo, Phys. Rev. Lett. 115, 106601
(2015).

[33] Y. F. Suprunenko, E. V. Gorbar, V. M. Loktev, and S. G. Sharapov,
Low Temp. Phys. 34, 812 (2008).

[34] A. Kretinin, G. L. Yu, R. Jalil, Y. Cao, F. Withers, A. Mishchenko,
M. I. Katsnelson, K. S. Novoselov, A. K. Geim, and F. Guinea,
Phys. Rev. B 88, 165427 (2013).

[35] A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M.
R. Peres, and A. H. Castro Neto, Phys. Rev. B 84, 235410
(2011).

[36] S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T.
Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Science 359, 76
(2018).

[37] P. Wei, S. Lee, F. Lemaitre, L. Pinel, D. Cutaia, W. Cha, F.
Katmis, Y. Zhu, D. Heiman, J. Hone et al., Nat. Mater. 15, 711
(2016).

[38] R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin,
F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S.
Novoselov, L. S. Levitov et al., Science 346, 448 (2014).

[39] S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Phys. Rev. B 86,
241112 (2012).

[40] X.-P. Liu, W.-C. Chen, Y.-F. Wang, and C.-D. Gong, J. Phys.:
Condens. Matter 25, 305602 (2013).

[41] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang,
Science 329, 61 (2010).

[42] Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen,
J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan et al., Nat. Phys. 6, 584
(2010).

[43] X. Kou, L. Pan, J. Wang, Y. Fan, E. S. Choi, W.-L. Lee, T. Nie,
K. Murata, Q. Shao, S.-C. Zhang et al., Nat. Commun. 6, 8474
(2015).

085409-6


