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EHRESMANN MONOIDS: ADEQUACY AND EXPANSIONS

MÁRIO J.J. BRANCO, GRACINDA M.S. GOMES, VICTORIA GOULD,
AND YANHUI WANG

Abstract. It is known that an Ehresmann monoid P(T, Y ) may be con-
structed from a monoid T acting via order-preserving maps on both sides of
a semilattice Y with identity, such that the actions satisfy an appropriate
compatibility criterion. Our main result shows that if T is cancellative and
equidivisible (as is the case for the free monoid X∗), the monoid P(T, Y ) not
only is Ehresmann but also satisfies the stronger property of being adequate.

Fixing T , Y and the actions, we characterise P(T, Y ) as being unique in the
sense that it is the initial object in a suitable category of Ehresmann monoids.
We also prove that the operator P defines an expansion of Ehresmann monoids.

Introduction

Ehresmann monoids have their roots in the work of Ehresmann on local struc-
tures in differential geometry [5], and were formally introduced in the litera-
ture by Lawson [17]. They may be defined in various ways but here we take
the modern approach and consider them as monoids equipped with two basic
unary operations (usually denoted + and ∗), that is, as bi-unary monoids. As
such, Ehresmann monoids form a variety Ehr and so the free Ehresmann monoid
on any set exists. The variety Ehr contains the quasi-variety Adq of adequate
monoids. A rich theory has developed surrounding adequate monoids since their
introduction by Fountain [6]; they are precisely those monoids with commuting
idempotents such that every principal one-sided ideal is projective. From [14],
and also [3] and our results here, the free Ehresmann monoid coincides with the
free adequate monoid on any set, so that Ehr is exactly the variety generated by
the quasi-variety Adq. Any inverse monoid is Ehresmann with a+ = aa−1 and
a∗ = a−1a, but Ehresmann monoids are in general very far from being regular.

The importance of understanding algebras by means of their actions is central
in mathematics. Examples include the deep theories of R-modules over a ring
R and S-acts over a monoid S, Bass-Serre theory of groups acting on trees, and
(in a context relatively close to that of this article), McAlister’s characterisation
of proper inverse monoids by means of groups acting on partially ordered sets.
Any inverse monoid has a proper cover [19, 20], and any proper inverse monoid
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embeds into a semidirect product of a semilattice by a group [23]. Note that the
free inverse monoid on any set is proper [22, 24].

The crucial results of McAlister in the inverse case have been extended to
various classes of unary and bi-unary monoids, requiring a sequence of new ideas
as one moves further away from regularity. Many difficulties arise, and the theory
that emerges splits into one and two-sided cases. We refer the reader to the
work of Fountain, Gomes, Gould, Jones, Lawson, Kambites and Kudryavtseva
[6, 7, 8, 9, 12, 14, 15, 16, 17] to see the development of the theory.

In [2], Branco, Gomes and Gould initiated a new approach to the study of left
Ehresmann and left adequate monoids, where certainly the techniques involving
semidirect products fail. In a (left/right) Ehresmann monoid M , the image of
the unary operation(s) forms a semilattice, say Y , named the semilattice of pro-
jections; given a submonoid T , the monoid M is said to be T -generated if it is
generated as a semigroup1 by T ∪ Y . They introduced for a T -generated left
Ehresmann monoid the concept of T -proper (the analogue of the aforementioned
concept of proper is not useful here); proved that any left Ehresmann monoid
has an X∗-proper cover for some set X , where X∗ is the free monoid on X , and
deduced that the free left Ehresmann monoid on any set X is X∗-proper. In
a subsequent paper [10], Gomes and Gould took a monoid T acting via order-
preserving maps on the left of a semilattice Y with identity, and constructed a
T -generated T -proper left Ehresmann monoid with semilattice of projections Y ,
which we denote here Pℓ(T, Y ). They proved that if T is right cancellative with
trivial group of units, then Pℓ(T, Y ) is left adequate; and that the free left Ehres-
mann monoid on X is of the form Pℓ(X

∗, Y ), coinciding therefore with the free
left adequate monoid on X . We remark that the monoid Pℓ(T, Y ) may be charac-
terised as being the unique T -proper T -generated left Ehresmann monoid having
uniqueness of T -normal forms. Here, we do not concern ourselves with unique-
ness of T -normal forms [2, 10], but point out that their presence implies the
property of being T -proper.

Naturally, one would like to have an analogous theory for the two-sided case.
This paper is the second of a pair (the first being [3]) initiating, developing and
implementing a theory for two-sided Ehresmann and adequate monoids, corre-
sponding to that in the one-sided case. It is very far from true that combining
the left and the right cases is sufficient in itself to make progress: new methods
are required.

In [3] the first three authors introduced the notions of T -proper and strongly T -
proper for T -generated Ehresmann monoids. The main thrust was to construct a
strongly T -proper Ehresmann monoid P(T, Y ) from a semilattice Y with identity
acted upon on both sides by a monoid T via order-preserving maps satisfying the
so called compatibility conditions for the actions. Let us encode the monoid T ,

1The signature can also be that of a monoid or (bi-)unary monoid, without the concept being
affected.
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the semilattice Y and the actions via a P-quadruple T = (T, Y, · , ◦). It is proved
in [3] that any Ehresmann monoid admits a strongly X∗-proper Ehresmann cover
and that the free Ehresmann monoid is of the form P(X∗, Y ). Observe that the
existence of covers for Ehresmann monoids is also discussed in [13].

A matter missing from [3] concerns the claim of adequacy for P(T, Y ) in the
case where T is cancellative. This the major question that gave rise to this paper.

For ease of reference we recall in Section 1 some basic facts concerning adequate
and Ehresmann monoids, and the construction of P(T, Y ). In Section 2, we tackle
the above question and answer it in full when T is equidivisible.

Theorem 2.10 Let T be an equidivisible cancellative monoid acting on both sides
upon a semilattice Y with identity, satisfying the compatibility conditions. Then
P(T, Y ) is adequate.

As a consequence of this theorem, P(X∗, Y ) is adequate, thus confirming,
as mentioned before, that the free Ehresmann monoid on X is in fact the free
adequate monoid, a result essentially shown in [14].

In Section 3, we return to the consideration of arbitrary monoids T . First we
show that fixing T , Y and the actions of T on Y , the operator P determines
an expansion of Ehresmann monoids (Theorem 3.4). Next, we aim to find an
abstract characterisation of the Ehresmann monoids of the form P(T, Y ), built
from a P-quadruple T . Notice that, unlike the one-sided case, P(T, Y ) does not
have uniqueness of T -normal forms [3], and so it cannot be distinguished by such
a property.

Given a P-quadruple T = (T, Y, · , ◦), we define a category C(T ) of Ehresmann
monoids, that are T -generated with semilattice of projections Y . Our second
main result can be stated as follows.

Theorem 3.6 Let T = (T, Y, · , ◦) be a P-quadruple. Then P(T, Y ) is the initial
object in the category C(T ).

Section 4 ends the article by posing some open questions.

1. Preliminaries

Before we recall some basic definitions and results concerning adequate and
Ehresmann monoids we describe the route that has led us to viewing the monoid
P(T, Y ) as a generalisation of a semidirect product. For further details, of both
background and technicalities, we refer the reader to [3] and [11].

As remarked in the Introduction, the crucial properties and resulting structure
of proper inverse semigroups and monoids have inspired the search for analo-
gous results for other classes. We focus here for convenience on the case for
monoids, although many of the following statements do not require the pres-
ence of an identity. Let S be an inverse monoid, so that S is Ehresmann with
semilattice of projections E = E(S). Any product of elements of S of the form
w = a0e1a1e1 . . . enan where ai ∈ S, ej ∈ E, for 0 ≤ i ≤ n, 1 ≤ j ≤ n, can be
manipulated into an expression w = ea0a1 . . . an where e ∈ E. This is due to the
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fact that if a is an element of an inverse monoid and e is idempotent, then there
is an idempotent f with ea = af , and vice versa. In fact, inverse monoids satisfy
the ample identities xy+ = (xy)+x and y∗x = x(yx)∗. This is a key factor in
co-ordinatising elements of a proper inverse monoid S by two co-ordinates - an
idempotent and an element of the group S/σ - and the embeddability of proper
inverse monoids into semidirect products. A number of authors have considered
generalisations of inverse monoids satisfying one or both of the ample identi-
ties, as appropriate, where again semidirect products feature (see, for example,
[4, 8, 9]). Many of these are unary or bi-unary monoids having natural repre-
sentations as mappings. One such case is that of left restriction monoids, which
are unary monoids represented by monoids of partial mappings where the unary
operation takes an element to the identity in its domain. Once one moves from
monoids of mappings to more general monoids of relations, the ample identity
may be lost. Indeed, a motivating example is that of BX , the bi-unary monoid of
relations on a set X , with unary operations of domain and range. The monoid
BX is Ehresmann but does not satisfy the ample identities. It follows that in
attempting to understand an Ehresmann monoid M in terms of the projections
E and the reduced Ehresmann monoid M/σ, we must consider sequences of the
form a0e1a1e1 . . . enan without recourse to any quick simplification. This leads
us naturally to replacing semidirect products by quotients of free products. The
congruences are determined by action(s) that persist from earlier cases without
recourse to the ample identities.

Let M be a monoid with set of idempotents E(M). For any a, b ∈M ,

a R∗ b ⇔ ∀x, y ∈M (xa = ya⇔ xb = yb)

and

a L∗ b ⇔ ∀x, y ∈M (ax = ay ⇔ bx = by).

Clearly, R∗ is a left congruence and L∗ a right congruence.
Recall that a monoid M is adequate if every R∗-class and every L∗-class con-

tains an idempotent and E(M) forms a semilattice. From the commutativity of
idempotents it follows that each R∗-class and L∗-class of an element a contains
a unique idempotent, denoted by a+ and a∗, respectively. Thus we have two
unary operations on M given by a 7→ a+ and a 7→ a∗, whence M becomes an
algebra with signature (2, 1, 1, 0); as such we refer to it as a bi-unary monoid.
The class of adequate monoids forms a quasi-variety of algebras in this signature.
The defining quasi-identities are those for monoids together with

x+x = x, (x+y+)+ = x+y+ = y+x+ and (xy)+ = (xy+)+,

x2 = x→ x = x+ and xy = zy → xy+ = zy+,

and their left-right duals.
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An Ehresmann monoid is a bi-unary monoid M , in which we again denote the
unary operations by + and ∗, satisfying the identities for monoids together with

x+x = x, (x+y+)+ = x+y+ = y+x+ and (xy)+ = (xy+)+,

their left-right duals, and

(x∗)+ = x∗ and (x+)∗ = x+.

The identities x+ = x+x+ and (x+)+ = x+, and their left-right duals, are a
consequence of those above. Putting E = {s+ : s ∈ M} = {s∗ : s ∈ M} we have
that E is a semilattice, the semilattice of projections. We have already remarked
that the variety generated by the quasi-variety of adequate monoids is the variety
of Ehresmann monoids. In particular, an adequate monoidM is Ehresmann, with
E(M) = E.

Another approach to Ehresmann monoids is based on relations R̃E and L̃E ,
which themselves contain R∗ and L∗, respectively. We do not pursue this route
here, the interested reader may consult [3].

Let M be an Ehresmann monoid with semilattice of projections E and sub-
monoid T . Recall from the Introduction that M is T -generated if M is generated
(as a semigroup) by T ∪ E : we denote this by M = 〈T ∪ E〉(2).

Lemma 1.1. [3, Lemmas 2.2 and 2.3] LetM be a T -generated Ehresmann monoid
with semilattice of projections E. Then T acts on the left and on the right of E
by order-preserving maps defining, for t ∈ T and e ∈ E,

t · e = (te)+ and e ◦ t = (et)∗.

On the other hand, for any a ∈ M and e, f ∈ E,

(eaf)+ = e(a(eaf)∗)+ and (eaf)∗ = ((eaf)+a)∗f.

On an Ehresmann monoid M with semilattice of projections E, the relation σ
(σE for emphasis) is the semigroup congruence on S generated by E × E. It is
clear that σ is also the bi-unary monoid congruence on the same generators.

A T -generated Ehresmann monoid M with semilattice of projections E is said
to be T -proper if for any s, t ∈ T and e ∈ E,

[(se)+ = (te)+ and se σ te] ⇒ se = te

and, dually,
[(es)∗ = (et)∗ and es σ et] ⇒ es = et.

Further, M is said to be strongly T -proper if, for any s, t ∈ T

s σ t ⇒ s = t.

Note that strongly T -proper implies T -proper; the exact relationship between the
two conditions is still under investigation.

We recall from [3] the recipe of the first three authors for constructing T -proper
Ehresmann monoids from monoids acting on semilattices.
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Let T be a monoid with identity 1T and let Y be a semilattice with identity
1Y . To avoid any ambiguity we assume that T ∩ Y = ∅. Let T ∗ Y be the free
semigroup product of T and Y . We say that x ∈ T ∗ Y has a T -beginning if x
begins with a t ∈ T , that is, x = tz for some z ∈ T ∗ Y . Dually, x has a T -end
if x = zt for some t ∈ T and z ∈ T ∗ Y . Correspondingly, we say that x has a
Y -beginning (Y -end) if x = ez (x = ze) for some e ∈ Y and z ∈ T ∗ Y .

If, for example, x has a T -beginning and Y -end, we write x as

x = t0e1t1e2 . . . tn−1en

where ti ∈ T and ej ∈ Y , 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n.
Suppose that T acts on the left of Y via order-preserving maps. We denote the

action of t ∈ T on y ∈ Y by t · y. It follows that there exists a monoid morphism

φℓ : T → O∗
Y , (tφℓ)(y) = t · y,

where O∗
Y is the monoid of order-preserving maps of Y with maps composed

from right to left. Now, Y acts on the left of itself by order-preserving maps via
multiplication, hence there is a monoid morphism, also denoted φℓ, given by

φℓ : Y → O∗
Y , (zφℓ)(y) = zy.

By the universal property of free products, we obtain a semigroup morphism

φℓ : T ∗ Y → O∗

Y

defined by

(s1 . . . sn)φℓ = (s1φℓ) . . . (snφℓ),

where each si ∈ T ∪ Y . We thus have a semigroup left action of T ∗ Y on Y ,
which we may without ambiguity denote by ·, given by

s1 . . . sn · y = s1 · (s2 · (. . . (sn · y) . . .)).

We now define u+, for u ∈ T ∗ Y , to be

u+ = u · 1Y .

Therefore e+ = e for all e ∈ Y . We remark that for any u ∈ T ∗Y , if v is obtained
from u via insertion or deletion of elements 1Y or 1T , then u

+ = v+. Notice also
that 1+T = 1Y . The free product T ∗ Y is now a unary semigroup.

Lemma 1.2. [3, Lemma 4.1] If u, v ∈ T ∗ Y and e ∈ Y , then (uv)+ = u · v+ =
(uv+)+, (eu)+ = eu+, (uv)+ ≤ u+ and (uev)+ ≤ (uv)+.

We also suppose we have a right action of T on Y via order-preserving maps.
Denoting the right action of t ∈ T on y ∈ Y by y ◦ t, there exists a monoid
morphism

φr : T → OY , (y)(tφr) = y ◦ t,

where OY denotes the dual monoid of O∗
Y (where maps are composed from left

to right). Again Y acts on the right on itself by order-preserving maps via
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multiplication, and we may consider the monoid morphism, also denoted φr,
given by

φr : Y → OY , (y)(zφr) = yz.

As before, by the universal property of free products, we have a semigroup mor-
phism

φr : T ∗ Y → OY

defined by

(s1 . . . sn)φr = (s1φr) . . . (snφr),

where each si ∈ T ∪ Y . We thus have a semigroup action of T ∗ Y on Y , which
we may without ambiguity denote by ◦, where

y ◦ s1 . . . sn = ((. . . (y ◦ s1) . . .) ◦ sn−1) ◦ sn.

We now define u∗ (for u ∈ T ∗ Y ) to be

u∗ = 1Y ◦ u,

so that e∗ = e for all e ∈ Y . As before, we remark that for any u ∈ T ∗ Y , if v
is obtained from u via insertion or deletion of elements 1Y or 1T , then u

∗ = v∗.
Notice also that 1∗T = 1Y and we have that the free product T ∗ Y has become a
bi-unary semigroup.

Lemma 1.3. [3, Lemma 4.2] If u, v ∈ T ∗ Y and e ∈ Y , then (uv)∗ = u∗ ◦ v =
(u∗v)∗, (ue)∗ = u∗e, (uv)∗ ≤ v∗ and (uev)∗ ≤ (uv)∗.

From Lemmas 1.2 and 1.3, we observe that for any u ∈ T ∗ Y and e ∈ Y , we
get

u · e = (ue)+ and e ◦ u = (eu)∗.

However, T ∗Y is not Ehresmann, since for example it does not satisfy the identity
x+x = x.

To proceed, we require the actions to satisfy compatibility conditions that we
now define.

Definition 1.4. Let T be a monoid acting on both sides upon a semilattice
Y . We say that the compatibility conditions are satisfied if, for any t ∈ T and
e, f ∈ Y :

(CC1) e(t · f) = e(t · ((e ◦ t)f))
and

(CC2) (e ◦ t)f = ((e(t · f)) ◦ t)f .

Definition 1.5. A P-quadruple is a quadruple T = (T, Y, · , ◦) where T is a
monoid acting by · on the left and ◦ on the right of a semilattice Y with identity
via order preserving maps satisying the compatibility conditions.
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Observe that by Lemma 1.1, given a T -generated Ehresmann monoid M , the
monoid T acts on both sides upon E satisfying the compatibility conditions and
with these actions T = (T,E, · , ◦) is a P-quadruple.

Aiming at constructing the Ehresmann monoid P(T, Y ), now let

Hℓ = {(u+u, u) : u ∈ T ∗ Y } ∪ {(1T , 1Y )}

and

Hr = {(uu∗, u) : u ∈ T ∗ Y } ∪ {(1T , 1Y )}.

We use ∼ to denote the semigroup congruence on T ∗ Y generated by Hℓ ∪Hr.
Thus for any u, v ∈ T ∗ Y , we have that u ∼ v if and only if u = v or there is a
sequence

u = z0, z1, . . . , zn = v

where n ∈ N and for 0 ≤ i ≤ n− 1 we have

zi = ciαidi, zi+1 = ciβidi

for some ci, di ∈ (T ∗ Y )1 and (αi, βi) ∈ (Hℓ ∪Hr) ∪ (Hℓ ∪Hr)
−1.

If n = 1 and c1, d1 ∈ T ∗Y , we say that u ∼ v via a basic step. The relation ∼
is not just a congruence on T ∗ Y but it is also a bi-unary congruence [3, Lemma
4.9].

An element z ∈ T ∗ Y can take one of four forms, depending on whether z
has T - or Y -beginning and T - or Y -end. For convenience, we introduce a new
symbol � which we regard as an adjoined identity to the monoid T . By writing
an element z ∈ T ∗ Y as �e1z1 . . . enzn, where e1, . . . , en ∈ Y and z1, . . . , zn ∈ T ,
we are indicating that z = e1z1 . . . enzn has Y -beginning, with similar conventions
for Y -ends. The � symbol serves as a marker to help us control places in products
of elements in T ∗ Y .

Lemma 1.6. [3, Lemma 4.12] The map τ : T ∗ Y → T given by: τ(t) = t if
t ∈ T , τ(y) = 1T if y ∈ Y , and

τ(u) = t0t1 . . . tn,

for u = t0e1t1 . . . entn with t0, tn ∈ T∪{�}, t1, . . . , tn−1 ∈ T and e1, e2, . . . , en ∈ Y ,
is a well-defined monoid morphism with ∼⊆ ker τ .

Theorem 1.7. [3, Theorem 4.18] Let T = (T, Y, · , ◦) be a P-quadruple. The
quotient P(T, Y ) := (T ∗ Y )/∼ is an Ehresmann monoid with semilattice of
projections

Y ′ = {[e] : e ∈ Y }

where [u]+ = [u+] and [u]∗ = [u∗] for any u ∈ T ∗ Y , and 1P(T,Y ) = [1T ] = [1Y ].
Further, Y ′ is isomorphic to Y and the submonoid T ′ = {[t] : t ∈ T} of

P(T, Y ) is isomorphic to T under the natural morphism νT : T ∗ Y → P(T, Y ).
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The monoid P(T, Y ) is T ′-generated, with P(T, Y )/σY ′ ≃ T ′ and so strongly
T ′-proper, hence T ′-proper.

We end this section by remarking that ∼ is generated by Hℓ together with Hr,
and it is precisely the interaction between the two kinds of generators that causes
us difficulties at many stages in proof when comparing to left Ehresmann and
right Ehresmann monoids. This is highlighted in, for example, Lemma 2.8 and
Theorem 2.10.

2. Sufficient conditions for P(T, Y ) to be adequate

The aim of this section is to show that P(T, Y ) is an adequate monoid when
T is an equidivisible cancellative monoid.

Recall that a monoid T is equidivisible if for any a, b, c, d ∈ T , if ab = cd then
for some u ∈ T , a = cu and ub = d, or au = c and b = ud. Groups and free
monoids are clearly the first examples. The direct product of a free monoid and a
group is equidivisible and cancellative, but excluding degenerate cases in general
is neither a group, nor a free monoid, nor has trivial group of units. The non-
negative real numbers under addition provide another example of an equidivisible
cancellative monoid. A classical example of an equidivisible cancellative monoid
with trivial group of units that is not free can be found in [21, Example 6.24]. In
fact as proved in [18], a monoid is free if and only if it is graded and equidivisible.

Throughout this section, we assume that T is a cancellative monoid acting on
both sides upon a semilattice Y with identity by order-preserving maps, satisfying
the compatibility conditions. We will denote the group of units of T by U(T )
and the (group) inverse of an element t ∈ U(T ) by t−1.

Lemma 2.1. Let u = t0e1t1 . . . entn ∈ T ∗Y be such that τ(u) = 1T , where ti ∈ T
(0 ≤ i ≤ n) and ej ∈ Y (1 ≤ j ≤ n). Then

(tiei+1ti+1 . . . entnu
+)+ = (tiei+1ti+1 . . . entnu)

+ ≤ (titi+1 . . . tnu)
+ ≤ ei

for any i with 1 ≤ i ≤ n. In particular, (tnu
+) = (tnu)

+ ≤ en.

Proof. By Lemma 1.2, we get the equalities as well as

(tiei+1ti+1 . . . entnu)
+ ≤ (titi+1 . . . tnu)

+,

for any i with 1 ≤ i ≤ n. Since τ(u) = 1T , we have that t0 . . . tn = 1T . Then,
as T is cancellative, t0, . . . , tn ∈ U(T ) and for any i ∈ {1, . . . , n}, we obtain
(t0t1 . . . ti−1)

−1 = titi+1 . . . tn = t−1
i−1 . . . t

−1
1 t−1

0 . Thus
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(titi+1 . . . tnu)
+ = (t−1

i−1 . . . t
−1
1 e1t1 . . . entn)

+

≤ (t−1
i−1 . . . t

−1
1 t1e2t2 . . . entn)

+
(
by Lemma 1.2

)

= (t−1
i−1 . . . t

−1
2 e2t2 . . . entn)

+

...

= (eiti . . . entn)
+

≤ ei
(
by Lemma 1.2

)
,

as required. �

Lemma 2.2. If u ∈ T ∗ Y is such that τ(u) = 1T , then u ∼ u+ ∼ u∗.

Proof. We begin by supposing that u has a T -beginning and a T -end. Then

u = t0e1t1e1 . . . tn−1entn

where ti ∈ T and ej ∈ Y , 0 ≤ i ≤ n and 1 ≤ j ≤ n. Since τ(u) = 1T , we have
that u+ = 1Y u

+ ∼ 1Tu
+ = t0t1 . . . tnu

+, and so

u+ ∼ t0t1 . . . tnu
+

∼ t0t1 . . . tn−1(tnu
+)+tnu

+

= t0t1 . . . tn−1en(tnu
+)+tnu

+
(
by Lemma 2.1

)

∼ t0t1 . . . tn−1entnu
+

...

∼ t0t1 . . . tiei+1ti+1 . . . entnu
+

∼ (t0t1 . . . ti−1)(tiei+1ti+1 . . . entnu
+)+tiei+1ti+1 . . . entnu

+

= (t0t1 . . . ti−1)ei(tiei+1ti+1 . . . entnu
+)+tiei+1ti+1 . . . entnu

+
(
by Lemma 2.1

)

∼ (t0t1 . . . ti−1)eitiei+1ti+1 . . . entnu
+

...

∼ t0e1t1 . . . entnu
+

= uu+.

Dually, we can show that u∗ ∼ u∗u. As Y is a semilattice, it follows that

u+u∗ ∼ uu+u∗ = uu∗u+ ∼ uu+ ∼ u+,

and similarly, u+u∗ ∼ u∗. We now deduce that u∗ ∼ u+ and finally

u+ ∼ uu+ ∼ uu∗ ∼ u.

Now, suppose that u has a Y -beginning. Then u = 1Y u, so that u ∼ 1Tu and
1Tu has a T -beginning. Similarly, if u has a Y -end, we get u ∼ u1T and u1T
has a T -end. Notice that τ(1Tu) = τ(u1T ) = τ(1Tu1T ). Thus if u has either a
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Y -beginning or a Y -end, u ∼ v for some v with T -beginning and T -end such that
τ(v) = τ(u). So v ∼ v+ ∼ v∗ by the previous case. From u ∼ v, we get u+ ∼ v+

and u∗ ∼ v∗, since ∼ is a bi-unary congruence, and so

u ∼ v ∼ v+ ∼ u+

and
u ∼ v ∼ v∗ ∼ u∗

as required. �

We now locate the full set of idempotents of P(T, Y ) in the current case.

Proposition 2.3. We have E(P(T, Y )) = Y ′.

Proof. We only need to show that E(P(T, Y )) ⊆ Y ′. If [x]2 = [x], then x2 ∼ x.
It follows from Lemma 1.6 that τ(x)2 = τ(x), which implies that τ(x) = 1T since
T is cancellative. So by Lemma 2.2 we obtain that x ∼ x+. Thus [x] = [x+] =
[x]+ ∈ Y ′. �

Lemma 2.4. Let h ∈ U(T ). Then for any u ∈ T ∗ Y ,

hu+h−1 ∼ (hu)+.

If in addition τ(u) = h−1, then

hu+h−1 ∼ hu.

Proof. Clearly τ(hu+h−1) = 1T . Applying Lemmas 1.2 and 2.2 we get

hu+h−1 ∼ (hu+)+hu+h−1 = (hu)+hu+h−1 ∼ (hu)+(hu+h−1)+ = (hu+h−1)+(hu)+

= ((hu+h−1)+hu)+ ∼ (hu+h−1hu)+ = (hu+1Tu)
+ ∼ (hu+u)+ ∼ (hu)+.

If τ(u) = h−1, then τ(hu) = 1T and (hu)+ ∼ hu by Lemma 2.2. �

To proceed to our main results, we need to consider factorisations in T ∗ Y .
The next lemma, whose proof is clear, tells us that a factorisation wea, we or

ea, where w = w0h1w1 . . . hpwp has T -end and fixed “length” p (meaning that
consecutive symbols in the expression w = w0h1w1 . . . hpwp do not belong both
to T or to Y ), a has T -beginning and e ∈ Y , is unique; and dually.

Lemma 2.5. Let w, v, a, b ∈ T ∗ Y be such that

w = w0h1w1 . . . hpwp, v = v0g1v1 . . . gpvp,

and
a = a0e1a1 . . . enan, b = b0f1b1 . . . fnbn,

where w0, v0 ∈ T∪{�}, wi, vi ∈ T and hi, gi ∈ Y for 1 ≤ i ≤ p, and ak−1, bk−1 ∈ T
and ek, fk ∈ Y for 1 ≤ k ≤ n, and an, bn ∈ T ∪ {�}. Then for any e, f ∈ Y , if
wea = vfb, then w = v, e = f and a = b. Similar claims follow for equalities of
the form we = vf and ea = fb.

The analogue of the above is true if w, v have Y -ends, a, b have Y -beginnings
and wsa = vtb, ws = vt or sa = tb, for some s, t ∈ T .
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We require a series of technical results on factorisations of the elements of T ∗Y
in case T is equidivisible, starting with a folklore result on the general case.

Lemma 2.6. Let U and S be semigroups. If w, a, v, b ∈ (U ∗S)1 with wa = vb 6=
1, then one of the following cases holds:

(I) w = v and a = b;
(II) there exists u ∈ U ∗ S such that w = vu and ua = b;
(III) there exists u ∈ U ∗ S such that v = wu and ub = a;
(IV) there exist w′, a′ ∈ (U ∗ S)1 and e, f, g, h ∈ U or e, f, g, h ∈ S such that

w = w′e, fa′ = a, v = w′g, ha′ = b and ef = gh.

Case (IV) may be refined to our case for T and Y .

Lemma 2.7. Let T be equidivisible. If w, a, v, b ∈ T ∗ Y with wa = vb, then one
of the following cases holds:

(I) w = v and a = b;
(II) there exists u ∈ T ∗ Y such that w = vu and ua = b;
(III) there exists u ∈ T ∗ Y such that v = wu and ub = a;
(IV) there exist w′, a′ ∈ T ∗ Y and e, f, g, h ∈ Y such that w = w′e, fa′ = a,

v = w′g, ha′ = b and ef = gh.

Proof. In view of the previous lemma, we only need to analyse the case when
w′, a′ ∈ (T ∗ Y )1 and e, f, g, h lie in T or in Y such that w = w′e, fa′ = a,
v = w′g, ha′ = b and ef = gh. Since T and Y are monoids we can assume
w′, a′ ∈ T ∗Y . If e, f, g, h ∈ Y we have the new case (IV). If e, f, g, h ∈ T then as
T is equidivisible we have three possibilities to discuss. If e = g, then f = h and
then we are in case (I). If e = gu and uf = h for some u ∈ T , then w = w′gu = vu
and b = ufa′ = ua and we are in case (II). Finally, if g = eu and uh = f for
some u ∈ T , then v = w′eu = wu and a = uha′ = ub, the case (III). �

In the proof of the next lemma we frequently call upon Lemmas 1.2 and 1.3,
as well as the definition of ∼, without specific mention. The proof also requires
Lemma 2.7 at various instances. We recall that, as stated in Theorem 2.10 in
the Introduction, we need to show that P(T, Y ) is adequate under the given
conditions, in particular, we have to prove that [a]R∗ [a]+ in P(T, Y ). In our
journey to establish this fact we must consider both kinds of generators of ∼ at
every stage: in this context there is no symmetry involved between Hℓ and Hr.

Lemma 2.8. Let T be equidivisible and let x, a, z ∈ T ∗ Y such that xa ∼ z via
a basic step. Then there exist h ∈ U(T ) and y, b ∈ T ∗ Y such that

z = yb, τ(x) = τ(y)h, h−1τ(b) = τ(a) and xa+ ∼ yb+h.

Proof. Since xa ∼ z via a basic step, there exist c, d ∈ T ∗ Y and (α, β) ∈
(Hℓ ∪Hr) ∪ (Hℓ ∪Hr)

−1 such that

xa = cαd and cβd = z.
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Thus α ∼ β and, by Lemma 1.6, we have τ(α) = τ(β).
According to Lemma 2.7, the equality xa = (cα)d results in one of the factori-

sations (I), (II), (III), (IV). We discuss each in turn. Note that we only explicitly
mention h in one sub-case, in the others h = 1T .

(I) x = cα and a = d. Let y = cβ and b = a. Then z = yb. Now, τ(α) = τ(β),
x = cα and y = cβ together imply τ(x) = τ(y). Clearly τ(a) = τ(b). Notice that
x = cα ∼ cβ = y and so xa+ ∼ ya+ = yb+.

(II) x = (cα)s and sa = d, for some s ∈ T ∗ Y . Let y = cβs and b = a. Then
τ(x) = τ(y), τ(a) = τ(b) and also z = cβd = cβsa = yb. As x = cαs ∼ cβs = y,
we obtain xa+ ∼ yb+.

(III) cα = xs and sd = a, for some s ∈ T ∗ Y . We call upon Lemma 2.7 again
to discuss the four possibilities for factorising cα = xs.

(III.1) c = x and α = s. Put y = c and b = βd. Then z = yb and τ(x) = τ(y).
From a = sd = αd ∼ βd = b, we get τ(a) = τ(b) and a+ ∼ b+. We then obtain
that xa+ ∼ yb+.

(III.2) c = xl and lα = s with l ∈ T ∗ Y . Put y = x, b = lβd. Then
z = cβd = xlβd = yb and τ(x) = τ(y). Also a = sd = lαd ∼ lβd = b, whence
τ(a) = τ(b) and a+ ∼ b+. Thus xa+ ∼ yb+.

(III.3) x = ct and ts = α, for some t ∈ T ∗ Y . The fact that (α, β) ∈
(Hℓ ∪Hr) ∪ (Hℓ ∪Hr)

−1 leads the discussion to the following six cases:
(i) β = α+α. Put y = cα+t and b = a. Note that αd = tsd = ta. Then

z = cβd = cα+αd = cα+ta = yb, τ(a) = τ(b) and τ(y) = τ(cα+t) = τ(ct) = τ(x).
Moreover

yb+ = cα+tb+ = cα+ta+ ∼ cα+(ta)+ta+

= cα+(αd)+ta+ = c(αd)+ta+ = c(ta)+ta+ ∼ cta+ = xa+.

(ii) β = αα∗. Put y = x and b = sα∗d. Then z = cβd = cαα∗d = ctsα∗d =
xsα∗d = yb, τ(x) = τ(y) and τ(b) = τ(sα∗d) = τ(sd) = τ(a). In addition,

yb+ = x(sα∗d)+ = ct(sα∗d)+ ∼ ctt∗(sα∗d)+ = ct(t∗sα∗d)+ = ct(t∗s(ts)∗d)+

= ct(t∗s(t∗s)∗d)+ ∼ ct(t∗sd)+ = ctt∗(sd)+ ∼ ct(sd)+ = xa+.

(iii) α = β+β. Then ts = α = β+β. In the following, we further use
Lemma 2.7 to discuss ts = β+β in four cases.

(iii.1) t = β+ and s = β. Put y = c and b = a. Then x = cβ+ and βd = a.
We have z = cβd = yb, τ(y) = τ(c) = τ(cβ+) = τ(x) and τ(a) = τ(b). In
addition, we have yb+ = ya+ = c(βd)+ ∼ c(β+βd)+ = cβ+(βd)+ = xa+.

(iii.2) β+ = tu and uβ = s, for some u ∈ T ∗Y . In this case, we then must have
t, u ∈ Y . Put y = c and b = βd. Then z = cβd = yb, τ(y) = τ(c) = τ(ct) = τ(x)
and τ(b) = τ(βd) = τ(uβd) = τ(sd) = τ(a). Now

yb+ = c(βd)+ ∼ cβ+(βd)+ = ctu(βd)+ = ct(uβd)+ = ct(sd)+ = cta+ = xa+.

(iii.3) t = β+u and us = β, for some u ∈ T ∗ Y . Put y = cu and b = a.
Then z = cβd = cusd = cua = yb, τ(y) = τ(cu) = τ(cβ+u) = τ(ct) = τ(x) and
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τ(a) = τ(b). Applying Lemma 1.2 again, we obtain

yb+ = cua+ = cu(sd)+ = cus+(sd)+ ∼ c(us+)+us+(sd)+

= c(us)+u(sd)+ = cβ+u(sd)+ = cta+ = xa+.

(iii.4) t = lg, pr = s, β+ = le and fr = β, where l, r ∈ T ∗ Y , e, f, g, p ∈ Y ,
and gp = ef . Note that l ∈ Y , and thus t ∈ Y too. Put y = c and b = βd. Then
z = cβd = yb, τ(y) = τ(c) = τ(ct) = τ(x) and τ(b) = τ(βd) = τ(frd) = τ(rd) =
τ(prd) = τ(sd) = τ(a). We also have that

yb+ = c(βd)+ ∼ c(β+βd)+ = c(tsd)+ = ct(sd)+ = xa+.

(iv) α = ββ∗. Recall that we have x = ct, ts = α = ββ∗ and sd = a.
In the following, once again we use Lemma 2.7 this time to discuss ts = ββ∗

in four cases.
(iv.1) t = β and s = β∗. Put y = cβ and b = d. Then z = cβd = yb. As

y = cβ = ct = x, we have τ(y) = τ(x). We also have that τ(b) = τ(d) = τ(β∗d) =
τ(sd) = τ(a). In addition, yb+ = cβd+ ∼ cββ∗d+ = cβ(β∗d)+ = ct(sd)+ = xa+.

(iv.2) β = tu and uβ∗ = s, for some u ∈ T ∗ Y . Put y = x and b = ud. Then
z = cβd = ctud = xb = yb, τ(a) = τ(sd) = τ(uβ∗d) = τ(ud) = τ(b) and clearly
τ(x) = τ(y). Now

yb+ = x(ud)+ = ct(ud)+ ∼ ctt∗(ud)+ ∼ ct(t∗ud)+ ∼ ct(t∗u(tu)∗d)+

= ct(t∗uβ∗d)+ = ctt∗(uβ∗d)+ ∼ ct(sd)+ = xa+.

(iv.3) t = βu and us = β∗, for some u ∈ T ∗ Y . In this case we necessarily
have u, s ∈ Y . Put y = cβ and b = d. Thus z = cβd = yb. Also, we have
τ(y) = τ(cβ) = τ(cβu) = τ(ct) = τ(x) and τ(b) = τ(d) = τ(sd) = τ(a). Now

yb+ = cβd+ ∼ cββ∗d+ = cβusd+ = ct(sd)+ = xa+.

(iv.4) t = lg, pr = s, β = le and fr = β∗, where l, r ∈ T ∗ Y and e, f, g, p ∈ Y
with gp = ef . We then must have r ∈ Y and thus s ∈ Y too. Put y = cβ and
b = d. Then z = cβd = yb. Also, τ(y) = τ(cβ) = τ(cle) = τ(cl) = τ(clg) =
τ(ct) = τ(x) and τ(b) = τ(d) = τ(sd) = τ(a). In addition, we have

yb+ = cβd+ ∼ cββ∗d+ = clefrd+ = clgprd+ = clgsd+

= clgsd+ = ctsd+ = ct(sd)+ = xa+.

(v) (α, β) = (1Y , 1T ). Then t = s = 1Y as ts = α. Put y = c1T and b = d.
Then z = cβd = c1Td = yb, τ(y) = τ(c1T ) = τ(c) = τ(c1Y ) = τ(ct) = τ(x) and
τ(a) = τ(sd) = τ(1Y d) = τ(d) = τ(b). Also,

yb+ = c1Td
+ ∼ c1Y d

+ = c1Y 1Y d
+ = c1Y (1Y d)

+ = ct(sd)+ = xa+.

(vi) (α, β) = (1T , 1Y ). Notice that this is the only situation where we may have
h 6= 1T . From ts = α = 1T we must have that t, s in T and are mutually inverse.
Put y = c1Y and b = d. Then z = cβd = c1Y d = yb. Also, τ(x) = τ(ct) =
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τ(c)τ(t) = τ(c1Y )τ(t) = τ(y)t and τ(a) = τ(sd) = sτ(d) = sτ(b) = t−1τ(b),
where ts = 1T . In addition,

xa+ = ct(sd)+ ∼ ct(sd)+1T = ct(sd)+tt ∼ c(tsd)+t (by Lemma 2.4)

= c(1Td)
+t ∼ c(1Y d)

+t ∼ c1Y d
+t = yb+t.

(III.4) c = x′g, ps′ = α, x = x′e and fs′ = s, where x′, s′ ∈ T ∗Y , e, f, g, p ∈ Y
and gp = ef . Put y = c and b = βd. Then z = cβd = yb, τ(y) = τ(c) =
τ(x′g) = τ(x′) = τ(x′e) = τ(x) and τ(b) = τ(βd) = τ(αd) = τ(ps′d) = τ(s′d) =
τ(fs′d) = τ(sd) = τ(a). In addition,

yb+ = c(βd)+ ∼ c(αd)+ = x′g(ps′d)+ = x′gp(s′d)+

= x′ef(s′d)+ = x′e(fs′d)+ = x(sd)+ = xa+.

(IV) x = x′e, fa′ = a, cα = x′g, ℓa′ = d for some x′, a′ ∈ T∗Y and e, f, g, ℓ ∈ Y
with ef = gℓ. Let y = cβ and b = d. Then z = cβd = yb, and also we have
τ(x) = τ(x′e) = τ(x′g) = τ(cα) = τ(cβ) = τ(y) and τ(b) = τ(d) = τ(ℓa′) =
τ(fa′) = τ(a). Using Lemma 1.2, we see that yb+ = cβd+ ∼ cαd+ = x′g(ℓa′)+ =
x′gℓ(a′)+ = x′ef(a′)+ = x′e(fa′)+ = xa+. �

Lemma 2.9. Let T be equidivisible. Let h, k ∈ T and x, a, y, b ∈ T ∗ Y with
xa = yb, τ(x) = τ(y)h and kτ(b) = τ(a). Then hk = 1T and xa+ ∼ yb+h.

Proof. For the first claim, notice that τ(y)τ(b) = τ(yb) = τ(xa) = τ(x)τ(a) =
τ(y)hkτ(b), so that as T is cancellative hk = 1T .

According to Lemma 2.7 it is necessary to discuss xa = yb in four cases.
(I) When x = y and a = b, then h = k = 1T and the result is obvious.
(II) Assume that x = yu and ua = b, for some u ∈ T ∗Y . Then τ(x) = τ(yu) =

τ(y)τ(u) together with τ(x) = τ(y)h give τ(u) = h = k−1, as T is cancellative.
Hence τ(ku) = τ(k)τ(u) = 1T . Now we deduce that

yb+h = y(ua)+h ∼ y1T (ua)
+h = yhk(ua)+h

∼ yh(kua)+ (by Lemma 2.4
)

∼ yh((ku)+a)+
(
by Lemma 2.2, as τ(ku) = 1T

)

= yh(ku)+a+
(
by Lemma 1.2

)

∼ yhkua+
(
by Lemma 2.2 as τ(hu) = 1T

)

∼ yua+

= xa+.

(III) This case is dual to (II) and follows in a similar way.
(IV) To conclude, suppose that x = w′e, fs′ = a, y = w′g, ps′ = b, where

w′, s′ ∈ T ∗ Y , e, f, g, p ∈ Y and ef = gp. Then τ(x) = τ(w′e) = τ(w′) =
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τ(w′g) = τ(y) and as τ(x) = τ(y)h we have h = 1T . Now,

xa+ = w′ea+ = w′e(fs′)+

= w′ef(s′)+
(
by Lemma 1.2

)

= w′gp(s′)+

= y(ps′)+
(
by Lemma 1.2

)

= yb+.

The result follows. �

We now present the main result of this article.

Theorem 2.10. Let T be an equidivisible cancellative monoid acting on both
sides upon a semilattice Y with identity, satisfying the compatibility conditions.
Then P(T, Y ) is adequate.

Proof. The monoid P(T, Y ) is Ehresmann with semilattice of projections Y ′ and,
from Proposition 2.3, we know that E(P(T, Y )) = Y ′.

To show that P(T, Y ) is adequate it remains to prove for any [x], [y], [a] ∈
P(T, Y ), [x][a] = [y][a] implies that [x][a]+ = [y][a]+, so that [a]R∗ [a]+. If so,
the dual argument will give that [a]L∗ [a]∗.

Suppose now that [x], [y], [a] ∈ P(T, Y ) and [x][a] = [y][a], whence xa ∼ ya.
Thus xa = ya or there exists a sequence

xa = z′0 ∼ z′1 ∼ . . . ∼ z′n = ya

where (z′i, z
′
i+1) = (c′iαid

′
i, c

′
iβid

′
i) for some (αi, βi) ∈ (Hℓ ∪Hr) ∪ (Hℓ ∪Hr)

−1 and
c′i, d

′
i ∈ (T ∗ Y )1.

If xa = ya then as T is cancellative, certainly τ(x) = τ(y), and so by Lemma 2.9
(with k = h = 1T ), we have that xa+ ∼ ya+1T ∼ ya+, giving [x][a]+ = [y][a]+.

Next, assume that we have a sequence as given above. For convenience, let S
and W be either T or Y . We multiply each term of the sequence on the left by
1S, where x has an S-beginning and on the right by 1W , where a has a W -end.
Let zi = 1Sz

′
i1W , ci = 1Sc

′
i and di = d′i1W for 1 ≤ i ≤ n. Now, ci, di ∈ T ∗ Y . We

thus have a sequence

xa = z0 ∼ z1 ∼ . . . ∼ zn = (1Sy)a,

every step of which is basic. It follows from Lemma 1.6 that τ(x)τ(a) = τ(y)τ(a)
which implies that τ(x) = τ(y). For convenience, put x = y0 and a = b0. By
Lemma 2.8, for 1 ≤ i ≤ n there exist yi, bi ∈ T ∗ Y and hi ∈ U(T ) such that
zi = yibi, τ(yi−1) = τ(yi)hi, h

−1
i τ(bi) = τ(bi−1) and yi−1b

+
i−1 ∼ yib

+
i hi. Hence

xa+ = y0b
+
0 ∼ y1b

+
1 h1 ∼ y2b

+
2 h2h1 ∼ . . . ∼ ynb

+
n hnhn−1 . . . h1

and so by Lemma 1.6, we obtain that τ(x) = τ(xa+) = τ(yn)h where h =
hnhn−1 . . . h1 ∈ U(T ).
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From τ(x) = τ(1Sy), we get τ(1Sy) = τ(yn)h. As we have (1Sy)a = zn = ynbn
it then follows that h−1τ(bn) = τ(a), and now Lemma 2.9 yields (1Sy)a

+ ∼ ynb
+
n h.

Hence xa+ ∼ ynb
+
nh ∼ ya+ and so [x][a]+ = [y][a]+ as required. �

From [3, Theorem 6.1] and the remarks preceding it, which together tell us that
the free Ehresmann monoid on a set X is of the form P(X∗, Y ), we immediately
deduce the following corollary. Note that this result is also mentioned in the
Section 6 (Remarks) of [14].

Corollary 2.11. The free Ehresmann monoid on a set X is adequate, and hence
coincides with the free adequate monoid on X.

Corollary 2.12. The quasi-variety of adequate monoids generates the variety of
Ehresmann monoids.

3. Characterisation of P(T, Y )

In this section we return to the consideration of P-quadruples T = (T, Y, · , ◦)
for an arbitrarymonoid T . We show that the Ehresmann monoid P(T ) = P(T, Y )
is unique, in the sense that it is exactly the initial object in a particular category,
and do so after proving that the operator P defines an expansion of a suitable
category of Ehresmann monoids.

We start by recalling the definition of an expansion, here in the case of bi-unary
monoids.

Definition 3.1. (cf . [1]) An expansion of a category C of bi-unary monoids with
(2, 1, 1, 0)-morphisms is a “functorial cover”, i.e. a functor E from C to itself along
with a natural transformation π from E to the identity functor of C such that, for
each object M of C, the morphism πM is onto. Thus, for any objects M1 and M2

of C, the following diagram commutes:

E(M1) E(M2)

M1 M2

E(ψ)

πM1
πM2

ψ

	

Let T = (T, Y, · , ◦) be a P-quadruple. By Theorem 1.7, we may construct the
Ehresmann monoid P(T ) := P(T, Y ) associated with T . We have that P(T )
is T ′-generated with semilattice of projections Y ′, and νT ,T = νT |T : T → T ′

and νT ,Y = νT |Y : Y → Y ′ are isomorphisms, where T ′ = {[t] : t ∈ T} and
Y ′ = {[y] : y ∈ Y }. Further, Lemmas 1.2 and 1.3 give that for any t ∈ T and
y ∈ Y ,

(t · y)νT ,Y = tνT ,T · yνT ,Y and (y ◦ t)νT ,Y = yνT ,Y ◦ tνT ,T .
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Lemma 3.2. Let T 1 = (T1, Y1, · , ◦) and T 2 = (T2, Y2, · , ◦) be P-quadruples, and
suppose that ψT : T1 → T2 and ψY : Y1 → Y2 are monoid morphisms such that
for all t ∈ T1 and y ∈ Y1 we have

(t · y)ψY = tψT · yψY and (y ◦ t)ψY = yψY ◦ tψT .

Let ψ : T1 ∗ Y1 → T2 ∗ Y2 be the (semigroup) morphism that extends ψT and ψY .
Then ψ is a (2, 1, 1)-morphism, and

Pψ : P(T 1) → P(T 2)

given by
[u]Pψ = [uψ]

is a (2, 1, 1, 0)-morphism. If ψT and ψY are both onto, then so is Pψ.

Proof. To show that Pψ is well-defined we are required to prove that the congru-
ence ∼ giving P(T 1) is such that ∼ ⊆ ker(ψνT2). To do so it is sufficient to see
that the generating set Hℓ ∪Hr of ∼ lies in ker(ψνT2).

First we prove that, for all u ∈ T1 ∗ Y1 and y ∈ Y1,

(3.1) (u · y)ψY = uψ · yψY and (y ◦ u)ψY = yψY ◦ uψ.

By hypothesis this holds for u ∈ T1 and if u ∈ Y1, we have

(u · y)ψY = (uy)ψY = (uψY )(yψY ) = uψY · yψY = uψ · yψY .

Then, by induction on the minimal number of generators from T1 ∪ Y1 of u ∈
T1 ∗ Y1, we obtain one half of (3.1) for all u ∈ T1 ∗ Y1 and y ∈ Y1; the other
equality may be shown similarly.

Now, for u ∈ T1 ∗ Y1, we get

u+ψ = (u · 1Y1)ψ = (u · 1Y1)ψY = uψ · 1Y1ψY = uψ · 1Y2 = (uψ)+.

Similarly, u∗ψ = (uψ)∗, thus verifying that ψ is a (2, 1, 1)-morphism.
It follows that

(u+u)ψ = (u+ψ)(uψ) = (uψ)+(uψ) ∼ uψ.

Analogously, (uu∗)ψ ∼ uψ. Also 1T1ψ = 1T1ψT = 1T2 ∼ 1Y2 = 1Y1ψY = 1Y1ψ.
Therefore ∼ is contained in ker(ψνT2), and so Pψ is indeed well-defined and

clearly is then a semigroup morphism. Given u ∈ T1 ∗ Y1,

[u]+Pψ = [u+]Pψ = [u+ψ] = [(uψ)+] = [uψ]+ = ([u]Pψ)
+.

In a similar way, Pψ respects ∗. As [1T1 ]Pψ = [1T1ψ] = [1T2], we have that Pψ is
a (2, 1, 1, 0)-morphism.

If both ψT and ψY are onto, then so is ψ and hence also Pψ. �

Now let C be the category whose objects are triples (M,T, Y ), where M is a T -
generated Ehresmann monoid with semilattice of projections Y (the objects are
over-defined as givenM we know Y , however it is useful to mention Y explicitly);
by a morphism ϕ : (M1, T1, Y1) → (M1, T1, Y2) of C we mean that ϕ :M1 →M2 is
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a (2, 1, 1, 0)-morphism such that T1ϕ = T2 and Y1ϕ = Y2. The composition in C
is the usual composition of maps.

Definition 3.3. The category C defined above is called the category of marked
Ehresmann monoids.

Let (M,T, Y ) be an object of C. As seen in Lemma 1.1, we then have a P-
quadruple T = (T, Y, · , ◦) where the actions are the standard ones induced by the
action of T on Y in M . By Theorem 1.7, P(M,T, Y ) := (P(T ), T νT ,T , Y νT ,Y )
is an object of C. Now let (M1, T1, Y1) and (M2, T2, Y2) be objects of C, and let
T1 and T2 be the corresponding P-quadruples. Suppose that ψ : (M1, T1, Y1) →
(M2, T2, Y2) is a morphism of C. Define ψT : T1 → T2 and ψY : Y1 → Y2 as the
morphisms induced by ψ. Since ψ : M1 → M2 is a (2, 1, 1, 0)-morphism, it is
clear that, for any t ∈ T1 and y ∈ Y1,

(t · y)ψY = tψT · yψY and (y ◦ t)ψY = yψY ◦ tψT .

With some abuse of notation, letting ψ also denote the semigroup morphism
extension of ψT and ψY to T1 ∗ Y1, Lemma 3.2 gives that

P(ψ) := Pψ : P(T 1) → P(T 2)

is a morphism of Ehresmann monoids. Clearly (T1νT1,T1)Pψ = T2νT2,T2 and
(Y1νT1,Y1)Pψ = Y2νT2,Y2. Thus Pψ is a morphism in C.

It follows easily that P is a functor from C to C.

Theorem 3.4. The functor P determines an expansion of the category of marked
Ehresmann monoids.

Proof. Let M = (M,T, Y ) be an object of C. From [3, Theorem 5.2], the mor-
phism ι : T ∗Y →M extending the inclusion maps ιT : T → M and ιY : Y →M
factors through P(M,T, Y ) to produce an onto morphism

πM : P(M,T, Y ) → (M,T, Y )

given by
[u1 . . . un]πM = u1 . . . un,

where u1, . . . , un ∈ T ∪ Y for 1 ≤ i ≤ n, the product on the left hand side is
in T ∗ Y , and that on the right hand side is taken in M .

It is easy to check that if M1 = (M1, T1, Y1) and M2 = (M2, T2, Y2) are objects
of C and ψ : M1 → M2 is a morphism of C, then πM1

ψ = Pψ πM2
, so that the

diagram

P(M1) P(M2)

M1 M2

Pψ

πM1
πM2

ψ

	

commutes as required. �
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We point out that the expansion determined by P has associated natural trans-
formation π, where, for each object M of C, the morphism πM : P(M) → M is
defined in the proof of Theorem 3.4.

We now fix a P-quadruple T = (T, Y, · , ◦), and define a category C(T ) as
follows: the objects are quintuples (M,S,E, θS, θE) where (M,S,E) is an object
of C, θS : T → S and θE : Y → E are onto monoid morphisms such that for all
t ∈ T and y ∈ Y ,

(3.2) (t · y)θE = tθS · yθE and (y ◦ t)θE = yθE ◦ tθS.

A morphism ψ : (M1, S1, E1, θS1
, θE1

) → (M2, S2, E2, θS2
, θE2

) of C(T ) is simply
a morphism ψ : (M1, S1, E1) → (M2, S2, E2) in C such that θS1

ψS = θS2
and

θE1
ψE = θE2

. This can be represented in terms of commutativity of diagrams as
follows:

T

S1 S2

θS1
θS2

ψS

		

Y

E1 E2

θE1
θE2

ψE

		

Definition 3.5. The category C(T ) is called the category of T -marked Ehres-
mann monoids.

Theorem 3.6. Let T = (T, Y, · , ◦) be a P-quadruple. Then

Q(T ) =
(
P(T, Y ), T νT ,T , Y νT ,Y , νT ,T , νT ,Y

)

is the initial object in the category C(T ).

Proof. Clearly Q(T ) is an object in C(T ). Let (M,S,E, θS, θE) be an object
in C(T ). We must show that there is a unique morphism in C(T ) from Q(T ) to
(M,S,E, θS, θE).

Let U = (S,E, · , ◦) be the P-quadruple determined by M and notice that by
the very definition of C(T ) we have onto monoid morphisms θS : T → S and
θE : Y → E satisfying (3.2) for all t ∈ T and y ∈ Y .

Let θ : T ∗ Y → S ∗ E be the natural extension of θS , θE . By Lemma 3.2 we
have an onto (2, 1, 1, 0)-morphism

Pθ : P(T ) → P(U)

in C given by

[u]Pθ = [uθ].

By Theorem 3.4, there is an onto (2, 1, 1, 0)-morphism π : P(U) → M that lies
in C and hence Pθπ lies in C. For any t ∈ T we have

tνT ,TPθπ = [t]Pθπ = [tθ]π = tθ = tθS ,

and similarly yνT ,YPθπ = yθE. Hence Pθπ lies in C(T ).
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Now let ψ : P(T ) → M be any morphism in C(T ). By definition, we must
have that for any t ∈ T and y ∈ Y ,

tνT ,Tψ = tθS and yνT ,Y ψ = yθE.

Then Pθπ and ψ agree on a set of generators of P(T ), so they must be equal,
establishing the uniqueness of Pθπ. The result follows. �

It is worth remarking that we have shown that if (M,S,E, θS, θE) is an object
in C(T ) for some P-quadruple T , then the expansion P(M,S,E) of (M,S,E)
also lies in C(T ).

4. Open questions

We point to some natural questions that arise from our work.

Let T = (T, Y, · , ◦) be a P-quadruple.

Open Question 4.1. We have proved that if T is an equidivisible cancellative
monoid then the monoid P(T, Y ) is adequate. Is P(T, Y ) adequate when T is an
arbitrary cancellative monoid?

Open Question 4.2. We know that, unlike the one-sided case, P(T, Y ) does
not have uniqueness of T -normal forms. Is there a uniqueness of T -normal forms
of minimal length in P(T, Y ), at least in the cancellative and equidivisible case?

Open Question 4.3. In the two-sided case, the monoid P(T, Y ) may be thought
of as the analogue for Ehresmann monoids of the semidirect product construction
known for inverse and for restriction monoids. Similarly for the one-sided case
by considering Pℓ(T, Y ), left Ehresmann monoids, and left restriction monoids.
What might be the analogue of the McAlister P -semigroup construction for P(T, Y )
and Pℓ(T, Y )? Observe that in the two-sided case this may well involve the study
of partial actions, in view of the results in [4] for restriction monoids.

Open Question 4.4. That every strongly T -proper Ehresmann monoid M is
T -proper is known. What is the precise connection in the one- and the two-
sided cases between the concepts of being strongly T -proper, T -proper, having
uniqueness of T -normal forms (the latter in the one-sided case) and indeed other,
natural, concepts of T -properness?
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Departamento de Matemática and CEMAT-Ciências, Faculdade de Ciências,

Universidade de Lisboa, 1749-016, Lisboa, Portugal

E-mail address : mjbranco@fc.ul.pt, gmcunha@fc.ul.pt

Department of Mathematics, University of York, Heslington, York YO10

5DD, UK

E-mail address : victoria.gould@york.ac.uk

College of Mathematics and Systems Science, Shangdong University of Sci-

ence and Technology, Qingdao, 266590, P. R. China

E-mail address : yanhuiwang@sdust.edu.cn


