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General Type-2 Radial Basis Function Neural

Network: A Data-Driven Fuzzy Model

Adrian Rubio-Solis1, Patricia Melin2, Uriel Martinez-Hernandez3 and George Panoutsos1

Abstract—This paper proposes a new General Type-2 Radial
Basis Function Neural Network (GT2-RBFNN) that is function-
ally equivalent to a GT2 Fuzzy Logic System (FLS) of either
Takagi-Sugeno-Kang (TSK) or Mamdani type. The neural struc-
ture of the GT2-RBFNN is based on the α-planes representation,
in which the antecedent and consequent part of each fuzzy rule
uses GT2 Fuzzy Sets (FSs). To reduce the iterative nature of the
Karnik-Mendel algorithm, the Enhaned-Karnik-Mendel (EKM)
type-reduction and three popular direct-defuzzification methods,
namely the 1) Nie-Tan approach (NT), the 2) Wu-Mendel uncer-
tain bounds method (WU) and the 3) Biglarbegian-Melek-Mendel
algorithm (BMM) are employed. For that reason, this paper
provides four different neural structures of the GT2-RBFNN and
their structural and parametric optimisation. Such optimisation
is a two-stage methodology that first implements an Iterative
Information Granulation approach to estimate the antecedent
parameters of each fuzzy rule. Secondly, each consequent part
and the fuzzy rule base of the GT2-RBFNN is trained and
optimised using an Adaptive Gradient Descent method (AGD)
respectively. Several benchmark data sets, including a problem of
identification of a nonlinear system and a chaotic time series are
considered. The reported comparative analysis of experimental
results is used to evaluate the performance of the suggested GT2
RBFNN with respect to other popular methodologies.

Index Terms—General Type-2 FLSs, Radial Basis Function
Neural Networks, α-plane representation, fuzzy modelling.

I. INTRODUCTION

G
ENERAL Type-2 Fuzzy Logic is now well established

and is gaining more and more in popularity [1]–[6]. This

is mainly credited to the capability of General Type-2 Fuzzy

Sets (GT2 FSs) to better handle and minimise the effect of high

levels of uncertainty with respect to other high order FSs such

as Interval Type-2 Fuzzy Sets (IT2 FSs) [7]–[14]. Compared to

Type-1 Fuzzy Sets (T1 FSs) and IT2 FSs, a GT2 FS weights

uncertainty nonuniformly and is described by a Memberhip

Function (MF) that is characterised by more parameters, so

using GT2 FSs allows for more design degrees of freedom [7],

[14]. Furthermore, a GT2 FS is characterised by a Footprint

of Uncertainty (FOU) and an MF (secondary MF), where

uncertainty can be modelled with any degree between 0 and

1, whereas T1 and IT2 FSs associate uncertainty only to crisp

values of 0 or 1 respectively [9].
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TABLE I: ABBREVIATIONS AND THEIR DEFINITIONS.

Abbreviation Definition

A2-C0
Antecedents are type-2 fuzzy sets and
Consequents are type-0 fuzzy sets (crisp)

AED Average of End-points Defuzzification

AGD Adaptive Gradient Descent

BMM Biglarbegian Melek Mendel approach

COS Center Of Sets (type-reduction)

EKM Enhanced Karnik-Mendel algorithm

FOU Foot Print of Uncertainty

GT2 FS General Type-2 Fuzzy Set

IIG Iterative Information Granulation

IWA Interval Weighted Average

LMF Lower Membership Function

MF Membership Function

NT Nie-Tan simplification.

RBFNN Radial Basis Function Neural Network

T1 FLS Type-1 Fuzzy Logic System

T2 FLS Type-2 Fuzzy Logic System

TR Type Reduction.

TSK Takagi Sugeno Kang

UMF Upper Membership Function

WM UBs Wu Mendel Uncertainty Bounds

As indicated in [7], a GT2 FLS can be thought as a

high order fuzzy set uncertainty model with more flexibility.

Therefore, a GT2 Fuzzy Logic System has the potential to

outperform not only the use of FLSs of T1, but also to provide

a performance than an FLS with IT2 FSs cannot achieve [7].

Although GT2 FLSs are still in their infancy, the number of

aplications of higher order fuzzy systems has experienced an

important increase during the past five years [15], in particular

in areas such as Pattern Recognition [12], [13], Automatic

Control [2], [16], Image Processing [17] and Robotics [1],

[3], [18]. In this applied context, the usage of GT2 FSs usually

increases the computational complexity with respect to T1 and

IT2 FLSs. This is clearly compensated not only by a higher

model accuracy but also with a better treatment of uncertainty

that can be obtained by using GT2 FSs as well as due to

new computing technologies. For example in [19], a Mamdani

fuzzy neural network with a hidden layer that employs GT2

FSs was proposed. In [19], a comparison about the prediction

of noisy time series between the proposed GT2 neural network

(NN), a monolithic network and an IT2 NN revealed the

superiority of GT2 models to better manage uncertainty. In

[17], the authors developed an edge detection system based

on a morphological gradient technique and GT2 FSs.
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Fig. 1: General Type-2 Fuzzy Logic System (GT2 FLS, Taken from [9]).

According to [17], the proposed GT2 edge detection ar-

chitecture showed a higher performance than IT2 and T1

FLSs for edge detection when image processing is under

high levels of noise. Similar to T1 and IT2 FLSs, a GT2

FLS involves a similar architecture as illustrated in Fig. 1.

Specifically, an FLS can be regarded of GT2 if only one of

the associated FSs is of GT2 [7]. In this sense, several efforts

have been made to represent GT2 FLSs (or T2 FLSs) [20]–

[22]. Particularly, horizontal slice-representation allows using

everything learned in IT2 FSs theory [9]. According to the

α−cut decomposition theorem, α−cuts decomposition offers

a practical way to represent GT2 FLSs (including of IT2 and

T1). This is because a GT2 FLS can be represented as the

union of all its α−planes raised to a level α, where each

α−plane is the union of its α−cuts [9]. Thus, based on the

α−cuts decomposition theorem, at each input x′ = ~xp, a GT2

FLS simultaneously uses α−cuts for each vertical slice over

the secondary MF domain and the associated α−planes [9].

Based on the α−plane representation, in this paper a new

General Type-2 Radial Basis Function Neural Network (GT2-

RBFNN) that is functionally equivalent to a GT2 Mamdani (or

TSK) FLS is suggested. To provide a high trade-off between

accuracy and model simplicity, two different GT2 RBFNN

structures are implemented. On the one hand, to reduce

the iterative nature of the Karnik-Mendel method (KM), a

GT2 RBFNN with an Enhanced KM algorithm is suggested.

On the other hand, three different GT2 RBFNN structures

based on direct-defuzzification methods are also presented,

i.e. a GT2 RBFNN with a a) Nie-Tan approach, a b) Wu-

Mendel Uncertainty bounds method and a c) Biglarbegian-

Melek-Mendel procedure. A learning methodology based on

an Iterative Information Granulation process (IIG) and an

Adaptive Gradient Descent (AGD) approach is implemented

to identify the parameters of each antecedent and consequent

in the rule base of a GT2 RBFNN. The major contributions

of the GT2 RBFNN are twofold. The first contribution is

the proposal of a novel RBFNN based on GT2 FSs. Current

applications only focus on novel learning methodologies and

the implementation of metaheuristics to improve the generali-

sation properties of the RBFNN. The suggested GT2 RBFNN

incorporates GT2 FSs not only to better model and minise

the effects of uncertainty, but also to provide a higher level

of model accuracy than its counterparts the RBFNN and

the IT2 RBFNN. Compared to ensemble of neural networks

where uncertainty is viewed as a measure of disagreement

among on some inputs, a GT2 RBFNN treats uncertainty as a

deficiency that results not only from imprecise boundaries in

the FSs of an RBFN and IT2 RBFNN, but also as consequence

of information-based imprecision. The second contribution

is the proposal of GT2 RBFNN structures based on direct-

defuzzification methods and the implementation of an adaptive

learning for model simplification and improvement of the

convergence of a traditional gradient descent approach.

The rest of this paper is organised as follows: In Sections II

and III, a brief review of T2 FSs and the functional equivalence

between the RBFNN and GT2 FLSs is provided. Sections IV

and V detail the architecture of a GT2-RBFNN with an EKM

and three simplified neural structures respectively. In Section

V, a parameter identification approach for the GT2 RBFNN

models is described. A comparative analysis and a discussion

of experiments results are presented in Sections VI and VII

correspondingly. Finally, conclusions are drawn in section IX.

II. GENERAL TYPE-2 FUZZY LOGIC

This section provides a brief review of General Type-2

Fuzzy Sets (GT2 FSs) and theory of α-plane representation.

A. Definition of a General Type-2 Fuzzy Set

A General Type-2 Fuzzy Set (GT2 FS) denoted by Ã (also

called T2 FS) is characterised by a bivariate MF µÃ(x, u) ⊆
[0, 1] on the Cartesian product µÃ : X × [0, 1], where the

primary variable is x ∈ X . And the y − axis is called

secondary variable or primary MF u ∈ Jx ⊆ [0, 1] as

illustrated in Fig. 2. Thus, Ã is represented by:

Ã = {(x, u), µÃ(x, u)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

{µÃ(u)|u ∈ U} is a vertical slice of µÃ(x, u) and it can also

be represented by its α−cut decomposition.

B. α−plane Representation

An α−plane for a GT2 FS Ã is denoted by Ãα, is the union

of the primary MFs of Ã whose secondary grades are greater

than or equal to α (0 ≤ α ≤ 1)

Ãα = {(x, u), µÃ(x, u) ≥ α|x ∈ X,u ∈ [0, 1]} (2)

where the lower and upper limits for Ãα are defined by
{

LMF (Ãα) = aα̃

UMF (Ãα) = bα̃
(3)

That means when Ãα is raised to level α, it is a plane at that

level that can be obtained by connecting all the corresponding

α−cuts of the associated vertical slices of the secondary MFs

of x ∈ X [7]. Hence, the horizontal-slice representation of a

GT2 FS Ã is defined by

Ã = sup
α∈[0,1]

α/

[∫

x∈X

[aα(x), bα(x)]/x

]

=
⋃

α∈[0,1]

α/Ãα (4)
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Fig. 2: Some α−planes raised to level α for a GT2 FS (Taken from [7]).

III. RADIAL BASIS FUNCTION NEURAL NETWORK AND

GENERAL TYPE-2 FUZZY LOGIC SYSTEMS

It has been proven that under some mild conditions the

RBFNN can be viewed as a Type-1 Fuzzy Logic System

of either Mamdani or Takagi-Sugeno-Kang type (TSK) [23],

[24]. This equivalence has been further extended in [24] in

order to design an Interval Type-2 RBFNN (IT2 RBFNN)

with a Karnik-Mendel type-reduction in which all the fuzzy

sets are of Interval Type-2. An RBFNN can be regarded as

an FLSs whose main inference engine is interpreted as an

adaptive filter [7], [24]–[26]. It resembles an additive weighted

combination of the MFs of the fired-rule output sets in the

hidden layer of the RBFNN (See Fig. 3) [7]. Thereby, every

hidden receptive unit in the RBFNN is functionally equivalent

to a fuzzy rule Ri described by a multi-variable Gaussian

MF µRi(~xp, yp) = µRi [x1, . . . , xn, y], where the input vector

~xp ∈ X1 × . . . Xn and the implication engine is defined as:

µRi(~xp, y) = µAi→Gi =
[

Tn
k1
µF i

k
(xk) ⋆ µGi(y)

]

(5)

Where ⋆ is the minimum t−norm that represents the shortest

Euclidean distance to the input vector ~xp. And each receptive

unit is the ith fuzzy rule:

Ri : IF x1 is F i
1 and . . . IF xk is F i

k and . . .

IF xn is F i
n THEN y is Gi; i = 1, . . . ,M (6)

So that, the firing strength fi of each receptive unit is

µAi→Gi(~xp, y) =

n
∏

k=1

µF i
k
(xk)

= fi

(

exp

[

−

∑n
k=1 (xk −mki)

2

σ2
i

])

(7)

where Ai = F i
1 × . . . × F i

n - mki and σi are the center

and width of a multi-variable Gaussian MF respectively. By

combining all the rules in the output layer, yp is [27]

yp =

∑M
i=1 µAi→Gi(~xp, y)wi
∑M

i=1 µAi→Gi(~xp, y)
(8)
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Fig. 3: Radial Basis Function Neural Network (RBFNN, Taken from [23]).

Strictly speaking, any kind of FLS enhancement might be

directly applicable to the RBFNN theory because the structure

of its fuzzy rule base in going from T1 FSs to T2 FSs

does not change; it is the way the associated antecedents

and consequents are modelled [7]. Thus, an RBFNN can be

functionally equivalent to a kind of GT2 FLS that is based on

the horizontal-slice representation if an RBFNN consists of:

I. An input layer with a singleton fuzzification.

II. The T-norm operator used to compute each rule’s firing

strength is multiplication (meet).

III. The secondary MF of each GT2 FS is convex.

IV. The α−cut of each T1 secondary MF Ã, Ãα is given by

a set of the lower and upper firing strengths
[

fα
i , f

α
i

]

as

described in Fig. 4.

The structure of an RBFNN can be viewed as GT2 Takagi-

Sugeno-Kang FLS if for each ith fuzzy rule

R̃i
α : IF x1 is F̃ i

1 and . . . IF xk is F̃ i
k and . . .

IF xn is F̃ i
n THEN y is g̃i(~xp); i = 1, . . . ,M (9)

whereas for a Mamdani inference fuzzy system, the conse-

quent part is defined as ’y is G̃i’. For a GT2 RBFNN of

Mamdani (TSK) type, when ~xp = x′

l, a vertical slice in the

ith receptive unit for the ith antecedent F̃ i
k is activated, and

its α−cut decomposition is given by:

F̃ i
k(x

′

l) ⇔ µÃi→G̃i(~xp, y) = sup
α∈[0,1]

α/
[

fα
i , f

α
i

]

(10)

For simplicity, it is used fα
i (~xp) = fα

i . Hence, the level α
firing set in each receptive unit is defined by

Fα
i ≡

[

fα
i , f

α
i

]

, α ∈ [0, 1] (11)

Built upon a horizontal-slice representation, a GT2 RBFNN

can be defined as [28]

1. A horizontal-slice Mamdani (TSK) FLS that is analogous

to an IT2 FLS where a number of operations described

for IT2 FSs theory occur for each horizontal slice [7].

2. A Wagner-Hagras (WH) GT2 RBFNN FLS that results

from the union over α of the horizontal-slice Mamdani

(TSK) FLSs [14].
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IV. GENERAL TYPE-2 RADIAL BASIS FUNCTION NEURAL

NETWORK (GT2 RBFNN)

Based on Fig. 5, this section describes the GT2 RBFNN

structure that can be viewed as a Mamdani (TSK) GT2 FLS

with an Enhanced Karnik-Mendel (EKM) type-reduction layer,

where all the FSs are of GT2. For demonstration purposes,

here a GT2 RBFNN with an uncertain width σi = [σ1
i , σ

2
i ]

and a fixed mean mi
k is implemented. A horizontal-slice

representation is used for the simplest Mamdani (TSK) GT2

RBFNN structure that consists of a singleton fuzzification

with a secondary MF that is convex, a Center-Of-Sets (COS)

type reduction that uses an EKM and an average of end-

points defuzzification (AED) as described in Fig. 6. To avoid

additional parameters, and as shown in 4, the secondary MFs

are vertical slices, a triangle function is employed where its

base is equal to f0
i − f0

i and its Apex location given by

Apex(~xp) = f0
i (~xp)+

1

2
w[f0

i (~xp)− f0
i (~xp)];w ∈ [0, 1] (12)

A. GT2RBFNN Input Layer

The proposed GT2 RBFNN is a Multi-Input-Single-Output

FLS, in which the input data is a multidimensional crisp vector

represented by ~xp = [x1, . . . , xn] ∈ Rn where only the current

state is fed into the layer and then forwarded to next layer.

B. General Type-2 RBF Layer

It is assumed a singleton fuzzification, i.e. for each value

xk only a T1 vertical slice for an antecedent GT2 FS F̃ i
k

is activated. Compared to an IT2 RBFNN, to describe each

horizontal slice in the GT2 layer of a GT2 RBFNN, a number

of S firing strengths [fαs
i , fαs

i ] is required (See Fig. 6) where

α2 > α1. At input ~xp, for each fuzzy rule in the GT2-Mamdani

(TSK) RBFNN, only one firing interval Fαs
i is activated for

level αs in the GT2 RBF layer as (See Fig. 6, 7 and 8) [29]:

Rule-i firing
interval for
level-α

Type-
reduced at
level-α

Centroid of
consequent
at level-α

F
α
1

i

F
α2

i

F
αS

i

D
E
F
U
Z
Z
I
F
I
E
R

Y α2COS,

Y α2COS,

Y αSCOS,

C
α2
G
~ i

C
αs
G
~ i

C
α1
G
~ i

xpx
→

Level-1

Level-S

Level-2

Fig. 5: GT2 Mamdani computations for an RBFNNN (Taken from [7]).

Fαs
i :=



































Fαs
i = [fαs

i (~xp), f
αs
i (~xp)]

fαs
i (~xp) = exp

[

−

n
∑

k=1

(

xk −mi
k

σ2
i

)2
]

αs

fαs
i (~xp) = exp

[

−

n
∑

k=1

(

xk −mi
k

σ1
i

)2
]

αs

(13)

Note the term α is not a variable [7]. The subscript ′s′ is used

to denote each α-level in the GT2 RBFNN.

C. Type-reduction Layer

In the type reduction layer, a Center Of Sets Type Reduction

(COS TR) is used. This layer performs a mathematical oper-

ation that maps a GT2 FS into a T1 FS. Hence, the centroid

of each consequent at the αs-plane is computed as:

CG̃i
αs

= αs/[w
i
l,αs

, wi
r,αs

] (14)

According to [7], [29], for a Mamdani GT2 RBFNN,

[wi
l,αs

, wi
r,αs

] is an Interval Weighted Average (IWA) that is

used along with the firing interval Fαs
i to compute the reduced

set [yαs

l (~xp), y
αs
r (~xp)] for αs-level as:

yαs

l =

∑Lαs
i=1 wi

l,αs
fαs
i +

∑M
i=Lαs+1 w

i
l,αs

fαs
i

∑Lαs
i=1 fαs

i +
∑M

i=Lαs+1 f
αs
i

(15)

yαs
r =

∑Rαs
i=1 wi

r,αs
fαs
i +

∑M
i=Rαs+1 w

i
r,αs

fαs
i

∑Rαs
i=1 fαs

i +
∑M

i=Rαs+1 f
αs
i

(16)

where YCOS,αs
= 1/[yαs

l (~xp), y
αs
r (~xp)]. For a TSK GT2

RBFNN, a normalised A2 − C0 GT2 FLS version is used

in which the antecedents are GT2 FSs, and the associated

consequent is gi,αs = ci,αs

0 x0+ ci,αs

1 x1+ . . .+ ci,αs
n xn, where

x0 = 1 and ci,αs
m , (m = 0, . . . , n) are crips numbers.

yαs

l =

∑Lα

i=1 gi,αsf
α
i +

∑M
i=Lα+1 gi,αsf

α
i

∑L
i=1 f

α
i +

∑M
i=Lα+1 f

α
i

(17)

yαs
r =

∑Rα

i=1 gi,αsf
α
i +

∑M
i=Rα+1 gi,αsf

α
i

∑Rα

i=1 f
α
i +

∑M
i=Rα+1 f

α
i

(18)
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D. Defuzzification Layer

This layer performs defuzzification that consists of a process

of aggregation of all horizontal slices. Here, the Average of

End-Points Defuzzification (AEPD) is used [14]:

yp(~xp) =

S
∑

s=1

αs[(y
αs

l (~xp) + yαs
r (~xp)) /2]

/

S
∑

s=1

αs (19)

V. SIMPLIFIED GENERAL TYPE-2 RADIAL BASIS

FUNCTION NEURAL NETWORK

In this paper, a GT2 RBFNN that employs a direct-

defuzzification algorithm as an output layer is called Simpli-

fied General Type-2 Radial Basis Function Neural Network

(SGT2 RBFNN). For practical reasons, particularly for real

world T2 FLSs, the need to bypass the iterative nature of KM

algorithms that results from the number of permutations that

are needed to calculate the reduced set has become a priority.

Type-reduction is usually used as going from a T2 FS to a

T1 FS [30]. In this paper, the term direct-defuzzification and

closed-form type reduction are used indistinctly to refer to the

mapping that goes from a GT2 FS to a crisp number (type-

0). Due to their simplicity and accuracy with respect to KM

algorithms, in this paper three popular direct-defuzzification

approaches [30] are selected, i.e. a) Nie-Tan closed-form (NT)

[31], b) Wu-Mendel Uncertain Bounds approach (WU) [32]

and c) the Biglarbegian-Melek-Mendel method (BMM) [33].

A. Simplified Wu-Mendel GT2-RBFNN

The second simplified structure is a Mamdani GT2-RBFNN

that employs the Wu-Mendel Uncertain Bounds method and

that is called WM GT2-RBFNN for short. For each α-level in

the GT2-RBFNN, the WM method replaces the type reduction
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Fig. 7: Wu-Mendel GT2 RBFNN.

with an approach that calculates the inner and outer-bound sets

for the type reduced of IT2 FLSs [32]. As shown in Fig. 7,

for each input vector ~xp, the WM GT2RBFNN output is

yp(~xp) =

S
∑

s=1

αsyWM,αs

/

S
∑

s=1

αs (20)

For each α−level, yWM,αs
is computed as:

yWM,αs
=

1

4

(

yαs

l (~xp) + yαs

l (~xp) + yαs
r (~xp) + yαs

r (~xp)
)

(21)

where

yαs

l = yαs

l −












Fp ×

M
∑

i=1

fαs
i

(

wi
l,αs

− w1
l,αs

)

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)

M
∑

i=1

fαs
i

(

wi
l,αs

− w1
l,αs

)

+

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)













(22)

yαs
r = yαs

r +












Fp ×

M
∑

i=1

fαs
i

(

wi
r,αs

− w1
r,αs

)

M
∑

i=1

fαs
i

(

wM
r,αs

− wi
r,αs

)

M
∑

i=1

fαs
i

(

wi
r,αs

− w1
r,αs

)

+

M
∑

i=1

fαs
i

(

wM
r,αs

− wi
r,αs

)













(23)
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Fig. 8: Nie-Tan GT2 RBFNN.

Where Fp =
∑M

i=1

(

fαs
i − fαs

i

)

/
∑M

i=1 f
αs
i

∑M
i=1 f

αs
i . in

which, consequents wi,αs
are different for each α−level. The

terms yαs

l and yαs
r are given by

yαs

l = min

{

M
∑

i=1

fαs
i wi

l,αs
/

M
∑

i=1

fαs
i ,

M
∑

i=1

fαs
i wi

l,αs
/

M
∑

i=1

fαs
i

}

(24)

yαs
r = max

{

M
∑

i=1

fαs
i wi

r,αs
/

M
∑

i=1

fαs
i ,

M
∑

i=1

fαs
i wi

r,αs
/

M
∑

i=1

fαs
i

}

(25)

B. Simplified Nie-Tan GT2-RBFNN

The second structure is a GT2-RBFNN that uses the Nie-

Tan method as a direct-defuzzification layer as illustrated in

Fig. 8. The Nie-Tan is a direct-defuzzification method initially

developed for IT2 FLSs. Such method uses the vertical repre-

sentation of the Footprint of Uncertainty (FOU) [31] before the

process of dedifuzzification to finally compute the centroid of

the IT2 FS. The NT layer can be considered a zero order Tay-

lor series approximation of Karnik-Mendel+dedifuzzification

methods. It has been proved the Nie-Tan operator is equivalent

to an exhaustive and accurate type-reduction for both discrete

and continuous IT2 FSs [31]. Although there has been im-

provements on the Nie-Tan operator, in this paper, the centroid

yNT,αs at each α−level is calculated as:

yNT,αs =

∑M
i=1 w

αs
i

(

fαs
i + fαs

i

)

∑M
i=1 f

αs
i +

∑M
i=1 f

αs
i

(26)

For each input vector ~xp, the NT GT2RBFNN output yp(~xp)
is calculated as:

yp(~xp) =

S
∑

s=1

αsyNT,αs

/

S
∑

s=1

αs (27)
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Fig. 9: Biglarbegian-Melek-Mendel GT2 RBFNN.

C. Simplified Biglarbegian-Melek-Mendel GT2-RBFNN

As an alternative to computing the output of a TSK GT2-

RBFNN is the Biglarbegian-Melek-Mendel closed form equa-

tion [33]. The last simplified neural structure that is called

TSK BMM GT2-RBFNN for short. According to Fig. 9 yp is:

yp(~xp) =
S
∑

s=1

αsyBMM,αs

/

S
∑

s=1

αs (28)

for each αs-plane:

yBMM,αs = mαsy
αs
m + nαsy

αs
n (29)

In which yαs
m =

∑M
i=1 gi,αs

fαs
i /

∑M
i=1 f

αs
i and yαs

n =
∑M

i=1 gi,αs
fαs
i /

∑M
i=1 f

αs
i . The terms fαs

i and fαs
i are cal-

culated using (13), and consequents gi,αs
and adaptation

parameters mαs
and nαs

are different for each α−level, where

gi,αs = ci,αs

0 x0 + . . . ci,αs
m xm for x0 = 1.

VI. LEARNING METHODOLOGY OF THE GT2 RBFNN

To identify the optimal parameters of the GT2 RBFNN,

and its neural structure, a two-stage learning methodology

based on the concept of Iterative Information Granulation

(IIG) and an Adaptive Gradient Descent (AGD) approach

is implemented. IIG is a clustering technique whose main

essence is to discover a structure in data while producing

representatives called granules [34]. Such granules are formed

based on a data compatibility measure, and their geometrical

properties are used to estimate the initial values of each

antecedent in the GT2 RBFNN (See flow diagram, Fig. 10).

Similarly to [26], the number of fuzzy rules or hidden units

in the GT2 RBFNN is initially approximated by using the

gradient of the compatibility curve that is obtained by the IIG.
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Fig. 10: Parameter identification applied to the GT2 RBFNN.

In a second stage, AGD is applied to optimise the parameters
[

σ1
i , σ

2
i

]

, and mi
k and to determine the optimal number of

fuzzy rules according to cross-validation results.

A. Iterative Information Granulation

In this work, IIG is used not only to granulate/cluster data

(Fig. 11), but also used as an approximation to the optimal

number of fuzzy rules (hidden nodes) in the GT2 RBFNN as

well as the initial values for [σ1
i , σ

2
i ] and mi

k of each MF [26].

The process of IIG is based on a compatibility index C(A,B)
that defines how good is the merging operation of any two

granules A and B. IIG consists of two main steps: [34], [35]:

• Find the two most ’compatible’ information granules A
and B by using Eq. (30) and merge them together as a

new information granule gi = (lki, uki) [26]. Where gi is

defined by its lower and upper corners (lik, uik) for the

dimension ′k′ and i = 1, . . . ,M .

• Repeat the process of finding the two most compatible

granules until a satisfactory data abstraction level is

achieved. Where the compatibility ’C’ is defined as [34]:

C(A,B) = DMAX − dA,B · e

(

−αg
cardA,B/CardinalityMAX

LA,B/LengthMAX

)

(30)

Such as DMAX , LengthMAX and the term CardinalityMAX

is the maximum possible distance and length of a granule

and the total number of granules in the data set respectively.

dA,B is the weighted multidimensional average distance of the

resulting granule with wk playing the importance weight for

the dimension k. In Eq. (30), αg weights the requirements

between distance and cardinality/length and LAB is the mul-

tidimensional length of the resulting granule gi, where:

dA,B =
1

n

n
∑

k=1

wk(max(uAk, uBk)−min(lAk, lBk)) (31)

gi is used as a fuzzy constraint to extract the initial parameters

of LMF and UMF (mk and σi) which are calculated as:

mi
k =

1

2
(lik − uik) ; mi

k = [mi
1, ...,m

i
n]; i = 1, . . . ,M

(32)
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Fig. 11: 3-D Example of final Data space for a set of granules A, B and C.

(σ1
i )

2 =
1

r





r
∑

j=1

‖mj
k −mi

k‖





1/2

j 6= i; σ2
i = σ1

i −∆σi

(33)

in which j 6= i, and j is the nearest neighbour to the ith fuzzy

rule, and r ≥ 2 [36].

B. Adaptive Gradient Descent Approach (AGD)

After structure identification, the common parameters mi
k

and [σ1
i , σ

2
i ] of the antecedent GT2 MFs as well as the weight-

ing factors [wi
l,αs

, wi
r,αs

] at each α−level of a Mamdani (TSK)

GT2 RBFNN should be optimised. Here, an Adaptive Gradient

Descent (AGD) approach that evaluates the Root-Mean-Square

Error (RMSE) and uses a performance index Pi =
1
P

∑P
p=1 e

2
p

is applied [37]. For each p input-output training data (~xp, dp);
p = 1, . . . , P , a cost function Ep = 1

2 (e
2
p) is also defined,

where the error ep = (yp(~xp)− dp), and dp is the desired

pattern. To increase the convergence performance of a typical

Gradient Descent approach and avoid getting trapped in a local

minimum, a momentum term γ is introduced. A self-tuning

learning rate β is defined to enhance the learning performance

of the GT2-RBFNN. As feedback information, at each current

and previous learning iteration ’t’, the change trend of Pi is

evaluated and used to adjust the value of γ and β as follows:

• if Pi(t+ 1) ≥ Pi(t) Then

β(t+ 1) = hdα(t), γ(t+ 1) = 0

• if Pi(t+ 1) < Pi(t) and

∣

∣

∣

∣

∣

∆Pi

P i(t)

∣

∣

∣

∣

∣

< δ Then

β(t+ 1) = hiα(t), γ(t+ 1) = γ0 (34)

• if Pi(t+ 1) < Pi(t) and

∣

∣

∣

∣

∣

∆Pi

Pi(t)

∣

∣

∣

∣

∣

≥ δ Then

β(t+ 1) = β(t), γ(t+ 1) = γ(t)
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where hd, (0 < hd < 1) and hi, (1 < hi) are the decreasing

and increasing factors respectively and δ is a threshold rate for

the RMSE. Thus, by using an EKM type reduction, at each

α−level of a GT2 RBFNN, the AGD must be able to track the

corresponding parameters σi and mi
k in the antecedent active

branch in which the value of Lα and Rα may change [24].

As pointed out in section III, a GT2 RBFNN is analogous

to an IT2 FLS where all the IT2 FS computations occur for

each horizontal slice and their aggregation is carried out by a

defuzzification process [7]. Hence, for each α−level, the final

AGD equations for the consequents [wl,α, wr,α] of a Mamdani

GT2-RBFNN are updated as:

∆wi
l,αs

(p+ 1) = −β
∂Ep(~xp)

∂wi
l,αs

+ γ∆wi
l,αs

(p) (35)

∆wi
r,αs

(p+ 1) = −β
∂Ep(~xp)

∂wi
r,αs

+ γ∆wi
r,αs

(p) (36)

For a TSK GT2-RBFNN, the consequent coefficients ci,αs
m are

updated according to

∆ci,αs
m (p+ 1) = −β

∂Ep(~xp)

∂ci,αs
m

+ γ∆ci,αs
m (p) (37)

To update the common parameters mi
k and

[

σ1
i , σ

2
i

]

∆mi
k(p+ 1) = −β

∂Ep(~xp)

∂mi
k

+ γ∆mi
k(p) (38)

∆σ1
i (p+ 1) = −β

∂Ep(~xp)

∂σ1
i

+ γ∆σ1
i (p) (39)

∆σ2
i (p+ 1) = −β

∂Ep(~xp)

∂σ2
i

+ γ∆σ2
i (p) (40)

Therefore, the derivatives ∂Ep(~xp)/∂m
i
k, ∂Ep(~xp)/∂σ

1
i and

∂Ep(~xp)/∂σ
2
i should equal the addition of their updates for

each α−level as follows

∂Ep

∂mi
k

=

S
∑

s=1

∂Ep

∂mi
k

∣

∣

∣

∣

∣

αs

(41)

where
∂Ep

∂mi
k

|αs is the partial derivative of Ep with respect to

the parameter mi
k at the sth α−level.

∂Ep

∂mi
k

∣

∣

∣

∣

αs

= 2dαep

[(

∂yαs

l

∂fαs
i

+
∂yαs

r

∂fαs
i

)

∂fαs
i

∂mi
k

+

(

∂yαs

l

∂fαs
i

+
∂yαs

r

∂fαs
i

)

∂fαs
i

∂mi
k

]

(42)

Where ∂Ep(~xp)/∂yp(~xp) = αs2
∑S

s=1 αs, and the derivative

∂yp(~xp)/∂y
αs

l = ∂yp(~xp)/∂y
αs
r . dα = αs/4

∑S
s=1 αs is used

to simplify notation. To update σ1
i and σ2

i

∂Ep

∂σ1
i

=

S
∑

s=1

∂Ep

∂σ1
i

∣

∣

∣

∣

αs

;
∂Ep

∂σ2
i

=

S
∑

s=1

∂Ep

∂σ2
i

∣

∣

∣

∣

αs

(43)

where

∂Ep

∂σ1
i

∣

∣

∣

∣

αs

= 2dαep

[(

∂yαs

l

∂fαs
i

+
∂yαs

r

∂fαs
i

)

∂fαs
i

∂σ1
i

]

(44)

∂Ep

∂σ2
i

∣

∣

∣

∣

αs

= 2dαep

[(

∂yαs

l

∂fαs
i

+
∂yαs

r

∂fαs
i

)

∂fαs
i

∂σ2
i

]

(45)

where the derivatives ∂fαs
i /∂σ2

i and ∂fαs
i /σ1

i are zero. At

each α−plane, the AGD approach tracks each permutation

that results for the implementation of an EKM method in

order to calculate the derivatives with respect to each weight

∂Ep(~xp)/∂w
i
l,αs

and ∂Ep(~xp)/∂w
i
r,αs

and the coefficients

ci,αs
m of a GT2 RBFNN of Mamdani and TSK type respec-

tively. In [24-26], a detailed description of this calculation

for an IT2 fuzzy NN and an IT2 RBFNN with a Mamdani

inference and using a KM method is provided.

C. AGD for simplified GT2-RBFNN

Compared to a GT2-RBFNN that utilises an EKM algo-

rithm, direct-defuzzification-based structures do not need a

sorting process. Thereby, the implementation of the AGD to

identify the parameters of a GT2-RBFNN of Mamdani (TSK)

type results much simpler.

1) Wu-Mendel GT2-RBFNN: To update the parameters of

a WM GT2RBFNN of Mamdani type, the derivatives with

respect to the weighting factors wi
l,αs

and wi
r,αs

, and common

parameters σ1
i , σ2

i , and mi
k are:

∂Ep

∂wi
l,αs

= dαep
∂yWM,αs

∂wi
l,αs

;
∂Ep

∂wi
r,αs

= dαep
∂yWM,αs

∂wi
r,αs

(46)

∂Ep

∂mi
k

=

S
∑

s=1

∂Ep

∂mi
k

∣

∣

∣

∣

∣

αs

(47)

so that:

∂Ep

∂mi
k

∣

∣

∣

∣

αs

= dαep

[(

∂yαs

l

∂fαs
i

+
∂yαs

l

∂fαs
i

+
∂yαs

r

∂fαs
i

+
∂yαs

r

∂fαs
i

)

∂fαs
i

∂mi
k

]

(48)

where dα = αs/4
∑S

s=1 αs, and to update [σ1
i , σ

2
i ]

∂Ep

∂σ1
i

=

S
∑

s=1

∂Ep

∂σ1
i

∣

∣

∣

∣

αs

;
∂Ep

∂σ2
i

=

S
∑

s=1

∂Ep

∂σ2
i

∣

∣

∣

∣

αs

(49)

so that

∂Ep

∂σ1
i

∣

∣

∣

∣

αs

= dαep

[(

∂yαs

l

∂fαs
i

+
∂yαs

l

∂fαs
i

+
∂yαs

r

∂fαs
i

+
∂yαs

r

∂fαs
i

)

∂fαs
i

∂σ1
i

]

(50)

∂Ep

∂σ2
i

∣

∣

∣

∣

αs

= dαep

[(

∂yαs

l

∂fαs
i

+
∂yαs

l

∂fαs
i

+
∂yαs

r

∂fαs
i

+
∂yαs

r

∂fαs
i

)

∂fαs
i

∂σ2
i

]

(51)

Where the term ∂yl/∂w
i
l,αs

and ∂yl/∂w
i
l,αs

is

∂yl
∂wi

l,αs

=























f i/
M
∑

i=1

f i, min
{

y
(0)
l , y

(M)
l

}

= y
(0)
l

f i/
M
∑

i=1

f i, min
{

y
(0)
l , y

(M)
l

}

= y
(M)
l

(52)
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∂yαs

l

∂wi
l,αs

=
∂yαs

l

∂wi
l,αs

− (Fp)















(

fαs
i

)

M
∑

i=1

(

fαs
i

(

wM
l,αs

− wi
l,αs

))

−
(

fαs
i

)

M
∑

i=1

(

fαs
i

(

wi
l,αs

− w1
l,αs

))

(

M
∑

i=1

fαs
i

(

wi
l,αs

− w1
l,αs

)

+

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)

)2















(53)

A similar procedure is used to calculate the terms ∂yαs
r /∂wi

r,αs
and ∂yαs

r /∂wi
r,αs

. To exemplify the computation of the

derivatives ∂fαs
i /∂mi

k, ∂fαs
i /∂mi

k, ∂yαs
r /∂fαs

i , ∂yαs
r /∂fαs

i , ∂yαs
r /∂fαs

i and ∂yαs
r /∂fαs

i , the calculation of ∂yαs

l /∂fαs
i and

∂yαs

l /∂fαs
i is shown below:

∂yαs

l

∂fαs
i

=







































wi
r,αs

(

M
∑

i=1

fαs
i

M
∑

i=1

fαs
i

)

−

(

M
∑

i=1

(

fαs
i − fαs

i

)

M
∑

i=1

fαs
i

)

(

M
∑

i=1

fαs
i

M
∑

i=1

fαs
i

)2 , min
{

y
(0),αs
r , y

(M),αs
r

}

= y
(0),αs
r

0, min
{

y(0),αs
r , y(M),αs

r

}

= y(M),αs
r

(54)

∂yαs

l

∂fαs
i

=
yαs

l

∂fαs
i

+





























−vq

(

M
∑

i=1

fαs
i

M
∑

i=1

fαs
i

)

−

M
∑

i=1

(

fαs
i − fαs

i

)

M
∑

i=1

fαs
i

(

M
∑

i=1

fαs
i

M
∑

i=1

fαs
i

)2















+ vr(w
i
l,αs

− w1
l,αs

)













M
∑

i=1

(

fαs
i − fαs

i

)

M
∑

i=1

fαs
i

M
∑

i=1

fαs
i



























(55)

in which, the terms vq and vr are:

vq =













M
∑

i=1

fαs
i

(

wi
l,αs

− w1
l,αs

)

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)

M
∑

i=1

fαs
i

(

wi
l,αs

− w1
l,αs

)

+

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)













vr =















vl

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)

−

(

M
∑

i=1

fαs
i

(

wi
l,αs

− w1
l,αs

)

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)

)

(

M
∑

i=1

fαs
i

(

wi
l,αs

− w1
l,αs

)

+

M
∑

i=1

fαs
i

(

wM
l,αs

− wi
l,αs

)

)2















In which vl is used to simplify notation as vl =
∑M

i=1 f
αs
i

(

wi
l,αs

− w1
l,αs

)

+
∑M

i=1 f i

(

wM
l,αs

− wi
l,αs

)

.

2) Nie-Tan GT2-RBFNN: For a NT GT2-RBFNN of Mam-

dani type, the AGD equations are defined for the consequent

weight of each α−level as an spike wαs
i and updated as:

∆wαs
i (p+ 1) = −β

∂Ep(~xp)

∂wαs
i

+ γ∆wαs
i (p) (56)

To implement the AGD for a Mamdani NT GT2-RBFNN, the

derivative ∂Ep(~xp)/∂w
αs
i in (56) is updated as

∂Ep(~xp)

∂wαs
i

=
∂Ep(~xp)

∂yNT,αs
(~xp)

∂yNT,αs(~xp)

∂wαs
i

(57)

where: ∂Ep(~xp)/∂yNT,αs
(~xp) = αs/

∑S
s=1 αs and

∂yNT,αs

∂wαs
i

=
fαs
i + fαs

i
∑M

i=1 f
αs
i +

∑M
i=1 f

αs
i

(58)

Consequently, σ1
i , σ2

i and mi
k are adjusted as

∂Ep(~xp)

∂σ1
i

=
∂Ep(~xp)

∂yNT,αs

[

∂yNT,αs

∂fαs
i

∂fαs
i

∂σ1
i

]

(59)

∂Ep(~xp)

∂σ2
=

∂Ep(~xp)

∂yNT,αs

[

∂yNT,αs

∂fαs
i

∂fαs
i

∂σ2
i

]

(60)

where

∂yNT,αs

∂fαs
i

=
∂yNT,αs

∂fαs
i

=
wαs

i − yNT,αs
∑M

i=1 f
αs
i +

∑M
i=1 f

αs
i

(61)

in which

∂fαs
i

∂σ1
i

= 2fαs
i

(xk −mi
k)

2

(σ2
i )

3
;
∂fαs

i

∂σ2
i

= 2fαs
i

(xk −mi
k)

2

(σ2
i )

3
(62)

∂fαs
i

∂mi
k

= 2fαs
i

(xk −mi
k)

(σ2
i )

2
;
∂fαs

i

∂mi
k

= 2fαs
i

(xk −mi
k)

(σ1
i )

2
(63)
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For a TSK GT2-RBFNN, the AGD approach follows a similar

procedure described in Eq. (59-63). However, the consequent

coefficients ci,αs
m for each α−level are updated as:

∂Ep(~xp)

∂ci,αs
m

=
∂Ep(~x)p
∂yNT,αs

(

xm(fαs
i + fαs

i )
∑M

i=1 f
αs
i +

∑M
i=1 f

αs
i

)

(64)

where m = 0, . . . , n, such that x0 = 0 and ci,αs
m = 1.

3) Biglarbegian-Melek-Mendel GT2-RBFNN: Based on the

AGD approach, in order to update the parameters of a TSK

BMM GT2-RBFNN with an uncertain [σ1
i , σ

2
i ], fixed mean

mi
k and consequents gi,αs for each α−level

∂Ep

∂ci,αs
m

= 4dαepxm

(

fαs
i

∑S
s=1 f

αs
i

+
fαs
i

∑S
s=1 f

αs
i

)

(65)

To update σ1
i , σ2

i and mi
k

∂Ep

∂σ1
i

= 8dαepnαs

(

gi,αs
− yαs

n
∑M

i=1 f
αs
i

)(

fαs
i

∑N
k=1

(

xk −mi
k

)2

(σ1
i )

3

)

(66)

∂Ep

∂σ2
i

= 8dαepmαs

(

gi,αs
− yαs

m
∑M

i=1 f
αs
i

)(

fαs
i

∑N
k=1

(

xk −mi
k

)2

(σ2
i )

3

)

(67)

And

∂Ep

∂mi
k

= 8dαepmαs

(

gi,αs
− yαs

m
∑M

i=1 f
αs
i

+
gi,αs

− yαs
n

∑M
i=1 f

αs
i

)

×

[

fαs
i

∑N
k=1

(

xk −mi
k

)

(σ1
i )

2
+ fαs

i

∑N
k=1

(

xk −mi
k

)

(σ2
i )

2

]

(68)

Please note for each α−level, a different value for the coeff-

cients ci,αs
m is employed.

VII. PERFORMANCE VERIFICATION

In this section, three different examples are used to compare

the performance of the GT2 RBFNN structures with some

well known algorithms such as the ANFIS, a Sequential

Adaptive Fuzzy Inference System (SAFIS) [38], a network of

Functionally Weighted Single-Input-Rule-Modules connected

to a Fuzzy Inference System (FWSIRM-FIS) [38], Support

Vector Regression (SVR), RBFNN of T1 and IT2, an ensemble

of T1 RBFNNs based on a Negative Correlation Learning (E-

RBFNN) [39], Support Vector Machine (SVM) [40], Least

Square SVM (LS-SVM) [40] and an IT2 Fuzzy Neural Net-

work with support vector regression (IT2-FNN-SVR) [41].

While the first example involves the modelling of 10 real-

world benchmark data sets for multiclass classification and

regression problems, the last two examples are used for nonlin-

ear plant identification and chaotic time series prediction in the

precense of randomness and Gaussian noise respectively. For

the ANFIS, RBFNN, IT2-RBFNN and GT2 RBFNN models

and E-RBFNN, all the simulations are carried out in MATLAB

2014 environment in an intel Core i7, 2.7 GHZ CPU. Similar

to a GT2 RBFNN, an AGD version is implemented to train

the RBFNN and the IT2 RBFNN [24], [42].

A. Example 1: Modelling of Benchmarck Data sets for Mul-

ticlass Classification and Regression

This example compares the performance of a GT2 RBFNN,

RBFNN, IT2 RBFNN, E-RBFNN, ANFIS, SVM and LS-

SVM on five real-world benchmark data sets for regression

and five data sets for multiclass classification. In Table II

and III, the specifications of the data sets are listed. The

associated distributions of the data sets are unknown and most

of them noisy-free. As indicated in Tables II and III, for

cross-validation purposes the number of samples for training

(column train) and testing (column test) are randomly selected.

By increasing/decreasing by one the number of hidden units

initially estimated by the IIG algorithm, the optimal number

of hidden units (fuzzy rules) in the GT2 RBFNN are selected

based on cross-validation results. In Tables II-III, column fuzzy

rules is used to indicate the optimal value for the number of

hidden units for the RBFNN, IT2 RBFNN and GT2 RBFNN

models. It is selected a granulation factor of αg = 0.3, an

initial value for ∆σi = 0.1, σ1
i = 1.0 and for wi

l,αs
= 1.0

and wi
r,αs

= 1.0. For a TSK GT2 RBFNN with a BMM

method, it was determined that the best value for mα = 0.9
and nα = 0.1. For all GT2 RBFNN models and for the E-

RBFNN, it was found the best trade-off between accuracy

and model simplicity is achieved by using three horizontal

slices and 4 units in the hidden layer. In Tables IV and

V, the generalisation performance of SVM, and LS-SVM

presented in [41] is compared to the average performance

results of 20 trials for the ANFIS, RBFNN, IT2 RBFNN, E-

RBFNN and GT2 RBFNN. As indicated in [40], SVM and

LS-SVM usually achieves a good generalisation performance.

This heavily depends on the combination of values for the

cost parameter C and kernel parameter γ. Therefore, for each

data set a large number of combinations to find the appropiate

the C and γ is required. Opposite to this, from Tables II-V,

it can be observed that a GT2 RBFNN needs a small number

of hidden units to obtain a higher generalisation performance

with respect to SVM and LS-SVM. This model simplification

compensates the associated learning time that in most cases is

similar to the time used to train an IT2 RBFNN, an ANFIS

and less to an E-RBFNN, in particular, the simplified GT2

RBFNNs.

TABLE II: SPECIFICATION OF MULTICLASS CLASSIFICATION.

# Samples Number of

Datasets Train Test Attributes Classes Fuzzy Rules

Iris 100 50 4 3 3

Wine 118 60 13 3 3

Glass 142 72 9 6 6

Segment 1540 770 19 7 7

Shuttle 43500 14500 9 7 9

TABLE III: SPECIFICATION OF REGRESSION DATA SETS.

Datasets Train Test # Attributes # Fuzzy Rules

Pyrim 49 25 27 3

Housing 337 169 13 4

Space-ga 2071 1036 6 5

Abalone 2784 1393 8 7

HPC 927 103 8 8
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TABLE IV: AVERAGE PERFORMANCE OF 20 TRIALS OF GT2-RBFNN, IT2-RBFNN, RBFNN, E-RBFNN, ANFIS, SVM AND LS-SVM.

Dataset Iris Wine Glass Segment Shuttle

Model
Testing

(%)

Training

Time (s)

Testing

(%)

Training

Time (s)

Testing

(%)

Training

Time (s)

Testing

(%)

Training

Time (s)

Testing

(%)

Training

Time (s)

G
T

2
-R

B
F

N
N

M
am

d
an

i

EKM 99.23 1.57 100.0 1.88 70.22 2.01 99.28 98.12 100.0 10911.9

NT 99.62 1.40 99.80 1.70 70.53 1.80 98.01 59.25 99.98 6329.1

WM 99.82 1.78 100.0 1.94 70.01 2.41 99.07 84.91 100.0 9873.1

T
S

K

EKM 100.0 1.75 100.0 1.99 69.23 3.84 99.41 93.10 99.22 13301.9

NT 99.11 1.62 100.0 1.89 69.25 4.76 98.09 79.82 100.0 8802.1

BMM 98.39 1.39 100.0 2.18 70.30 3.78 99.10 88.12 100.0 14119.8

IT
2

-R
B

F
N

N

M
am

d
an

i

EKM 98.14 1.55 99.12 1.63 67.02 1.73 96.78 55.72 100.0 7301.4

NT 97.71 1.31 98.97 1.55 67.59 1.51 98.80 43.11 99.29 5909.1

WM 98.25 1.58 98.78 1.71 67.25 1.45 97.19 60.08 100.0 8021.1

T
S

K

EKM 96.65 1.64 99.45 1.62 67.79 1.65 98.80 63.15 100.0 8722.1

NT 97.73 1.39 98.56 1.42 67.07 1.58 97.99 57.19 99.93 7503.1

BMM 96.01 1.09 98.87 1.61 67.12 1.68 98,10 64.16 99.87 8002.1

RBFNN 93.10 1.16 97.71 1.24 65.86 1.44 94.31 38.33 96.90 5204.1

E-RBFNN 95.93 4.28 98.31 2.70 66.69 3.01 95.11 42.68 98.29 32117.2

ANFIS 92.21 1.23 93.44 1.89 65.12 2.39 91.04 28.12 95.21 18366.9

SVM 92.21 0.075 98.37 0.075 67.83 0.2871 96.53 14.30 99.74 2864.0

LS-SVM 96.28 0.0021 97.63 0.0043 67.22 0.0097 96.12 4.302 99.82 24767.0

TABLE V: AVERAGE RMSE OF 20 TRIALS OF GT2-RBFNN, IT2-RBFNN, RBFNN, E-RBFNN, ANFIS, SVM, LS-SVM.

Dataset Pyrim Housing Space-ga Abalone HPC (RMSE)

Model
Testing

(RMSE)

Training

Time (s)

Testing

(RMSE)

Training

Time

Testing

(RMSE)

Training

Time (s)

Testing

(RMSE)

Training

Time (s)

Testing

(RMSE)

Training

Time (s)

G
T

2
-R

B
F

N
N

M
am

d
an

i

EKM 0.0411 17.88 0.0845 2.78 0.0219 67.12 0.0299 60.11 5.170 173.1

NT 0.0397 15.61 0.0801 1.89 0.0310 54.20 0.0375 45.19 5.281 151.0

WM 0.0388 18.03 0.0811 2.72 0.0205 68.10 0.0307 63.03 5.310 177.9

T
S

K

EKM 0.0478 19.41 0.0816 2.83 0.0198 71.06 0.0255 66.16 5.392 189.0

NT 0.0401 14.99 0.0802 2.39 0.0109 56.19 0.0301 50.24 5.210 169.2

BMM 0.0428 18.77 0.0833 2.91 0.0165 75.89 0.0270 68.09 5.280 199.3

IT
2

-R
B

F
N

N

M
am

d
an

i

EKM 0.0604 14.08 0.0919 2.30 0.0469 47.19 0.0579 42.10 5.870 158.1

NT 0.0678 13.02 0.0973 1.88 0.0466 44.06 0.0609 38.04 5.723 140.1

WM 0.0699 14.58 0.1104 1.93 0.0679 51.02 0.0599 47.26 5.640 158.3

T
S

K

EKM 0.0645 14.90 0.1095 2.52 0.0397 56.69 0.0601 50.30 5.560 166.2

NT 0.0609 14.72 0.1020 1.79 0.0487 47.63 0.0544 42.51 5.504 157.2

BMM 0.0689 15.26 0.1118 2.33 0.0481 61.19 0.0520 54.47 5.670 175.7

RBFNN 0.0780 11.03 0.1167 1.55 0.0519 43.19 0.0689 35.67 6.120 134.8

E-RBFNN 0.0482 22.14 0.0987 7.55 0.0411 73.22 0.0309 51.05 5.549 229.1

ANFIS 0.0988 12.18 0.0988 2.03 0.0914 38.12 0.1233 38.12 13.490 144.0

SVM 0.1280 0.0315 0.0976 0.0085 0.0648 52.75 0.0764 113.1 10.406 105.3

LS-SVM 0.1272 0.0388 0.0704 0.0343 0.0330 3.510 0.0746 7.674 8.820 6.981

To take full advantage of the equivalence between a GT2

RBFNN and GT2 FLSs, in this example a GT2 RBFNN with

an EKM is used to provide some insights about the HPC data.

High Performance Concrete (HPC) data is a collection of 1030

multi-dimensional samples where each set of points represents

8 inputs variables (cement, fly ash, water, superplasticiser,

coarse aggregate, fine aggregate, age of testing and blast

furnace slag, kg/m3) and one ouptut (Concrete Compressive

Strength-MPa, CCS) [43], [44]. To illustrate model perfor-

mance and physical interpretation, in Fig. 12-14, the data

fit for CCS prediction for a Mamdani GT2 RBFNN with an

EKM with 8 fuzzy rules and its variable effect surface for the

ingredients cement and fly ash and final rule distribution for

the input superplasticiser are presented respectively. A variable

effect surface is created by keeping N − 2 input variables

constant and ploting the remaining varying input variables.

Here, the average of each input variable is used as a constant

for the N−2 variables. As indicated in [24], by using variable

effect surfaces, expert’s opinion can confirm the behaviour of

specific input variables with respect to a desired output.
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(d) Mamdani GT2-RBFNN with an EKM

Fig. 12: Testing Data Fit for the HPC compressive strength using a Mamdani
GT2-RBFNN with an EKM type-reduction layer.
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Fig. 13: Variable effect surface for the ingredients: Cement vs Fly ash.
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Fig. 14: Final fuzzy rule distribution of a Mamdani GT2-RBFNN with an
EKM type-reducer.

B. Example 2: Nonlinear Plant Identification

This example is to identify the nonlinear plant described by

the equation below [38]:

y(t+ 1) = f(y(t), y(t− 1), u(t))

=
y(t)y(t− 1)(y(t)− 0.5)

1 + y2(t) + y2(t− 1)
+ 1 (69)

The equilibrium state of the unforced system given by Eq.

(69) is (0, 0). As [38], the training data consists of 5000× 3
input vectors [y(t) y(t − 1) u(t)] and one output y(t + 1).

The signal u(t) has been randomly generated by a uniform

distribution in the region [−1.5, 1.5]. For testing purposes, a

data set of 200 observations has been generated where the

input u(t) is given by u(t) = sin(2πt/25). The experimental

setup for the GT2 RBFNN models consists of a number of 3

horizontal slices, a granulation factor of αg and three fuzzy

rules. An initial value for ∆σi = 0.05, σ1
i = 1.0 and each

factor wi
l,αs

= wi
r,αs

= 1.0. Based on simulation results, it was

found for a TSK GT2 RBFNN with a BMM type reduction,

the best value for mα = 0.85 and nα = 0.15. For an E-

RBFNN, it was determined the optimal value to provide a

high level of generalisation is with 4 hidden units, where each

has 3 fuzzy rules. Table VI shows the average generalisation

performance of 20 trials, the number of parameters per each

model as well as the Average Training Time ATT of each GT2

RBFN model with respect to an FWSIRM [38], SANFIS [38],

RBFNN, IT2 RBFNN [24], E-RBFNN [39] and the ANFIS

system According to Table VI, the highest trade-off between

accuracy and model simplicity is obtained by the RBFNN of

GT2 using a NT algorithm. From Table VI, it it is clear for

most of GT2 RBFNN models the training time is comparable

to that of some models such as the BPNN and RBFNN.

It is worth noting, the generalisation performance of an E-

RBFNN is higher than an IT2 RBFNN and similar to a GT2

RBFNN. Both, GT2 RBFNN and E-RBFNN treat uncertainty

as measure for ambiguity. However, a GT2 RBFNN quantifies

uncertainty as a deficiency that results not only from imprecise

boundaries in the fuzzy sets (vagueness or fuzziness), but also

as nonspecificity that refers to information-based imprecision,

whereas an E-RBFNN defines ambiguity as a variation of the

output of the ensemble members over unlabeled data. That

means, uncertainty quantification is useful in an ensemble only

if there is a disagreement among on some inputs [45].

TABLE VI: COMPARISON OF THE AVERAGE PERFORMANCE OF
20 TRIALS OF DIFFERENT MODELS IN EXAMPLE 2.

Model Testing RMSE
Number of

Parameters
ATT (s)

Mean Best

G
T

2
-R

B
F

N
N

M
am

d
an

i EKM 0.0266 0.0151 33 35.12

NT 0.0289 0.0134 23 28.19

WM 0.0288 0.0188 33 33.92

T
S

K

EKM 0.0267 0.0192 42 38.19

NT 0.0201 0.0177 42 31.68

BMM 0.0256 0.0163 42 36.03

IT
2

-R
B

F
N

N

M
am

d
an

i

EKM 0.0445 0.0276 21 23.11

NT 0.0339 0.0194 18 21.71

WM 0.0439 0.0312 21 27.02

T
S

K

EKM 0.0458 0.0374 24 28.11

NT 0.0479 0.0348 24 21.06

BMM 0.0481 0.0365 24 27.19

RBFNN 0.0501 0.0408 15 19.20

E-RBFNN 0.0470 0.0161 60 41.12

ANFIS 0.0580 0.0474 106 6.01

FWSIRM-FIS 0.0494 0.0274 45 1.13

SANFIS 0.0221 85 NA

BPNN 0.0939 0.0611 151 94.49
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TABLE VII: PERFORMANCE OF THE MAMDANI (TSK) GT2-RBFNN AND OTHER MODELS WITH A TRAINING NOISE σ = 0.2 in example 3.

Mamdani GT2-RBFNN TSK GT2-RBFNN IT2 -FNN IT2-RBFNN E-RBFNN

EKM NT WM EKM NT WM SVR-(N) SVR-(F) EKM

Number of Parameters 65 45 65 45 45 45 103 103 35 105

Number of Rules 5 5 5 5 5 5 6 6 5 5

Training RMSE (σ = 0.2) 0.091 0.089 0.088 0.092 0.086 0.087 0.234 0.233 0.125 0.110

Test RMSE
Clean 0.060 0.071 0.061 0.064 0.060 0.062 0.085 0.083 0.085 0.082

σ = 0.1 0.067 0.068 0.070 0.073 0.075 0.071 0.105 0.103 0.092 0.089

σ = 0.3 0.097 0.107 0.095 0.108 0.096 0.102 0.186 0.180 0.122 0.117

TABLE VIII: PERFORMANCE OF THE MAMDANI (TSK) GT2-RBFNN AND OTHER MODELS WITH A NOISE σ = 0.3 in example 3.

Parameters Mamdani GT2-RBFNN TSK GT2-RBFNN IT2 -FNN IT2-RBFNN E-RBFNN

EKM NT WM EKM NT WM SVR-(N) SVR-(F) EKM

Number of Parameters 65 45 65 45 45 45 103 103 35 105

Number of Rules 5 5 5 5 5 5 6 6 5 5

Training RMSE (σ = 0.3) 0.111 0.108 0.122 0.121 0.117 0.114 0.349 0.347 0.133 0.148

Test RMSE
Clean 0.085 0.088 0.083 0.079 0.069 0.078 0.127 0.121 0.092 0.120

σ = 0.1 0.109 0.096 0.091 0.081 0.083 0.105 0.138 0.131 0.127 0.132

σ = 0.3 0.125 0.118 0.131 0.133 0.127 0.129 0.188 0.184 0.144 0.159

Number of Data
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1

1.5
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Fig. 15: Testing data, and the output of the GT2-RBFNN with an WM
direct defuzzification and 3 fuzzy rules.

In other words, a GT2 RBFNN can be viewed as an ensemble

of interval Type-2 FLSs where all the IT2 FSs computa-

tions occurr for each α-level and ambiguity is nonuniformly

weighted. In this example, a GT2 RBFNN results more

practical than an ensemble, especially because it is a more

compact model with less parameters and less expensive in

terms of computational burden. To exemplify the performance

of GT2 RBFNN models, in Fig. 15, the identification result

for a GT2 RBFNN with a WM method is shown.

C. Example 3: Noisy Chaotic Time-Series Prediction

As the last experiment, a time-series prediction problem to

evaluate the performance of the GT2-RBFNN is employed.

The Mackey-Glass chaotic time series is generated from the

following differential equation [41]:

dx(t)

dt
=

0.2x(t− τ)

1 + 10x(t− τ)
− 0.1x(t) (70)

For comparison reasons with previous results, the parame-

ters τ = 30, x(0) = 1.2. Four past values were employed to

predict x(t) where the input data format is used as:

[x(t− 24), x(t− 18), x(t− 12), x(t− 6);x(t)]

A number of 1000 patterns were generated from the obser-

vation t = 124 to t = 1123. For cross-validation purposes,

the input data was divided into two subsets, i.e. a) 50% for

training and b) 50% for testing. For cross-validation purposes,

two different types of training data were created by adding

Gaussian noise with a standard deviation of σ = 0.2 σ = 0.3
and with a mean of 0 to the original data x(t). This type

of noise has been selected because it usually occurs in real

situations and it is frequently employed to verify model

robustness [25-29]. For testing data, three data sets were

created from the original data set. The first consists of the

original 500 values. The last two testing data sets were created

by adding a Gaussian noise with a σ = 0.2 and σ = 0.3. To

compare the performance of the GT2-RBFNN to other existing

interval type-2 fuzzy modelling methodologies, namely: a)

an IT2FNN-SVR-(N), b) an IT2-FNN-SVR-(F) and an c)

EKM IT2-RBFNN and d) E-RBFNN. The first two models

a) and b) were introduced in [41]. The IT2-FNN-SVR is a

six-layer interval type-2 fuzzy neural network with support

vector machine regression that uses two different types of input

nodes. For the first type, the input nodes in an IT2-FNN-SVR

simply forwards each numerical data and is called IT2-FNN-

SVR-(N) for short. Thus, the output of the IT2-FNN-SVR-(N)

is a bounded interval which is described in terms the lower

and upper limits of its Footprint Of Uncertainty (FOU). An

IT2-FNN-SVR-(F) uses an input node layer that fuzzifies the

input numerical data. The third IT2 methodology is an IT2-

RBFNN with an EKM approach. And the last methodology is

an ensemble of RBFNNs suggested in [39]. According to our

experiments, it was determined a number of 3 horizontal slices

for an GT2 RBFNN, and 3 hidden units with 3 fuzzy rules each

for an E-RBFNN produce the highest balance between model

performance and model simplicity. For statistical purposes,

each experiment was repeated 10 times, and the RMSE average

is used as a comparison performance index. Table VII and VIII

show the training and testing results for the prediction of the

Mackey-Glass time-series. From Table V, it can be viewed that

in general GT2 neural structures outperform the IT2-FNN-

SVR and its counterpart the IT2-RBFNN with an EKM. It

is also worth noting, the superiority of the GT2-RBFNN is

confirmed not only for validation purposes, but also in relation

to the number of parameters.
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Fig. 16: Testing prediction of a Mamdani GT2-RBFNN with an EKM type-
reduction and a noise level of σ = 0.3 and RMSE = 0.125 that correspond
to a training stage with a level of noise of σ = 0.3.

Hence, the highest accuracy is achieved by a GT2-RBFNN

with a WM and NT method respectively. In relation to Table

VI, the higher the noise level of the training and testing data,

the better the performance of the GT2-RBFNN models with

respect to the IT2 fuzzy models. Particularly those GT2 models

with an EKM and NT direct defuzzification and of Mamdani

type. Finally, in Fig. 16, the testing data-fit of a random

experiment using a Mamdani GT2-RBFNN with an EKM and

noise level of σ = 0.3 is illustrated.

VIII. SUMMARY AND DISCUSSION

From the comparative analysis presented in previous sec-

tion, the following summarisation and disscussion is provided:

a) By using GT2 FSs, model accuracy of an RBFNN can

be improved importantly. Compared to its counterparts

the RBFNN and IT2 RBFNN, a higher tradeoff between

accuracy and model simplicity is provided. The term

model simplicity is used because compared to other

existing fuzzy models of T1 and T2, a reduced number of

fuzzy rules, and hence of parameters is required to obtain

similar or better results.

b) Two problems that involve the treatment of randomness

for nonlinear plant identification, and for the prediction of

nosisy chaotic time series was provided. Compared to an

RBFNN of T1 or IT2, a GT2 RBFNN weights uncertainty

non uniformly. This allows an RBFNN to better model the

effecs of uncertainty. That means, an RBFNN with GT2

FSs quantifies uncertainty as a deficiency that results from

imprecise boundaries of the associated FSs, so using GT2

FSs accounts to minimise information-based imprecision.

c) From tables IV-VI, column training time is the average

time of training epochs spent by each model. As can

be noted, the training speed of a GT2 RBFNN with

simplified structures is similar to the RBFNN, faster to

the ensemble of RBFNNs and similar to the ANFIS

model when it comes to modeling large size data sets.

d) As illustrated in example 2, a GT2 RBFNN not only

inherits the ability of NNs to approximate complex fun-

tions, but also the ability of fuzzy logic models to provide

some insights about the system being modelled.

f) By using GT2 FSs usually increases the computational

complexity, however this time can be compensated by

an improvement in model performance and a model

simplification that can be reached by fuzzy structures

based on direct-defuzzification algorithms.

e) Further to point f), in terms of computation, the appli-

cation of a Gradient Descent approach (GD) to identify

the parameters of a GT2 FLS with KM methods (’or

EKM’) usually results more expensive than the parameter

identification for an RBFNN of T1 or IT2. This is due

to the number of iterations that are needed to calculate

not only the associated derivatives but also to track the

permutations created during the sorting process of any

KM method [46]. A GD is usually not globally conver-

gent. Thus, a number of optimisation methods based on

metaheuristics have been proposed [47]. To make this

less severe, in this paper an Adaptive version of a GD

approach that includes a momentum term to avoid getting

trapped in a local minimum and to speed up the GD

convergence is suggested.

IX. CONCLUSIONS

This paper presents a General Type-2 Radial Basis Function

Neural Network (GT2 RBFNN) that is functionally equivalent

to a GT2 FLS based on the α−plane representation, in which

the main inference engine can be viewed as a TSK or Mamdani

system. A detailed description of the neural structure and

its corresponding parametric optimisation of a GT2-RBFNN

with an EKM, and three simplified GT2-RBFNN models that

employs three different direct-defuzzification approaches is

provided. To offer a comprehensive performance analysis,

experimental results about the modelling of ten data sets for

multiclass classification and regression problems is provided.

Two problems for nonlinear identification and for the predic-

tion of chaotic time series in the precense of randomness

and Gaussian noise are considered. Based on experimental

results, the suggested model is not only able to outperform

its counterparts the RBFNN of type-1 and the Interval Type-2

Radial Basis Function Neural Network (IT2 RBFNN), but also

to better treat and minimse the effects of uncertainty. It can

be also observed from the simulation results that compared to

other methodologies, including an ensemble of RBFNNs, the

number of parameters of a GT2 RBFNN is usually smaller.

Further developments of the GT2 RBFNN may be related

with further advances of Type-2 Fuzzy Logic methodologies,

Neural Networks and learning. Particularly to reduce the

computational complexity and increase model performance.

A future study will be also in terms of the evaluation of the

GT2 RBFNN to formulate knoweldge in a transparent way to

interpretation and analysis of complex systems.
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