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Abstract: We elucidate the effect of different deterministic nonlinear forces on geometric structure of
stochastic processes by investigating the transient relaxation of initial PDFs of a stochastic variable
x under forces proportional to −xn (n = 3, 5, 7) and different strength D of δ-correlated stochastic
noise. We identify the three main stages consisting of nondiffusive evolution, quasi-linear Gaussian
evolution and settling into stationary PDFs. The strength of stochastic noise is shown to play a
crucial role in determining these timescales as well as the peak amplitude and width of PDFs.
From time-evolution of PDFs, we compute the rate of information change for a given initial PDF and
uniquely determine the information length L(t) as a function of time that represents the number
of different statistical states that a system evolves through in time. We identify a robust geodesic
(where the information changes at a constant rate) in the initial stage, and map out geometric structure
of an attractor as L(t → ∞) ∝ µm, where µ is the position of an initial Gaussian PDF. The scaling
exponent m increases with n, and also varies with D (although to a lesser extent). Our results highlight
ubiquitous power-laws and multi-scalings of information geometry due to nonlinear interaction.

Keywords: stochastic processes; Fokker-Planck equation; information length

1. Introduction

There is increasing interest in a metric on probability from theoretical and practical considerations,
with different metrics proposed depending on the question of interest (e.g., [1–10] and further
references therein). Theoretically, the assignment of an appropriate metric to probability enables
us to mathematically quantify the difference among different Probability Density Functions (PDFs),
providing a beautiful conceptual link between a stochastic process and geometry. At a practical level,
it can be utilized for optimising various desired outcomes. For instance, the Wasserstein metric has
been extensively studied for the optimal transport problem to minimize transport cost, typically taken
to increase quadratically with distance between two locations [1]. The Fisher (also called Fisher-Rao)
metric has recently been used for optimization, including the minimization of entropy production [11],
parameter estimation [12], controlling population [13], understanding the arrow of time [14], and
analysing the convexity of the relative entropy [15].

However, compared with the Wasserstein metric, whose application has established itself as a
branch of applied mathematics, the geometric structure associated with the information change in the
Fisher metric and its utility have been explored much less. Unlike the Wasserstein distance, the Fisher
metric yields a hyperbolic geometry in the upper half-plane (e.g., [9,10]) where the distance is measured
in units of the width of the PDF. That is, the distance in the Fisher metric is dimensionless and represents
the number of different statistical states. Consequently, for a Gaussian PDF, statistically distinguishable
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states are determined by the standard deviation; two PDFs that have the same standard deviation
and differ in peak positions by less than one standard deviation are statistically indistinguishable
(e.g., [11,16–22]).

By extending the Fisher metric to time-dependent problems, we recently introduced a
system-independent way of quantifying information change associated with time-evolution of
PDFs [13,23–30]. (Note that we use information for statistically different states, refraining from
the debate on the exact definition of information, e.g., [5,31].) The key idea is to define an infinitesimal
distance at any time by comparing two PDFs at adjacent times and sum these distances. The total
distance gives us the number of statistically different states that a system passes through in time, and is
called information length L. While the detailed derivation of L is given in [5,13,16,23–30], it is useful to
highlight that L is a measure of the total elapsed time in units of a dynamical timescale for information
change. To show this, we define the dynamical time τ(t) as follows:

E ≡ 1
[τ(t)]2

=
∫ 1

p(x, t)

[

∂p(x, t)

∂t

]2

dx. (1)

Here, τ(t) is the characteristic timescale over which the information changes. Having units of time,
τ(t) quantifies the correlation time of a PDF. Alternatively, 1/τ quantifies the (average) rate of change
of information in time. A particular path which gives a constant valued E is a geodesic along which
the information propagates at the same speed [13]. L(t) is then defined by measuring the total elapsed
time t in units of τ as:

L(t) =
∫ t

0

dt1

τ(t1)
=

∫ t

0

√

∫

dx
1

p(x, t1)

[

∂p(x, t1)

∂t1

]2

dt1. (2)

L(t) is a Lagrangian quantity (unlike entropy or relative entropy), uniquely defined as a function of
time t for a given initial PDF, and represents the total number of statistically distinguishable states
that a system evolves through. It thus provides a very convenient methodology for measuring the
distance between p(x, t) and p(x, 0) continuously in time for a given p(x, 0). One of the utilities of
L(t) is to quantify the proximity of any initial PDF to a final attractor of a dynamical system. We note
that for a linear process, we can express the information length in terms of a metric tensor gij using the
two parameters β = 1/2〈(x − 〈x〉)2〉 and 〈x〉 (e.g., [13]). However, even in the case where the control
parameters are not known, we can still define L as long as we can compute time-dependent PDFs (e.g.,
from data [24]).

Traditionally, concepts such as bifurcations, Lyapunov exponent or a distance to an equilibrium
point are commonly used to understand dynamical systems (e.g., see [32]). An intriguing question
arises as to how to define a distance between a point, say x, and an equilibrium which is not a point
but a limit cycle, or chaotic attractor. One interesting possibility is to consider a narrow initial PDF
around x and to measure the total information length L(t → ∞) = L∞ as the initial PDF evolves
toward the equilibrium PDF. L∞ offers a Lagrangian distance that depends on the trajectory/history
of the system (e.g., time-dependent PDF), being uniquely defined as a function of time for a given
initial PDF. This enables us to map out the attractor structure by measuring L∞ for different locations
of a narrow initial PDF. In a chaotic system, L∞ changes abruptly when a different initial PDF is used,
as shown in Figure 4 in [24], where the very spiky curve represents a sensitive dependence of L∞ on
x(t = 0), the location of a very narrow initial PDF. This sensitive dependence of L∞ on x(t = 0) means
that a small change in the initial condition causes a large difference in a path that a system evolves
through and thus L∞. This is quite similar to the sensitive dependence of the Lyapunov exponent on
the initial condition. That is, our L provides a new methodology to test chaos. Furthermore, Figure 4
in [24] shows small L∞ for unstable points, demonstrating that unstable points are more similar to
chaotic attractors.
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The purpose of this paper is to consider the effect of different orders of nonlinear interaction
on the geometric structure by considering the case when the equilibrium is a stable point [26,33].
The remainder of this paper is organised as follows: Section 2 introduces the basic model. Section 3
derives exact analytic solutions in the absence of stochastic noise, as well as asymptotic scalings for the
timescales, peak amplitudes and widths once noise plays a role. Section 4 presents numerical results,
and shows how they compare with the analytic scalings. Section 5 summarizes the results.

2. Model

We consider the following nonlinear Langevin equation:

dx

dt
= −γxn + ξ. (3)

Here, x is a random variable and ξ is a stochastic forcing, which for simplicity can be taken as a
short-correlated (or δ-correlated, white-noise) random forcing as follows:

〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′), (4)

where the angular brackets represent the average over ξ, 〈ξ〉 = 0, and D is the strength of the forcing.
The parameter γ is a positive constant. n is the order of nonlinearity, which we take to be an odd integer
to make x = 0 an attractor, and also preserve a reflectional symmetry (under x → −x) of the system.

We note that there are two possible interpretations of Equation (3). Specifically, consider the linear
case where ∂V

∂x ∝ x. The first interpretation is to view x as a velocity, in which case the force term would
give a frictional force (e.g., Equation (1.2) in [34]) as dv

dt = −γv + ξ, with γ as a frictional (damping)
constant. The second interpretation is to take the overdamped limit of the coupled equations for x and
v by dropping d2x/dt2 (e.g., Equation (3.130) in [34]) to obtain one equation for x from the first line in
Equation (3.130). In this case, x represents the position and γ−1 would be the frictional constant, and a
harmonic potential would correspond to n = 1.

For a deterministic system with ξ = 0, the solution to Equation (3) is readily obtained as

x(t) =
x0

[1 + γ(n − 1)txn−1
0 ]

1
n−1

, (5)

where x0 is the initial condition x(t = 0).
The corresponding Fokker–Planck (FP) equation is [34]

∂t p(x, t) = ∂x(γxn p) + D∂xx p. (6)

We first discuss some analytic limiting cases in Section 3, and then present numerical solutions in
Section 4.

3. Analytic Solutions

3.1. Exact Solutions for D = 0

In the absence of the stochastic noise D = 0, the diffusion term in the Fokker–Planck Equation (6)
is zero. In this case, the PDF does not have a stationary solution, but continues to change in time
due to the linear/nonlinear force. For instance, for n = 1, the PDF’s width becomes exponentially
narrow in time as the fluctuation (as well as the mean value) decreases exponentially due to γ > 0
(see below). To obtain an analytic solution to Equation (6), we use the method of characteristics.
Specifically, we rewrite Equation (6) with D = 0 in terms of the total derivative along the characteristic as

dp

dt
≡ ∂p

∂t
+

dx

dt

∂p

∂x
= nγxn−1 p. (7)
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Here, the characteristic is given by
dx

dt
= −γxn, (8)

which is Equation (3) without the stochastic noise ξ. Thus, the characteristic with the initial condition
x(t = 0) = x0 satisfies Equation (5), which can also be written as

x0 =
x(t)

[1 − γ(n − 1)t[x(t)]n−1]
1

n−1
. (9)

Along these characteristics, we rewrite Equation (7) as

dp

p
= nγxn−1dt = nγ

xn−1
0 dt

[1 + γ(n − 1)txn−1
0 ]

=
n

n − 1
d
[

ln [1 + γ(n − 1)txn−1
0 ]

]

. (10)

The integration of Equation (10) then gives us

p(x, t) = p(x0, 0)[1 + γ(n − 1)txn−1
0 ]

n
n−1 = p(x0, 0)[1 − γ(n − 1)txn−1]−

n
n−1 . (11)

For simplicity, we consider an initial Gaussian PDF localised around µ as

p(x0, 0) =

√

β0

π
e−β0(x0−µ)2

. (12)

Then, we can find p(x, t) at a later time from Equations (9), (11) and (12) as

p(x, t) =

√

β0

π
φn e−β0(xφ−µ)2

, (13)

where

φ = [1 − γ(n − 1)txn−1]−
1

n−1 . (14)

The maximum amplitude of p occurs at that x where xφ − µ = 0 in Equation (13), with the value

pmax(t) =

√

β0

π

[

1 + γ(n − 1)tµn−1
]

n
n−1

. (15)

The linear case n = 1 can be obtained by taking the limit n → 1 in Equations (13) and (14). One
finds that φ = eγt so that

lim
n→1

p(x, t) =

√

β

π
e−β(x−µe−γt)2

, (16)

where β = β0e2γt. That is, the width of the PDF (∝ β−1/2) as well as the peak position decrease
exponentially. However, the linear case can be solved analytically even when D 6= 0 [33], so we are
here more interested in the nonlinear cases n = 3, 5, 7.

Given p(x, t) in Equation (13), we can further calculate E(t) as follows

E(t) = γ2
∫

dx (xφ)2(n−1) [n − 2β0xφ(xφ − µ)]2 p(x, t)

= γ2
∫

dx0 x
2(n−1)
0 [n − 2β0x0(x0 − µ)]2 p(x0, 0), (17)

where we use x0 = xφ, dx0
dx = φn, p(x0, 0) = p(x, t) dx

dx0
, and p(x0, 0) is the initial Gaussian PDF in

Equation (12). Interestingly, Equation (17) is independent of time, with constant τ. That is, without a
stochastic noise, the evolution of PDFs follows a geodesic due to the scaling relation satisfied along
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the characteristic. For example, we can show that, for n = 1, E = 2γ2(1 + β0µ2) and for n = 3,

E = γ2µ4
[

2β0µ2 + 24 + 99
2β0µ2 +

21
2(β0µ2)2

]

. From these analyses, we can infer that for sufficiently large

β0 such that β0µn−1 ≫ 1, E ∝ β0µ2n to leading order.

3.2. Approximate Solutions for D 6= 0

According to the previous results, the peak amplitudes increase indefinitely in time.
The corresponding widths also decrease, and eventually become so narrow that any non-zero D

will start to play a significant role, and will start to broaden the PDFs again. However, during this
phase of the evolution, the PDF width is still smaller than its mean position, so that we can use a
quasi-linear analysis to approximate Equation (3) to leading order in O(x′/〈x〉) as

dx′

dt
≈ −nγ〈x(t)〉n−1x′ + ξ, (18)

where x′(t) = x(t) − 〈x(t)〉 is the fluctuation, with 〈x′(t)〉 = 0. x′ in Equation (18) satisfies the
Ornstein–Uhlenbeck process with the effective damping constant

γe(t) = nγ〈x(t)〉n−1. (19)

Thus, in this stage, the PDFs remain essentially Gaussian and evolve as

p(x, t) =

√

β

π
e−β(x−〈x〉)2

, (20)

where

〈x〉 =
µ

[1 + γ(n − 1)µn−1t]
1

n−1
, (21)

1
2β

=
e−2G(t)

2β0
+

D(1 − e−2G(t))

γe
, (22)

G(t) =
∫ t

0
dt′γe(t

′) =
n

n − 1
ln [1 + γ(n − 1)µn−1t]. (23)

The term e−2G/2β0 in Equation (22) represents the narrowing of the initial PDF width as discussed
in the previous section. However, note that, when 1/2β0 ≪ D/γe, a PDF can maintain the same width
set by the constant value D/γe at the initial stage; that is, there is no nondiffusive evolution phase.
See [33] for such a case with n = 3. For the 1/2β0 > D/γe case, we consider here, the transition from
the nondiffusive evolution phase to the quasi-linear Gaussian evolution phase occurs when e−2G/2β0

becomes comparable to D/γe, leading to the following criterion for the first transition timescale t1:

2G ∼ ln
γe

2β0D
∼ ln

nγ〈x〉n−1

2β0D
, (24)

using γe = nγ〈x〉n−1. By using Equation (23) and 〈x〉 = µ/[1 + γ(n − 1)µn−1t1]
1

n−1 , we obtain

[

1 + γ(n − 1)µn−1t1

]
3n−1
n−1 ∼ γn

2β0D
µn−1. (25)

For large time γ(n − 1)µn−1t1 ≫ 1, Equation (25) thus yields

t1 ∝ D− n−1
3n−1 µ− 2n(n−1)

3n−1 . (26)
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Note in particular how both exponents are negative for n = 3, 5, 7, so that smaller D and/or µ yield a
larger t1. Next, for D 6= 0 and γ(n − 1)µn−1t ≫ 1, we approximate Equation (22) as

1
2β

∼ D

γe
∼ n − 1

n
Dt, (27)

using also γe ∝ t−1. Thus, the PDF width increases as (Dt)1/2, while the maximum amplitude
decreases as

pmax(t) ∝ β1/2
∝ (Dt)−1/2, (28)

typical of Brownian motion [34]. Using Equation (26) in either Equation (15) or (28)—t1 after all is
precisely the time when one scaling transitions to the other, so they should agree at that time—we
obtain the scalings of the overall maximum amplitude pMax reached throughout the entire evolution as

pMax ∝ D− n
3n−1 µ

n(n−1)
3n−1 . (29)

3.3. Final Stationary Distribution

For even greater times, fluctuations become stronger while the mean values decrease.
The quasi-linear analysis in the previous section is therefore eventually no longer applicable,
and numerical solutions are crucial. The final stationary solution of Equation (6) can however be
computed analytically from D∂x p = −γxn p and becomes

p(x) =

(

γ

D(n + 1)

)1/(n+1) n + 1
Γ(1/(n + 1))

exp
(

− γ

D(n + 1)
xn+1

)

. (30)

Thus, the maximum amplitude

pmax ∝ D− 1
n+1 , (31)

while the width of the PDF is proportional to D
1

n+1 . Finally, the transition from the intermediate stage
in the previous section to this final stage occurs when the two formulas for the widths (Dt)1/2 and

D
1

n+1 become comparable, yielding the second transition timescale

t2 ∝ D− n−1
n+1 . (32)

In the following section, we see how numerical solutions compare with some of these predictions
such as the two timescales t1 and t2, as well as explore other aspects of the solutions for which no
analytic predictions are possible.

4. Numerical Solutions

For D 6= 0, an exact analytic solution to the Fokker–Planck Equation (6) only exists for the linear
case n = 1 [33]. For the nonlinear cases n = 3, 5, 7 that are the focus of this paper, we must resort
to numerical solutions. Without loss of generality, we set γ = 1. The interval in x is fixed to be
[−1, 1], rather than the original [−∞, ∞]. This may seem drastic, but actually involves no real loss
of generality either, since any finite interval can always be mapped to [−1, 1] by suitably rescaling x,
t and D. As long as the initial condition (and D) are chosen such that p would be negligible outside
[−1, 1] anyway, solving the FP equation only on [−1, 1], and with p = 0 boundary conditions is then
equivalent in all essentials to the original infinite interval.

The numerical solution is done by second-order finite-differencing in x, with up to M = 2 × 106

grid points. The time-stepping is also second-order accurate, with increments as small as ∆t = 10−6.
Both M and ∆t were varied to check the accuracy of the solutions. In the later stages, when the PDFs
are evolving to increasingly broad profiles, M can also be decreased, and ∆t increased, while still
preserving accuracy. Regridding the solutions in this way is indeed crucial, since the final adjustment
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timescale t2 is extremely long for small D, and could not be reached if M and ∆t were kept fixed at
their initial values.

In [33], we considered the initial condition

p =
1√

π 10−8
exp

[

− (x − 0.7)2

10−8

]

, (33)

and then compared numerical solutions for n = 3 and D = 10−3 to 10−7 with the corresponding
analytical solutions for n = 1. That is, the initial peak was extremely narrow, and diffusion was greater
than what we consider here. As a result of these choices, the peaks only became broader but never
narrower; the nondiffusive regime in Section 3.1 simply does not exist in this case.

In contrast, in this work, we take the initial condition

p =
1√

2π 10−6
exp

[

− (x − µ)2

2 × 10−6

]

, (34)

and D = 10−6 to 10−9. By starting with broader peaks and having smaller D, we do have an
initial nondiffusive regime here, and are able to observe the narrowing of the peaks predicted by
Equations (13) and (14). We begin by fixing the initial peak position µ = 0.65; below, we also consider
the range µ = [0.01, 0.75].

Figure 1 shows how the peak amplitudes evolve in time. We can clearly see the three regimes deduced
in Section 3: the peaks initially increase, in excellent agreement with Equation (15), then they decrease
in agreement with Equation (28), and finally they equilibrate to Equation (31). To more quantitatively
compare the overall peak amplitudes pMax and the corresponding times tMax at which they occur with
the analytic predictions given by Equations (26) and (29), we note first that D = 10−6 is clearly not yet
sufficiently small for there to be an initial nondiffusive regime at all (for this particular width of the initial
condition). Even D = 10−7 only follows the nondiffusive Equation (15) for a very brief time, not yet
long enough to be in the γ(n − 1)µn−1t ≫ 1 regime where Equations (26) and (29) are expected to apply.
Table 1 therefore compares the D = 10−8 and 10−9 cases, and uses them to extract scaling exponents of the
form D−α. We see that the agreement of pMax with Equation (29) is virtually perfect. The corresponding
times tMax are close to the expected scaling t1, but are not fully in the asymptotic limit yet. This is hardly
surprising, since even for D = 10−9 the tMax values in Table 1 only have γ(n − 1)µn−1tMax ∼ 8 (for all
three n values).

To similarly test the scalings that are predicted for µ, further runs were done with fixed D = 10−9,
and µ = 0.55 and 0.75. As Table 2 shows, the extracted exponents are again in very good (tMax) and
perfect (pMax) agreement with the predicted asymptotic scalings. The interesting feature that larger
initial positions µ have smaller times to reach the maximum peak amplitude is certainly very well
reproduced. Note finally that the two µ values used to extract these exponents in Table 2 differ by
less than a factor of two even, and would thus certainly not be enough to extract reliable scaling
exponents if we did not already have robust analytic predictions. As we also show in more detail
below, in principle, it would be possible to have the analytic predictions extend over an arbitrarily
large range in µ, but that would require increasingly small D as well, which becomes numerically
too time-consuming.

Returning to the µ = 0.65 runs in Figures 1 and 2 shows the expectation values 〈x〉 =
∫

xp dx,
and how they compare with the nondiffusive result (Equation (5)). The agreement is close to perfect
even after the first timescale t1 is reached. It is only once the very long second timescale t2 is reached

that 〈x〉 approaches 0 exponentially, far more rapidly than the t−
1

n−1 power law scaling in (5).
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Figure 1. The top row shows the peak amplitudes as functions of time, for the initial condition in
Equation (34) with µ = 0.65, and D = 10−6 to 10−9 as indicated. The three panels show n = 3, 5, 7, as
labeled. The thick dashed (magenta) lines correspond to the analytic result (Equation (15)) that applies in
the nondiffusive phase. The bottom row shows the equivalent widths at half-peak, which are inversely
proportional to the peak amplitudes. The standard deviation 〈(x − 〈x〉)2〉1/2 follows exactly the same
pattern as the half-peak widths.

10
−1

10
1

10
3

10
5

10
−3

10
−2

10
−1

10
0

t

<
x

>

D=10
−6

D=10
−9

n=3

10
−1

10
1

10
3

10
5

10
−2

10
−1

10
0

t

<
x

>

D=10
−6

D=10
−9

n=5

10
−1

10
1

10
3

10
5

10
7

10
−1

10
0

t

<
x

>

D=10
−6

D=10
−9

n=7

Figure 2. The mean values 〈x〉 as functions of time, for the solutions in Figure 1. The dashed (magenta)
lines show Equation (5) that applies in the nondiffusive case.
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Table 1. The first two rows show the overall peak amplitudes pMax and the times tMax at which they
occur, for the results in Figure 1. D = 10−8 and 10−9, and n = 3, 5, 7 as indicated, and all results at
µ = 0.65. The row labeled “Exponent” uses the ratios of the two D values to extract scaling exponents
of the form D−α. The final row compares these numerically deduced exponents with the analytic
predictions from Equations (26) and (29). That is, the exponent α should equal n−1

3n−1 for tMax, and n
3n−1

for pMax.

n = 3 n = 5 n = 7

tMax pMax tMax pMax tMax pMax

D = 10−8 4.42 2063 5.82 1661 8.17 1337
D = 10−9 8.80 4888 12.55 3776 18.58 2998
Exponent 0.30 0.375 0.33 0.357 0.36 0.349
(26), (29) 0.25 0.375 0.29 0.357 0.30 0.350

Table 2. The first two rows are as in Table 1, but now for fixed D = 10−9, µ = 0.55 and 0.75,
and n = 3, 5, 7 as indicated. The row labeled “Exponent” uses the ratios of the two µ values to extract
scaling exponents of the form µδ. The final row compares these numerically deduced exponents with
the analytic predictions from Equations (26) and (29). That is, the exponent δ should equal − 2n(n−1)

3n−1

for tMax, and n(n−1)
3n−1 for pMax.

n = 3 n = 5 n = 7

tMax pMax tMax pMax tMax pMax

µ = 0.55 11.17 4314 19.74 2975 35.87 2105
µ = 0.75 7.18 5439 8.48 4631 10.46 4035

Exponent −1.4 0.75 −2.7 1.43 −4.0 2.10
(26), (29) −1.5 0.75 −2.9 1.43 −4.2 2.10

Figure 3 shows two commonly used diagnostic quantities, the skewness
∫

[(x − 〈x〉)/σ]3 p dx

and the kurtosis
∫

[(x − 〈x〉)/σ]4 p dx, where σ = [
∫

(x − 〈x〉)2 p dx]1/2 is the standard deviation.
Skewness is a measure of how asymmetric a PDF is about its peak, with a value of 0 indicating a
symmetric peak. Kurtosis measures the flatness of a PDF, especially in comparison with a Gaussian,
which has kurtosis = 3. We see that skewness ≈ 0 and kurtosis ≈ 3 is maintained all the way until
the final equilibration timescale t2 is reached, indicating that the PDFs remain largely Gaussian up to
this time, as predicted in Section 3.2. For the final equilibrated profiles in Equation (30), the skewness
is again 0, whereas the kurtosis has values that depend on n (the precise values can be evaluated
analytically in terms of Γ functions, but are not particularly insightful). It is interesting though to
note in Figure 3 that both skewness and kurtosis exhibit non-monotonic behavior during the final
adjustment process, where the PDFs transition from being largely Gaussian to their final form. Note
also how the maxima reached during this transition process are independent of D, and even broadly
similar for the different values of n.

Figure 4 compares the PDFs at the times when the skewness reaches its maximum (negative)
value with the final equilibrated profiles in Equation (30). The entire evolution is then clear: as long
as the PDFs are well outside their final profiles, they remain essentially Gaussian, with widths as in
Figure 1 and positions as in Figure 2. The skewness and kurtosis start to deviate significantly from
their Gaussian values when the PDFs start to reach their final positions, with the maximum skewness
as in Figure 4. The final rearrangement for t > t2 then merely adjusts to the final profiles (30), but with
relatively little further movement of the PDFs.
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Figure 3. The top row shows the skewness
∫

[(x−〈x〉)/σ]3 p dx, and the bottom row shows the kurtosis
∫

[(x − 〈x〉)/σ]4 p dx, as functions of time. The labeling of D and n is as in Figures 1 and 2. The peaks
in both quantities occur at times in essentially perfect agreement with t2 in (32).
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Figure 4. The heavy (blue) lines show the equilibrium profiles in Equation (30), for D = 10−6, and
n = 3, 5, 7 as indicated. The lighter (red) lines show p(x) at the t = 629, 3930, 9794, for n = 3, 5, 7,
respectively. As shown in Figure 3, these are the times when the skewness reaches its maximum
negative values. Results for other values of D are identical, once x and p(x) are rescaled as in
Equation (31), and t is shifted as in Figure 3 to consistently have the correct skewness values.

Figure 5 shows the diagnostic quantities E(t) and L(t). As predicted by Equation (17), E remains
constant in the initial nondiffusive phase. Once the first timescale t1 is reached, E decreases as

t−
3n−1
n−1 D−1. Once the second timescale t2 is reached, E decreases exponentially. (This is not included in

Figure 5, however, as E ∝ D
2(n−1)

n+1 at that point, and is thus already negligibly small.) The behavior
of L is as expected: while E is constant, L increases linearly in time, and, once E starts decreasing, L
levels off to its final value L∞.
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Figure 5. The top row shows E(t) and the bottom row shows L(t). The labeling of D and n is as in
Figures 1–3. The peaks are initially located at µ = 0.65, consistent with the initial plateau in E being
reduced by a factor of 0.654 = 0.1785 when comparing n = 3 and 5, and similarly n = 5 and 7.

Based on the scaling for E , namely that E ∝ µ2n initially, and the range t1 for which this applies,
we expect at least a lowest-order estimate for L∞ to be given simply by

L∞ ∝

√
E t1 ∝ D− n−1

3n−1 µ
n(n+1)
3n−1 . (35)

Figure 6 shows numerically computed results, for the same D = 10−6 to 10−9 range considered
throughout, and µ = [0.01, 0.75]. At least for sufficiently large µ, we do indeed see clear evidence of
power-law behavior, with a negative exponent for D and a positive one for µ. Concentrating on the
variation with µ, for n = 3, the slopes vary between 1.8 for D = 10−6 and 1.6 for D = 10−9; for n = 5,
they vary between 2.7 and 2.3; and for n = 7, they vary between 3.5 and 2.9. By comparison, according
to Equation (35), the exponent should be n(n+1)

3n−1 , which yields 1.5, 2.1, 2.8 for n = 3, 5, 7, respectively.
The agreement is thus quite good, especially when we recall (Tables 1 and 2) that even D = 10−9 was
not quite small enough yet to obtain precise agreement with the asymptotic formula for t1, which in
turn affects Equation (35) as well.

L∞ as a function of µ provides a mapping from the physical distance µ (the distance between the
peak position µ of an initial PDF and the final equilibrium point 0) to the information length (the total
number of statistically different states of a system reaching a final stationary PDF from an initial PDF).
From Equation (35), this mapping is linear for a linear force; that is, L∞ is linearly proportional to the
physical distance. This linear relation breaks down for nonlinear forces as L∞ depends nonlinearly
on the physical distance µ. Specifically, for n = 3, L∞ ∝ µ1.5; for n = 5, L∞ ∝ µ2.1; and, for n = 7,
L∞ ∝ µ2.8. Thus, we can envision that nonlinear forces affect the information geometry, changing a
linear (flat) coordinate to a power-law (curved) coordinate. This is reminiscent of gravity changing a
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flat to a curved space-time. Furthermore, interestingly, Equation (35) shows that L∞ is independent of
D for the linear force, manifesting the information geometry as independent of the resolution (set by D).
In contrast, L∞ decreases with n = 3, 5, 7 as D−1/4, D−2/7, D−3/10, suggesting that the information
geometry is fractal, depending on the resolution. This would be equivalent to the I theorem of [14].

Finally, what about the small µ limit in Figure 6, which clearly does not follow the expected

scaling (35)? The explanation is that the initial position µ is already within the O(D
1

n+1 ) width of
the final distribution in Equation (30). In this limit, the behavior is different, and the peak merely
spreads out, resulting in a small and relatively uniform L∞. For any given µ, D must therefore satisfy
D ≪ µn+1 to be in the regime where Equation (35) is expected to apply. That is, in principle, it would
be possible to have Equation (35) apply over several orders of magnitude in µ, but D would have to be
far smaller than is numerically feasible.
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Figure 6. L∞ as a function of the initial position µ, for D = 10−6 to 10−9 and n = 3, 5, 7 as labeled.

5. Conclusions

The motivation of this research was to elucidate the link between force and geometry in a
stochastic system. To this end, we investigated the transient relaxation of initial PDFs of a stochastic
variable x under different nonlinear forces proportional to −xn (n = 3, 5, 7) and different strength D of
δ-correlated stochastic noise. We identified the three main stages consisting of nondiffusive evolution,
quasi-linear Gaussian evolution and settling into stationary PDFs. The strength of the stochastic noise

is shown to play a crucial role in determining these timescales t1 ∝ D− n−1
3n−1 and t2 ∝ D− n−1

n+1 , as well as
the peak amplitude and width of PDFs. Note in particular how both timescales have (n-dependent)
power-law scalings with D, in sharp contrast with the linear n = 1 case, where the entire evolution
occurs on t = O(1) timescales, with no dependence on D.

We further computed the rate of information change, and the information length L(t) representing
the number of distinguishable statistical states that the system evolves through in time. We identified
a robust geodesic (where the information changes at a constant rate) in the initial nondiffusive stage,
and mapped out a geometric structure of an attractor as L∞ ∝ µm, where µ is the peak position of
the initial Gaussian PDF. For sufficiently small D the exponent m was shown to be n(n+1)

3n−1 , but still
exhibits (moderate) variation with D even for values as small as 10−9. This suggests that the geometry
is curved by the nonlinear interaction, in contrast with the linear geometry of the Ornstein-Uhlenbeck
process which has m = 1 and no variation with D. Our results thus highlight ubiquitous power-laws
and multi-scalings of information geometry.

This work will form a basis for future investigation of a more general case of the superposition of
nonlinear forces with different ns. Multiplicative noise would also be interesting, but the situation
becomes somewhat more complicated as a deterministic force could appear as −xn as here, but the
noise ξ could appear as ξxm, with m not necessarily the same as n. Fractional noise would also be
worth pursuing, although this would be challenging both analytically and numerically. Finally, it will
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also be interesting to extend our work to analyse a heterogeneous, linear system [35–37], and to explore
applications of our work to estimators.
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