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Abstract: Predictive functional control (PFC) is a fast and effective controller that is widely used for

processes with simple dynamics. This paper proposes some techniques for improving its reliability

when applied to systems with more challenging dynamics, such as those with open-loop unstable

poles, oscillatory modes, or integrating modes. One historical proposal considered is to eliminate

or cancel the undesirable poles via input shaping of the predictions, but this approach is shown to

sometimes result in relatively poor performance. Consequently, this paper proposes to shape these

poles, rather than cancelling them, to further enhance the tuning, feasibility, and stability properties

of PFC. The proposed modification is analysed and evaluated on several numerical examples and

also a hardware application.

Keywords: predictive control; unstable; underdamped; integrating; input shaping

1. Introduction

Predictive functional control (PFC) is a simple controller that is effective for small-scale

single-input-single-output (SISO) applications, especially for low-order and stable processes [1–3].

The main advantages of PFC compared to its prime competitor—that is, proportional integral derivative

(PID)—are its ability to handle constraints and its transparent tuning parameters. Indeed, it must be

emphasised that the performance of PFC should not be benchmarked against more advanced model

predictive control (MPC) strategies [4], because the implementation is relatively much cheaper and

requires only low computation with very straightforward coding [5,6].

Nevertheless, despite its apparently attractive benefits, PFC has received relatively little attention

in the academic literature because of the lack of a priori stability guarantees [7,8], which are possible

with more advanced MPC approaches. Consequently, several recent works have developed the

basic concept of PFC to improve its overall tuning properties while providing a confident assurance

in the resulting closed-loop performance and constraint handling [9–12]. However, most of these

modifications perform well only with low-order and simple dynamical processes. For a system

with open-loop unstable poles, significant underdamping, or integrating dynamics, PFC is quite

challenging to tune effectively [13], and the resulting divergent or oscillating predictions may give rise

to infeasibility and/or robustness issues.

PFC practitioners often deploy a type of cascade structure to handle a challenging dynamics

process, where an inner loop is used to improve the dynamics for an outer loop to control [14,15].

This modification enables a user to retain an independent model (IM) structure that handles

uncertainties, while retaining a similar tuning concept as the conventional approach. Nevertheless,

the inner PFC can only accept a proportional-type controller to avoid any overcomplication when
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handling constraints [6]. This restriction makes it difficult to have a systematic selection of gain, rather

than an ad hoc approach. Moreover, a back-calculation or anti-wind-up technique is required to

avoid any saturation while satisfying the constraints [6], which also can be conservative and thus

affect performance.

A fundamental conceptual weakness of a simplistic PFC approach is that one is basing decisions

on an open-loop prediction, which may have undesirable, possibly divergent, dynamics; matching this

to a desirable closed-loop dynamic will lead to an ill-posed approach. Hence, an alternative approach

is to pre-stabilise/pre-shape the output predictions by shaping the future input dynamics so that the

effect of unwanted poles on the predictions are alleviated or cancelled [16]. This modification can

retain the systematic tuning concept of PFC, in addition to facilitating a recursive feasibility guarantee

feature for constraint handling. However, the performance of this control law is not always desirable,

since the cancellation of specified modes (poles) within the predictions using a minimal number of

control input changes often requires an aggressive input trajectory [16–18], which is not implementable

or ideal for some cases.

In practice, less aggressive shaping to remove the undesirable modes from the prediction [19] is

preferable, and this forms the main thrust of the proposal in this paper. More specifically, the proposal

here is that, rather than using a small, finite number of control moves (effectively, finite impulse

response (FIR) parameterisation), such as in Generalized Predictive Control (GPC) Added the

defination and conventional PFC, the future input moves will be parameterised using an infinite

impulse response (IIR) instead. The preference for IIR over FIR is due to IIR being more convenient to

manipulate and define than a high-order FIR, in general. In turn, by allowing the output modes to

evolve over many more samples, the required input will be less aggressive. Nevertheless, due to the

desire for simplicity and transparency that is a central tenet of PFC, in this paper, we choose not to

generalise the parameterisation for different dynamics. Instead, this work seeks to provide some rigour

on how to effectively and systematically shape the future input for a given dynamic and, moreover,

how to ensure some recursive feasibility properties during constraint handling.

Section 2 of this paper presents a brief formulation of conventional PFC. Section 3 introduces the

concept of input shaping PFC, together with the constraint handling approach. Section 4 demonstrate

the proposed algorithms on several numerical examples and also on some laboratory hardware.

Section 5 provides the conclusions.

2. Conventional PFC

This section presents, in brief, the main concepts, notation, and formulation of PFC, together with

a systematic constraint handling approach. For more detailed derivations, theory, and concepts of PFC,

an interested reader may refer to the references, e.g., [5,6,13,20]. Without loss of generality, a controlled

autoregressive and integrated moving average (CARIMA)-based model is used instead of the standard

independent model (IM) structure to derive the required unbiased predictions, as this form is more

amenable to the algebra required to implement the shaping. Hence, the model will take the form:

a(z)yk + b(z)uk +
ζk

∆(z)
; ∆(z) = 1− z−1 (1)

where b(z) = b1z−1 + ... , a(z) = 1 + a1z−1 + ..., yk, uk are the outputs and inputs, respectively,

at sample k, and ζk is an unknown zero mean random variable used to capture uncertainty.

2.1. Control Law

PFC design is based on the assumption that a closed-loop response should follow a first-order

dynamic from the current state yk to the desired target r [20]. In practice, one aims to achieve this
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by ensuring a matching using the open-loop prediction, but only at a single point. In other words,

the predicted output trajectory is chosen to satisfy the following equality:

yk+n|k = (1− λn)r + λnyk (2)

where yk+ny |k is the n-step ahead system prediction at sample time k, and λ is the desired closed-loop

pole that will determine the speed of convergence. PFC practitioners typically select the desired

closed-loop time response (CLTR) which has an explicit link with the corresponding closed-loop pole,

that is, λ = e
−3T

CLTR , where T is the sampling period [6].

The predictions for the CARIMA model (1) are standard in the literature (e.g., [4,21]), so only

the final form is given here. For input increments ∆uk+i, the n-step ahead future output prediction is

formed as:
y
→k+1|k

= H∆uk
→

+ P∆uk
←

+ Qyk
←

(3)

where the left and right arrow underlying vectors represent past and future variables, respectively.

The parameters H, P, Q depend on the model parameters, and for a model of order m:

∆uk
→

=









∆uk

∆uk+1
...

∆uk+n−1









; ∆uk
←

=









∆uk−1

∆uk−2
...

∆uk−m









; yk
←

=









yk

yk−1
...

yk−m









; y
→k+1|k

=









yk+1

yk+2
...

yk+n









(4)

In conventional PFC [6,20], within the predictions we select ∆uk+i = 0, i > 0. Uusing this and

substituting the n-step ahead prediction from (3) into equality (2) gives:

Hne1∆uk + Pn∆uk
←

+ Qnyk
←

= (1− λn)r + λnyk (5)

where ei is the ith standard basic vector and Hn = eT
n H, Pn = eT

n P, Qn = eT
n Q. Hence, the PFC control

law is given as:

∆uk =
1

hn

[

(1− λn)r + λnyk −Qnyk
←
− Pn∆uk

←

]

; hn = Hne1 (6)

Remark 1. Figure 1 shows a comparison of simplified flow diagrams, where both PFC and MPC share the same

structure, yet have a different optimisation process, where the constraint handling is embedded inside the main

block. As for PID, the control input is obtained simply by tuning the gains, while the constraints are handled via

a rule base [22].

Remark 2. It is noted that PFC performs well for a system with close to a monotonic step response, such as a

first-order system and overdamped second-order dynamics, assuming, of course, a sensible choice of the tuning

parameters λ and n [11–13]. However, the same tuning procedure may not work for systems with less simple

open-loop dynamics, leading to ill-posed decision making and unreliable control.
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PFC/MPC control structure

PID control structure

Figure 1. Comparison of flow diagrams for predictive functional control (PFC), model predictive

control (MPC), and proportional integral derivative (PID).

2.2. Constraint Handling

The constraint handling approach presented here is adapted from the standard MPC

literature [21,23] but with simpler code, and it is more systematic and less conservative than the

back-calculation typically used in conventional PFC algorithms [24]. Similarly, it will be more efficient

than the ad hoc approaches used with PID. Assume constraints, at every sample, on input rate, input,

and states, as follows:

∆u ≤ ∆uk ≤ ∆u; u ≤ uk ≤ u; y ≤ yk ≤ y, ∀k (7)

The user needs to:

1. Find a suitable horizon m [23] over which to compute the entire set of future output predictions

in a single vector: y
→k+1|k

= He1∆uk + P∆uk
←

+ Qyk
←

. The horizon for output predictions y
→k+1

,

and thus the row dimension of H, should be long enough to capture all core dynamics!
2. Combine the input constraints, rate constraints, and output predictions into a single set of

linear inequalities:

C∆uk ≤ fk (8)

C =












1

−1

1

−1

He1

−He1












; fk =













u− uk−1

−u + uk−1

∆u

−∆u

Ly− P∆uk
←
−Qyk

←
−Ly + P∆uk

←
+ Qyk

←













; L =









1

1
...

1









where fk depends on past data in ∆uk
←

, yk
←

and on the limits.
3. The input/output predictions will satisfy constraints if inequalities (8) are satisfied, and thus the

PFC algorithm should consider these explicitly.

Next, a single simple loop is utilised to find the ∆uk closest to the unconstrained solution of (6),

while satisfying (8).
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Algorithm 1. Simple PFC algorithm with systematic constraint handling

At each sample:

1. Define the unconstrained value for ∆uk from (6).
2. Define the vector fk of (8) (it is noted that C does not change).
3. Use a simple loop covering all the rows of C as follows:

(a) Check the ith constraint that is the ith row eT
i C∆uk ≤ fk,i of C∆uk ≤ fk.

(b) If eT
i C∆uk > fk,i, then set ∆uk = ( fk,i)/[e

T
i C], else leave ∆uk unchanged.

Remark 3. For a simple and stable open-loop process and for suitably large m, Algorithm 1 is guaranteed to be

recursively feasible and, moreover, to converge to a possible value for ∆uk that is closest to the unconstrained

choice [12]. However, this benefit does not apply to systems with more challenging dynamics, such as when the

open-loop prediction is divergent.

3. Input Shaping PFC

This section presents the concept of input shaping to pre-stabilise (or pre-condition) the open-loop

predictions of processes with undesirable dynamics. The shaping of input predictions can be done either

via explicit pole cancellation or pole shaping, and both methods can be used to formulate a PFC control

law which retains a recursively feasible constrained solution. A key issue, however, is whether one

deploys FIR or IIR parameterisations of the predictions for the future input increments ∆uk+i|k, i ≥ 0.

3.1. Pre-Stabilisation of Predictions via Pole Cancellation

For systems with poor open-loop dynamics, the constant input assumption of typical PFC does

not provide enough flexibility within the predicted input to both cancel the effect of an undesirable

pole and to get nice convergent behaviour [13,17,19]. Thus, it is crucial to first stabilise the prediction

before implementing it into a control law [25]. The first step is to factorise the poles in the denominator:

∆y(z) =
b(z)

a(z)
∆u(z); a(z) = a−(z)a+(z) (9)

where a+(z) contains the undesirable poles. Utilising the Toeplitz/Hankel form [21], the future output

predictions can be computed as:

[Ca−∆][Ca+ ] y
→k+1

+ HA y
←k

= Cb∆ u
→k

+ Hb∆ u
←k

(10)

where for general polynomial f (z) = f0 + f1z−1 + ...+ fnz−n,

C f =









f0 0 0 ...

f1 f0 0 ...
...

...
...

. . .

fn fn−1 fn−2 ...









; H f =









f1 f2 ... fn

f2 f2 ... 0
...

...
...

. . .

0 0 ... 0









Rearranging prediction (10) in more compact form, we get:

y
→k+1

= [Ca−∆]
−1[Ca+ ]

−1[Cb∆ u
→k

+ Hb∆ u
←k
− HA y

←k
︸ ︷︷ ︸

p

] (11)

from which the presence of the undesirable modes are transparent through the factor [Ca+ ]
−1.
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Lemma 1. Selection of the future input sequence ∆ u
→k

, at each sample, such that the following equality

is satisfied:

[Cb∆ u
→k

+ p] = Ca+γ (12)

where γ is a convergent sequence or a polynomial, will ensure that the corresponding output predictions in (11)

do not contain the undesirable modes in a+.

Proof. This is self-evident by substitution of (12) into (11), which gives:

y
→k+1

= [Ca−∆]
−1[Ca+ ]

−1[Ca+ ]γ = [Ca−∆]
−1γ (13)

so that only the acceptable modes in a−(z) remain in the predictions, along with any components in

the convergent sequence γ. It is noted that this choice automatically includes the initial conditions

within p and thus updates each sample as required.

Remark 4. Requirement (12) can be solved by a small number of simultaneous equations [21], where the

minimal-order solution can be represented as:

∆ u
→k

= P1p; γ = P2p (14)

for suitable P1, P2. The required dimension of non-zero elements in vector ∆ u
→k

corresponds to at least one more

than the number of undesirable modes (na+ ), while the order of γ is usually taken as nγ = np − na+ , where np

is the effective dimension of p (which depends upon the column dimensions of Hb, HA).

To ensure the future manipulated control moves are convergent, while adding some flexibility for

modifying the output predictions, the input requirement in (14) can be enhanced to:

∆ u
→k

= P1p + Ca+φ (15)

where the vector parameter φ denotes the degrees of freedom (d.o.f.) within the predictions.

Theorem 1. Using the new shaped input (15) ensures that the undesirable modes do not appear in the output

predictions, irrespective of the choice of φ. The output predictions are convergent if φ is finite-dimensional or a

convergent infinite dimensional sequence.

Proof. Substitute input prediction (15) into output prediction (12), and the predictions become:

y
→k+1

= [Ca−∆]
−1[Ca+ ]

−1[Cb∆ u
→k

+ p]

= [Ca−∆]
−1[Ca+ ]

−1[Ca+γ + CbCa+φ]

= [Ca−∆]
−1[Cbφ + γ]

(16)

The prediction can be represented with an equivalent z-transform:

y
→
(z) =

[1, z−1, z−2, · · · ][γ + Cbφ]

a−(z)
=

γ(z) + b(z)φ(z)

a−(z)
(17)

It is known from Lemma 1 that the contribution from γ gives a convergent prediction, and thus

overall convergence is obvious as long as φ(z) is convergent (or an FIR).

Remark 5. Noting the definition of p in (11), the n-step ahead output prediction with prediction class (15) and

(17) can be put in a more common form as:

yk+n|k = Hs,nφ + Ps,n∆uk
←

+ Qs,nyk
←

(18)
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where Hs,n, Ps,n, and Qs,n are suitable matrices, and the additional subscript ‘s’ is used to denote shaping and φ

is taken to be FIR (equivalently a finite dimensional vector). Note, however, that typically for PFC, φ is a scalar.

Also, it is easy to show [18] that choosing φ = 0 will automatically give the same input predictions as those

deployed at the previous sample, which enables consistency of predictions from one sample to the next.

3.2. Pre-Stabilisation via Pole Shaping

It is known that dead-beat pole cancellation can require aggressive inputs, and the minimal-order

solutions to (12) are in effect dead-beat input predictions [16,19]. Although dead-beat solutions are

easy to define and thus have some advantages in terms of computation and transparency, in practice,

a user may desire a less aggressive shaping that is more implementable in a real system. Alongside

this, the popularity of dual mode approaches in the literature [26] is partially because they allow

the implied input predictions to converge to the steady state asymptotically, rather than in a small,

finite number of steps. Thus, a logical question to ask is whether a smoother solution to (12)—that is,

one where the implied solutions for γ(z), φ(z) used in (17) have some poles, say α(z)—would work

better for PFC.

The mainstream MPC community has focussed on optimal control solutions, but, given that

PFC is intended to be simple and low-dimensional, the proposal here is that it is more reasonable to

investigate the potential of simple default choices for the asymptotic dynamics α(z) within the input

and output predictions. Clearly, this choice can be strongly linked to the target closed-loop behaviour

and/or system knowledge.

Proposal 1. By definition, the integrator has a pole on the unit circle—that is, factor (1− z−1)—and, conversely,

cancelling the pole as in (12) is equivalent to enforcing a pole on the origin—that is, factor (1− 0 z−1). Hence,

the choice of pole factor α = (1− 0.5 z−1) represents a simple half-way house trade-off between these two choices.

Proposal 2. For a process with significant underdamping, the implied α(z) will have only real poles which are

chosen to be close to the real parts of the oscillatory poles. This will reduce the undesirable oscillation in the

output predictions, but not change the convergence speed, albeit the input may then be somewhat oscillatory.

Proposal 3. For open-loop unstable systems, a simple default solution simply inverts the unstable poles, that is,

defining α(z) such that a+(zi) = 0 ⇒ α(1/zi) = 0.

Lemma 2. The dynamics α(z) will be present in the predictions if the following Diophantine equation is used

to solve the input/output prediction pairing.

b(z)w(z) + α(z)p(z) = a+(z)γ̂(z); p(z) = [1, z−1, ...]p (19)

⇒ ∆ u
→
(z) =

w(z)

α(z)
, y
→
(z) =

γ̂(z)

a−(z)∆(z)α(z)

Proof. First, note that (19) is equivalent to solving:

[CbC−1
α w + p] = Ca+C−1

α γ̂ (20)

and, moreover, Equation (20) follows directly from enforcing (12) while assuming ∆ u
→k

= C−1
α w.

Hence, substituting this ∆ u
→k

into (11) gives:

y
→k+1

= [Ca−∆]
−1[Ca+ ]

−1[Cb∆ u
→k

+ p]

= [Ca−∆]
−1[Ca+ ]

−1[CbC−1
α w + p]

= [Ca−∆]
−1[Ca+ ]

−1[Ca+C−1
α γ̂] = C−1

a−∆
C−1

α γ̂

(21)

It is evident, therefore, that the desired poles are in the predictions for both the input

and output.
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Remark 6. The new requirement (20) can be solved similarly to (12), where the minimal-order solution for w

and γ̂ are:

w = P̂1p; γ̂ = P̂2p (22)

Theorem 2. A convergent prediction class which embeds both the desired asymptotic poles and some degrees of

freedom (d.o.f.) can be defined from:

w = P̂1p + Ca+φ; ∆ u
→k

= [Cα]
−1[P̂1p + Ca+φ] (23)

where convergent IIR or FIR φ constitutes the d.o.f.

Proof. This is analogous to Theorem 1 and is based on superposition. The additional component

in w—that is, Ca+φ—necessarily cancels the undesirable poles and gives overall convergent output

predictions. So, using (21), then: Added hat on top of gamma in Equation (24).

y
→k+1

= C−1
a−∆

C−1
a+

[Cb∆ u
→k

+ p]

= C−1
a−∆

C−1
α γ̂ + C−1

a−∆
C−1

a+
C−1

α [Ca+Cbφ]

= C−1
a−∆

C−1
α [γ̂ + Cbφ]

(24)

Remark 7. By extracting the nth row and noting the definition of p in (11), the n-step ahead prediction from (24)

can be rearranged in a more general form as:

yk+n|k = hn,αφ + Pn,α∆uk
←

+ Qn,αyk
←

(25)

for suitable hn,α, Pn,α, Qn,α, and it is noted that as is conventional for PFC, φ has just a single non-zero parameter

in order to retain computational simplicity and to have just a single d.o.f. for satisfying the control law (2).

3.3. Proposed Shaping PFC Control Laws

Since the shaped predictions of (18) and (25) are derived in a general form, two new control

laws—Pole Cancellation PFC (PC-PFC) and Pole Shaping PFC (PS-PFC)—can be formulated in a

conventional manner after selecting a suitable coincidence horizon n and desired closed-loop pole λ.

[PC-PFC] The d.o.f φ is computed by substituting prediction (18) of PC-PFC into equality (2),

and thus:

φ =
1

hn,s

[

(1− λn)r + λnyk −Qn,syk
←
− Pn,s∆uk

←

]

(26)

then, the current input increment ∆uk is determined simply by inserting φ into the predicted input

of (15).

[PS-PFC] The d.o.f φ is computed by substituting prediction (25) of PS-PFC into equality (2),

and thus:

φ =
1

hn,α

[

(1− λn)r + λnyk −Qn,αyk
←
− Pn,α∆uk

←

]

(27)

then, the current input increment ∆uk is determined simply by inserting φ into the predicted input

of (23).

3.4. Constraint Handling Approaches with Recursive Feasibility

A core advantage of MPC, in general, is that the optimised predictions can be restricted to ones

which satisfy constraints; the d.o.f. within the predictions are used to ensure constraint satisfaction.

For PC-PFC and PS-PFC, the d.o.f. in the predictions is the variable φ. This section gives a brief
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overview of how the constraint inequalities ensuring (7) depend upon φ. We will use PS-PFC and

assume that the reader can easily find the equivalent matrices for PC-PFC (for which, in effect, α = 1).

Noting the definition of future input increments in (23) and output predictions in (25),

the constraints inequalities for (7) can be defined as:

L∆u ≤ C−1
α [P̂1p + Ca+φ] ≤ L∆u;

Lu ≤ CI/∆C−1
α [P̂1p + Ca+φ] + Luk−1 ≤ Lu;

Ly ≤ Hαφ + Pα∆uk
←

+ Qαyk
←
≤ Ly.

(28)

where CI/∆ is a lower triangular matrix one ones, and L is a vector of ones with an appropriate

dimension (typically a horizon long enough to capture the core dynamics in the predictions). The reader

should note that the horizon for the predictions used in (28) will, in general, be much longer than

the coincidence horizon used in (27), as one needs to ensure that the implied long-range predictions

satisfy constraints. The inequalities can be combined for convenience as follows, although this is not

necessary for online coding where efficient alternatives may exist:

Cφ ≤ fk (29)

C =












CI/∆C−1
α Ca+

−CI/∆C−1
α Ca+

C−1
α Ca+

−C−1
α Ca+

Hα

−Hα












; fk =













L[u− uk−1]− CI/∆C−1
α P̂1p

L[−u + uk−1] + CI/∆C−1
α P̂1p

L∆u− C−1
α P̂1p

−L∆u + C−1
α P̂1p

Ly− Pα∆uk
←
−Qαyk

←
−Ly + Pα∆uk

←
+ Qαyk

←













Algorithm 2. [PS-PFC with constraint handling]

At each sample:

1. Define the unconstrained value for φ from (27).
2. Update the vector fk of (29) (it is noted that C does not change).
3. Use a simple loop covering all the rows of C as follows:

(a) Check satisfaction of the ith constraint using: eT
i Cφ ≤ fk,i.

(b) If eT
i Cφ > fk,i, then set φ = ( fk,i)/[e

T
i C], else leave φ unchanged.

Theorem 3. In the presence of constraints, Algorithm 2 is recursively feasible where the computed φ will not

only enforce the input/output predictions to satisfy constraints at the current sample, but will also guarantee

that one can make the same statement at the next sample.

Proof. By definition, the choice of φ = 0 ensures feasibility in the nominal case because the input

component P̂1p is the unused part of the input prediction from the previous sample, and this is

known to satisfy constraints by assumption. One can ensure feasibility at start-up by beginning from a

sensible state.

Readers should note that using the pre-stabilised/shaped predictions is essential for this recursive

feasibility result, which is not available for more conventional PFC approaches, for which the implied

long-range predictions may be divergent. Thus, this Theorem is an important contribution of this paper.

Remark 8. Although Algorithm 2 allows recursive feasibility, which is a strong result, ironically, the use of

PC-PFC or PS-PFC does not not give any a priori stability and/or performance guarantees in general, which is

a well-understood weakness of PFC approaches [7] and a consequence of wanting a very simple and cheap

control approach.
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4. Numerical Examples

This section presents several numerical examples of the proposed Pole Shaping PFC (PS-PFC)

in handling different types of challenging dynamics, while comparing its performance with the Pole

Cancellation PFC (PC-PFC) and conventional PFC (PFC). These examples will highlight:

• the impact of input shaping on the open-loop behaviour;
• the trade-off in the closed-loop performance;
• the efficacy of constraint handling;
• the efficacy on laboratory hardware.

For demonstration purposes, the first three processes with varying dynamics are investigated

in a MATLAB simulation environment in Sections 4.1–4.4. The final example in Section 4.5 is on

laboratory hardware.

4.1. Description of Case Studies

The case studies presented here are inspired from the real process applications. However,

for clarity of presentation, the model parameters are not specific to a given piece of apparatus, but rather

are generic to attain suitable dynamics which enable an explicit comparison between the control laws.

In this work, it is assumed that there is no plant model mismatch. The robustness properties of these

controllers will remain as future work, although it is noted that, as with most predictive controllers,

disturbance rejection and offset free tracking is implicit.

4.1.1. Case Study 1: Boiler Level Control

In the process industry, the use of a boiler is frequent, and the level of water needs to be controlled

within the manufacturer’s specified limits. Exceeding the allowable limits may lead to water overflow,

overheating, and/or damage to many components. Conversely, if the level is low, the water wall tubes

may overheat and cause tube ruptures, resulting in expensive repairs and other potential hazards.

Hence, the prime control objective is to raise the water level at the boiler start-up point while retaining it

at a constant steam load. Since the conversion process from water to steam is very slow, a typical model

for this process is usually a first-order system with an integrator and stable zero [27]. In a discrete

form, one of the poles should reside in a unit circle. The relationship between the output water level

(m), y(z), and the input water flow rate (m3 s−1), u(z), can be represented by a representative model,

such as G1:

G1 =
0.1z−1 + 0.4z−2

(1− 0.8z−1)(1− z−1)
(30)

4.1.2. Case Study 2: Depth Control of Unmanned Free-Swimming Submersible (UFSS)

In the marine application, the depth of an unmanned submarine can be controlled by deflecting

its elevator surface, whereby the vehicle will rotate about its pitch axis; the associated vertical forces

due to the water flow beside the vehicle enable the vehicle to sink or rise. Since a step input deflection

may create an oscillatory angle of dive due to the water current, typical dynamics to represent

this system often consist of at least one stable pole and two complex poles with stable zeros [22].

Thus a representative third-order underdamped process G2 can be assumed to represent this pitch

control system:

G2 =
0.85z−1 − 1.5z−2 + 0.85z−2

(1− 0.6z−1)(1− 1.6z−1 + 0.8z−2)
(31)

with the output as the pitch angle (rad) and input as the input elevator deflection (m).

4.1.3. Case Study 3: Temperature Control of Fluidised Bed Reactor

A fluidised bed reactor is used to produce a variety of multiphase chemical reactions that are

highly exothermic and can be considered as unstable. The reactor bed temperature needs to be
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controlled by manipulating the coolant flow rate to avoid overheating and other potential hazards.

In this case, a drastic change in flow rate will trigger a reaction between the chemicals that releases

extra energy and increases the bed temperature. In fact, the change in flow rate needs to follow specific

dynamics to avoid this reaction while stabilising the temperature. A reduced control model includes at

least one stable pole, typically, and one unstable pole [28] to relate the dynamics between the output

temperature (◦C) and input coolant flow rate (m3 s−1). Inspired by this system, a representative

second-order unstable process G3 is considered as a good case study:

G3 =
0.2z−1 − 0.26z−2

(1− 0.9z−1)(1− 1.5z−1)
(32)

4.2. The Impact of Input Shaping on Predictions and Feasibility

The prime purpose of shaping the future input dynamics is to eliminate the effect of unwanted

poles in the future predictions. Nevertheless, it is also undesirable to have an overaggressive input

activity, which may not be implementable in a real plant. To analyse this issue, the prediction behaviour

of PFC, PC-PFC, and PS-PFC for processes G1, G2, and G3 are plotted in Figure 2. From these results,

it can be observed that:

• For an integrating process, such as G1, the constant input prediction of PFC leads to a divergent

output prediction, and thus, output constraints can only be satisfied if the input is selected to

be zero! Hence, the PFC plots do not appear in this example, as the constraint handling forces a

choice of uk = 0, ∀k.
• For G1, the default input prediction (Equation (15)) for PC-PFC (blue-dotted line) is of dead-beat

form and aggressive, whereas the input prediction (Equation (23)) for PS-PFC moves smoothly

to the steady state and is less aggressive. There is no significant difference in the corresponding

output predictions.
• For the underdamped system G2, the output prediction from PFC includes a significant oscillation,

which is undesirable and will also cause constraint handling to be conservative. The differences

between PC-PFC and PS-PFC predictions are similar to those noted for G1, that is, PS-PFC has a

much smoother and less aggressive input prediction, albeit slow, and output prediction, due to

the choice of α. Of course, this difference means that the constraint handling for PS-PFC will be

far more preferable and less conservative, in general. Conversely, since PC-PFC cancelled out

two of their oscillatory open-loop poles, a sudden spike or aggressive damping is expected in the

output response.
• For the unstable process G3, a conventional PFC cannot be used because the divergent predictions

will automatically violate constraints so that no feasible choice for uk will exist. Once again, it is

seen that the predictions for PS-PFC are preferable to those from PC-PFC.
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Figure 2. Input and output predictions with PFC, PC-PFC, and PS-PFC for processes G1, G2, G3.

In summary, PS-PFC produces the best prediction behaviour because it ensures convergent

predictions which will satisfy constraints with less aggressive input predictions, and thus less

conservative constraint handling, than given by PC-PFC/PFC.

4.3. Tuning Efficacy and Closed-Loop Performance: The Unconstrained Case

First we give a brief discussion on PFC tuning for completeness. In general terms, a good practice

guidance is to select the coincidence horizon in between 40% and 80% rise of the step input response

to the steady-state value [13]: here, G1 (4 ≤ n ≤ 9), G2 (8 ≤ n ≤ 15), and G3 (11 ≤ n ≤ 21). Selecting a

smaller horizon will lead to a more aggressive input, while larger horizons reduce the efficacy of λ as a

tuning parameter.

In general therefore, the main designer choice is the desired closed-loop pole; for simplicity of

illustration, we take the desired pole to be λ = 0.7. Figure 3 demonstrates the closed-loop performance

of PFC, PC-PFC and PS-PFC on the three case study processes with these tunings. It is noted that:

• For all cases, PS-PFC (using a default choice of α) gives the best trade-off between the rate of

convergence and the aggressiveness of input activity compared to PFC and PC-PFC. Changes to α

could offer a further tuning parameter for varying this trade-off.
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• It is notable that PS-PFC gives similar or better output behaviour to PFC/PC-PFC while using a

far smoother and less aggressive input trajectory.
• For processes G2, G3, the input and output behaviour of PC-PFC is extremely aggressive and

would not be implementable in a real application.
• For process G3, the conventional PFC cannot be stabilised with the given choice of n.

Closed-loop behaviour for system G1 with n = 4
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Closed-loop behaviour for system G2 with n = 8
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Closed-loop behaviour for system G3 with n = 11
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Figure 3. Closed-loop input and output behaviour of PC-PFC and PS-PFC for processes G1, G2, G3.

4.4. Constraint Handling

As noted in Section 4.2, for many dynamics a conventional PFC approach is infeasible or highly

conservative because the output predictions inevitably violate constraints beyond a given horizon.

Thus, conventional PFC can only be implemented by using short constraint horizons and thus with

the loss of any recursive feasibility assurance; if it does work this is luck not good design and thus
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should be avoided. For the case studies here, conventional PFC could only be used safely with output

constraints for G2, although in that case we would expect some conservatism due to the oscillations in

the output predictions.

PC-PFC and PS-PFC pre-stabilise the output predictions and thus can be used safely and with a

recursive feasibility assurance. Figure 4 compares the performance of PFC, PC-PFC, and PS-PFC when

constraints are added to the process. Several observations can be noted:

• As expected, PS-PFC and PC-PFC satisfy constraints, retain recursive feasibility throughout and

converge safely.
• For process G1, the constrained performance of the controllers are almost the same, but PS-PFC

provides a smoother input transition.
• For process G2 it is clear that handling the under-damping will cause some challenges to any

control law, but clearly PS-PFC provides the best responses.
• For process G3, the inherent dead-beat input predictions deployed by PC-PFC mean the

performance is poor and slow to converge whereas PS-PFC performs well.

Closed-loop constrained behaviour for system G1 with n = 4 and
−0.2 ≤ uk ≤ 0.2;−0.2 ≤ ∆uk ≤ 0.2;−1.2 ≤ yk ≤ 1.2
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Closed-loop constrained behaviour for system G2 with n = 8 and
−1 ≤ uk ≤ 1;−0.2 ≤ ∆uk ≤ 0.2;−1.05 ≤ yk ≤ 1.1
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Figure 4. Cont.
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Closed-loop constrained behaviour for system G3 with n = 11 and
−1 ≤ uk ≤ 1;−0.2 ≤ ∆uk ≤ 0.2;−0.2 ≤ yk ≤ 1.2
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Figure 4. Constrained input and output behaviour of PFC, Pole Cancellation PFC (PC-PFC), and Pole

Shaping PFC (PS-PFC) for processes G1, G2, G3.

4.5. Application of PS-PFC on Laboratory Hardware

This section demonstrates the implementation of PS-PFC on laboratory hardware, that is,

a Quanser SRV02 servo-based unit (Quanser, Markham, ON, Canada) (see Figure 5). This device is

powered by a Quanser VoltPAQ-X1 amplifier and operates by National Instrument ELVIS II+ (National

Instruments, Austin, TX, USA) multifunctional data acquisition via USB connection. The control

objective is to track the servo position θ(t), measured in radians, by manipulating the supplied

voltage V(t). This servo will rotate counter-clockwise with positive supplied voltage and vice versa.

A second-order model of (33) with an integrator is used to represent the system dynamics (refer to [29]

for a more formal derivation) as:

θ(t) =
1.53

s(0.254s + 1)
V(s) (33)

Figure 5. Quanser SRV02 servo based unit.

To implement the proposed control law, the continuous model (33) is discretised with sampling

time 0.02s to obtain the discrete model of:

Gs =
0.0095z−2 + 0.0073z−1

1− 1.45z−1 + 0.45z−2
(34)

The plant is set to have a CLTR of 0.2s (which is equivalent to λ = 0.89). Using a similar

procedure to that in the previous section, the coincidence horizon is selected at n = 4. Figure 6

demonstrates the unconstrained and constrained performances of PS-PFC in tracking the servo

position. In the unconstrained case, the controller manages to track the target position with the

desired convergence speed. As for the constrained case, all the implied input limits (−8 ≤ uk ≤ 8),
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rate limits (−3 ≤ ∆uk ≤ 3), and output limits (−0.8 ≤ yk ≤ 0.8) are satisfied systematically without

any conflict.
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Figure 6. Unconstrained and constrained performance of PS-PFC for process Gs.

5. Conclusions

This paper proposes two potential simple modifications to a conventional PFC algorithm

to improve the constraint handling properties for processes with challenging dynamics, such as

integrating modes, underdamping, or unstable modes. Both proposals use relatively simple algebra—in

effect, the solution of a small number of linear simultaneous equations—to parameterise the future

input trajectories which lead to convergent and desirable output behaviours; this is done in terms

of a component to deal with the current state (or initial condition) and a free component for control

purposes. A core contribution is to show that using the proposed parameterisations allows a simple proof

of recursive feasibility so that the constraint handling can be performed more safely and reliably.

A specific novelty of this paper is the proposed PS-PFC algorithm, which gives a pragmatic

and simple proposal for deriving input and output prediction pairs which do not require aggressive

inputs during transients; the more classical alternative approach of PC-PFC, in general, deploys very

aggressive inputs in transients and thus cannot be used in practice. Simulation evidence on a variety of

simulation case studies and hardware demonstrates that the proposed PS-PFC algorithm significantly

outperforms both a conventional PFC approach and PC-PFC.

Although, as with all predictive control laws, both PC-PFC and PS-PFC are robust to some

parameter uncertainty and disturbances, a detailed sensitivity analysis is an important next step.

Also, it is of particular interest to compare these approaches with the alternative feedback formulations

for PFC [6,15] by way of systematic design, nominal performance, constraint handling, and sensitivity.
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