
This is a repository copy of Incremental execution of model-to-text transformations using 
property access traces.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/133819/

Version: Accepted Version

Article:

Ogunyomi, Babajide, Rose, Louis M. orcid.org/0000-0002-3419-2579 and Kolovos, 
Dimitrios S. orcid.org/0000-0002-1724-6563 (2018) Incremental execution of model-to-text
transformations using property access traces. International Journal on Software & 
Systems Modelling. pp. 1-17. ISSN 1619-1366 

https://doi.org/10.1007/s10270-018-0666-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Incremental Execution of Model-to-Text

Transformations using Property Access Traces

Babajide Ogunyomi, Louis M. Rose, and Dimitrios S. Kolovos

Department of Computer Science, University of York
Deramore Lane, Heslington, York, YO10 5GH, UK.

[bjo500, louis.rose, dimitris.kolovos]@york.ac.uk

Abstract. Automatic generation of textual artefacts (including code,
documentation, configuration files, build scripts, etc.) from models in a
software development process through the application of model-to-text
(M2T) transformation is a common MDE activity. Despite the impor-
tance of M2T transformation, contemporary M2T languages lack sup-
port for developing transformations that scale with the size of the in-
put model. As MDE is applied to systems of increasing size and com-
plexity, a lack of scalability in M2T transformation languages hinders
industrial adoption. In this paper, we propose a form of runtime anal-
ysis that can be used to identify the impact of source model changes
on generated textual artefacts. The structures produced by this runtime
analysis, property access traces, can be used to perform efficient source-
incremental transformation: our experiments show an average reduction
of 60% in transformation execution time compared to non-incremental
(batch) transformation.

1 Introduction

Although MDE can reduce systems complexity and increase developer produc-
tivity [1], achieving scalability of MDE processes, practices and technologies
remains an open research challenge and is important for widespread industrial
adoption [2]. The scalability challenges in MDE are numerous, and include: per-
formant persistence of very large models, modularity and reusability in the def-
inition of very large modelling languages, and efficient propagation of changes
between artefacts (including models). This paper focuses on the latter challenge,
in the context of propagating changes from models to textual artefacts (such as
source code, documentation, or build scripts).

While a substantial amount of work has been carried out in the context
of incremental model-to-model transformation over the last decade and several
prototypes are available, incremental model-to-text transformation has received
little attention. Beyond Xpand1, none of the publicly available model-to-text
transformation engines available today support efficient propagation of changes
in models to generated textual artefacts.

1 The incremental Xpand engine is discussed in detail in Section 5.



In the absence of automated incremental model-to-text transformation ca-
pabilities, model-driven engineering processes involving large and frequently-
changing models grind to a halt unless workarounds are employed. For example,
full code generation from large UML models in one of our industrial partners
takes hours to complete. To avoid long and wasteful generation cycles, engineers
need to steer the generator manually to re-generate only parts of the code that
they anticipate to be affected by the changes they have made to the model since
the last generation cycle. Performing such impact analysis manually requires
intimate knowledge of the code generator and is error prone.

In this paper we demonstrate an approach for achieving fully automated
source-incremental model-to-text transformation through the use of property ac-
cess traces. The proposed approach uses runtime analysis to capture information
about the way in which a transformation accesses its source models. When the
source models change, a property access trace provides an efficient means for de-
termining which subset of the transformation must be re-executed to propagate
changes to the textual artefacts. Crucially, a property access trace allows the
transformation engine to reduce (and ideally eliminate) execution of the parts
of the transformation that are not affected by the changes to the source models,
and the M2T transformation scales better as a whole. The proposed approach
is agnostic both of the source (modelling) and the target textual language. In
Section 4 we discuss the results of experiments we have conducted which show
up to a 60% reduction in the average re-execution time of a M2T transformation
using the source-incremental technique proposed in this paper.

This paper is an extension to our previous publication [3] in which we pro-
posed a design and prototype implementation for computing and querying prop-
erty access traces in order to perform efficient propagation of changes from mod-
els to textual artefacts2. In [3], we demonstrated how an M2T transformation
language can be extended with property access traces to incrementally propa-
gate changes in an offline mode. The offline transformation mode assumes that
re-synchronisation of generated artefacts with the input model is required only
when a new version of the input model is available. In this extension, we ex-
pand our investigation to include online transformation. Online transformation
enables the synchronisation of generated artefacts with input models on-the-fly,
while the input models are being modified (Section 3.5). This paper makes the
following additional contributions:

– A new “online” mode for incremental execution of model-to-text transforma-
tions that further improves efficiency by leveraging the capability of modern
modelling frameworks and tools to provide live model-element-level change
notifications (which need to be reconstructed after the fact in the “offline”
mode at a significant computational cost)

– An extended empirical evaluation and discussion of the benefits of prop-
erty access traces for two existing M2T transformations, and comparisons
between the online and offline transformation modes (Section 4).

2 The prototype is available in https://github.com/epsilonlabs/

incremental-egl.



2 Background

This section briefly summarises contemporary approaches to M2T transforma-
tions and the different types of incrementality that are needed for effective and
efficient M2T transformation.

The majority of contemporary M2T transformation languages enable trans-
formations to be specified in the form of templates (Listing 1.1), whose structure
closely resembles the generated text [4, 5]. Any parts of the generated text that
vary over model elements are replaced with dynamic (executable) sections, which
are evaluated against one or more source models. Any parts of generated text
that are not sensitive to the source models are termed static sections. A M2T
transformation normally comprises several templates, and co-ordination logic
that invokes each template on the relevant part of the source models.

1 Hello, [%= person.name %]!

Listing 1.1. A template-based M2T transformation, in EGL syntax, which contains
a static section (“Hello, ”), a dynamic section (that outputs the value of the name
attribute of a person model element) and another static section (“!”).

Incrementality in model transformation – and in general – seeks to react to
changes in an artefact (such as a model) in a manner that minimises the need for
redundant computations. For M2T transformation, three types of incrementality
have been identified: user edit-preserving incrementality, target incrementality3,
and source incrementality [5]. User-edit preserving incrementality and target
incrementality are now widely supported, but source incrementality is not [6].
In this paper, we focus on source incrementality and argue that it is an essential
feature for providing scalable M2T transformation capabilities.

Source incrementality is the capability of an M2T transformation engine to
respond to changes in the source models of an M2T transformation in a way
that minimises (and ideally eliminates) the need for re-computations that will
not eventually have an impact on the latter’s output. Achieving a high degree of
source incrementality can significantly improve the efficiency of complex trans-
formations, especially when they operate on large or complex source models (e.g.,
with many cross-references between model elements and/or inter-dependencies
between source models).

3 Property Access Traces

In this section, we demonstrate how property access traces recorded during the
execution of an M2T transformation can be used to detect which templates
need to be re-executed in response to a set of changes in the input model(s),
thus facilitating source incrementality for contemporary template-based M2T

3 Target incrementality is achieved when target files are not unnecessarily modified on
disk (thus changing their last-modified timestamp) if their content has not changed.



transformation engines. In contrast to existing approaches to source incremen-
tal model-to-text and model-to-model transformation, property access traces do
not rely on model differencing, which can be computationally expensive and im-
precise as discussed in Section 5 where we highlight it as a major drawback of
Xpand’s4 incremental transformation approach.

This section provides an overview of using property access traces for source
incremental transformation, discusses the way in which existing template-based
M2T languages can be extended with support for property access traces, and
briefly describes a prototypical implementation of property access traces for the
EGL [7] M2T language.

3.1 Overview

To provide support for source incrementality, a transformation engine must be
capable of identifying the subset of the transformation that is sensitive to changes
in its input models (impact analysis), and re-executing the subset of the trans-
formation to update the target (change propagation). Performing accurate im-
pact analysis presents arguably the greatest challenge: in a template-based M2T
transformation, a template might be sensitive to some types of change to a model
element, but not to others. In the example presented in Figure 1, student reports
are generated by a template that is sensitive to changes to the name of a course
(e.g., “SEPR” changes to “Software Project”), but not to the name of the lecturer
(e.g., “Mary Johnson” changes to “Mary Johnson-Smith”) or to the names of the
students that take the module.

Property access traces, as discussed below, provide an effective mechanism
for recording an M2T transformation’s execution footprint which can be then
used to detect relevant changes in the source model, and to determine which
parts of the transformation need to be re-executed against which model elements.
When a transformation is first executed, property access traces are captured and
persisted in non-volatile storage. A property access trace records which parts
of the transformation access which parts of the source model. In subsequent
executions of the transformation, the property access trace is used to detect
whether the source model has changed, and to re-execute only those parts of
the transformation that are likely to be affected by the source model changes.
Determining which parts of the transformation to re-execute is possible because
we require that transformation templates have two characteristics: they must
be stateless and deterministic. A stateless template takes its data only from the
input model, which means that the generated text is dependent only on data
that we can observe. A deterministic template is one which when executed twice
on the same input performs the same actions and produces the same output,
which means that we can always predict which parts of the input model the
template will access. Under these conditions, property accesses alone can be used
to determine whether or not a re-invocation of a template is likely to produce a

4 http://eclipse.org/modeling/m2t/??project=xpand



(a) Model. (b) Example output.

Fig. 1. Artefacts for an M2T transformation that generates reports.

different output after the input model has been modified. A similar correctness
argument is made for the incremental model consistency checking approach in [8].

Property access traces can be applied to a transformation language to provide
incrementality in two modes: offline and online. In the offline mode, the transfor-
mation engine terminates after an execution, and re-executes a transformation
only when a new version of the input model is available. However, it is also pos-
sible to apply property access traces to enable immediate change propagation
(online transformation). In the online transformation mode, a transformation
engine can re-execute a transformation as changes occur in input model(s).

3.2 Design

In order to demonstrate the feasibility of property access traces, we extended
EGL (the Epsilon Generation Language) [7], a contemporary template-based
M2T language. EGX is an orchestration sub-language of EGL which provides
mechanisms for co-ordinating template execution. At this point we should stress
that although our reference implementation builds on top of EGL, the proposed
approach is orthogonal to the model-to-text transformation language and can
be in principle implemented on top of any interpreted (e.g. Acceleo5) or com-
piled (e.g. Xtend [9]) language, which can be augmented/instrumented to record
property access events. Typically, M2T transformations implemented in com-
piled languages such as Xtend are likely to be more performant compared to
implementations in interpreted languages. However, we have selected EGL as
the basis for our prototype largely due to prior familiarity with the internals of
the execution engine of the language.

Before discussing the details of implementing property access traces for EGL,
we first describe the way in which transformations are defined and executed in the
language (Figure 2). An M2T transformation in EGL is specified in the form of
an EGX program, which comprises a number of rules and EGL templates. In its
simplest form, an EGX rule specifies a metamodel type on which it is applicable6,

5 https://www.eclipse.org/acceleo/
6 EGX rules also support guards which can further limit their applicability



Fig. 2. Overview of transformation execution using EGX.

and expressions that are expected to evaluate to the path of a template and
the path of a target file. The transformation engine starts by loading the input
model(s), before executing the EGX program. Then each rule is executed against
its applicable model elements; each model element is passed as a parameter to
the template, and the text produced by the template is stored in target file.

Consider, for example, the M2T transformation in Listing 1.2, which produces
student transcripts and course reports of the forms shown on the right-hand side
of Figure 1. This EGX program comprises two transformation rules: StudentTo-
Transcript (lines 1 -5), CourseToReport (lines 7 -11). EGX passes each object
of type Student to the studentToTranscript.egl template (Listing 1.3) and each
object of type Course to the courseToReport.egl template (Listing 1.4). Addi-
tionally, in each transformation rule, a target (filename) is defined, whose value
is determined at the transformation execution time.

In a typical M2T (batch) transformation engine, execution involves evaluat-
ing all templates against all instances of that context type every time a transfor-
mation is executed. In a source incremental M2T transformation engine, trans-
formation execution involves identifying only the rule-element pairs that need
to be re-evaluated to propagate changes from the source model to the generated
text. In other words, a source incremental M2T transformation engine identifies
but, crucially, does not re-evaluate templates for which the generated text is
known from a previous invocation of the transformation.



1 rule StudentToTranscript

2 transform student : Student {

3 template : "studentToTranscript.egl"

4 target : student.name + ".txt"

5 }

6
7 rule CourseToReport

8 transform course : Course {

9 template : "courseToReport.egl"

10 target : course.name + ".txt"

11 }

Listing 1.2. Example of an EGX M2T program applied to input model in Figure 1(a).

1 Student name : [%= student.name %]

2 Course Grade

3 [% for(grade in student.grades) { %]

4 [%= grade.course.name + " " + grade.mark %]

5 [% } %]

Listing 1.3. M2T template for generating student transcripts specified in EGL syntax.

3.3 Extending M2T transformation languages with Property Access

Traces.

The implementation of property access traces involves extending the execution
engine of an M2T language with four new concepts. During the execution of the
transformation, a PropertyAccessRecorder captures the properties of the model
elements accessed. The recorded PropertyAccess(es), which make up a Property-
AccessTrace, are then persisted in non-volatile storage, a PropertyAccessStore.
Figure 3 illustrates the conceptual organisation of the information contained in
a PropertyAccessTrace.

– A PropertyAccess is a triple <e, p, v>, where e is the unique identifier
(ID) of the model element, p is the name of the property, and v is the cur-
rent value of the property. The way in which model element identifiers are
computed varies, depending on the underlying modelling technology (e.g.,
XMI IDs or relative paths for EMF XMI models). Our current implemen-
tation does not support monitoring multiple input models, hence, the IDs
of the model elements which are globally unique, combined with the name
any of a model element’s properties are adequate to distinguish property
accesses. A PropertyAccess is however, trivially extensible to <m, e, p, v>
where m is the model name. This would provide a namespacing access and
identification mechanism for multiple models and prevents access ambigu-
ity. There are two types of property accesses – NamedPropertyAccesses and
FeatureCallAccesses. NamedPropertyAccesses are derived from direct opera-
tions on model elements, and they are classified by the type of model element
feature (i.e., AttributeAccesses and ReferenceAccesses) that is accessed and



1 Course Report for [%= course.name %]

2 Lecturer: [%= course.lecturer %]

3
4 Number of students:[%= course.grades.size() %]

5 Average mark:[%=course.grades.collect(mark).sum()

6 /course.grades.size() %]

Listing 1.4. M2T template for generating course reports specified in EGL syntax

the type of value that they store. AttributeAccesses store a string value and
are used when the accessed property type is a primitive. An AttributeAccess
is derived when a model element’s feature is accessed in a template (e.g.,
the execution of this statement: person.name). ReferenceAccesses store the
unique identifiers of the referenced model elements and are obtained when
the feature of a model element that is accessed is an association between two
classes or between two instances of a class (e.g., person.followers). Lastly,
a FeatureCallAccess is derived from expressions that access instances of a
metamodel type, rather than properties of a model element (e.g., Person.all,
Person.allInstances). FeatureCallAccesses return a collection that contains
the unique identifiers of the objects.

– A PropertyAccessTrace (Figure 3) captures which transformation rules
are invoked on which source model elements and, moreover, which Property-
Accesses resulted from each invocation of a transformation rule (a RuleIn-
vocation in Figure 3).

– A PropertyAccessRecorder is responsible for recording PropertyAccesses
during the execution of a template, and updating the PropertyAccesses when
a change in the value of a PropertyAccess is detected. It is important to note
that since property access traces contains data about input model elements
only, any other type of change to the transformation specification is not
considered (See section 4.3 for a discussion on known limitations of this
approach).

– A PropertyAccessStore is responsible for storing the PropertyAccesses
passed on to it by the PropertyAccessRecorder. The PropertyAccessStore is
also responsible for making PropertyAccesses (that were stored during a
previous transformation execution) available to the transformation engine.
In our prototype, we use an embedded RDBMS to store property accesses,
but other options (e.g., graph databases, XML documents, etc.) are also
possible. The main non-functional requirement for a PropertyAccessStore is
performance: any gains achieved with a source incremental engine might be
negated if the PropertyAccessStore cannot efficiently read and write property
access traces.

We now briefly describe the way in which these concepts are used to achieve
source incremental transformation, before providing an example. During the ini-
tial execution of a transformation, the PropertyAccessRecorder creates Prop-
ertyAccesses from the properties of model elements that are accessed during the



Fig. 3. Overview of Property Access Trace.

execution of each rule. The collected PropertyAccesses are organised by RuleIn-
vocation by the transformation engine to form a PropertyAccessTrace, that is
eventually stored by the PropertyAccessStore. In a subsequent execution of the
M2T transformation, the transformation engine retrieves the previous Property-
AccessTrace from the PropertyAccessStore. Whenever the transformation engine
would ordinarily invoke a transformation rule, it instead retrieves each relevant
PropertyAccess from the PropertyAccessTrace and queries the model to deter-
mine if the value of any of the PropertyAccesses has changed. Only when a
value has changed is the transformation rule invoked. The PropertyAccessTrace
is updated and stored if any values have changed.

3.4 Offline Transformation in EGL

In the offline transformation mode, the transformation is only re-executed on
demand when a new version of an input model is available. During the ini-
tial execution of a transformation, the transformation engine records and per-
sists property accesses. During subsequent executions of the transformation, the
transformation engine retrieves the persisted property access trace, and before
re-executing a template on a model element, it examines the values of associated
property accesses that were retrieved from the property access store by querying
the input model to determine whether there has been any modification of any of
the model element features that were accessed during the previous execution of
the template. If the current value of at least one template invocation’s property
access differs from the retrieved value of such property access, only then will
the transformation engine re-execute the template. It is important to note that
templates often contain multiple accesses to the same model element feature.



Fig. 4. A partial property access trace for executing studentToTranscript.egl on andy

and sally, and courseToReport.egl on sepr.

Therefore, in order to minimize the space requirements for persisting a property
access trace, only distinct property accesses are recorded.

3.4.1 Offline Transformation Example To further demonstrate the way
in which property access traces achieve source-incremental M2T transformation,
we now consider an example. Our example uses the transformation in Listings
1.3 and 1.4, which generate student transcripts and course reports from a uni-
versity model. Executing the transformation on the minimal university model
in Figure 1(a) causes the transcript-generating rule to be invoked once on each
student (andy and sally), and the course report-generating rule once on course
(sepr). As such, the resulting property access trace comprises three rule invoca-
tion objects (Figure 4). Each rule invocation object comprises several property
accesses, which are recorded during the execution of the templates in Listing 1.3
and 1.4.

Let us consider the properties accessed during the invocation of the tem-
plate on sally. The sallyTranscript rule invocation (Figure 5) comprises several
attribute and reference access objects and is constructed as follows. Firstly, the
template accesses sally.name (line 1 of Listing 1.3) and creates the aa1 at-
tribute access (Figure 5). The template then accesses sally.grades (line 3)
and this creates the ra1 reference access. The grade.course.name traversal ex-
pression in the template (line 4) creates two property accesses: the ra2 reference
access for grade.course and the aa2 attribute access for course.name. Finally,
the grade.mark expression (line 5) creates the aa3 attribute access. The boxes
with a dashed border in Figure 5 reinforce the relationship between property ac-
cess objects in the trace and the expressions in the template (Listing 1.3). Note
that each property access stores a reference to the model element from which its
value was obtained.



Fig. 5. Expansion of the property access trace for the sallyTranscript rule invocation.

When the M2T transformation is executed again, the transformation engine
retrieves the property access trace (including Figures 4 and 5) and queries the
parts of the model that were previously accessed by the transformation, such as
the name of each student. Only when the value of any property differs from the
value stored in a property access is the containing rule invocation re-executed.

For example, the sallyTranscript rule invocation (Figure 5) indicates that
if all of the following constraints hold, then the rule invocation need not be
re-executed:

1. sally.name == “Sally Graham” – due to aa1
2. sally.grades == {g2} – due to ra1
3. g2.course == sepr – due to ra2
4. sepr.name == “SEPR” – due to aa2
5. g2.mark == “42” – due to aa3

Suppose that Sally’s grade for the SEPR course is changed: the mark at-
tribute of g2 is changed from 42 to 54. Note that the aa3 attribute access
(highlighted in Figure 5) stores the old value for the mark, 42. When the trans-
formation is re-executed, condition #5 above will no longer hold: g2.mark will
now evaluate to 54. Consequently, the transformation engine will re-execute the
sallyTranscript rule invocation.

We have not shown the complete property access trace for the andyTranscript
rule invocation (due to space constraints), but it is very similar in structure



to the sallyTranscript rule invocation in Figure 5. The property accesses for
andyTranscript result in the following constraints:

1. andy.name == “Andy Brown”

2. andy.grades == {g1}

3. g1.course == sepr

4. sepr.name == “SEPR”

5. g1.mark == “88”

From these constraints, it is clear that the change to g2.mark does not re-
quire a re-execution of the andyTranscript rule invocation as none of the con-
straints above depend on g2.mark. If, on the other hand, our change had been
to sepr.name rather than to g2.mark, then both of the sets of constraints shown
above would be unsatisfied and both the sallyTranscript and the andyTranscript
rule invocations would be re-executed. In addition to the simple types of modi-
fications outlined above, deleting obsolete files (generated files that exist in the
transformation output directory despite having deleted the model elements from
which they were generated) from transformation output directories is straight-
forward. The transformation engine evaluates whether previous rule invocations
are still valid by checking if the referenced model element of its associated tem-
plate invocations is still accessible in the source model. If a model element has
been deleted, then any associated rule invocation will no longer be executable,
and hence the file generated from the previous rule invocation is deleted.

In general, determining whether or not a rule invocation needs to be re-
executed requires the evaluation of O(n) constraints where n is the number of
distinct property accesses for that rule invocation.

3.5 Online Transformation in EGL

In this section, we discuss how property access traces can be extended to support
on-the-fly (or online) incremental M2T transformation. Thus far, the narrative
has assumed that M2T transformations are only re-executed when a new version
of an input model is available. The example in Section 3.4.1 describes a typical
offline incremental M2T transformation scenario – initially, the transformation
is executed and some textual artefacts are generated; the input model evolves
and results in a new version of the model; the transformation is re-executed,
and generated artefacts are re-synchronised with the input model. In the offline
M2T transformation we assume that the model editing process happens in a
black box, and we can only have access to the latest version of the transforma-
tion’s input model. However, some modelling frameworks and tools (e.g. EMF,
PTC Integrity Modeler) offer model-element-level change notification facilities
which can be leveraged to eliminate the need for post-fact change detection and
facilitate online incremental M2T transformation. Online transformation can be
particularly important for modelling tools which require instant propagation of
model changes to generated artefacts to immediately evaluate the effects of the
changes and ensure consistency.



Commonly, modelling tools that are used to construct graphical editors for
modelling languages (e.g., Eugenia [10]) perform M2T transformations which
generate source code (e.g., implementation classes that adapt the model classes
for editing) for the editor. For example, each time an input model is modified,
Eugenia updates an intermediate model (genmodel) through a M2M transforma-
tion before re-executing the M2T transformation that generates the editor from
the intermediate model. As the construction of a model editor involves several
iterations which contain minor tweaks, immediate re-synchronisation of the edi-
tor code with the genmodel is desirable, and can potentially reduce development
time, since the developer can instantly assess the effects of the changes on the
model editor. Another important advantage of online change propagation it is
arguably more time-efficient than the offline transformation mode because the
transformation engine does not need to fully traverse the input model to detect
changes; fine-grained change notifications are provided for free by the model
editor.

3.5.1 Design Although the online and offline incremental transformation
modes are founded on the same principle of recording property accesses on model
elements during template invocations and using the recorded data to limit the
re-execution of a transformation to relevant template invocations, noteworthy
differences also exist between the two modes.

1. In the offline mode change detection is performed by the transformation
engine in a batch mode, whereas in the online mode, the transformation
engine is notified of model-element-level changes;

2. Impact analysis in the offline mode requires full model and property access
trace traversals, while in the online mode, only a subset of the property
access trace is examined. As such, the offline mode requires the evaluation
of O(n) constraints where n is the number of property access traces. On the
other hand, during impact analysis in the online mode, the transformation
engine only analyzes the stored property access traces, which – using a Java
HashMap – is an O(1) operation in the average case.

In the offline mode, change detection entails querying the input model to
determine whether the values of relevant property accesses have changed. In the
online mode, change notifications are provided by the underlying model editor.
It follows that in the online mode, a property access does not need to include the
value of the property since the transformation does not require this information
to determine whether the value of a model element’s feature has been modified or
not. Therefore, a property access becomes a pair of the form < e, p >, where
e is the model element id, p is the model element’s property name. Although
change detection in the online mode is relatively straightforward compared to
the offline mode, the online mode introduces another layer of complexity – es-
tablishing transaction boundaries. For instance, the transformation engine would
have to determine when to re-execute a transformation depending on whether an
edit session of the input model is still in progress or has completed. Also, careful



considerations have to be made of how the transformation engine responds to
change notifications it receives while a previous invocation of a transformation
is still in progress.

Furthermore, online transformation introduces the notion that model element
changes are external and an indirect concern of the transformation engine since
the transformation engine does not have to compute them. Therefore, model
element change is conceptualized as an external entity that is consumed by the
transformation engine much like a transformation parameter. Hence, in addition
to PropertyAccessTrace, PropertyAccessRecorder, PropertyAccess, and Property-
AccessStore, a further concept is introduced:

– A Change comprises a model element’s id and the name of the property
of the modified model element (i.e., a pair of the form < e, p >) and it is
structurally equivalent to a property access. It is used to determine which
rule invocations require re-execution.

An overview of online transformation using property access traces is pre-
sented in Figure 6. In the online propagation mode, the execution of a transfor-
mation proceeds as follows:

1. The transformation engine begins to observe the input model specified in
the transformation configuration.

2. The model editor triggers change notifications as the user edits the model.

3. The transformation engine receives change notifications for an input model
as they occur.

4. The transformation engine analyses the change notifications to find relevant
rule invocations.

5. The transformation engine re-executes related rule invocations, executes new
rule invocations (for new elements), and deletes previously generated obso-
lete files (for deleted elements).

6. Based on step 5, any changes to previously recorded property accesses are
updated and persisted in the property access store.

Since the transformation engine needs to be aware of changes as they are
made to the input model, in step 1, before the initial execution of a transfor-
mation, the transformation engine initiates monitoring of the model elements
through a change listener (provided by the underlying modelling framework) to
the input model. In step 2, modifications to observed model elements will trigger
change notifications by the underlying modelling framework which are forwarded
to the transformation engine (in step 3). In step 4, the transformation queries
the property access trace for each change notification to determine which rule
invocations are affected by the change. In step 5 new rule invocations are created
(for new elements), affected rule invocations are re-executed, and obsolete files
are deleted. Finally, in step 6, the property access trace is updated and persisted
in the property access store.



Fig. 6. Overview of Online transformation using Property Access Trace.

3.5.2 Change Detection and Batching in Online Transformation As
explained above, to achieve online incremental transformation using property
access traces, it is essential that the tool used to edit the source model is capable
of producing live model-element level change notifications.

With regard to the frequency of incremental re-execution in response to such
notifications, the transformation engine can either react to each change as it
occurs, and re-execute the appropriate rule-invocations immediately, or it can
collect and batch changes based on an appropriate policy. Potential policies can
include processing changes every time the user saves a model file, at fixed in-
tervals, after change events that leave the model in a state where it satisfies
its constraints, or using a combination of the above. A discussion on the ap-
propriateness of different policies for different use-cases is out of the scope of
the paper. As such, our only assumption is that changes will be processed in
batches (in the case of immediate re-execution, each batch contains exactly one
change). To minimise rule invocations the following types of change notifications
can be safely filtered out from a batch before passing it on to the impact analysis
algorithm:

– Duplicate property change events: The impact analysis algorithm only
needs to know which (distinct) properties of model elements have been mod-
ified during the last execution of the transformation, but is insensitive to
the number of times the same property value may have been changed. As
such, we only keep one change notification for each distinct model element-
property pair.

– Property change events on elements deleted later on in the edit-

ing session: Re-generating the content of target files only to delete them
altogether later on when the deletion event is encountered is wasteful and
is preempted by ignoring property change events from elements that are
deleted subsequently in the editing session.



– Property change events on elements created in the editing ses-

sion: Properties of new model elements cannot have been possibly accessed
in previous execution of the transformation, and as such changes in their
properties are inconsequential for the purposes of impact analysis.

– Deletion events for elements that were created in the editing ses-

sion: The deletion of model elements created in the same editing session is
also irrelevant to impact analysis, in line with the argument above.

As our prototype implementation is based on EMF, we also filter out EMF-
specific change notifications that are fundamentally irrelevant to impact analysis
(e.g. EMF produces a notification every time a listener is added or removed to a
model element). The filtered changes are then used to conduct impact analysis
and selectively re-execute relevant rules identically to the offline mode.

4 Evaluation and Experience Report

In this section we report on the results of the empirical evaluation of the pro-
posed approach, in which we compare the transformation execution times in
incremental (offline and online modes) and non-incremental execution modes for
two existing transformations. The results of our experiments show that source
incremental transformations can be more efficient than non-incremental trans-
formations, particularly for frequent or relatively small changes to models.

4.1 Empirical Evaluation

To assess the performance of property access traces, we used two existing EGL
transformations: Pongo and INESS. We investigated whether property access
traces are effective when used for repeated invocations of M2T over the lifetime
of an MDE project (Pongo). In order to demonstrate that property access traces
scale well with complex M2T transformations, we performed an experiment with
the INESS transformation. We also investigated the memory and disk usage
of property access traces (Pongo and INESS) to ensure that resource usage is
reasonable. The first set of Pongo experiments (Section 4.1.1) was executed in
the offline mode, and the second set (Section 4.1.2) was executed in the online
mode. Each experiment was run a total of ten times, after which we computed the
average execution time for each iteration. The experiments that were performed
during the evaluation work were executed on a MacBook Pro OS X Yosemite
(2.5 GHz Intel Core i5, 8 GB 1600 MHz DDR3) with Java 1.7 SDK.

4.1.1 Pongo Experiment I Pongo7 generates data mapper layers for Mon-
goDB, a non-relational database. Pongo takes as input an Ecore model that
describes the types and properties of the objects to be stored in the database,
and generates Java code that can be used to interact with the database via the
user-defined types and properties (without needing to use the MongoDB API).

7 https://github.com/kolovos/pongo



We compared the total time taken for incremental and non-incremental code
generation over the lifetime of a real MDE project. For this purpose we used
Pongo v0.5, and 11 versions of the GmfGraph Ecore model (obtained from the
Git repository8 of the GMF team). To simulate code generation activities in
the GMF project, we ran Pongo using non-incremental and incremental EGL in
offline mode on each version of the GmfGraph Ecore model.

The results (Table 1) show the difference in number of template invocations
and total execution time between non-incremental and incremental execution
modes of execution, for each of the 11 versions of the GmfGraph model. Expect-
edly, during the first invocation of the transformation (version 1.23) in incremen-
tal mode, the execution took slightly longer to execute than the non-incremental
mode because the former incurs an overhead as the transformation in addition to
evaluating templates, must record and process model element properties that are
accessed in each template. However, during subsequent executions of the trans-
formation, the incremental mode of execution required between 25% and 48% of
the execution time required by the non-incremental mode. In other words, during
the execution of the transformation on all versions of the GmfGraph project, we
observed upto an 75% reduction in total execution time. Although the overall
reduction in execution time (12.51s) is modest, that is partly explained by the
relatively small size of the Pongo transformation (6 EGL templates totalling 329
lines of code), and of the GmfGraph model (averaging 65 classes).

Non-Incremental Incremental
Version Elements Changed (#) Invocations (#) Time (s) Invocations (#) Time (s; %)
1.23 - 72 1.79 72 2.29 (128%)
1.24 1 73 1.72 6 0.49 (28%)
1.25 1 73 2.01 2 0.50 (25%)
1.26 1 74 2.03 6 0.53 (26%)
1.27 10 74 1.97 44 0.95 (48%)
1.28 10 74 1.95 44 0.93 (48%)
1.29 14 74 1.94 14 0.56 (29%)
1.30 24 77 2.02 38 0.94 (47%)
1.31 1 77 1.86 0 0.49 (26%)
1.32 1 77 1.95 0 0.48 (25%)
1.33 3 79 2.00 8 0.57 (29%)

21.24 8.73 (41%)

Table 1. Results of using non-incremental and offline property access traces for incre-
mental M2T transformation for the Pongo M2T transformation, applied to 11 historical
versions of the GmfGraph Ecore model.

4.1.2 Pongo Experiment II To evaluate property access traces in the online
transformation mode using the Pongo M2T, we first had to re-construct the
changes that existed in-between the 11 versions of GmfGraph. In the first step,

8 https://git.eclipse.org/c/gmf-tooling



we determined the differences between an input model and its preceding version.
This was done using the EMFCompare tool [11] which computes a difference
model by comparing two models. EMFCompare has a graphical user interface
which shows the differences between two models in both textual and tree view
formats. In the next step, we manually encoded the changes identified via model
differencing as a script that could be used to evolve a model from its current
version to the next version.

Considering that our experiment replays the evolution of the input models, it
is important to note that during this process, the changes between the versions
of the input model are batched before being forwarded to the transformation
engine (as depicted in Figure 7). This is based on the assumption that during
the evolution of each version of the input model, the changes were applied in a
single modification session because this information is not stored in either version
of the model. Moreover, it is impossible to determine exactly what changes were
done and undone during the real evolution of the input model.

Fig. 7. Overview of online execution of Pongo on GmfGraph.

Non-Incremental Incremental (Offline) online
Version Changes (#) Inv. (#) Time (s) Inv. (#) Time (s; %) Inv. (#) Time (s; %)
1.23 - 72 1.79 72 2.29 (128%) 72 2.42 (135%)
1.24 1 73 1.72 6 0.49 (28%) 6 0.14 (8%)
1.25 1 73 2.01 2 0.50 (25%) 2 0.06 (3%)
1.26 1 74 2.03 6 0.53 (26%) 6 0.13 (6%)
1.27 10 74 1.97 44 0.95 (48%) 44 0.65 (33%)
1.28 10 74 1.95 44 0.93 (48%) 44 0.63 (32%)
1.29 14 74 1.94 14 0.56 (29%) 14 0.20 (10%)
1.30 24 77 2.02 38 0.94 (47%) 38 0.79 (39%)
1.31 1 77 1.86 0 0.49 (26%) 0 0.03 (1%)
1.32 1 77 1.95 0 0.48 (25%) 0 0.02 (1%)
1.33 3 79 2.00 8 0.57 (29%) 8 0.24 (12%)

21.24 8.73 (41%) 5.31 (25%)

Table 2. Comparison of a non-incremental, incremental transformation using property
access traces in offline and online modes for the Pongo M2T transformation, applied
to 11 historical versions of the GmfGraph Ecore model. (Inv. refers to invocations)



Table 2 compares the execution times of the Pongo transformation on Gm-
fGraph models in non-incremental and incremental modes (online and offline
executions). Overall, as expected, incremental execution required less time com-
pared to the non-incremental execution, and online incremental execution out-
performed offline incremental execution. The difference in execution time be-
tween the online and offline execution modes is due to the fact that the transfor-
mation engine in the online mode does not need to compute model changes by
querying the input model, as these are provided for free by the EMF notification
facility. By contrast, in the offline mode the transformation engine performs a
full traversal of the input model and analyzes an entire stored property access
trace in order to determine template invocations that require re-execution. As
highlighted in Table 2 during the evolution of the model from version 1.30 to
1.31, and 1.31 to 1.32, which comprised single changes to the input models, the
transformation engine in offline mode still took approximately 0.5 seconds de-
spite the fact that the changes were irrelevant to the transformation (i.e., did
not result in the re-execution of any template invocation). On the other hand,
the online mode took about 0.02 seconds to re-execute (significantly less time
compared to 0.48 seconds in offline mode).

4.1.3 INESS Experiment For this experiment we used an existing transfor-
mation developed in the context of the Integrated European Signaling System
(INESS) EC FP7 project. The INESS M2T transformation generates model
checking code (in Promela [12] and mCRL2 [13]) for analysing railway interlock-
ing models (captured in UML) to determine inconsistencies between require-
ments and system properties defined by railway engineers. For this experiment,
we only considered the subset of INESS M2T transformation that generated
mCRL2 code because it represents a bottleneck of the transformation. It is also
a complex part of the transformation: the input model from which mCRL2 code
was generated was about 20 MB and contained 119,621 model elements. Addi-
tionally, the transformation comprised 6 templates. This experiment was exe-
cuted in offline mode and in five iterations as follows:

1. Start with a version M of the UML model
2. Run the transformation on M in incremental mode
3. For each iteration

(a) Manually modify M and obtain M’
(b) Run the transformation on M’ in non-incremental mode and record its

execution time
(c) Run the transformation on M’ in incremental mode and record its exe-

cution time

The model (M) we started with in Step 1 was the 20MB UML model dis-
cussed above. In Step 2 we executed the transformation in incremental mode to
establish the property access traces. Then we conducted five iterations of Step 3.
The first step of each iteration (3a) involved introducing small-scale changes to
the model (M) in order to obtain a new version of it (M’). The specific size and



nature of these modifications are not important as our sole purpose with these
was to trigger controlled re-execution of templates in the incremental mode.
Then in Steps 3b and 3c we executed the transformation again on the mod-
ified model (M’) in incremental and non-incremental mode and recorded the
respective execution times, which are displayed in Table 3.

Non-Incremental Incremental
Iteration Elements Changed (#) Invocations (#) Time (s) Invocations (#) Time (s; %)
1 - 4 25 072 4 50 218 (200%)
2 1 4 25 511 1 5.23 (0.02%)
3 2 4 24 122 2 10.77 (0.04%)
4 3 4 24 901 3 11.10 (0.04%)
5 4 4 25 227 4 51 017 (202%)

Table 3. Results of using property access traces for offline incremental M2T transfor-
mation of INESS M2T transformation compared to the non-incremental execution of
the transformation.

The obtained results provide further evidence that property access traces can
be used to reduce the amount of time required to propagate model changes to
generated artefacts. Apart from this, the results also provide interesting insight
into the nature of the INESS transformation; the amount of time required to re-
execute the transformation in incremental mode during iteration 5 is 200% of the
time expended re-executing the transformation during iteration 4. Considering
that only one additional file is re-generated during iteration 5 compared to iter-
ation 4, there is a disparity in the re-execution time observed during iterations 4
and 5. This disparity is due to the fact that the INESS transformation includes
a long-running, monolithic template (mCRL2_procs_v2.egl) from which a large
file was generated. The re-execution of the mCRL2_procs_v2.egl template ac-
counted for more than 99% of the total execution time of the transformation.
Precisely, it required about 14 hours to execute in incremental mode, and gen-
erated a file that is about 25 MB on disk9. This observation motivates further
work discussed in Section 6.

As the main purpose of the INESS M2T experiment was to demonstrate that
property access traces are tractable with respect to space and memory usage for
M2T transformations of high complexity (e.g., transformations that consume
large input models), we describe our observations during the experiment in terms
of memory and disk space utilization. As summarized in Table 4, a total of
88,011 unique property accesses due to access operations made on 32,117 model
elements, were recorded during the execution of the transformation. This figure
indicates that about 27% of the input model elements are accessed while about
73% (proportion of model element features) of the input model is not accessed

9 EGL uses efficient internal representation mechanisms (i.e. string buffers) and stan-
dard file I/O operations. The bulk of this time is spent on genuine execution of the
logic of the template.



by the transformation. Note that this figure remained unchanged throughout the
five iterations because the input model modifications did not include deletions
of model elements.

Input model Property Access Trace
Size (MB) Elements (#) Features (#) Size (MB) Elements (#) PA (#) Memory (MB)
20 119 621 481 147 19.7 32 117 (27%) 88 011 (18%) 4.22

Table 4. Summary of the space requirements for the INESS transformation.

4.1.4 Memory and Disk Utilization To demonstrate that our approach is
practical with respect to resource usage, we investigated the memory and disk
usage of property access traces during our experiments with Pongo and INESS.
In the Pongo M2T experiments on GmfGraph models, the average number of
property accesses was 797 which represents about 38 KB in memory cost while
disk space requirement for persisting the property access traces was 252 KB in
offline mode. In contrast, in online mode, the average disk space consumption of
the execution of Pongo M2T on GmfGraph models was 236 KB. On the other
hand, the average memory utilization recorded during the execution of INESS
M2T was 4.22 MB, and the property access trace was persisted in a database
file which occupied about 19.7 MB of disk space.

It is important to note that the memory and disk usage will vary for different
transformations, depending on the size of the input model and in particular the
amount of property accesses made by the transformation.

4.2 Discussion

Our experiments suggested that property access traces improve the scalability
of M2T transformations. From our results, the time required to incrementally
propagate changes from input models to generated artefacts depended on the
impact of the changes made to the input models. Through our experiments on
real life M2T transformations, we have demonstrated reduction in execution
time for both contrived/controlled (e.g. the changes to the UML model in the
INESS case study) and real-world changes to a model (e.g., the changes made
to GmfGraph Ecore model which we were able to reproduce using EOL scripts).
The results also indicate that source incrementality using our approach is more
efficient than non-incremental transformations when frequent, small changes are
made to a model throughout the lifetime of a project.

The results of the experiments in our previous work [14], which used signa-
tures for source-incremental M2T transformation suggested that source incre-
mentality can be used to realize up to 45% performance gain in transformation
execution time. As observed during our experiments, Property access traces in
the offline mode offer a further 15% reduction in transformation execution time.



Overall, a 60% reduction in transformation execution time was observed using
property access traces in the offline mode. In the online mode, overall, 75% re-
duction in transformation execution time was observed.

As demonstrated in Section 4.1.3, the benefits of incremental change propa-
gation largely disappear for transformations that produce large monolithic files.
Such transformations can be the result of (1) a poor implementation or (2) miss-
ing cross-file referencing (e.g. import statements) facilities in the target language
(as is the case with Promela). The first case is out of the scope of this work. In our
experience, the second case is rather infrequent as the overwhelming majority of
programming and markup languages provide support for cross-file references.

Lastly, an incremental M2T transformation is correct if it results in the re-
generation of all the required files whose contents were affected by the change(s)
to the input model. Ideally, this can proved by formal verification. However,
to the best of our knowledge, most contemporary M2T languages (including
EGL, Acceleo, Xtend) do not have formally specified semantics, and as such are
not amenable to formal proofs. Hence, to build confidence on the correctness
of the incremental execution of the two transformations that we used in the
evaluation of property access traces, we performed a substantial number of tests
which compared the output of the transformations in incremental mode with
the output of the transformations in non-incremental mode. The outcome of our
tests indicate that the contents of the files generated in incremental mode were
always the same as the contents of the same files generated in non-incremental
mode.

4.3 Limitations of Property Access Traces

Our current implementation of property access traces in EGL monitors property
accesses only during the execution of templates. However, in the offline trans-
formation execution mode, property access traces can become over-sensitive to
changes to parameters contained in unordered collections because it cannot dis-
tinguish between unordered and ordered collections. Consider a template (e.g.,
[%= student.grades.mark %]) that only prints out the grades of a stu-
dent, the PropertyAccessRecorder records a property access of grades on student,
whose value is a collection of Grades, and also records a property access of mark
on each Grade in the collection Student.grades. If in a change event, a Grade is
removed and re-added to the collection Student.grades, these modification oper-
ations will result in the same set of Student.grades, albeit with a different order,
since the re-added Grade is inserted at the back of the collection. In the offline
mode, this will cause the template to be re-executed unnecessarily. The order
of collections are important for accurate comparison of modified structural fea-
tures of a model element. Our current implementation does a string comparison
of the values of property accesses recorded from calls that return a collection
of structural features, and cannot detect if mere re-ordering of collections is a
significant change event.

An inherent limitation of the property access trace approach is that the use
of non-deterministic programming constructs (e.g., random number generators,



hash-sets, hash-maps) in a template prevents source incrementality (because
the template is not guaranteed to produce the same result in two subsequent
invocations even if the model has not changed between them), and that property
access traces can be pessimistic: it is conceivable that a template might access a
property but not use its value in the generated text (e.g., [% if(grade.mark

> 70) { //do-nothing } %]). In the latter case, a property access trace
would result in an unnecessary re-execution of the template.

Finally, an implementation-level limitation of the current prototype is that it
does not support multiple input models. However, this limitation is trivial and
can be easily addressed by extending the property access trace as discussed in
Section 3.2. Although the case studies presented in this paper considered only
M2T transformations that comprised single input models, the performance of
property access traces is not likely to diminish compared to what our current
experiments suggest, if multiple input models were otherwise used.

The reason for this is that property access traces scale by the number of
element-property pairs accessed during a transformation and require no further
information from the models where these elements are contained, other than a
unique (in the scope of the transformation) model identifier.

5 Related Work

Available literature indicates that significantly more research work has been done
in the context of incremental M2M transformation. Hearnden [15] proposes a
live-updating technique which uses a tree to represent the trace of a transfor-
mation execution. Each node represents either a source or target element, and
the edges are rules. The transformation context exists as a whole and is main-
tained throughout all transformation executions. Thus, as changes are made to
the source model, the changes reflect in the tree and the target is deduced from
the tree. For example if an element is added to the source, the transformation
searches for a matching rule and model element in the tree. If it finds one, it
updates the node, otherwise, it spawns another edge and node in the tree. This
way, the transformation eliminates the need of a merge algorithm for merging
incremental targets.

Other techniques described by Giese et.al. [16] and Ráth et. al. [17] are
graph-based. Giese et.al.’s technique is based on Triple Graph Grammars (TGG)
and exploits persisted traceability information to maintain consistency between
source and target models; the correspondence model has a correspondence node
with a self-association which connects each correspondence node to its predeces-
sors. A rule in TGG specifies a correspondence mapping between the elements
of the source and the target models. A graph grammar rule is applied by substi-
tuting the left hand side (LHS) with the right hand side (RHS) if the pattern on
the LHS can be matched to a pattern in the correspondence model. A directed
edge from the correspondence node to the created target element is inserted each
time a rule is successfully applied. This reflects the dependencies and execution
order of the rules. So, by traversing the directed acyclic graph created by the



correspondence nodes, inconsistencies between the source and target models can
be determined, which is done by retrieving the rule which was used to create the
correspondence node and checking if it still matches the current situation. For
example, if any inconsistency is detected due to a deletion in the source, it deletes
the created target element and the correspondence node. This way, the algorithm
achieves incrementality by not re-running the transformation against the entire
source model but it incurs a cost in all correspondence nodes by comparing it
with patterns in the source model.

A similar TGG-based incremental transformation technique is proposed by
Giese et. al [18]. This technique requires TGG rules to be deterministic and
assumes only source model modification. In contrast to [16], it supports live
change propagation. To detect model element modifications, an event listener is
attached to each model element in the source. Whenever an element is modified,
its associated correspondence node is put in a transformation queue. Thereafter,
the queue is processed by executing specific synchronization rules on the elements
contained in the queue. Synchronization rules are responsible for maintaining
consistency between associated source and target models by first checking the
structure of the matching source and target elements before checking attribute
equality.

A different incremental graph-based transformation technique called incre-
mental pattern matching is presented by Ráth et. al. [17]. Graph patterns are
atomic units of model transformations which define constraints that must be sat-
isfied for model manipulation to take place. In case of incremental pattern match-
ing, graph patterns are defined on model elements, and whenever the model is
modified, graph patterns are updated. This approach is based on the RETE
algorithm. RETE is an efficient algorithm for comparing large collections of pat-
terns to collections of objects [19]. Transformation information is represented as
tuples and nodes. Tuples contain model elements. Nodes refer to patterns and
store tuples that conform to a pattern. When changes are applied to a model
element, update signals are sent through outgoing edges, then each receiving
node updates its stored tuples, and where applicable, more update signals are
generated and propagated through the graph.

Bergmann et. al. [20] presents a fundamentally different approach which de-
fines the concept of change history models. Change history models are essentially
a log of elementary model changes derived from performing simple operations on
model elements. Basically, the change history models are are trace models which
contain sequences of model manipulation operations. So, whenever a change is
applied to the model, the change history model is updated and the associated
rule is invoked. Since this technique focuses on bi-directional transformation
(i.e., transformation in which target elements can also be translated to source
elements), a change history model of the target model is also tracked. Incre-
mentality is achieved by mapping the change history model of the source and
target models based on a generic metamodel that captures model manipulation
operations, e.g., createElement, setAttribute. A distinct feature of this technique
is that transformation mapping takes place between model manipulation opera-



tions in the change history model of both source and target models rather than
on the source and target models.

Jouault and Tisi [21] propose an incremental technique for ATL that is based
on creating bindings of OCL expressions to model elements. The bindings repre-
sent dependency information between specific rules and OCL expressions evalu-
ated during the execution of the rules. With the dependency information, when
changes are applied to the source model, exact rules which consume the modi-
fied model elements can be determined, and re-executed on such elements. This
technique is different to the ones described above in that it relies on tracking
transformation execution information. However, it exhibits a crucial limitation.
It does not track imperative statements. As such, model elements accessed within
imperative blocks can not be monitored. This compromises the correctness of the
transformations that are executed with this incremental engine.

Of the reviewed incremental M2M transformation techniques [15, 16, 18] are
purely declarative in nature. As such they are not applicable to transformations
that require complex operations. On the other hand, [17,20,21] combine declar-
ative and imperative constructs. However, they do not support incremental exe-
cution of imperative parts, instead [20] and [17] re-execute all imperative parts,
hence, they are overly pessimistic and limit the benefits of incrementality. On
the other hand [21] ignores imperative parts, thus it compromises the complete-
ness of the transformation. On top of these limitations, using a M2T language to
express a M2T transformation is typically awkward as M2M languages lack effec-
tive support for common M2T activities such as handling protected regions (to
enable mixing generated with hand-written code), “static” (parts of generated)
files, white space etc.

To the best of our knowledge, Xpand10 is the only contemporary M2T lan-
guage that supports source incremental transformation. Incremental generation
in Xpand uses a combination of trace links and model differencing techniques.
Difference models are used to determine changed subset of input models, and
trace links are used to specify how source model elements are mapped to gener-
ated files. Once the difference model is constructed, impact analysis is performed
to determine which changed model elements are used in which templates. A
template is re-executed if it consumes a model element that has changed. The
efficiency of the approach to incrementality employed by Xpand is heavily depen-
dent on the effectiveness of the underlying modelling framework in performing
model differencing. For instance, calculating model diffs between all the versions
of GmfGraph models used for the Pongo transformation took about 1.3 seconds
(average) using EmfCompare which is the same tool that Xpand uses to compute
model diffs. Note that the time taken to compute the model diffs in this way
represents only a part of the computation done by Xpand’s incremental engine
and exceeds the time taken to execute each Pongo transformation (see Table 2)
on all versions of the GmfGraph model. As model differencing is integral to
Xpand’s incremental method, there is no need to conduct a full scale compar-
ison of property access traces and model differencing incremental approaches.

10 http://eclipse.org/modeling/m2t/?project=xpand



Furthermore, as recognised by the developers of Xpand11, performance can be
impaired because model differencing requires that (at least) two versions of the
input model, along with a diff model are loaded, which requires at least three
model traversals. This might also be impractical since access to the previous
version of the model is needed and may not be available. Property access traces
as explained in section 3 do not require model differencing and hence offer a
fundamentally different approach to source incrementality.

6 Conclusions

In this paper, we proposed property access traces, an approach to reducing the
execution time of M2T transformations in response to changes to source models.
We have contributed a design for extending M2T transformation languages with
support for property access traces, and demonstrated the feasibility of property
access traces through an empirical evaluation. We have shown that the poten-
tial performance gains of source incremental transformation via property access
traces are substantial: we observed an average reduction in transformation ex-
ecution time of 60% and 75% for offline and online modes respectively. Instead
of computing model differences between versions of input models as used by
Xpand’s incremental transformation technique, property access traces employs a
technique that only requires the current state of a model.

In future work, we will investigate strategies for decomposing large monolithic
templates that do not lend themselves to incrementality. By breaking monolithic
templates (such as the one contained in the INESS transformation experiment
(4.1.3)) into smaller units and by allowing multiple templates to contribute to
the content of the same output file, such transformations can benefit from incre-
mental techniques. We also intend to assess whether the use of different types
of persistence mechanisms, such as a graph database or a triple store, can im-
prove performance and/or lower space/memory requirements over our existing
implementation which uses a relational database to store property access traces.
Finally, we plan to implement support for integrating the incremental EGL en-
gine with continuous integration systems such as Jenkins and Travis, so that
the latter can trigger incremental re-execution of M2T transformations upon
relevant model file change events.

Acknowledgements. This work was partially supported by the European
Commission, through the Scalable Modelling and Model Management on the
Cloud (MONDO) FP7 STREP project (grant #611125). The motivating exam-
ple discussed in this paper was taken from Rose’s work on the INESS project,
which was supported by the European Commission and co-funded under the 7th
Framework Programme (grant #218575).

11 http://help.eclipse.org/staging/neon2/index.jsp?topic=/org.

eclipse.xpand.doc/help/incrementalGeneration_usage.html



References

1. P. Mohagheghi et al. MDE adoption in industry: challenges and success criteria.
In Models in Software Engineering, volume 5421, pages 54–59. Springer, 2009.

2. Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. Scalability: The holy
grail of Model Driven Engineering. In ChaMDE 2008 Workshop Proceedings, pages
10–14, 2008.

3. Babajide Ogunyomi, Louis M. Rose, and Dimitrios S. Kolovos. Property Access
Traces for Source Incremental Model-to-Text Transformation. In Modelling Foun-

dations and Applications - 11th European Conference, Held as Part of STAF,

L’Aquila, Italy, July 20-24., pages 187–202, 2015.
4. Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation

Approaches. In OOPSLA ’03 Workshop on Generative Techniques in the Context

of Model-Driven Architecture, 2003.
5. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-

proaches. IBM Systems Journal, 45(3):621–645, 2006.
6. B. Ogunyomi. Incremental model-to-text transformation (qualifying dissertation).

Technical report, 2013.
7. Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. The

Epsilon Generation Language. In Proc. ECMDA-FA, volume 5095 of LNCS, pages
1–16. Springer, 2008.

8. Alexander Egyed. Automatically Detecting and Tracking Inconsistencies in Soft-
ware Design Models. Software Engineering, IEEE Transactions on, 37(2):188–204,
2011.

9. Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing Ltd, 2nd edition, 2016.

10. Dimitrios S Kolovos, Louis M Rose, Saad Bin Abid, Richard F Paige, Fiona AC Po-
lack, and Goetz Botterweck. Taming EMF and GMF using model transformation.
In Model Driven Engineering Languages and Systems, pages 211–225. Springer,
2010.

11. Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:

Eclipse Modeling Framework. Pearson Education, 2nd edition, 2008.
12. Gerard J Holzmann. The SPIN model checker: Primer and reference manual,

volume 1003. Addison-Wesley Reading, 2004.
13. Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck

Van Weerdenburg. The Formal Specification Language mCRL2. Citeseer, 2007.
14. Babajide Ogunyomi, Louis M Rose, and Dimitrios S Kolovos. On the use of sig-

natures for source incremental model-to-text transformation. In MoDELS, volume
8767 of LNCS, pages 84–98. Springer, 2014.

15. David Hearnden, Michael Lawley, and Kerry Raymond. Incremental model trans-
formation for the evolution of model-driven systems. In Proc. MoDELS, LNCS,
pages 321–335. Springer, 2006.

16. Holger Giese and Robert Wagner. Incremental model synchronization with triple
graph grammars. In Model Driven Engineering Languages and Systems, pages
543–557. Springer, 2006.

17. István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró. Live model
transformations driven by incremental pattern matching. In Theory and Practice

of Model Transformations, pages 107–121. Springer, 2008.
18. Holger Giese, Stephan Hildebrandt, and Stefan Neumann. Model synchronization

at work: keeping SysML and AUTOSAR Models Consistent. In Graph Transfor-

mations and Model-driven Engineering, pages 555–579. Springer, 2010.



19. Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial intelligence, 19:17–37, 1982.

20. Bergmann, Gábor and Ráth, István and Varró, Gergely and Varró, Dániel. Change-
driven Model Transformations. Software & Systems Modeling, 11(3):431–461, 2012.

21. Frédéric Jouault and Massimo Tisi. Towards incremental execution of ATL trans-
formations. In Theory and Practice of Model Transformations, pages 123–137.
Springer, 2010.


	Incremental Execution of Model-to-Text Transformations using Property Access Traces

