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A Numerical Model For Random Fibre Networks

Mark Houghton⋆[0000−0003−3244−5699], David Head[0000−0003−0216−6787], and
Mark Walkley[0000−0003−2541−4173]

University Of Leeds, Leeds, UK

Abstract. Modelling a random fibre network representative of a real
world material leads to a large sparse linear matrix system with a high
condition number. Current off-lattice networks are not a realistic model
for the mechanical properties of the large volume of random fibres seen
in actual materials. In this paper, we present the numerical methods em-
ployed within our two-dimensional and three-dimensional models that
improve the computational time limitations seen in existing off-lattice
models. Specifically, we give a performance comparison of two-dimensional
random fibre networks solved iteratively with different choices of precon-
ditioner, followed by some initial results of our three-dimensional model.

Keywords: Fibre network · Iterative · Preconditioning.

1 Introduction

Many real world materials can be represented at the microscopic level by a
random network of fibres, including paper and felt, non-woven fabrics, tissue
scaffolds, and the cytoskeletons of eukaryotic cells. A good understanding of
the mechanical behaviour of these networks is key to understanding physical
properties at the macroscopic level and for the development of new materials.

2 Modelling a Random Fibre Network

In many applications, especially biological, it is appropriate to model individual
fibres as semiflexible polymers [5]. With this assumption in place, the extensible
Wormlike Chain model has been shown to adequately describe the elastic be-
haviour of individual semiflexible fibres [6]. Discretising this we can define fibre
stretching, compression and bending, but we choose to neglect thermal contribu-
tions for simplicity. To expand this theory from single fibres to whole networks
we adopt the Mikado model [3, 4, 7], which allows us to express the energy of the
system as the total sum of stretching energy added to the total sum of bending
energy of the network,

E =
µ

2

∑

ij

δℓ2ij
ℓij

+
1

2

∑

〈ijk〉

κijkθ
2
ijk

ℓ̄ijk
, (1)
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where the left sum considers all segments, ij, of every fibre of the network, and
the right sum considers all of the consecutive segments, ij, jk, along each fibre,
for stretching constant µ, bending modulus κijk, segment length ℓij , average
length of two consecutive segments ℓ̄ijk, and angular deflection θijk. To better
understand (1), it is useful to first consider individual fibres.

2.1 Fundamentals

Defining fibres as slender elastic bodies with uniform circular cross-sections, we
can consider a two-dimensional plane or three-dimensional cuboid wherein a
predetermined number of fibres are generated with random position and orien-
tation. After cross-linking these fibres (see 2.5), a mechanical structure remains
in which nodes are identified as freely rotating points, and categorised as one of
three types. Boundary nodes occur as points fixed at the aperiodic boundaries
of the domain, dangling nodes are attributed to the end points of fibres not on
the boundary, and internal nodes are the points associated with cross-links. For
adjacent nodes ϕ,ψ the tangent vector along the segment is

t̂ϕψ =
sψ − sϕ
ℓϕψ

,

where sϕ is the position vector at ϕ and ℓϕψ = |sψ − sϕ| is the segment length.
We denote uϕ as the displacement of an individual node after a load or pertur-
bation has been applied to the network, and refer to individual components as
uϕx , uϕy , uϕz .

2.2 Local Stretching Behaviour

Consider a segment ϕψ comprising of an adjacent node pair ϕ, ψ respectively,
treated as a simple Hookean spring. The stretching energy for this segment is

E stretch
ϕψ =

kϕψ
2

[(uψ − uϕ) · t̂ϕψ]
2

with a stretching constant kϕψ = µ
ℓϕψ

= AEf

ℓϕψ
, for A = πr2, radius r and Young’s

modulus Ef . The second partial derivatives of this energy contribute to the
global Hessian matrix at rows and columns corresponding to the displacements
of ϕ and ψ, and the first partial derivatives contribute to the right hand side
vector.

2.3 Local Bending Behaviour

For the adjacent node triplet α, ω, β, segment αωβ has bending energy

E bend
αωβ =

καωβθ
2
αωβ

2ℓ̄αωβ
=
καωβ [(sω − sα)× (uβ − uω) + (uω − uα)× (sβ − sω)]

2

ℓ2αωℓ
2
ωβ(ℓαω + ℓωβ)

,

for a bending constant καωβ = AEfr2

4 , with A = πr2 and Young’s modulus Ef .
Similar to the stretching case, local contributions to the global Hessian and right
hand side vector can be derived from this energy.
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2.4 Global Assembly

Combining the displacements uϕ of every node ϕ, in the vector U,

U = [U1, U2, U3, U4, ...] = [u1x , u2x , ..., u1y , u2y , ..., u1z , u2z , ...],

then a Taylor series expansion of the energy of the system about U = 0 is

E(U) = E0 +

N
∑

i=1

Ui
∂E

∂Ui

∣

∣

∣

∣

U=0

+
1

2

N
∑
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N
∑
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UiUj
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∣

U=0

+ ...

The resulting system represents the network in mechanical equilibrium with the
applied load or perturbation;

∑

j

Uj
∂2E

∂Ui∂Uj
= Bi, where Bi = −

∂E

∂Ui

∣

∣

∣

∣

U=0

for i, j = 1, ..., N . Denoting the Hessian matrix as H, this gives the global linear
matrix system HU = B which can be assembled from the local contributions
defined in sections 2.2 and 2.3.

2.5 Cross-linking Fibres

In a two dimensional plane, a pair of randomly orientated fibres are trivially
cross-linked at their unique point of intersection, if this exists. In three dimen-
sions direct intersections of randomly orientated fibres occur with probability
zero for radius, r → 0+. In this case, the minimum separation is considered, and
if this is below a given threshold, a short cross-linking fibre is inserted between
the two closest points of the original pair of fibres. The cross-linking fibre can
either be treated as a stiff and non-rotating inextensible rod, in which case each
end point displaces identically, or as an elastic spring, in which case each end
point can displace individually. An alternative approach is to constrain fibre
orientation to lie along lattice vectors, such that fibres directly intersect. This
lattice-based approach can achieve mechanical rigidity at lower fibre counts due
to the higher coordination (connectivity) number, zc, and has been used suc-
cessfully to predict mechanical properties comparable to randomly orientated
fibre networks seen in real-world materials [2]. We have made some preliminary
lattice-based experiments (discussed in Section 4.3) before moving to randomly
orientated networks.

3 Numerical Model

3.1 Linear System Structure (in 2D)

By grouping the unknown displacements in U by coordinate direction, the block
structure of H can be written as

H =

[

Hxx Hxy

HT
xy Hyy

]

, where Hϕψ =
∂2E

∂uϕi∂uψj
, (2)
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for i, j = 1, ..., N .
The sparsity of H is determined from the local connectivity of each fibre

with the other fibres in the network. An initial estimate of the sparsity pattern
can be obtained from the adjacency matrix of the internal nodes of a network,
and is repeated for each sub-block Hϕψ of the global matrix H. To exploit the
sparsity of H, we store the non-zero values in compressed sparse row (CSR)
format. The matrix H is symmetric, as are each of the diagonal sub-blocks, but
each off-diagonal sub-block is not necessarily symmetric.

3.2 Iterative Solution Strategy

Our system is symmetric but may not be positive definite, hence we choose the
MINRES iterative method from the family of Krylov subspace methods. These
methods perform best when the system is preconditioned to cluster the matrix
eigenvalues. Exploiting the block structure seen in (2), we take the diagonal
blocks

PDb =

[

Hxx O
O Hyy

]

, (3)

as the first choice of preconditioner. A similar preconditioner can be defined when
extending to three dimensions. Additionally we can also consider a simple asym-
metric preconditioner and a symmetric preconditioner with a Schur complement
block

PAb =

[

Hxx Hxy

O Hyy

]

, PS =

[

Hxx O
O S

]

, (4)

where S = Hyy −HT
xyH

−1
yy Hxy. GMRES was used with PAb, since this precon-

ditioner does not preserve the symmetry of H.

4 Results

4.1 Performance Comparison in 2D

To evaluate the performance of the different choices of preconditioner, we mea-
sured the number of iterations required to converge to a relative tolerance of
10−3, using the MINRES and GMRES solvers in MATLAB. The rate of con-
vergence was measured for increasing system size by increasing the number of
fibres, Nf , with fixed length ℓ = 0.25 and radius r = 0.01. For each interval of
Nf , the results were averaged over 10 reproducibly-seeded randomly generated
networks. Examples of individual network generations with varying Nf can be
seen in Figure 1.

As can be seen from Table 1, PDb shows a consistent performance as Nf
increases, with good evidence that we would expect to see the iteration number
converge if Nf were to increase further. PS also performs well, and PAb con-
sistently shows the lowest iteration count for increasing Nf , but the additional
cost in building the PS preconditioner, and the additional cost per iteration of
GMRES versus MINRES leaves PDb as potentially the preferred choice. The
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Fig. 1. Examples of generated 2D random fibre networks increasing in area with a
fixed fibre density. The number of fibres, Nf , is 100 (left), 400 and 1600 (right), and
fibre length, ℓ, and radius, r, are fixed at 0.25 and 0.01 respectively, but r is not to
scale. Dangling ends have not been removed.

diagonally scaled preconditioner D performs the worst, with large fluctuations
in the iteration count and a large standard error.

Table 1. Number of iterations required to converge for different preconditioners and
an increasing number of fibres, Nf , of length 0.25 and radius 0.01. Standard error was
calculated from a sample of 10 networks.

Nf 100 200 400 800

D 300.2± 54.0 480.8± 67.3 570.6± 77.3 410.9± 103.0
PDb 8.0± 0.8 8.5± 0.5 7.7± 0.7 7.2± 0.6
PS 12.3± 1.1 14.6± 1.2 13.8± 1.3 14.1± 0.9
PAb 5.3± 0.2 5.4± 0.2 5.4± 0.2 5.3± 0.2

As a further indication of performance we also collected estimates for the
condition numbers of the preconditioned system and for H. To do this we con-
sider a similar range of Nf as previously and provided the default seed to the
condest function in MATLAB for 10 network generations at each interval. From
the results in Table 2 we find additional evidence for the poor performance of
D, with condition number estimates consistently higher than H without any
preconditioning. PS reduces the condition number of H by roughly an order of
magnitude, and PDb and PAb demonstrate the best performance, showing simi-
lar estimates to each other with the symmetric having slightly lower values on
average for larger Nf .

In addition to analysing the performance of the preconditioners, we also inves-
tigated the mechanical properties of the networks. In particular for Nf = 100,
with ℓ = 0.25, we varied r and measured the shear modulus, G, and ratio of
bending energy over total energy, Eb/E. From Figure 2 (right) we can see a
smooth crossover from a regime with comparable stretching and bending ener-
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Table 2. Estimated condition numbers, κ, of different preconditioners applied to H,
for varied number of fibres, Nf .

Nf 100 200 400 800 1600

κ(H) 3.74e6 7.58e6 1.81e7 4.34e7 9.72e7
κ(D−1H) 8.51e6 2.41e7 7.09e7 1.98e8 4.54e8
κ(P−1

DbH) 7.32e4 1.47e5 4.85e5 1.60e6 5.12e6
κ(P−1

S H) 1.39e5 4.97e5 1.18e6 4.22e6 -
κ(P−1

Ab H) 6.98e4 1.96e5 5.99e5 2.11e6 -

10
-2

10
-1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

10
-2

10
-1

0.1

0.15

0.2

0.25

Fig. 2. r/ℓ, for ℓ = 0.25 and Nf = 100 in a 0.5 × 0.5 plane against G/Gaff (left) and
against Eb/E (right). Nodes within a distance of 10−3 were merged into a single node
prior to solution. The line G/Gaff = 1 (left) corresponding to affine response is also
shown.
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Fig. 3. Calculated values of the energy (left) and shear modulus (right) verified against
the affine predictions for an increasing number of fibres with fixed length 0.25 and radius
0.01. The solid line is added to verify linear scaling.
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gies for small r, to a stretching dominated regime for large r. Figure 2 (left)
demonstrates a smooth transition between affine (i.e. uniform deformation field)
dominated behaviour at large r to non-affine behaviour for small r. This co-
incides well with the known result that stretching-dominated networks become
close to affine [4].

4.2 Validation

To validate our model results, we verified that the calculated energy, E, and shear
modulus, G, were bounded by the affine predictions Eaff and Gaff respectively.
To do this, we increased Nf for ℓ = 0.25 and r = 0.01, and plotted E and G
alongside their corresponding affine predictions. Figure 3 demonstrates that E
(left) and G (right) lie below the limits provided by the affine predictions. We
can also see that E increases linearly with Nf , as we would expect.

4.3 Preliminary Results in 3D

In a step towards solving randomly orientated three dimensional networks built
from the Mikado approach, we were able to obtain preliminary results by solving
networks with predetermined direct intersections between fibres. These have
irregularity introduced by overlaying different lattice based components together
to form a rigid structure. More specifically we take 25 vertical fibres extending
the height of a 1 × 1 × 1 cube and insert lattice forming plates through the
vertical fibres with varied orientations.

Fig. 4. Visualisations of one of the lattice based 3D networks, for the undisplaced
(left), displaced (centre) and affinely displaced (right) generations of the network where
γ = 0.05.

The example seen in Figure 4 has an average coordination number of zc =
4.31 with fibres of varied length, ℓ, radius r = 0.01, and a prescribed but irregular
orientation. Given a shear strain γ = 0.05, the network is fixed in the plane y = 0,
and sheared in the y = 1 plane in the positive x direction. Figure 4 (left) shows

NMA2018, 021, v1: ’A Numerical Model For Random Fibre Networks’ 7
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the structure prior to any shear, Figure 4 (centre) shows the structure displaced
after shearing, where the displacements are calculated using a direct solver.
Figure 4 (right) shows the structure with every node displaced affinely. The total
energy in this case is E total

aff = 5.0e−7. Comparing (centre) and (right), we can
see regions of the network in (centre) where bending is more favourable than
affine displacement. The total energy here is E total = 1.4e−7, where bending
energy E bend = 1.3e−7 is the main contribution.

5 Continued Work

Although lattice-based modelling can provide valuable insight into the mechan-
ical properties of random fibre networks, truly representing real-world materials
is still an issue. This will require a model with genuinely random orientation,
using one of the two approaches for minimum distance calculation discussed in
Section 2.5.

The size of the linear system becomes significant in 3D and parallel comput-
ing will be essential to model realistic volumes of material. We intend to use
PETSc [1] to develop scalable tools for solving our systems, employing the block
preconditioned iterative methods demonstrated in Section 4.1.
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