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Measuring adiabaticity in nonequilibrium quantum systems
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Understanding out-of-equilibrium quantum dynamics is a critical outstanding problem, with key questions

regarding characterizing adiabaticity for applications in quantum technologies. We show how the metric-space

approach to quantum mechanics naturally characterizes regimes of quantum dynamics and provides an appealingly

visual tool for assessing their degree of adiabaticity. Further, the dynamic trajectories of quantum systems in metric

space suggest a lack of ergodicity, thus providing a better understanding of the fundamental one-to-one mapping

between densities and wave functions.

DOI: 10.1103/PhysRevA.98.012104

I. INTRODUCTION

Characterization and control of the dynamics of quantum

systems is essential for the development of quantum technolo-

gies such as quantum computation and simulation and for the

emerging field of quantum thermodynamics [1–3]. This has

triggered increasing interest in understanding the properties

of quantum systems out of equilibrium and in identifying

signatures of adiabatic behavior. Many applications in quantum

technologies require adiabatic processes. These range from

theoretical concepts such as Landau-Zener transitions [4],

Berry phase accumulation [5], and the quantum Hall effect

[6] to experimental techniques of adiabatic passage protocols

[7–9], for example. In fact, adiabatic dynamics may be used to

efficiently perform a desired quantum evolution, as in adiabatic

quantum computation [10–13], or to avoid quantum friction

in the production of quantum work [14]. Adiabatic quantum

dynamics through quantum annealing is indeed the motor of the

commercial D-Wave quantum computer [15,16]. Knowledge

of the degree of adiabaticity in nonequilibrium dynamics is also

important for time-dependent (TD) density-functional theory

(DFT), as effective density functionals are, at present, available

only in the (near) adiabatic regime.

The quantum adiabatic theorem [17], which states that

for a Hamiltonian varying slowly enough a system initially

in equilibrium will remain in its instantaneous ground state,

properly characterizes the dynamics of quantum systems.

However, the commonly used quantum adiabatic criterion

(QAC) [18,19] is not always accurate in characterizing the

degree of adiabaticity, with recent discussions and experiments

showing that the criterion is not always sufficient or necessary

[19–25]. The QAC is based on perturbation theory and usually

only considers two eigenstates, which adds to its limitations.

In this paper, we demonstrate the use of natural metrics

[26,27] as an efficient yet simple tool for characterizing the

degree of adiabaticity in quantum systems. The metrics, which

avoid several limitations of the QAC, are applied to a broad

range of systems and provide insight into the degree of adia-

baticity, even when the outcome from the QAC is questionable.

Further, a better understanding of the one-to-one mapping

between TD densities and wave functions, core to TDDFT [28],

is particularly needed. The wave-function–density relationship

is a mapping between metric spaces [26], so the metric-based

analysis gives us a fitting tool with which to study it [26,27,29].

We will look at the relationship in metric space between den-

sities and wave functions for a diverse set of one-dimensional

systems and study how this relationship changes as the systems

become time dependent and evolve out of equilibrium. We

address the fundamental questions: How are ground states

characterized by metric spaces? Is the quantum dynamics of

systems ergodic within a metric space? What is the signature

of out-of-equilibrium regimes in metric spaces? Can metric

spaces efficiently characterize different dynamic regimes and

in particular the crossover between adiabaticity and nonadia-

baticity?

In Refs. [26,27], the concept of natural metrics, directly

arising from conservation laws, was introduced. The natural

metrics which measure the distance between two N -particle

wave functions (normalized to N ) or two N -particle densities

are, respectively [26],

Dψ (ψ1,ψ2) =
[

2N − 2

∣

∣

∣

∣

∫

ψ∗
1 ψ2dr1 · · · drN

∣

∣

∣

∣

]1/2

, (1)

Dn(n1,n2) =
∫

|n1(r) − n2(r)|d3r. (2)

II. GROUND STATE SYSTEMS

We explore the mapping between ground state (GS) particle

densities and the corresponding wave functions for single-

particle systems, beginning with harmonic oscillators and then

moving on to more complex, randomly generated systems.

By inserting the analytic GSs of two harmonic oscillators

into Eqs. (1) and (2), the ratio of the metrics may be written

exactly as

Dn(n1,n2)

Dψ (ψ1,ψ2)
=

2
[

erf
(

√

ν ln(ν)

2(ν−1)

)

− erf
(

√

ln(ν)

2(ν−1)

)]

√

2 − 23/2ν1/4

(ν+1)1/2

, (3)

where ν = ω1/ω2 is the ratio of the frequencies of the

two oscillators. Expanding this about ν = 1, we obtain

Dn(n1,n2)/Dψ (ψ1,ψ2) = 4/
√

eπ + O(v − 1)2, where e is the

base of natural logarithms, demonstrating a linear relationship
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FIG. 1. Metrics Dn vs Dψ for ten random single-electron systems

(black crosses) and 23 simple harmonic-oscillator systems (green

circles) in their GSs. Here Dn/Dψ is approximately linear with similar

gradients of 1.59 and 1.43, respectively. The bottom inset shows

two examples of our random potentials (solid lines) and their GS

densities (dashed lines). These are used for the TD study: system r1

(red, � = 0.5) and system r2 (blue, � = 0.1, the spatial reflection

of r1 divided by 5); the curves are displaced vertically so that the

GS energies lie at 0 and −2.5 on the vertical axis, respectively.

The top inset shows the TD adiabaticity parameter ǫ(t) [Eq. (4)] for

the three time-dependent systems (r1, r2, and a harmonic oscillator)

corresponding to ǫ(0) = 1.0. The vertical gray dashed line shows the

reference time tref used in Fig. 3.

with gradient 4/
√

eπ ≈ 1.37 when ω1 ≈ ω2. Our numerical

results confirm the linear relationship even for |ν| ≫ 1: We

compare 23 simple harmonic oscillators with a range of

frequencies ω from 0.05 to 2.20 a.u. (we use atomic units

h̄ = m = 1) with a reference oscillator for whichω = 0.1. This

yields the green circles in Fig. 1, which are well described by

a straight line with gradient 1.43.

Next we consider systems with smooth, random, confin-

ing potentials. These are generated using a Fourier series

with random coefficients, together with an x10 potential to

gently confine the electrons overall: Vext(x) = x10/1011 +
�

∑3
n=1(an cos nπx

L
+ bn sin nπx

L
). Here L is half the system

size and the an and bn are drawn from a uniform distribution

between −L
3

and L
3

. The scaling factor � is used to adjust

the confining strength of the potential microwells, allowing

different regimes of electron localization to be explored. By

using the Fourier series, we generate a wide range of potentials

that vary in multiple parameters, unlike the Hamiltonians in

Ref. [26], which vary in only one parameter when comparing

systems.

Figure 1 (bottom inset) shows examples of two random

potentials. For the GS study we used a family of ten ran-

dom potentials with � = 0.1 and L = 15 a.u. We solve the

Schrödinger equation for our systems using the SPiDEA code

(subsequently incorporated into the iDEA code suite [30,31])

to obtain the exact GS wave functions and densities, from

whichDψ andDn are calculated using Eqs. (1) and (2). Figure 1

shows Dn against Dψ for all 45 pairs of systems in the family

(black crosses). The points lie close to a straight line through

the origin with gradient 1.59, deviating slightly solely to reach

the combination of the maximum values of Dn and Dψ (2 and√
2, respectively, top right-hand corner of the graph).

Reference [26] found a similar quasilinear relationship

between Dn and Dψ for three families of systems, with the

gradient depending on the number of particles N . There the

families of systems were each generated by varying a single

parameter in the Hamiltonian (e.g., the confining frequency

for Hooke’s atoms), while here a diverse range of systems is

explored for N = 1.1

III. TIME-DEPENDENT SYSTEMS

The quasilinear relationship of Dn(n1,n2) and Dψ (ψ1,ψ2),

for GSs, may therefore become a tool to identify whether the

time dependence of a quantum system is adiabatic.2 For N = 1

we take this relationship to be 1.5 as an average of the harmonic

systems and random systems. The quantum adiabatic theorem

[17] states that for a Hamiltonian varying slowly enough, a

system initially at equilibrium will remain in an eigenstate

of the instantaneous Hamiltonian Ĥ . Quantification of the

adiabatic theorem is traditionally based on the criterion [18,19]

ǫ(t) =
|〈m| Ḣ |n〉|

(|En − Em|)2
≪ 1, (4)

where n is the perfectly adiabatically evolving original eigen-

state, m corresponds to another eigenstate of the instantaneous

Hamiltonian, and typically m = n ± 1. In recent years, debate

has opened up about the validity and sufficiency of the quantum

adiabatic criterion, with some conclusions showing it to break

down for specially crafted systems with oscillating terms in

the Hamiltonian [19–21]; however, the question remains open

[22]. Furthermore, this criterion is derived from perturbation

theory which may not be applicable for stronger perturbations.

Here we propose metrics to provide a graphical method of

determining adiabaticity which avoids the limitations of ǫ(t).

Metrics are nonperturbative and automatically consider all

eigenstates, providing further insight into the dynamics of the

system not available from ǫ(t).3

To explore adiabaticity, we use the SPiDEA code to turn on

a uniform electric field increasing linearly with time with a rate

p, making the Hamiltonian of our systems Ĥ (x,t) = − 1
2

∂2

∂x2 +
Vext(x) − ptx. We evaluate the distances between a system’s

initial GS ψ(0), instantaneous GS ψGS(t), and time-dependent

state ψ(t); we obtain Dψ (ψ(0),ψ(t)), Dψ (ψ(0),ψGS(t)), and

Dψ (ψGS(t),ψ(t)) from Eq. (1) and corresponding expressions

for the density from Eq. (2).

We focus on three initial systems: r1 and r2 (from Fig. 1),

and a harmonic oscillator with ω = 0.2. Each system is

1Preliminary results for random potentials with N = 2 also show a

quasilinear relationship.
2For the evolution of GSs this quasilinear relationship indicates

both equilibrium and adiabaticity; Ref. [29] suggests that a similar

relationship may hold also for excited states, hence the proposed

method could be extended to any eigenstate.
3Euclidean distances between wave functions have previously been

used [22] to study the validity of ǫ(t), but are inappropriately sensitive

to a physically irrelevant overall phase change of the state; the metrics

used here are tailored to avoid this shortcoming [26].
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FIG. 2. (a) Metric distances between the initial GS and the

subsequent TD state (n vs ψ). Adiabatic behavior corresponds to

the proximity to the adiabatic (GS) line (gray dashed line). Subscripts

denote the value of ǫ(0). The inset shows a close-up of the boxed

area. (b) Distances between instantaneous GSs and TD states (n vs

ψ). These should remain at the origin for exactly adiabatic evolution.

The inset shows a close-up of the area denoted by the arrow.

perturbed at two different rates. The six systems span a

rich spectrum of behaviors, showing the transition from the

harmonic system ho through the random potential r1, with a

harmoniclike microwell which also allows for mild tunneling

into the neighboring well, to the random potential r2, with a

GS delocalized over multiple microwells [32]. We choose the

perturbation rates p so that the initial adiabaticity parameter

ǫ(0) [from Eq. (4)] takes the same two values for all three initial

potentials.4

By definition, if an adiabatic regime is reached, our systems

should remain in the GS of the instantaneous Hamiltonian at

every time step: From the findings in Fig. 1, we then expect the

dynamics in metric space of such systems to be described by a

linear relationship between Dn(n(0),n(t)) and Dψ (ψ(0),ψ(t)).

By using three types of graphs, we will study how such a regime

is entered, exited, and, in general, characterized in metric

space. These graphs deliver complementary perspectives on

the systems’ time evolution and adiabaticity.

4For ǫ(0) = 0.01, the values of p are 2.530, 0.15, and 0.025 for the

ho, r1, and r2 systems, respectively, while for ǫ(0) = 1.0 the values

of p are 100 times greater.

The first type of graph is Dn(n(0),n(t)) against

Dψ (ψ(0),ψ(t)), shown in Fig. 2(a). Here adiabaticity is identi-

fied without the direct involvement of the instantaneous GS. It

is for this graph that the gradient from Fig. 1 is used. The ratio

Dn/Dψ of the distances between any two GSs is approximately

given by this gradient of 1.5 and hence it can be used to

characterize adiabaticity in Fig. 2(a).

The systems in the inset to Fig. 2(a) follow the adiabatic

line, showing them to be adiabatic in agreement with the

corresponding ǫ(0). Interestingly, after a transient, r11.0 is

also seen to follow the adiabatic line, despite the related

value ǫ(0) = 1.0 suggesting nonadiabaticity. In fact, the metric

graph shows the evolution to be initially nonadiabatic before

returning to the adiabatic line, in agreement with ǫ(t) in Fig. 1,

however ǫ(t) cannot be used to accurately determine the level

of adiabaticity after a period of nonadiabatic evolution due

to the use of the perfectly adiabatically evolving state. The

metrics do not suffer from this weakness and can be used to

characterize a wider range of evolutions. For the r2 system,

Fig. 2(a) suggests a degree of nonadiabaticity similar to ho.5

The second type of graph is Dn(nGS(t),n(t)) against

Dψ (ψGS(t),ψ(t)) [Fig. 2(b)]. Here the measure of adiabaticity

comes from the proximity to the origin. We can clearly see

that for ǫ(0) = 1.0 (denoted in the label subscripts), ho and

r2 are nonadiabatic, as ǫ(0) would suggest. However, r1 is

much closer to adiabaticity as it lies much closer to the origin.

Systems ho and r2 display once more a similar degree of

nonadiabaticity, in contrast to ǫ(t) (Fig. 1, top inset). From

this we are able to see how ǫ(t) does not always fully describe

the degree of adiabaticity of the system.

We note that Dψ (ψGS(t),ψ(t)) provides a quantitative mea-

sure of the degree of adiabaticity, with Dψ (ψGS(t),ψ(t)) = 0

indicating perfect adiabaticity and Dψ (ψGS(t),ψ(t)) =
√

N

corresponding to maximum nonadiabaticity [where ψ(t) is ei-

ther orthogonal to or completely nonoverlapping with ψGS(t)].

This means an absolute percentage deviation of the dynamic

distance from the maximum distance can be attributed at any

instant in time.

This measure provides useful information beyond the de-

gree of adiabaticity; Fig. 2(b) displays oscillating arches for

the adiabatic systems (inset), where ho has the clearest arches.

For ho this is seen for all values of ǫ(0) up to 1.0, where the

arch is disrupted by the distortion of the harmonic well when

reaching the edge of the system (L = 15). The frequency of

the oscillating arches is ω in the wave function and 2ω for

the density. The random potentials also display this oscillatory

behavior when adiabatic, but with a frequency not as clearly

dependent on the trapping microwells’ frequency. These arches

reveal a peculiar feature of the dynamics of adiabatic states:

They oscillate about the instantaneous GS but never really

adjust to it, maintaining this inertia no matter how slowly

varying the perturbation is.

An animation for the density of ho0.1 was produced to

demonstrate the oscillations about the instantaneous ground

5These results suggest that, by combining the requirements of a

dynamic ratio Dn(n(0),n(t))/Dψ (ψ(0),ψ(t)) following a line, with

the nonergodicity described below, adiabatic behavior could be

assessed even when the GS gradient Dn/Dψ is unknown.

012104-3



A. H. SKELT, R. W. GODBY, AND I. D’AMICO PHYSICAL REVIEW A 98, 012104 (2018)

(a)

(b)

1.0

1.0
r1

1.0
ho

1.0
r2

r1

ho
1.0

r2
1.0

0.01
r1

r2
0.01

0.01
ho

ho
0.01

0.01
r1

0.01
r2

D (n(0),n    (t))
GS

D  (   (0),      (t))
GS

ψψ

D
  

( 
  

(0
),

  
 (

t)
)

ψ
ψ

ψ

ψ
D

 (
n

(0
),

n
(t

))
n

n

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

 0.04

 0.08

 0.12

 0.16

 0.04  0.08  0.16 0.12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

 0.08

 0.04

 0.02  0.10 0.06

FIG. 3. Comparing the instantaneous GS and the TD state with

the initial GS for (a) n and (b) ψ . The black stars indicate the reference

time tref as seen in Fig. 1 (the top inset). The inset shows a close-up

of the boxed area, with adiabatic systems following the adiabatic line

(dashed line).

state [32]. Here ǫ(0) = 0.1 was used as these dynamics can

be seen clearer than for ǫ(0) = 0.01, but the oscillating arches

appear in both cases. The animation shows that the dynamic

state remains superimposed to the initial ground state for a

while (about 5 a.u.) after the perturbation has been applied,

demonstrating inertia, before it begins to move. This inertia

of the dynamic state gives rise to the ramp-up phase, which

precedes the oscillations seen for all three families of systems

(see the inset of Fig. 3).

Once the dynamic state is moving, it catches up with

the instantaneous ground state but due to the momentum, it

continues past the instantaneous ground state until it is stopped

by the potential at about 30 a.u. (where the maximum of the

density has clearly overcome the minimum of the instantaneous

potential) and then again at about 60 a.u. (see the animation

in [32]). This causes the oscillations about the instantaneous

ground state, which are seen in the insets of Figs. 2(b) and 3.

Figure 2 suggests a nonergodic behavior for the dynamics

of quantum systems in metric space, with the region above the

adiabatic line remaining largely unexplored. This would imply

that, on average, nonadiabaticity affects the wave functions

more than the related densities, when measured as a distance

from the instantaneous eigenstate [Fig. 2(b)] or from the initial

state [Fig. 2(a)].6 This behavior sheds light on the dynamic

wave-function–density mapping of TDDFT: When observed in

metric space this mapping is nonergodic; also, in contrast to the

GS mapping of DFT [26], it maps, on average, close densities

to less close wave functions. This can be partly understood by

noting that distant densities must be nonoverlapping (since n

cannot be negative) and therefore imply distant wave functions,

whereas the converse is not true.

The third type of graph is shown in Fig. 3: It fo-

cuses solely on either densities [Fig. 3(a)] or wave func-

tions [Fig. 3(b)]. For an adiabatic system ψ(t) = ψGS(t)

and so Dψ (ψ(0),ψ(t)) = Dψ (ψ(0),ψGS(t)). By comparing

Dψ (ψ(0),ψ(t)) with Dψ (ψ(0),ψGS(t)) (or similarly with the

density), the adiabaticity of the system is discerned through

the proximity to the adiabatic line y = x. The density and

wave-function graphs are very similar, and this suggests that it

should be possible to determine adiabaticity using the density

alone, e.g. conveniently calculated using DFT.

The systems for ǫ(0) = 0.01 are indeed adiabatic and

oscillate about the adiabatic line. These oscillations always

begin below the adiabatic line: The dynamic state lags behind

the instantaneous GS, in agreement with the arches seen in

Fig. 2(b) and showing again the inertia experienced by the

dynamic system.

The region above the adiabatic line is barely explored, once

more suggesting an absence of ergodicity for the dynamics of

quantum systems in metric space. For Fig. 3, this may be under-

stood using the triangle inequality obeyed by metrics, which

here takes the form Dψ (ψ(0),ψ(t)) � Dψ (ψGS(t),ψ(t)) +
Dψ (ψ(0),ψGS(t)).7 Since Dψ (ψGS(t),ψ(t)) becomes smaller

for increasing adiabaticity, this means that Dψ (ψ(0),ψ(t)) �

Dψ (ψ(0),ψGS(t)) to a better and better approximation, limiting

the vertical excursion of curves in Fig. 3. The more adiabatic a

system, the smaller the amplitude of the oscillations about the

adiabatic line. This also holds true for the density. For ho and r2,

when ǫ(0) = 1.0, the region below the adiabatic line is explored

considerably, demonstrating their nonadiabatic nature.

The black stars on the ǫ = 1.0 curves in Fig. 3 indicate

tref (an arbitrary reference time chosen to indicate interesting

dynamics) from Fig. 1 (top inset). It is clear that r2 remains

nonadiabatic at this time; however, r1 has come closer to

adiabaticity and oscillates about the adiabatic line as a result of

the spreading and contracting of the density in a “breathing”

motion (whereas Dobson’s harmonic potential theorem [35]

shows the propensity for breathing of a time-evolving wave

function to be suppressed in the harmonic oscillator).

This move towards an adiabatic regime is clearly seen in the

metrics and in ǫ(t), yet the metrics, due to their nonperturbative

nature, reveal much more about the dynamics of the system,

such as the oscillations and the initial ramp-up phase due to the

inertia. They also reveal that r11.0 is definitely not as adiabatic

as ǫ(t) → 0.03 (from Fig. 1, top inset) would suggest.

An animation of the density of r11.0 was produced to

demonstrate this breathing motion [32]. From the beginning the

6Preliminary results on a strongly driven ionizing system also

confirm this nonergodicity [33].
7The triangle inequality has also been used to develop limits on

adiabatic time in many-body systems [34].
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electronic ground state is mainly confined by the asymmetric

right-hand microwell and the perturbation (−pxt) pushes the

electron closer to the confining potential as the microwell

deepens. Starting at about 30 a.u., we observe a breathing

motion, with the density widening with the amplitude reducing,

followed by it tightening with the amplitude increasing. This is

combined with a sideways oscillation. This complex motion is

caused by a combination of oscillations about the instantaneous

ground state caused by inertia (similar to what mentioned

previously) combined with the reflection of the wave packet

by each side of the microwell in turn, an overall motion that

is reminiscent of water oscillating sideways in a basin. Each

density maximum corresponds to one of the maxima of the

metric oscillations observed for r11.0 in Fig. 3(a): The higher

metric maxima correspond to the density maxima close to

the system boundary, while the secondary metric maxima

correspond to the density maxima close to the less steep left

border of the microwell.

IV. CONCLUSION

In summary, we have analyzed a set of systems defined

by randomly generated external potentials, using the metric-

space approach to quantum mechanics. For ground states, the

relationship between Dn and Dψ is quasilinear over most of the

possible range of values. This quasilinearity was analytically

confirmed for harmonic oscillators. We proposed three types

of metric graphs as tools to assess adiabaticity, which all

agree on the character of the dynamic evolutions considered.

These tools provide both quantitative and qualitative estimates

of the degree of adiabaticity in the dynamics of a quantum

system and show how the ground state linear relationship

between Dn and Dψ is related to adiabatically evolving

time-dependent systems. All our numerical results, including

additional intermediate perturbations not shown here, for these

three types of graph support the conjecture that the behavior

is indeed general. We have demonstrated that the metric-space
approach can be used to assess the character of the dynamics

of quantum systems, in an accurate and appealingly visual

way. The metric approach studied here is also applicable to

many-particle systems, for which the characterization of the

degree of adiabaticity using metrics based on densities alone

is particularly convenient. Our method could therefore be used

to predict parameters for experiments and/or experimentally

measured local densities could be used in the density metrics.

The ability to use metrics based purely on densities or wave

functions also allows for their use in situations where only the

wave functions or only the densities are known. An example in

which the exploration of the wave-function metric dynamics

could be informative is the case of quantum phase transitions.

Our results show that quantum dynamics, even for systems

strongly far from equilibrium, appears nonergodic in metric

space. This sheds light on the density–wave-function mapping

at the core of TDDFT. Importantly, the metric graphs do

not suffer from the same limitations as the currently widely

used adiabatic criterion ǫ(t) and hence provide a more robust

indication of the degree of adiabaticity, as well as a greater

insight into the system dynamics. This establishes the metric

space approach to quantum mechanics as a versatile and

sensitive probe of adiabaticity.

All data published in this research is available on request

from the York Research Database [36].
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