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SUMMARY

Cohesin organizes DNA into chromatids, regulates

enhancer-promoter interactions, and confers sister

chromatid cohesion. Its association with chromo-

somes is regulatedbyhook-shapedHEAT repeatpro-

teins that bind Scc1, namely Scc3, Pds5, and Scc2.

Unlike Pds5, Scc2 is not a stable cohesin constituent

but, as shown here, transiently replaces Pds5. Scc1

mutations that compromise its interaction with Scc2

adversely affect cohesin’s ATPase activity and

loading. Moreover, Scc2 mutations that alter how

the ATPase responds to DNA abolish loading despite

cohesin’s initial association with loading sites. Lastly,

Scc2 mutations that permit loading in the absence of

Scc4 increase Scc2’s association with chromosomal

cohesin and reduce that of Pds5.We suggest that co-

hesin switches between two states: one with Pds5

bound that is unable to hydrolyze ATP efficiently but

is capable of release from chromosomes and another

in which Scc2 replaces Pds5 and stimulates ATP

hydrolysis necessary for loading and translocation

from loading sites.

INTRODUCTION

How enhancers activate the correct promoters during develop-

ment, how chromosomal DNAs are woven into chromatids,

and how sisters are held together during mitosis are all funda-

mental questions in chromosome biology. These apparently

disparate processes are conferred by a pair of related Smc/

kleisin complexes called cohesin and condensin. Both contain

a pair of rod-shaped Smc proteins that associate to create

V-shape heterodimers (Smc1/3 in cohesin), whose ATPases at

their apices are bound by the N- and C-terminal domains of a

kleisin subunit (Scc1), forming a huge tripartite ring. In addition

to conferring sister chromatid cohesion during G2 andM phases

(Nasmyth, 2001), cohesin is involved in the process by which the

insulator protein CTCF regulates enhancer-promoter interac-

tions (Fudenberg et al., 2016) and is responsible for creating

the topologically associated domains (TADs) detected by HiC

(Rao et al., 2017). Condensin, on the other hand, is crucial for

re-organizing DNA into compact cylindrical chromatids specif-

ically during mitosis (Hirano, 2006).

Two recent findings demonstrate that cohesin and condensin

must operate using similar principles. First, cohesin can also

organize DNA into chromatids, albeit during interphase (Klein

et al., 1999; Tedeschi et al., 2013) and only when its turnover

on chromatin is abrogated by inactivation of a regulatory protein

called Wapl. Second, cohesin’s association with (Ciosk et al.,

2000) and dissociation from (Beckou€et et al., 2016) chromo-

somes are regulated by three related hook-shaped proteins

composed of HEAT repeats, namely Pds5, Scc3/SA, and

Scc2/Nipbl. All three are monophyletic with equivalent subunits

in condensin. This class of regulatory subunit called HAWKs

(HEAT repeat proteins associated with kleisins) distinguishes

cohesin and condensin (Wells et al., 2017) from bacterial Smc/

kleisin complexes and the eukaryotic Smc5/6 complex, whose

kleisin subunits associate instead with tandem winged helical

domain proteins called Kleisin interacting winged-helix tandem

elements (KITEs) (Palecek and Gruber, 2015).

The chromodynamics of cohesin are determined by three pro-

cesses: loading; translocation; and release. The mechanism of

release has been well documented (Beckou€et et al., 2016;

Chan et al., 2012; Lee et al., 2016). However, loading is less

well understood. What is clear is that loading depends on

Scc2’s hook-shaped C-terminal domain and an unstructured

N-terminal domain (NTD) that snakes through a smaller Scc4

subunit composed of a superhelical array of 13 tetratricopeptide

repeats (TPRs) (Ciosk et al., 2000; Hinshaw et al., 2015; Hu et al.,

2015). Because Scc3 is required for cohesin’s stable association

with chromosomes, it might also be involved in the loading pro-

cess. In contrast, neither Pds5 (Chan et al., 2013) nor Wapl,

which bind each other, are necessary. Crucially, loading requires

engagement of Smc1’s and Smc3’s ATPase heads in the pres-

ence of ATP as well as the latter’s subsequent hydrolysis (Hu

et al., 2011). Translocation of complexes that have just loaded
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could be driven either by an extrinsic force, such as RNA poly-

merase (Busslinger et al., 2017; Ocampo-Hafalla et al., 2016),

or by an intrinsic motor associated with cohesin’s ATPase, as

recently observed for condensin in vitro (Terakawa et al., 2017).

In S. cerevisiae, there are broadly two populations of chromo-

somal cohesin complexes: those loaded throughout chromo-

somes (arm cohesin) and those loaded under the control of their

120-bp point centromeres (CENs), which are responsible for

loading the bulk of cohesin that accumulates in peri-centric se-

quences 30 kb either side of each centromere (Fernius and Mar-

ston, 2009; Hu et al., 2011; Weber et al., 2004). Cohesin appears

to translocate into peri-centric sequences soon after loading at

CENs, and as a consequence, few if any of its subunits accumu-

late to high levels at CENs themselves. In contrast, Scc2, which

is not currently considered a bona fide cohesin subunit but

merely a factor required for loading, is concentrated solely at

CENs (Hu et al., 2015), presumably because these are sites at

which loading takes place at especially high rates. Whether

Scc2 accumulates at CENs as a component of cohesin com-

plexes undergoing loading or is merely targeted toCENs through

association of its Scc4 subunit with inner kinetochore proteins is

not known. Remarkably, cohesin complexes containing versions

of Smc1 (Smc1E1158Q) or Smc3 (Smc3E1155Q) that can bind,

but not hydrolyze, ATP also associate preferentially at CENs

(Hu et al., 2015). Live-cell imaging shows that, like Scc2, they

do so only in a transient manner (Hu et al., 2011). It has therefore

been suggested that engagement of cohesin’s ATPase heads in

the presence of ATP permits, or indeed actually triggers, cohe-

sin’s association with CEN loading sites along with Scc2 but

that hydrolysis is required to complete the reaction in a manner

that permits translocation into neighboring chromatin.

The experiments described here suggest that cohesin

switches between two states: one with Pds5 bound to Scc1

with little or no ATPase activity and a second with greatly

elevated ATPase activity due to Pds5’s replacement by Scc2.

The importance of this process during loading and translocation

is supported by the behavior of Scc1 and Scc2mutants that alter

the way these two proteins interact. We suggest that Scc2

should no longer be considered merely as a loading factor but

as a bona fide cohesin subunit whose replacement of its fellow

HAWK Pds5 promotes loading, and possibly also translocation,

through stimulating cohesin’s ATPase activity. Crucially, we

demonstrate that, among HAWKs, Scc2 alone is both necessary

and sufficient for stimulating cohesin’s DNA-dependent ATPase

activity.

RESULTS

Scc2 Is Necessary and Sufficient to Stimulate

DNA-Dependent ATPase Activity Associated with

Cohesin’s Trimeric Ring

To address the role of cohesin’s three HAWK subunits in modu-

lating its ATPase, we purified three types of yeast cohesin rings

from insect cells: trimers containing Smc1, Smc3, and Scc1; tet-

ramers containing Smc1, Smc3, Scc1, and Scc3; and hexamers

containing Smc1, Smc3, Scc1, Scc3, Pds5, and Wapl (Figures

1A and S1A). Little or no ATPase activity was associated with

any of these, even in the presence of DNA (Figures 1B, 1C,

and S1B). However, activity associated with tetramers and hex-

amers was greatly stimulated by addition of a version of Scc2

whose N-terminal Scc4-binding domain was replaced by GFP

(GFP-Scc2) and increased further still by DNA (Figures 1B and

S1B). Importantly, this activity was abolished by Smc3E1155Q

Smc1E1158Q double mutations that bind, but not hydrolyze,

ATP (Smc1/3 EQ; Figure S1C). In contrast, GFP-Scc2 barely

affected activity associated with trimers (in the absence of

DNA) but stimulated it upon addition of Scc3 purified from

E. coli (Figures 1C and 1D). Thus, at least in the absence of

DNA, Scc3 enhances Scc2’s ability to stimulate cohesin’s

ATPase.

In contrast to Scc2, Pds5 had no effect on the ATPase activity

of tetramers, with or without DNA (Figure S1D). Remarkably, in

the presence of DNA, GFP-Scc2 stimulated ATPase activity

associated with trimers to a level comparable to that of tetramers

and hexamers treated with GFP-Scc2 (Figure 1C). These obser-

vations imply that, among cohesin’s HAWKs, Scc2 is not only

necessary for cohesin’s ATPase but also sufficient to confer its

responsiveness to DNA. Scc3 clearly enhances ATPase activity,

but unlike Scc2, this effect is bypassed by DNA addition. The

lack of ATPase activity upon addition of Pds5 andWapl is striking

because it has been suggested that these proteins stimulate

loading of S. pombe cohesin in vitro in the absence of Scc2

(Murayama and Uhlmann, 2015). Because loading in vivo is

independent of Pds5 (see also Figure 6D) but dependent on

Scc2 and abolished by Smc1/3 EQ mutations that abolish

ATPase activity, we suggest that Pds5-induced loading may

be an in vitro artifact.

Our finding that Scc2 stimulates the ATPase activity of hexam-

ers almost asmuch as tetramers implies that Scc2 can associate

with cohesin and stimulate its ATPase even when the complex

was initially occupied by Pds5. In fact, SDS-PAGE revealed

that Pds5 is selectively depleted from cohesin associated with

GFP-Scc2 following the latter’s addition to wild-type or EQ hex-

amers in the presence of ATP (Figures 1E and S1E), under con-

ditions where the hexamer is a stable complex (Figure S1F).

Given that Pds5 and Scc2 may compete for occupancy of cohe-

sin, we measured the effect of adding a three-fold molar excess

of Pds5 to cohesin tetramers. This reduced Scc2-stimulated

ATPase activity 2-fold, albeit only in the absence of DNA (Fig-

ure 1F). This inhibition was clearly due to Pds5 binding to

cohesin’s kleisin subunit and not an artifact of merely adding

additional protein, because tetramers that cannot bind Pds5

(Scc1V137K) were refractory to inhibition by Pds5 (Figure 1F).

Cohesin Associates with Scc2 at CENs and then

Translocates into Peri-centric Sequences

The observation that Scc2 interacts with cohesin tetramers or

hexamers in vitro raises the question as towhether these interac-

tions occur in vivo and, if so, when. Strangely, chromatin immu-

noprecipitation sequencing (ChIP-seq) revealed that cohesin

tetramers co-localize with Pds5, but not with Scc2, throughout

the genome (Hu et al., 2011). The only loci where Scc2 can be

reliably detected using calibrated ChIP-seq is at CENs (Hu

et al., 2015), which are known to confer loading of most peri-

centric cohesin. This suggests that Scc2 might only be fleetingly

present during the act of loading. A key question is whether Scc2
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associated with CEN loading sites is recruited there by the Ctf19

complex (Fernius and Marston, 2009) independently of cohesin

or whether Scc2 is instead bound transiently to cohesin rings un-

dergoing loading reactions at CENs.

To address this, we compared the distributions of Scc2 and

cohesin’s Scc1 subunit around centromeres using calibrated

ChIP-seq in cycling and G1-arrested cells. This revealed that

more not less Scc2 accumulates at CENs in a-factor-arrested

cells than in cycling cells (Figure 2A). Scc1 is expressed at only

low levels in a-factor-arrested cells, as indeed are Scc2 and

Pds5 (Figure S2B). Despite this, calibrated ChIP-seq reveals

that a modest amount of cohesin is associated with peri-centric

sequences (Figure 2C, light blue line), suggesting that loading

does in fact occur during this stage of the cell cycle (Hu et al.,

2015). Crucially, Scc2’s association with CENs depends on co-

hesin because it is greatly reduced when cells undergo S phase

in the absence of Scc1 (Figure 2B). The previous conclusion that

Scc2 is absent from CENs in pheromone-arrested cells as well
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Figure 1. Scc2 Drives Cohesin’s DNA-

Dependent ATPase

(A) Cohesin trimers (Smc1, Smc3, and Scc1), tet-

ramers (Smc1, Smc3, Scc1, and Scc3), hexamers

(Smc1, Smc3, Scc1, Scc3, Pds5, and Wapl), and

GFP-Scc2 were affinity purified from Sf9 cell cul-

tures using Strep-trap columns followed by gel

filtration. * denotes a small amount of degradation

of Scc1.

(B) Purified tetramers were incubated with DNA,

Scc2, or both and the reaction initiated by adding

ATP. Rates were calculated by measuring the

change in absorption at 360 nm over time.

(C) ATPase activity of trimers.

(D) Effect of Scc3 on ATPase of trimers.

(E) Coimmunoprecipitation (co-IP) of Scc2-GFP

with wild-type (WT) hexamers. Input (1/10th of re-

action) and IP samples were analyzed by Coo-

massie staining following SDS-PAGE.

(F) Effect of three-fold excess of Pds5 on ATPase

of wild-type and scc1V137K tetramers.

as Scc1-depleted cells (Fernius et al.,

2013) should therefore be revised.

The dependence of most peri-centric

cohesin on CENs and the inter-depen-

dence of Scc1 and Scc2’s association

with these sites suggest that most peri-

centric cohesin complexes are derived

from those loaded at CENs in a reaction

involving Scc2’s transient association

with cohesin. Consistent with this notion,

re-plotting previously published data (Hu

et al., 2015) reveals that, in late G1, newly

synthesized Scc1 associates initially in a

peak centered on CENs and subse-

quently translocates to neighboring peri-

centric regions (Figure 2C). Thus, a plot

of the difference between cohesin’s

calibrated ChIP profile at 30 and 45 min,

as well as 45 and 60 min, following

release from pheromone reveals that a net movement of

cohesin away from CENs themselves and from broad peaks

about 2 kb either side of them accompanies its accumu-

lation further away in broad peaks 5 kb either side of CENs

(Figure 2D).

Cohesin Loaded on Chromosome Arms Translocates

from Gene Bodies to 30 Ends

If Scc2’s preferential association with cohesin engaged in

loading were a general phenomenon, then its ChIP-seq profile

might also reveal where cohesin loads along chromosome

arms. To address this, we plotted average values of Scc2 after

aligning all genes around their transcription start or termination

sites (TSSs or TESs, respectively). The average number of reads

for RNA polymerase II (Pol II) genes, whether from cycling or

pheromone-arrested cells, was much lower than cohesin and

merely 3-fold above the untagged control. Chromosomal Scc2,

as measured in this manner, was preferentially excluded from
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both TSSs and TESs but otherwise did not vary greatly

throughout genes (Figures S2E and S2F). Though it was not

greatly enriched on ribosomal protein genes or indeed on their

promoters (Figure S2G), higher levels were detected close to

the start sites of tRNA genes (Figure S2H), co-localizing with

Smc3E1155Q containing cohesin complexes and adjacent to a

peak of wild-type cohesin (Figure S2I). If these profiles reflect co-

hesin in the process of loading, which is uncertain, then loading

must occur fairly uniformly within transcription units throughout

the genome.

Given the inconclusive nature of these experiments, we rean-

alyzed calibrated Scc1 ChIP-seq profiles from cells released

from a G1 arrest induced by a-factor (Figure 2E). This revealed

that, soon after loading in late G1, cohesin is distributed uni-

formly across transcription units and only accumulates at the

30 end of genes, especially convergent ones, as cells undergo

S phase, an event accompanied by Smc3 acetylation and

reduced turnover (Figure 2E). The simplest explanation for our

data is that loading occurs throughout transcription units and

not specifically at TSSs. Cohesin does not strictly speaking

accumulate between convergent transcription units (Filipski

andMucha, 2002; Lengronne et al., 2004) but rather as a bimodal

peak on either side of the TESs (Figure 2E).
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Figure 2. Cohesin Associates with Scc2 at

CENs and then Translocates into Peri-

centric Sequences

(A) Calibrated ChIP-seq comparing average profile

of Scc2-PK6 around CENs in G1 (a factor) and

cycling cells. The number of reads at each base

pair from CDEIII was averaged over all 16 chro-

mosomes (K21388 and K699).

(B) Average calibrated ChIP-seq profiles of Scc2-

PK6 in cells expressing endogenous SCC1 ex-

pressed from the SCC1 or MET3 promoter. Cells

were arrested in G1 in the presence of methionine

prior to release into methionine and nocodazole-

containing medium. Samples were taken at 30, 45,

and 60 min after release and from cycling cells

grown in the absence of methionine (K25222 and

K21388).

(C) Average calibrated ChIP-seq profiles of Scc1-

PK6 every 15 min from 0 to 60 min after release

from G1. Data were reanalyzed from Hu et al.

(2015) (GEO: GSE69907).

(D) Difference plot detailing the difference in

average centromere plots between time points 30,

45, and 60 min of Figure 2C.

(E) Average calibrated ChIP-seq profiles of Scc1-

PK6 around TESs of genes longer than 2 kb. Pro-

files of convergent and tandem genes are

compared every 15 min from 0 to 60 min after

release from G1. Data were reanalyzed from Hu

et al. (2015) (GEO: GSE69907).

See also Figure S2.

Scc2 Replaces Pds5 during Loading

at CENs

To address whether Scc2’s association

with cohesin at CEN loading sites is

accompanied by other changes in its

composition, we analyzed mutant complexes containing either

Smc3E1155Q or Smc1E1158Q that accumulate at CENs

because they bind but cannot hydrolyze ATP (Hu et al., 2011,

2015). Their behavior implies that ATP hydrolysis is not

required for cohesin’s association with CEN loading sites but

instead for a manner of association that permits translocation.

Because accumulation at CENs is abolished by smc1S1130R

or smc3S1128R mutations (Hu et al., 2011), which prevent

ATPase head engagement, it is thought that loading can be

broken down into two steps. First, ATPase head engagement

promotes co-localization of Scc2 and cohesin atCENs, whereas

second, ATP hydrolysis triggers stable association with and

translocation along chromatin.

If we accept this logic and if Scc2 actually becomes part of the

cohesin complex during the first step, as opposed to merely co-

localizing on the chromosome, then expression of smc3E1155Q

or smc1E1158Q from ectopic genes (endogenous ones are kept

intact) should increase Scc2 associated with CENs. Note that, in

these experiments, the calibrated ChIP-seq profiles are there-

fore a composite of wild-type and EQ mutant cohesin. Figure 3A

shows that smc3E1155Q expression increased Scc2’s associa-

tion with CENs at least ten-fold but had little effect elsewhere in

the genome. It also greatly increased Scc1 at CENs but had little
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effect elsewhere (Figure 3B). Scc3’s CEN recruitment was also

elevated by smc3E1155Q (Figure 3C), albeit more modestly.

In contrast, smc3E1155Q had little or no effect on the distri-

bution of Pds5 (Figure 3D), implying that this particular regula-

tory subunit is absent from CEN-associated Scc1/Smc1/

Smc3E1155Q/Scc2/Scc3 complexes. Similar results were ob-

tained in cells expressing smc1E1158Q (Figures S3A–S3D).

Scc3’s presence and Pds5’s absence from such complexes is

consistent with the finding that accumulation of GFP-tagged

Smc3E1155Q at centromeres depends on Scc3, but not on

Pds5 (Hu et al., 2011).

To address whether Pds5 is excluded from wild-type cohesin

engaged in loading, we compared the chromosomal profiles of

Scc1 and Pds5 in cells arrested in late G1 when Scc1 is ex-

pressed at high levels but cohesin associated with peri-centric

sequences is known to be turning over rapidly (Chan et al.,

2012; Figure S3E). A scatterplot shows that Scc1 and Pds5

A B

C

D

F

E

Figure 3. Scc2 Replaces Pds5 during

Loading at CENs

(A–D) Average calibrated ChIP-seq profiles around

CENs comparing localization of (A) Scc2, (B) Scc1,

(C) Scc3, and (D) Pds5 in the presence of ectopic

WT or smc3(E1155Q) in cycling cells (K25467,

K21388, K25370, K22005, K25373, K17438,

K25376, and K19012).

(E) Calibrated qPCR ChIP was used to measure

association of PK-tagged Scc1, Pds5, or Scc3

with TETO on chromosome X and a sequence

400 bp from CEN6 in Scc4-tTR/TETO cells ex-

pressing PK-tagged Scc1 (B1674), Pds5 (B1665),

or Scc3 (B1625) grown to log phase. Cells with

untagged Scc4 (B1627, B1635, and B1667) were

used as controls. Data represent the average of

three replicates, and SD is indicated.

(F) The tTR-tagged Scc4 or Scc3/TETO diploid

cells in which one of twoSMC3 alleles is fusedwith

PK6 tag and mutated (B1612/B1795, B1684/

B1796, B1749/B1797, and B1751/B1798) were

grown at 25�C. Association of PK-tagged Smc3

mutants with TETO and centromere loci was

measured by calibrated ChIP-qPCR. Cells without

tTR tag (B1664, B1685, B1748, and B1750) were

used as controls. Data represent the average of

three replicates, and SD is indicated.

levels correlate highly throughout the

genome. However, there is a set of se-

quences whose slope is half the average,

namely sequences selectively depleted

of Pds5, which correspond to CEN se-

quences (Figure S3F). Depletion of Pds5

from CENs was less pronounced in G2/

M phase, where loading is less active

(Figures S3G and S3H). Because Pds5

forms a complex with cohesin when ex-

pressed in insect cells, is a constituent

of soluble complexes in Xenopus extracts

(Losada et al., 2005), and can be replaced

by Scc2 in vitro (Figure 1E), we suggest

that Scc2 displaces Pds5 upon association with cohesin at

CEN loading sites. The ChIP-seq profiles suggest that Pds5

re-associates with cohesin and replaces Scc2 by the time the

complex has translocated approximately 300 bp from the

loading site.

Further evidence that Scc2’s association with cohesin in vivo

is associated with displacement of Pds5 is our finding that teth-

ering Scc4 to Tet operators on chromosome 14 recruits Scc1

and Scc3 but very little Pds5 to this locus (Figure 3E). Interest-

ingly, recruitment of Smc3 to Tet operators bound by Scc4

was increased by Smc3E1155Q but greatly reduced by

Smc3K38I or Smc3S1130R, implying that Scc2 interacts prefer-

entially with cohesin, whose ATPase heads are engaged in the

presence of ATP (Figure 3F). In contrast, these Smc3 mutations

had little or no effect on Smc3’s recruitment to Tet operators by

Scc3-TetR, suggesting that binding of Scc2 may be uniquely

sensitive to the state of ATPase head engagement.
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Figure 4. Scc2 Is Required for Both Early and Late Loading Steps

(A) Residues mutated in S. cerevisiae Scc2 mapped onto the C. thermophilum structure (PDB 5T8V). Lethal mutations are in yellow, viable mutations in red, and

gain-of-function mutations in green.

(B) Average calibrated ChIP-seq profiles of Scc1-PK9. Cells expressingWT,K788E H789E double mutant, or no ectopic copy of SCC2 over endogenous scc2-45

were arrested in G1 at 25�C before release at 37�C intomedium containing nocodazole. Samples were taken 75min after release (K24188, K24185, and K22390).

(C) The average profile of scc2-45was subtracted from that of scc2E822K L937F scc2-45, producing a difference plot revealing loading due to scc2E822K L937F.

(legend continued on next page)
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Our finding that Scc2’s association with cohesin is accompa-

nied by loss of Pds5 and that Scc2, but not Pds5, stimulates co-

hesin’s ATPase suggests that it is the Scc2-bound version that is

capable of loading and translocation. If so, Pds5 should be un-

necessary for these processes. As predicted, Pds5 depletion

had no adverse effect on either loading or translocation of cohe-

sin, at least in late G1 cells (Figure 6D), where Pds5’s role in pro-

moting Smc3 acetylation (Chan et al., 2013) would be immaterial.

Because both Smc3E1155Q and Smc1E1158Q greatly increase

the amount of Scc1 and Scc2 associated with cohesin at CENs,

we suggest that ATP hydrolysis is normally necessary for Scc2’s

subsequent replacement by Pds5, an event that occurs to most

chromosomal cohesin complexes in yeast.

In summary, the loading process at CENs can be divided into

two major steps. During the first, engagement of ATPase heads

in the presence of ATP is accompanied by replacement of Pds5

by Scc2. During the second, ATP hydrolysis completes the reac-

tion and leads to cohesin’s stable association with chromatin

and Scc2’s replacement by Pds5. Our experiments do not

address whether further rounds of ATP hydrolysis mediated by

the Scc2-bound form of cohesin promote translocation into

peri-centric sequences.

Scc2 Residues Involved in DNA-Dependent ATPase

Activity Are Required for the Late Loading Step

The finding that association of Smc3E1155Q with CENs de-

pends on Scc2 suggests that Scc2 is required for the first step

(Hu et al., 2011). Is it also required for the second? With the

aim of identifyingmutations that might be preferentially defective

in the second step, we created a series of mutations in highly

conserved Scc2 surface residues (Figure S4A) as well as some

residues mutated in Cornelia de Lange Syndrome (CdLS) pa-

tients (Table S1). Scc2 exhibits a ribbon of conservation that

twists in a complex manner around the hook-shaped protein (Ki-

kuchi et al., 2016; Figure S4A). Remarkably, no single surface

amino acid change in the untagged endogenous locus was

found to be lethal (Table S1), but two double mutants were,

namely S717L K721E and K788E H789E (Figures 4A, 4B, and

S4C). Both affect the part of Scc2 that is most conserved among

HAWK subunits, the region composed of canonical HEAT re-

peats that, unlike the rest of the protein, are not twisted. The res-

idues equivalent to K788 and H789 are invariably basic in a very

wide variety of eukaryotes and could have a role in binding DNA.

To evaluate the effect on loading, we expressed either wild-

typeor scc2K788EH789E fromanectopic locus in cells harboring

the thermosensitive (ts) scc2-45 (L545P D575G) allele. Unlike

wild-type, scc2K788E H789E failed to suppress the genome-

wide loading defect of scc2-45 cells (Figure 4B). Remarkably, it

didsupportScc1’sassociationwithCEN loadingsites (Figure4C).

Indeed, calibrated ChIP-seq revealed that the mutant protein as-

sociates with CENs as efficiently as wild-type (Figure 4D), as did

live imaging of GFP-tagged proteins (Figure S4D). These data

suggest that Scc2K788E H789E can support the first step in the

loading reaction, namely association with cohesin at CENs, but

cannot support stable association (loading itself) or translocation

into neighboring sequences. Because wild-type is capable of

both steps, it is difficult to evaluate whether the mutant is as effi-

cient as wild-type in completing the first step.

We conclude that Scc2 is required not only for association of

cohesin with engaged ATPase heads at CEN loading sites but

also for converting these into complexes that stably associate

with chromatin and are capable of translocating along it.

scc2K788E H789E reduced by about two-fold Scc2’s ability to

stimulate the ATPase activity of cohesin tetramers in vitro,

even in the presence of DNA (Figure S4F). The defective

response to DNA caused by scc2K788E H789E is especially

apparent with trimers, which fail to respond to Scc2 unless

DNA is added. Stimulation of trimer ATPase by DNA was halved

by scc2K788E H789E (Figure 4E). Thus, K788 and H789 might

have roles in the mechanism by which DNA stimulates ATPase

activity associated with Scc2-bound cohesin, a process that

possibly also involves binding of DNA to Scc3, Smc heads,

and Smc hinges (Srinivasan et al., 2018). A crystal structure of

condensin’s Ycg1 HAWK subunit associated with both DNA

and the g-kleisin Brn1 reveals that Ycg1 adopts a structure

more similar to that of Scc2 than Scc3 (Kschonsak et al., 2017)

and that a highly conserved R253 residue contacting phos-

phates on the DNA backbone corresponds to Scc2’s K788 (Fig-

ure S4B). A role in contacting DNA might therefore be a feature

conserved between Scc2 and Ycg1.

A Gain-of-Function SCC2 Allele (scc2E822K L937F) that

Bypasses Scc4 for Loading on Arms, but Not at CENs

To explore more deeply Scc2’s role during loading and translo-

cation, we set out to create a gain-of-function allele. Loading

of cohesin at CENs as well as along chromosome arms depends

on Scc4 bound to Scc2’s NTD (Figure 5A). By selecting rever-

tants of the ts allele scc4-4 (Y40N) capable of proliferation at

37�C, we identified two SCC2 alleles that permitted proliferation

without SCC4. Tetrad analysis revealed that scc2E822K was a

better suppressor than scc2L937F and the scc2E822K L937F

double mutant better still (Figure S4G). E822 is a highly

conserved surface residue situated on the spine of the Scc2’s

most conserved HEAT repeats, very close to K788 H789 (Figures

4A, S4A, and S5A). L937 is invariably a hydrophobic residue and

is buriedwithin a HEAT repeat a helix close to the point where the

protein starts to bend back on itself. Substitution by phenylala-

nine presumably alters the way the helix interacts with its

neighbor, and bulky aromatic residues are rarely if ever found

at this position. scc2E822K L937F enhances modestly cohesin’s

association with chromosome arms as well as peri-centric se-

quences (Figure S5D). It also causes cohesin to accumulate to

higher than normal levels in two peaks 500 bp on either side of

CENs, suggesting that it may retard translocation from loading

sites (Figures 5B and S5D). The double mutation elevates

loading along chromosome arms (defined as >30 kb from the

(D) Average calibrated ChIP-seq profiles of ectopic WT and scc2K788E H789E in cycling cells (K25185, K25186, and K699).

(E) ATPase of WT trimers in the presence or absence of WT or mutant Scc2 and DNA. A fraction of the mix was analyzed by Coomassie staining following SDS-

PAGE to confirm protein levels.

See also Figure S4.
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CEN) in ts scc4-4 mutants from �25% to �80% of wild-type

when cells undergo S phase at 37�C in the presence of nocoda-

zole but barely suppresses the loading defect at CENs (Figures

5A and 5B). scc2E822K L937F had only a very modest if any ef-

fect on Scc2’s ability to stimulate ATPase activity associated

with cohesin tetramers (Figure 5C). Thus, scc2E822K L937F en-

ables cohesin to load along chromosome arms, but not at CENs

in the absence of Scc2’s partner Scc4.

SCC4 Is Essential for Loading Cohesin at CENs in the

Absence of Spindle Poisons, but Not in Their Presence

The failure of scc2E822K L937F to restore loading around cen-

tromeres in ts scc4 mutants suggests that Scc4 may have a

key role in CEN-specific loading, one that cannot be bypassed

by scc2E822K L937F. This effect may be explained by the recent

finding that phosphorylation of Ctf19 by DDK creates a binding

site for Scc4, which presumably directs Scc2/4 toCENs and pro-

motes CEN-specific loading (Hinshaw et al., 2017). Surprisingly,

scc2E822K L937F permitted substantial loading around CENs in

scc4Dmutant cells arrested inG2/Mby nocodazole (Figure S5E).

Crucially, this loading also depended on CHL4, confirming that it

is driven by CEN activity. Thus, in addition to Scc4-dependent

loading at CENs in cycling cells, a Scc4-independent mecha-

nism promotes loading in the presence of nocodazole.

Because of these findings, we re-investigated the behavior of

a scc4 allele (scc4m35 F324A K327A K331A K541A K542A)

thought to be defective specifically in CEN-specific loading.

Curiously, the basis for this claim was that scc4m35 supposedly

abolished CEN-specific loading in nocodazole-arrested cells

(Hinshaw et al., 2015). We discovered that the residues mutated

in scc4m35 are in fact only conserved in organisms closely related

to S. cerevisiae and K. lactis, in other words in yeasts that

possess point centromeres (Figure S5F). Contrary to the previ-

ous report, scc4m35 did not abolish CEN-specific loading when

cells are treated with nocodazole but did so in cycling cells (Fig-

ures S5G and S5H). Our data suggest that the patch altered in

scc4m35 may be essential for recruitment of Scc4 to CENs and

that this process is crucial for CEN-specific loading in cycling

cells. Our findings suggest that recruitment of Scc4, and thereby

Scc2, to CENs by the Ctf19 complex co-evolved with point

centromeres.

Scc2E822K L937F Persists on Cohesin and Replaces

Pds5 after Loading and Translocation

Our data suggest that, by binding to Scc2’s NTD, Scc4 facilitates

Scc2’s ability to promote loading (along chromosome arms) and

that scc2E822K L937F alters the protein in amanner that enables

now it to function without Scc4. Because scc2E822K L937F con-

fers a new activity, we investigated its effect on Scc2’s associa-

tion with chromosomal cohesin. Calibrated ChIP-seq revealed

that scc2E822K L937F has a striking effect on Scc2’s distribution

around CENs. Instead of a narrow peak centered on CDEIII, the

mutant protein accumulated throughout a broad peri-centric

interval and especially so with a pair of symmetrical peaks

on either side of CENs (Figure 6A), in a manner reminiscent

of cohesin itself in such cells (Figure 5A). When viewing profiles

from individual chromosomes, the distribution of peri-centric

Scc2E822K L937F resembled that of Scc1 in scc2E822K

L937F cells (Figure 6B), suggesting that Scc2E822K L937F

extensively co-localizes with cohesin within an interval 10 kb

either side ofCEN loading sites. No such co-localization was de-

tected by ChIP-seq in the case of wild-type Scc2 (Figure 6B).

Importantly, scc4D greatly reduced association of Scc2E822K

L937F with peri-centric sequences, which suggests that

Scc2E822K L937F is bound to peri-centric cohesin, whose

loading at CENs was driven by Scc4’s association with Ctf19

(Figure 6A). Thus, Scc2E822K L937F associates with cohesin

that has translocated from CENs into peri-centric sequences.

This association could arise at the time of loading and persist

during translocation or it could arise de novo following transloca-

tion. In the latter case, one would predict that Scc2E822K L937F

A

B

C

Figure 5. scc2E822K L937F Bypasses Scc4 on Arms, but Not

at CENs

(A) Average calibrated ChIP-seq profiles of Scc1-PK6 in SCC2 SCC4,

scc2E822K L937F SCC4, SCC2 scc4-4, and scc2E822K L937F scc4-4 cells

arrested in G1 at 25�C before release at 37�C into medium containing noco-

dazole. Samples were taken 75 min after release (K22005, K24687, K24744,

and K22001).

(B) Average calibrated ChIP profiles 60 kb either side of CDEIII plotted as a

percentage of the average number of reads obtained for WT SCC2 SCC4 cells

in (A).

(C) Effect of scc2E822K L937F on tetramer ATPase. A fraction of the reaction

analyzed by Coomassie staining following SDS-PAGE is shown. Figure S5

shows the effect of scc2E822K L937F at 25�C, where its enhancement of

loading is greater than at 37�C.
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should co-localize with cohesin throughout the genome, which

we did not observe. We therefore favor the notion that

scc2E822K L937F enables Scc2 that had associated with

cohesin at CEN loading to persist during its subsequent

translocation.

If scc2E822K L937F increases occupancy of chromosomal

cohesin by Scc2, and if Scc2 and Pds5 are mutually exclusive,

then scc2E822K L937F might be expected to alter Pds5’s chro-

mosomal distribution. This is indeed the case. Whereas

scc2E822K L937F causes a 1.5-fold increase in the amount of

Scc1 associated with peri-centric sequences, it causes a

2-fold decrease in the amount of Pds5 (Figure 6C). The net effect

is that occupancy of chromosomal cohesin by Pds5 is reduced

about three-fold around CENs. scc2E822K L937F also reduced

Pds5’s occupancy of cohesin along chromosome arms by about

two-fold (Figure 6C). These observations demonstrate that Scc2

replaces Pds5 not only during the process of loading atCENs but

also during or after translocation into peri-centric sequences.

Our observations suggest that Scc2E822K L937F competes

with Pds5 on chromosomal cohesin more effectively than the

wild-type protein.

Pds5 Inhibits Cohesin Loading Genome-wide

Our finding that Scc2’s occupancy of chromosomal cohesin is

accompanied by displacement of Pds5 suggests that the latter

might act as a negative regulator of cohesin activities mediated

by Scc2, namely loading and possibly also translocation. To

address this, we investigated the effect of depleting Pds5 on

the distributions of Scc1 andScc2. To avoid complications asso-

ciated with the fact that Pds5 is necessary for Smc3 acetylation

during S phase, we analyzed the effect in cells blocked in late G1

by the Cdk1 inhibitor Sic1. Though Pds5 depletion using an

Auxin-inducible degron (AID) had little or no effect on Scc2’s dis-

tribution, it had a major effect on Scc1, increasing loading

throughout the genome two-fold (Figure 6D).

To address whether this effect is an indirect consequence of

compromising recruitment of Wapl, whose association with

Pds5 is required for cohesin turnover, we also analyzed the ef-

fect of Wapl deletion (wpl1D) at this stage of the cell cycle. Inter-

estingly, wpl1D caused a major increase in peri-centric cohesin,

an effect that is probably not due to decreased turnover,

because scc3K404E (Beckou€et et al., 2016) had little effect (Fig-

ure S6A). Importantly, both scc3K404E and wpl1D had little or

no effect on the extent of Scc1’s association with chromosome

arms whereas Pds5 depletion shows a significant increase (Fig-

ure 6D). This suggests that the increase in Scc1 association

upon Pds5 depletion is due to increased loading not reduced

turnover. We suggest therefore that Pds5 negatively regulates

cohesin loading mediated by Scc2 throughout the genome.

Consistent with this notion, overexpression of Pds5 from the

GAL promoter causes lethality in scc2-45 cells growing at the

permissive temperature (Figure 6E). We do not understand

why Pds5’s depletion does not increase Scc2’s association

with the genome but suspect that, even in the absence of

Pds5, Scc2’s turnover on chromosomal cohesin complexes re-

mains too rapid for efficient formaldehyde fixation. The negative

effect of Pds5 on cohesin loading genome-wide in G1 cells is

consistent with our finding that Pds5 reduces Scc2’s ability to

stimulate ATPase activity associated with cohesin tetramers

(Figure 1F).

Scc2 Promotes Loading, Translocation, and ATPase

Activity by Interacting with Scc1

To evaluate the importance of Scc2’s association with cohesin,

we investigated its mechanism. It has been suggested on the

basis of peptide arrays that Mis4 (Scc2) from S. pombe functions

by binding to Scc3 and to the coiled coils of Smc1 and Smc3

(Murayama and Uhlmann, 2014). In contrast, Scc2 from

C. thermophilum binds exclusively to Scc1 (residues 126–230;

Kikuchi et al., 2016). The latter may be a universal mode of bind-

ing, because S. cerevisiae Scc2 co-precipitated with a fragment

of an N-terminal fragment Scc1 containing residues 1–566 (Fig-

ure 7A). Nevertheless, there is hitherto no evidence that this

Scc1:Scc2 interaction is of physiological importance, especially

as many of the mutations that supposedly compromise associa-

tion of Chaetomium Scc2 with Scc1 have no phenotype in yeast

(e.g., C.t. Scc2 K1018E, R1053Q, and R1090T; Table S1) or,

more worrying, involve substitutions to residues that are

frequently found in other fungi (e.g., C.t. Scc2 L1373P).

Reasoning that Scc1 sequences bound by Scc2 have a role in

cohesin loading, we measured the effect on yeast cell prolifera-

tion and cohesin loading of deleting Scc1 sequences other than

those already known to bind Pds5 (S.c. Scc1 131–138), Scc3

(319–393), Smc3 (1–104), and Smc1 (483–566; Figure S6C).

Tetrad analysis showed that, when expressed from an ectopic

locus, all such deletions removing no more than 55 amino acids

complemented scc1D (Figure S6B). However, larger deletions

were not able to do so. Thus, whereas scc1D152–206 and

D207–256 conferred viability,D152–256 could not, despite bind-

ing Scc3 and forming trimeric rings with Smc1/3 (Figure S6D).

Crucially, D152–256 caused a severe loading defect throughout

the genome (when measured in cycling cells expressing

untagged wild-type protein; Figure S7A), reduced binding of

Scc1 1–566 to GST-Scc2 in vitro (Figure 7A), and reduced

Scc2-dependent ATP hydrolysis (Figure 7B), especially in the

absence of DNA.

The loading defect associated with D152–256 could be due

either to a length requirement or redundancy of sequencemotifs.

In the case of the latter, it should be possible to identify, within

the 207–256 interval, a motif whose deletion is lethal when com-

bined with D152–206. Despite poor conservation among

ascomycetes, we noticed that sequences within the interval

244–251 are conserved among yeasts with point centromeres,

with a consensus DWDLGITE (Figure 7F). Indeed, the double

mutant D152–206 D244–251 was lethal and reduced loading

in vivo (Figure S7A) as well as ATPase activity in vitro

(Figure S7B).

Because D180–256 is also lethal (Figure S6C), the 180–206 in-

terval must likewise contain an element that is essential when se-

quences between 207 and 256 are deleted.

Interestingly, this interval contains a motif between 196 and

203 with the consensus LDLDFD, which resembles the 244–

251 sequence. Moreover, a sequence with similar properties

(consensus DFGFDLDI) exists within the 281–288 interval and

a related sequence (consensus LDLELDFGEDID) is conserved

among ascomycetes related to C. thermophilum, within the
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126–200 interval known to bind Scc2. scc1D196–203 is viable,

as are D244–251 and D281–288 single mutants and the

scc1D196–203 D281–288 double mutant. In contrast, the

scc1D196–203 D244–251 double mutant causes poor spore

viability and the scc1D196–203 D244–251 D281–288 triple

mutant outright lethality (Figures S6B and S6C). scc1D196–203

D244–251 D281–288 reduced Scc2-dependent ATPase activity

in vitro (Figure 7C), diminished loading of cohesin throughout the

genome in vivo (Figure 7D), and lowered Scc1’s binding to Scc2

in vitro (Figure 7E).

We therefore suggest that Scc2 stimulates cohesin’s ATPase

activity and loading onto chromosomes by binding to DL motifs

Figure 6. Competition between Scc2 and Pds5 Regulates Cohesin Loading Genome-wide

(A) Average calibrated ChIP-seq profiles ofWT Scc2-HA6 and scc2E822K L937F-HA6 in presence or absence of SCC4 in cycling cells (K25054, K25053, K25418,

and K699).

(B) Calibrated ChIP-seq profile of ChrV comparing the localization of Scc1-PK6 and Scc2-HA6 in the presence of WT or scc2E822K L937F (K25054, K25053,

K22005, and K24687).

(C) Average calibrated ChIP-seq profiles of Scc1-PK6 or Pds5-PK6 in the presence of WT or scc2E822K L937F in GAL-SIC1-arrested cells (K26292, K26244,

K25999, and K25988).

(D) Average calibrated ChIP-seq profiles of Scc1-HA6 or Scc2-HA6 in the presence or absence of Pds5. Cells were arrested in late G1 using GAL-SIC1 after

addition of 5 mM auxin 30 min prior to release from pheromone. The red and green lines are identical (K26270, K26277, K26273, and K26274).

(E) Pds5 overexpression hampers growth of scc2-45 cells. WT (K699), scc2-45 (B443),GAL-PDS5 (B1289), and scc2-45 GAL-PDS5 (B1282) were grown on YEP

plates containing glucose or galactose at 30�C for 2 days.

See Figure S5 for fluorescence-activated cell sorting (FACS) profiles.

A

C

E
F

D

B Figure 7. Scc2 Promotes Loading, Translo-

cation, and ATPase Activity by Interacting

with Multiple Scc1 Motifs

(A) Glutathione S-transferase (GST) or GST-

Scc2171–1504 proteins were immobilized on Gluta-

thione Sepharose beads. Beads were incubated

with 35S-labeled WT or D152–256 Scc11–566 in the

presence or absence of Smc3head. Input and

bound proteins were separated by SDS-PAGE,

stained with Coomassie (bottom), and analyzed

with a phosphorimager (top).

(B) Effect of scc1D152–256 on tetramer ATPase

activity. A fraction of the mix was then analyzed by

Coomassie staining following SDS-PAGE. *The

Scc1D152-256 protein is masked by purine

nucleoside phosphorylase (PNP).

(C) Effect of scc1D196–203, D244–251, and D281–

288 on tetramer ATPase.

(D) Average calibrated ChIP-seq profiles of hem-

agglutinin (HA)-tagged WT and mutated Scc1

proteins in cycling cells at 25�C in the presence of

untagged SCC1 (K17184, K25896, 27148, 26992,

and K699).

(E) GST or GST-Scc2171–1504 proteins were immo-

bilized on Glutathione Sepharose beads. Beads

were incubated with 35S-labeled Scc11–566 double

mutant or Scc11–566 triple mutant obtained through

in vitro translation. Bound proteins were separated

by SDS-PAGE, stained with Coomassie (bottom

panel), and analyzed with a phosphorimager (top

panel). The relative binding intensities of Scc1 were

quantified and indicated below the autoradiograph.

(F) Multiple sequence alignment showing the con-

servation of residues 196–203, 244–251, and 281–

288 of S. cerevisiae Scc1 among yeasts with point

centromeres.

See also Figures S6 and S7.
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situated within the 196–203, 244–251, and 281–288 intervals.

Despite having amoremodest effect on Scc2 binding (Figure 7E)

and Scc2-dependent ATPase activity (Figure S7C), scc1D196–

203 D244–251 also reduced cohesin loading in vivo (Figure 7D),

which may explain its effect on spore viability.

The three DL motifs cannot be the sole means by which Scc2

interacts with cohesin because, in the presence of DNA, Scc2

stimulates the ATPase activity of tetramers containing

scc1D196–203 D244–251 D281–288 (Figure 7C) or scc1D152–

256 (Figure 7B). Indeed, GFP-Scc2 binds to scc1D152–256

tetramers in vitro, albeit slightly less efficiently than wild-type

(Figure S6D). Given that Pds5 and Scc2 appear to compete for

binding to cohesin in vivo, we considered that Scc2 might also

interact with the Pds5-binding motif approximately 20 residues

C-terminal to Scc1’s NTD. Unlike the DL motifs, this motif is

highly conserved among eukaryotes (Lee et al., 2016), suggest-

ing that it may have multiple partners. Deletion of the motif

(D131–138) is lethal, as is scc1V137K, but we have hitherto

assumed that these effects are due merely to loss of Pds5 bind-

ing. This may be mistaken. Though scc1V137K causes only a

modest defect in cohesin loading in cells expressing wild-type

Scc1 (Figure S7D), the mutation has a more severe phenotype

when cells undergo S phase in Scc1’s absence. Thus, it reduced

loading along chromosome arms by two-fold and around centro-

meres by 3.4-fold (Figure S7E). Equally striking, the cohesin that

still loads at CENs fails to translocate normally into peri-centric

sequences and instead accumulates in two peaks 300 bp on

either side of CENs (Figure S7E). Under similar conditions,

namely 60 min after release from pheromone-induced G1 arrest,

Pds5 depletion also causes defects in cohesin loading at CENs

and translocation away from them but has no effect on chromo-

some arms (Figure S7F). Importantly, these defects are not as

pronounced as those seen in the scc1V137K, suggesting that

scc1V137K has an additional defect, which could be due to an

effect on Scc2 binding.

DISCUSSION

Scc2 and Pds5 Are Mutually Exclusive HAWKs

We show here that Scc2 is necessary for ATPase activity

associated with all types of cohesin complexes, be they tri-

mers, tetramers, or hexamers. Because cohesin loading de-

pends on Scc2 as well as ATP hydrolysis, stimulating cohesin’s

ATPase is presumably a crucial aspect of Scc2 function. Scc2

activates cohesin’s ATPase and stimulates loading by binding

to specific DL motifs within Scc1. Importantly, the behavior of

a gain-of-function allele scc2E822K L937F suggests that

Scc2 can persist on cohesin during and/or subsequent to its

translocation from CEN loading sites. This suggests that

Scc2’s function may not in fact be restricted to the loading

process. It might continue to regulate ATPase activity even

after initial loading. If so, Scc2 should be considered a bona

fide HAWK whose function depends on binding Scc1. Scc2’s

association with cohesin at CENs only lasts 2–4 s (Hu et al.,

2011). For this reason, the vast majority of chromosomal cohe-

sin in yeast is associated with Pds5, not Scc2. Nevertheless,

we have documented instances of Pds5’s replacement by

Scc2, namely at CEN loading sites (especially when hydrolysis

is blocked), in cohesin recruited to Scc2/4 tethered at Tet

operators, and when Scc2 is added to cohesin hexamers

in vitro. Lastly, a gain-of-function scc2E822K L937F allele dis-

places a large fraction of Pds5 from cohesin throughout the

genome.

Given the reciprocal nature of cohesin’s occupancy by Scc2

and Pds5, one might predict that Pds5 hinders Scc2 binding

as well as vice versa. Several lines of evidence suggest that

this is indeed the case. Pds5 reduces the ATPase activity of

wild-type, but not scc1V137K, tetramers in vitro, its over-pro-

duction is lethal to scc2-45 cells, and Pds5 depletion leads to

higher than normal Scc2-dependent loading throughout the

genome. We suggest therefore that chromosomal cohesin

switches between two states: one with Scc2 bound, which is

active as a DNA-dependent ATPase and capable of loading

and translocating along chromatin, and another with Pds5

bound, which is largely inactive as an ATPase but is capable

of dissociating from chromatin in a Wapl-dependent manner.

The finding that C. thermophilum Scc2 orthologs compete for

binding Scc1 in vitro (Kikuchi et al., 2016), made independently

during the course of our studies, suggests that competition be-

tween Scc2 and Pds5 may be a universal feature. Although

much of the evidence that Scc2 replaces Pds5 concerns loading

at centromeres, there is no reason to suppose that this notion

does not apply throughout the genome, as suggested by the

reduced association of Pds5 with chromosomal cohesin

genome-wide in cells expressing Scc2E822K L937F. Because

the DL motifs essential for loading mediated by Scc2 are C-ter-

minal to the motif known to bind Pds5, it is currently unclear why

Scc2 and Pds5 recruitment is mutually exclusive. As scc1V137K

adversely affects loading and translocation as well as Pds5

recruitment, we suspect that Scc2 might also contact the

Pds5 binding motif. Moreover, it is possible that Pds5 binds,

in addition, the more C-terminal sequences necessary for

Scc2 binding.

The view of Scc2 and Pds5 emerging from our work is difficult

to reconcile with the suggestion that Pds5 and Wapl promote

loading in the absence of Scc2 in living cells (Murayama and Uhl-

mann, 2015). As well as being unnecessary for cohesin’s ATPase

activity and loading in vivo, Pds5 is actually absent from com-

plexes engaged in loading. Nevertheless, we cannot exclude

the possibility that, by temporarily replacing Scc2, Pds5 may

facilitate further ATPase cycles mediated by Scc2 and thereby

promote cohesin’s translocation along chromosomes.

Importance of Cohesin’s ATPase

Analysis of various smc1/3, scc1, and scc2 mutants revealed

only a rough congruence between their in vitro ATPase activities

and their abilities to load and translocate in vivo. On the one

hand, smc1E1158Q smc3E1155Q or scc1D196–203 D244–251

D281–288 greatly reduce both cohesin’s ATPase and its loading

throughout the genome whereas scc2E822K L937K allele in-

creases ATPase activity by 30% and increases loading

genome-wide, especially in the absence of Scc4. On the other

hand, scc1V137K has a profound effect on loading at and trans-

location fromCENs but has no effect on ATPase activity whereas

scc2K788EH789E abolishes loading but reduces in vitroATPase

activity by only two-fold.
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Curiously, the correlation between loading in vivo and ATPase

activity in vitro is less marked when the latter is measured in the

presence of DNA. For example, DNA greatly ameliorates the

ATPase defects caused by scc1D152–256 or scc1D196–203

D244–251 D281–288. We suggest that, at high concentrations

in vitro, DNA binds to and stabilizes an ‘‘active’’ conformation

whose creation normally depends also on other factors. DNA

could do so by binding to Smc heads and/or hinges. Under-

standing the various mechanisms by which cohesin binds

DNA, especially how these vary during the ATPase cycle, will

be crucial to understanding the process of loading and translo-

cation in vivo.

Scc4 Mediates CEN-Specific Loading

We show here that Scc4 bound to Scc2’s N-terminal se-

quences has a profound role in CEN-specific loading. Thus,

in scc2E822K L937F cells capable of proliferating in the

absence of SCC4, CEN-specific loading is entirely lacking

and the pattern of peri-centric cohesin resembles that along

chromosome arms. Recent observations suggest that Scc4

performs this function by binding directly to the Ctf19 complex

(Hinshaw et al., 2017) and thereby facilitates at this location

high rates of Scc2-driven ATPase activity. Bioinformatics sug-

gest that the mechanism by which Ctf19 recruits Scc4 may

have co-evolved with that of high rates of cohesin loading at

point centromeres. Importantly, binding Ctf19 is not the sole

function of Scc4, as the latter is also important for loading

along chromosome arms.

Scc2 and Loop Extrusion

The notion that cohesin’s loading and translocation along chro-

matin may be driven by cycles of ATP hydrolysis mediated by

replacement of Pds5 by Scc2 has important implications for

the mechanism of loop extrusion (LE) thought to be responsible

for controlling enhancer-promoter interactions during mamma-

lian development. The recent observation that Scc2/Nipbl asso-

ciates transiently but continuously with chromosomal cohesin in

mammalian cells suggests that its function may be to stimulate

the ATP hydrolysis needed to drive the translocation along chro-

matin necessary for LE (Rhodes et al., 2017). Interestingly, Scc2

does not co-localize with cohesin at CTCF sites (Kagey et al.,

2010), which have been postulated to block LE (Fudenberg

et al., 2016; Sanborn et al., 2015). We therefore suggest that

CTCF might block LE by somehow hindering replacement of

Pds5 by Scc2, as discussed in Wutz et al. (2017). Consistently,

depletion of Pds5 in human cells results in a decrease in the defi-

nition of TADs and a reduction in the number of loops between

convergent CTCF sites (Wutz et al., 2017). Indeed, the exquisite

sensitivity of key developmental switches revealed by Nipbl

haplo-insufficiency being the cause of Cornelia de Lange syn-

drome may arise because the precise level of Scc2/Nipbl may

determine the rate of ATP hydrolysis and thereby the processiv-

ity of LE.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-V5 (Mouse) BioRad Cat# MCA1360

Anti-HA 3F10 (Rat) Roche Cat# 11867423001

Anti-PGK1 22C5D8 (Mouse) Life Technologies Cat# 459250

Anti-GFP Roche Cat# 1184460001

Bacterial and Virus Strains

BL21(DE3) RIPL Life technologies Cat# C6000-03

DH10EmbacY Vijayachandran et al., 2011 N/A

Chemicals, Peptides, and Recombinant Proteins

Acid-washed glass beads Sigma Cat# G8722

Complete EDTA free protease inhibitor cocktail Roche Cat# 4693132001

Indole-3-acetic acid (IAA/Auxin) Sigma Cat# I3750-5G-A

Immobilon Western ECL Millipore Cat# WBLKS0500

Nocodazole Sigma Cat# M1404

PMSF Sigma Cat# 329-98-6

Proteinase K Roche Cat# 03115836001

RNase A Roche Cat# 10109169001

a-factor peptide CRUK Peptide Synthesis Service N/A

FuGENE HD Transfection reagent Promega Cat# E2311

Cre Recombinase New England Biolabs Cat# M0298S

NuPAGE 3-8% Tris-Acetate Protein Gels, 1.5 mm, 10-well ThermoFisher Cat# EA0378BOX

NuPAGE 4-12% Bis-Tris Protein Gels, 1.0 mm, 10-well ThermoFisher Cat# NP0321BOX

Protein G dynabeads ThermoFisher Cat# 10003D

Dynabeads M-280 Streptavidin Invitrogen Cat# 11205D

DNaseI Roche Cat# 04716728001

StrepTrap HP Fisher Scientific Cat# 11540654

Desthiobiotin Fisher Scientific Cat# 12753064

Superose 6 Increase 10/300 GL VWR Cat# 29-0915-96

HiLoad 16/60 Superdex 200 GE Healthcare Cat# GE28-9893-35

Cellfectin II Reagent Invitrogen Cat# 10362100

Antibiotics Antimycotic Solution Sigma Aldrich Cat# A5955

Fetal Bovine Serum Sigma Aldrich Cat# 12303C

SF-900 III SFM Life technologies Cat# 12658027

Ni Sepharose 6 Fast Flow GE Healthcare Cat# 17-5318-02

Glutathione Sepharose 4B GE Healthcare Cat#17075605

Critical Commercial Assays

AxyPrep Mag PCR Clean-up kit Appleton Woods Ltd Cat# AX402

ChIP Clean and Concentrator kit Zymo Research Cat# D5205

E-Gel SizeSelect II Agarose Gels, 2% ThermoFisher Cat# G661012

EnzChek phosphate assay kit Invitrogen Cat# E6646

Library Quantification Kit Ion Torrent Platforms KAPA Biosystems Cat# KR0407

NEBNext Fast DNA Library Prep Set for Ion Torrent kit New England Biolabs Cat# E6270L

TnT Quick Coupled Transcription/Translation System Promega Cat# L2080

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and analyzed data (GEO accession number) This study GSE106182

Experimental Models: Cell Lines

Sf9 cells in Sf-900 II SFM ThermoFisher Cat# 11496015

Experimental Models: Organisms/Strains

Yeast strains used in this study (S. cerevisiae W303/K699,

C. glabrata)

Table S2 N/A

Recombinant DNA

pACEbac1 SMC1 This study N/A

pACEbac1 8His-SMC3 This study N/A

pIDC SCC1-2xStrepII This study N/A

pIDC SCC3 This study N/A

pIDS PDS5-Flag This study N/A

pIDS WAPL This study N/A

pACEbac1 SMC1-8xHis-SMC3 This study N/A

pIDC SCC1-2xStrepII-SCC3 This study N/A

pIDS PDS5-Flag-WAPL This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC SCC1-2xStrepII

(trimer)

This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC SCC1-2xStrepII-

SCC3 (tetramer)

This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC SCC1-2xStrepII-

SCC3 / pIDS PDS5-Flag-WAPL (hexamer)

This study N/A

pACEbac1 GFP-(D1-132)SCC2-StrepII This study N/A

pGEX6p-1 GST-Scc2171-1504 This study N/A

pFastbacHT 6xHis-Pds5 This study N/A

pCS2 Scc11-566 This study N/A

pCS2 Scc11-566D152-256 This study N/A

pCS2 Scc11-256 This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC scc1(V137K)-

2xStrepII-SCC3 (tetramer)

This study N/A

pACEbac1 GFP-(D1-132)scc2(K788E H789E)-StrepII This study N/A

pACEbac1 GFP-(D1-132)scc2(E822K L937F)-StrepII This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC scc1

(D152-256) -2xStrepII-SCC3 (tetramer)

This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC scc1(D152-206,

D244-251) -2xStrepII-SCC3 (tetramer)

This study N/A

pACEbac1 smc1(E1158Q)-8xHis-smc3(E1155Q) / pIDC

SCC1-2xStrepII-SCC3 / pIDS PDS5-Flag-WAPL (hexamer)

This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC scc1(D196-203,

D244-251, D281-288)-2xStrepII-SCC3 (tetramer)

This study N/A

pACEbac1 SMC1-8xHis-SMC3 / pIDC scc1(D196-203,

D244-251)-2xStrepII-SCC3 (tetramer)

This study N/A

Software and Algorithms

Galaxy platform Giardine et al., 2005 https://usegalaxy.org

FastQC Galaxy tool version 1.0.0 https://usegalaxy.org

Trim sequences Galaxy tool version 1.0.0 https://usegalaxy.org

Filter FASTQ Galaxy tool version 1.0.0 https://usegalaxy.org

Bowtie2 Langmead and Salzberg, 2012;

Galaxy tool version 0.2

https://usegalaxy.org

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

As Lead Contact, Kim A. Nasmyth is responsible for all reagent and resource requests. Please contact Kim A. Nasmyth at ashley.

nasmyth@bioch.ox.ac.uk with requests and inquiries.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains and growth conditions

All yeast strains were derived fromW303 and grown in richmedium (YEP) supplementedwith 2%glucose (YPD) at 25�Cunless other-

wise stated. Cultures were agitated at 200rpm (Multitron Standard, Infors HT). Strain numbers and relevant genotypes of the strains

used are listed in Table S2.

To arrest the cells in G1, a-factor was added to a final concentration of 2mg/L/h, every 30min for 2.5h. Release was achieved by

filtration wherein cells were captured on 1.2 mm filtration paper (Whatman GE Healthcare), washed with 1L YPD and resuspended in

the appropriate fresh media. To arrest the cells in G2, nocodazole (Sigma) was added to the fresh media to a final concentration of

10 mg/mL and cells were incubated until the synchronization was achieved (> 95% large-budded cells). To inactivate temperature

sensitive alleles, fresh media was pre-warmed prior to filtration (Aquatron, Infors HT).

To arrest cells in late G1withGAL-SIC1 arrest, cells were grown in YP supplemented with 2%Raffinose and a-factor was added to

a final concentration of 2mg/L/h, every 30min for 2.5h. An hour before release Galactose was added to 2% of the final volume.

Release was achieved by filtration wherein cells were captured on 1.2 mm filtration paper (Whatman GE Healthcare), resuspended

into YPD, and incubated for 60min at 25�C.

To produce cells deficient of Scc1, the gene was placed under theMET3-repressible promoter. Liquid cultures were grown in min-

imal media supplemented with 2% glucose and 1% -MET dropout solution overnight, diluted to OD600 = 0.2 and allowed to grow to

OD600 = 0.4. Cells were then collected by filtration as described above, resuspended in YPD supplemented with 8mMmethionine and

arrested in G1. Once arrested, the cells were collected by filtration, washed with YPD in the presence of 8mM methionine and

released into the same media.

To produce cells deficient in Pds5 using the AID system, cells were arrested with a-factor as previously described. 30min prior to

release, auxin was added to 5mM final concentration. Cells were then filtered as previously described and released into YPDmedium

containing 5mM auxin.

METHOD DETAILS

Screening for suppressors of scc4-4

Forty independent colonies of the parental strain (smc1D588E::TRP1 YCplac33:scc4-4::NATMX scc4D::HIS3 (K23983)) were picked

and grown overnight at 25�C. Each was plated at 5 OD600 units per plate over 3 plates and incubated at 35.5�C until colonies ap-

peared. Up to 3 colonies were picked from each plate and streaked for single colonies at 25�C before being retested for growth

at 35.5�C. Those that grew at 35.5�C were checked by PCR from genomic DNA preparations for revertants of Scc4. Isolated sup-

pressors that did not show revertant mutations were checked for 2:2 segregation and grouped into complementation groups prior

to deep sequencing. To check if for the ability to rescue the deletion of Scc1, suppressors were streaked onto 5-FOA containing me-

dium and allowed to grow for 2 days.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Bam to BigWig Galaxy tool version 0.1.0 https://usegalaxy.org

Samtools Li et al., 2009 http://samtools.sourceforge.net/

IGB browser Nicol et al., 2009 http://bioviz.org/igb/

Filter SAM or BAM Li et al., 2009; Galaxy tool

version 1.1.0

https://usegalaxy.org

chr_position.py This paper https://github.com/naomipetela/

nasmythlab-ngs

filter.py This paper https://github.com/naomipetela/

nasmythlab-ngs

bcftools call Li et al., 2009 N/A

MutationFinder.py This paper N/A

yeastmine.py This paper N/A
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Protein gel electrophoresis and western blotting

The samples were mixed with 4X LDS sample buffer (NuPAGE Life Technologies), loaded onto 3%–8% Tris-acetate gels (NuPAGE

Life Technologies) and the proteins separated using an appropriate current. The proteins were then transferred onto 0.2 mm nitrocel-

lulose using Trans-blot Turbo transfer packs for the Trans-blot Turbo system (Bio-Rad).

Multiple sequence alignment

Multiple sequence alignments were created using Clustal Omega (Sievers et al., 2011).

Calibrated ChIP-sequencing

Cells were grown exponentially to OD600 = 0.5 and the required cell cycle stage where necessary. 15 OD600 units of S. cerevisiae cells

were then mixed with 5 OD600 units of C. glabrata to a total volume of 45mL and fixed with 4mL of fixative (50mM Tris-HCl, pH 8.0;

100mM NaCl; 0.5mM EGTA; 1mM EDTA; 30% (v/v) formaldehyde) for 30min at RT with rotation. Fixation was quenched with 2mL of

2.5M glycine incubated at RT for 5minwith rotation. The cells were then harvested by centrifugation at 3,500rpm for 3min andwashed

with ice-cold 1X PBS. The cells were then resuspended in 300 mL of ChIP lysis buffer (50mM HEPES-KOH, pH 8.0; 140mM NaCl;

1mM EDTA; 1% (v/v) Triton X-100; 0.1% (w/v) sodium deoxycholate; 1mM PMSF; 1 tablet/25mL protease inhibitor cocktail (Roche))

and an equal amount of acid-washed glass beads (425-600 mmSigma) added before cells were lysed using a FastPrep-24 benchtop

homogenizer (M.P. Biomedicals) at 4�C (3x 60 s at 6.5 m/s or until > 90% of the cells were lysed as confirmed by microscopy).

The soluble fraction was isolated by centrifugation at 2,000rpm for 3min then sonicated using a bioruptor (Diagenode) for 30min in

bursts of 30 s on and 30 s off at high level in a 4�C water bath to produce sheared chromatin with a size range of 200-1,000bp. After

sonication the samples were centrifuged at 13,200rpm at 4�C for 20min and the supernatant was transferred into 700 mL of ChIP lysis

buffer. 30 mL of protein G Dynabeads (Invitrogen) were added and the samples were pre-cleared for 1h at 4�C. 80 mL of the super-

natant was taken as the WCE and 5 mg of antibody (anti-PK (Bio-Rad) or anti-HA (Roche)) was added to the remaining supernatant

which was then incubated overnight at 4�C. 50 mL of protein G Dynabeads were then added and incubated at 4�C for 2h before

washing 2x with ChIP lysis buffer, 3x with high salt ChIP lysis buffer (50mM HEPES-KOH, pH 8.0; 500mM NaCl; 1mM EDTA; 1%

(v/v) Triton X-100; 0.1% (w/v) sodium deoxycholate; 1mM PMSF), 2x with ChIP wash buffer (10mM Tris-HCl, pH 8.0; 0.25M LiCl;

0.5% NP-40; 0.5% sodium deoxycholate; 1mM EDTA; 1mM PMSF) and 1x with TE pH 7.5. The immunoprecipitated chromatin

was then eluted by incubation in 120 mL of TES buffer (50mM Tris-HCl, pH 8.0; 10mM EDTA; 1% SDS) for 15min at 65�C and the

collected supernatant termed the IP sample. The WCE extracts were mixed with 40 mL of TES3 buffer (50mM Tris-HCl, pH 8.0;

10mM EDTA; 3% SDS) and all samples were de-crosslinked by incubation at 65�C overnight. RNA was degraded by incubation

with 2 mL RNase A (10mg/mL; Roche) for 1h at 37�C and protein was removed by incubation with 10 mL of proteinase K

(18mg/mL; Roche) for 2h at 65�C. DNA was purified using ChIP DNA Clean and Concentrator kit (Zymo Research).

Extraction of yeast DNA for deep sequencing

Cultures were grown to exponential phase (OD600 = 0.5). 12.5 OD600 units were then collected and diluted to a final volume of 45mL

before fixation as described in the protocol for ChIP-seq. The samples were treated as specified in the ChIP-seq protocol up to the

completion of the sonication step whereby 80 mL of the samples were carried forward and treated as WCE samples.

Preparation of sequencing libraries

Sequencing libraries were prepared using NEBNext Fast DNA Library Prep Set for Ion Torrent Kit (New England Biolabs) to the

manufacturers instructions. To summarize, 10-100ng of fragmented DNA was converted to blunt ends by end repair before ligation

of the Ion Xpress Barcode Adaptors. Fragments of 300bp were then selected using E-Gel SizeSelect 2% Agarose gels (Life Tech-

nologies) and amplifiedwith 6-8 PCR cycles. The DNA concentration was then determined by qPCR using Ion Torrent DNA standards

(Kapa Biosystems) as a reference. 12-16 libraries with different barcodes could then be pooled together to a final concentration of

350pM and loaded onto the Ion PI V3 Chip (Life Technologies) using the Ion Chef (Life Technologies). Sequencing was then

completed on the Ion Torrent Proton (Life Technologies), typically producing 6-10million reads per library with an average read length

of 190bp.

Primary antibody Immunogen Origin Dilution

V5 (Bio-Rad) PK Mouse 1:1,000

3F10 (Roche) HA Rat 1:5,000

PGK1 PGK1 Mouse 1:5,000

For visualization the membrane was incubated with Immobilon Western Chemiluminescent HRP substrate

(Millipore) before detection using an ODYSSEY Fc Imaging System (LI-COR).
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Data analysis, alignment and production of BigWigs

Unless otherwise specified, data analysis was performed on the Galaxy platform (Giardine et al., 2005). Quality of the reads was as-

sessed using FastQC (Galaxy tool version 1.0.0) and trimmed as required using ‘trim sequences’ (Galaxy tool version 1.0.0). Gener-

ally, this involved removing the first 10 bases and any bases after the 200th but trimming more or fewer bases may be required to

ensure the removal of kmers and that the per-base sequence content is equal across the reads. Reads shorter than 50 bp were

removed using Filter FASTQ (Galaxy tool version 1.0.0, minimum size: 50, maximum size: 0, minimum quality: 0, maximum

quality: 0, maximum number of bases allowed outside of quality range: 0, paired end data: false) and the remaining reads aligned

to the necessary genome(s) using Bowtie2 (Galaxy tool version 0.2) with the default (–sensitive) parameters (mate paired: single-

end, write unaligned reads to separate file: true, reference genome: SacCer3 or CanGla, specify read group: false, parameter set-

tings: full parameter list, type of alignment: end to end, preset option: sensitive, disallow gaps within n-positions of read: 4, trim

n-bases from 50 of each read: 0, number of reads to be aligned: 0, strand directions: both, log mapping time: false) (Langmead

and Salzberg, 2012).

To generate alignments of reads that uniquely align to the S. cerevisiae genome, the reads were first aligned to the C. glabrata

(CBS138, genolevures) genome with the unaligned reads saved as a separate file. These reads that could not be aligned to the

C. glabrata genome were then aligned to the S. cerevisiae (sacCer3, SGD) genome and the resulting BAM file converted to BigWig

(Galaxy tool version 0.1.0) for visualization. Similarly this process was done with the order of genomes reversed to produce align-

ments of reads that uniquely align to C. glabrata.

Visualization of ChIP-seq profiles

The resulting BigWigs were visualized using the IGB browser (Nicol et al., 2009). To normalize the data to show quantitative ChIP

signal the track was multiplied by the samples occupancy ratio (OR) and normalized to 1 million reads using the graph multiply

function.

In order to calculate the average occupancy at each base pair up to 60kb around all 16 centromeres, the BAM file that contains

reads uniquely aligning to S. cerevisiaewas separated into files for each chromosome using ‘Filter SAM or BAM’ (Galaxy tool version

1.1.0). A pileup of each chromosome was then obtained using samtools mpileup (Galaxy tool version 0.0.1) (source for reference list:

locally cached, reference genome: SacCer3, genotype likelihood computation: false, advanced options: basic). These files were then

amended using our own script ‘chr_position.py’ to assign all unrepresented genome positions a value of 0. Each pileup was then

filtered using another in-house script ‘filter.py’ to obtain the number of reads at each base pair within up to 60kb intervals either

side of the centromeric CDEIII elements of each chromosome. The number of reads covering each site as one successively moves

away from these CDEIII elements could then be averaged across all 16 chromosomes and calibrated by multiplying by the samples

OR and normalizing to 1 million reads.

Identification of mutations from whole genome sequencing

SNPs were called using command line on a local server. First a pileup was created using samtools mpileup (-v–skip-indels), then

SNPs called using bcftools call (-v –c). To findmutations unique to a suppressor strain, lists of SNPs from the parental strain or back-

crossed clones of the suppressor strain were compared to the list of SNPs from the suppressor strain. In the case of parental strains,

mutations that were present in both were removed and in the case of backcrossed clones of the suppressor strain, mutations that

were present in both were kept in order to identify the mutation that caused the suppression phenotype. This was done using

‘MutationFinder.py’ and the resulting lists further narrowed using ‘yeastmine.py’ which searches the SaccharomycesGenome Data-

base (SGD) for genes that correspond to the position of eachmutation so that those that lie outside of genes could be removed. From

this it was possible to identify the mutation in each suppressor that gave rise to the suppressor phenotype.

ATPase assay

ATPase activity wasmeasured by using the EnzChek phosphate assay kit (Invitrogen) by following the protocol as provided. Cohesin

in various complexes and its subunits was added to a final concentration of 50nM (or as else stated in the main text) and carried out

always under 50mMNaCl in the presence of 700nM 40bp dsDNA in those experiments testing the effect of duplex DNA. The reaction

was started with addition of ATP to a final concentration of 1.3mM (final reaction volume: 150ul). After completion, a fraction of each

reaction was run in SDS-PAGE and the gel stained with Coomassie brilliant blue in order to test that the complexes were intact

throughout the experiment and that equal amounts were used when testing various mutants and conditions.

Recombinant yeast cohesin complex cloning

The Smc1, 8xHis-Smc3, Scc1 2xStrepII, Scc3, Pds5, Wpl1, Scc2 from S.cerevisiae were gene synthesized (Genscript, Thermo

Fisher Scientific, Epoch Lifescience) to optimize codons for efficient recombinant protein expression. The Smc3 and Scc1 genes

were synthesized with N-terminal His and C-terminal StrepII tags, respectively. Flag tag was added into Pds5 gene at the C-termini

by PCR. The SMC1, 8xHisSMC3, SCC12xStrepII, SCC3, PDS5Flag, WAPL genes were inserted into Multibac vectors (pACEBac1,

pIDC or pIDS) resulting in the vectors of SMC1-pACEbac1, 8xHisSMC3-pACEbac1, SCC12xStrepII-pIDC, SCC3-pIDC, PDS5Flag-

pIDS, andWAPL-pIDS. Genes in the same Multibac vectors were combined together by Gibson assembly, and SMC1-8xHisSMC3-

pACEbac1, SCC12xStrepII-SCC3-pIDC, PDS5Flag-WAPL-pIDS were generated. The SMC1-8xHisSMC3-pACEbac1 vector was
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fused to the SCC12xStrepII-pIDC, SCC12xStrepII-SCC3-pIDC, PDS5Flag-WAPL-pIDS vectors by in vitroCre recombinase reaction

(New England Biolabs), and then the transfer vectors for trimer (SMC1-8xHisSMC3-pACEbac1/SCC12xStrepII-pIDC), tetramer

(SMC1-8xHisSMC3-pACEbac1/SCC12xStrepII-SCC3-pIDC), hexamer (SMC1-8xHisSMC3-pACEbac1/SCC12xStrepII-SCC3-

pIDC/PDS5Flag-WAPL-pIDS) were generated. A similar approach was used for the GFP-DN132-scc2-1xStrepII bacmid developed.

The transfer vectors for trimer, tetramer, and hexamer were transformed into DH10EmbacY cells (Vijayachandran et al., 2011). The

isolated bacmid DNAs were transfected into Sf9 cells using Fugene HD reagent (Promega). The generated viruses were infected into

Sf9 cells, and the cells were cultured at 27�C for 72h in Insect-XPRESS protein-free medium with L-glutamate (Lonza).

Protein purification of the cohesin and Scc2 complexes

All versions of the cohesin complexes purified bear a tween StrepII tag in the Scc1 kleisin. This is the same for the GFP-DN132-

Scc2 construct used in this study except the later bears a single Strep-II tag. Typically 500ml of SF-9 insect cells were grown to

�3 million/ml and infected with the appropriate baculovirus stock in a 1/100 dilution. Infection was monitored daily and cells har-

vested when lethality (assayed by the trypan blue test) reached no more than 70%–80%. Cell pellets were then frozen in liquid

nitrogen and stored at 80�C. Upon thawing, the pellets were suspended in a final volume of �65-70ml with HNTG lysis buffer (final

concentrations of: 25mM HEPES pH 8.0, NaCl 150mM, TCEP-HCl 1mM and Glycerol 10%) and the suspension was immediately

supplemented with 2 dissolved tablets of Roche Complete Protease (EDTA-free), 75mg of RNase I and 7ml of DNaseI (Roche, of

10U/ml stock). The cells were then sonicated at 80% amplitude for 5 s/burst/35ml of suspension using a Sonics Vibra-Cell (3mm

microtip). In total 5 bursts were given for every 35ml half of the 70ml suspension (the sonication was always performed in ethanolised

ice). A spin at 235,000 x g (45,000rpm on a Ti45 fixed angle rotor) followed for 45 mins. The isolated cleared extract was supple-

mented with 2mM EDTA and was then used to load a 2x5ml StrepTrap HP (Fisher Scientific) column at 1ml/min in an ÄKTA Purifier

100. Wash with HNTG+PMSF 1mM+EDTA 2mM (HNTGPE) followed at 1ml/min to the point of DAU280nm�0 and protein elution

ensued using HNTGPE+20mM desthiobiotin (Fisher Scientific) at 1ml/min. Peak fractions were analyzed using SDS-PAGE and

were further purified in a Superose 6 Increase 10/300 (VWR) using HNTG as running buffer (free of EDTA/PMSF). The resulting peaks

were again analyzed using SDS-PAGE and the concentration was determined in Nanodrop using A280. Protein was aliquoted and

stocked typically in concentrations ranging from 1 to 3mg/ml.

Pulldown experiments using holocomplexes

10mg of mouse monoclonal anti-GFP antibody (Roche) were coupled to 50ml of of Protein G Dynabeads (Invitrogen) rotating at room

temperature for 1hr in a final volume of 200mls per reaction/sample using wash buffer to top up (typically the wash buffer was: HEPES

100mM, NaCl 50mM, Tween 0.04%). The beads were washed twice with 1ml wash buffer using a magnet and finally suspended in

50mls of wash buffer.

In parallel, ATPase reactions with versions of the holocomplex and (excluding mock reactions) versions of the GFP-DN132-Scc2

protein were performed essentially as described elsewhere in Methods (omitting the coupled-enzyme reaction) at 25�C on a bench-

top shaker typically for 45 mins. Of the 150ml reaction 1/10th was always kept as input material. The pre-coupled ProteinG-antibody

dynabeads, or streptavidin dynabeads (Invitrogen) for the control experiment, were then added (50mls) and the reaction continued for

another 45mins (with shaking at 900rpm at room temperature). The beads were then pulled using a magnet and a reciprocal to the

input amount was kept as flow-through material. The rest of the flow-through was then discarded and 3x1ml washes ensued using a

magnet with the wash buffer at 100mMNaCl (Fig.S6) or 150mMNaCl (Figures 1 and S1). The beads were finally transferred to a new

tube and eluted with 50mls of 1X SDS buffer and analyzed by SDS-PAGE with Coomassie brilliant blue staining.

Cloning of the GST-Scc2 plasmids and purification of GST-Scc2 and Pds5

The cDNA encoding Sc Scc2171-1504 was subcloned into pGEX6p-1 that introduced an N-terminal GST tag. The GST-Scc2 plasmid

was transformed into Escherichia coli strain BL21 (DE3). Protein expression was induced by 0.2mM isopropyl-d-1-thiogalactopyr-

anoside (IPTG) at 20�C overnight. GST-Scc2 was then purified with Glutathione Sepharose 4B resin (GE Healthcare) and stored in

the storage buffer (20mM Tris-HCl pH 7.5, 150mM NaCl, 1mM TCEP-HCl) at �80�C.

Full-length Sc Pds5 cDNAwas subcloned into pFastbacHT vector that introduced anN-terminal His6-tag. The Sc Pds5 baculovirus

was made with the Bac-to-Bac system (Invitrogen). For protein expression, SF-9 cells were infected with the Pds5 baculovirus and

cultured for 50hr at 27�C. Cells were harvested, resuspended in buffer I (20mM Tris-HCl pH 7.5, 500mM NaCl and 20mM imidazole),

and lysed by sonication. After centrifugation, the supernatant was incubated with Ni2+ Sepharose 6 Fast Flow resin (GE Healthcare).

The Ni resin was washed with buffer II (20mM Tris-HCl pH 7.5, 1M NaCl, 20mM imidazole), and buffer III (20mM Tris-HCl pH7.5,

100mM NaCl, 20mM imidazole) and eluted with buffer IV (20mM Tris-HCl pH 7.5, 100mM NaCl, 150mM imidazole). The eluted

His6-Pds5 protein was concentrated and applied onto HiLoad 16/60 Superdex 200 prep grade column (GE Healthcare) that had

been equilibrated with buffer V (20mM Tris-HCl pH 7.5, 150mM NaCl, 1mM TCEP-HCl). The purified Pds5 protein was then concen-

trated to 5mg/ml using an Amicon Ultra-15 centrifugal filter unit (Millipore) and stored at �80�C.

Protein binding competition assay of S. cerevisiae Pds5 and Scc2

The Sc Scc11-566 and Scc11-566 D152-256 cDNAs were subcloned into the pCS2 vector. These plasmids were mixed with a TNT

Quick Coupled Transcription Translation System (Promega) and incubated at 30�C for 90min in the presence of 35S-methionine.
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The 35S-labeled Scc1 proteins were mixed with Glutathione Sepharose 4B beads bound to 10mg GST-Scc2171-1504 in the absence or

presence of 10mg ScSmc3head, and incubated for 1 h at 4�C in the binding buffer [20mM Tris-HCl pH 7.5, 150mMNaCl, 0.1% Triton

X-100]. After incubation, the beads were washed 4 times with the binding buffer. The bound proteins were separated on SDS-PAGE

gels, which were stained with Coomassie blue, dried and analyzed with a phosphorimager (GE Healthcare).

For the Pds5 competition assay, Sc Scc11-256 was subcloned into the pCS2 vector and translated in vitro with the TNT Quick

Coupled Translation System (Promega). The 35S-labeled Scc11-256 protein was incubated with varying concentrations (1.2mM,

6.0mM) of Sc Pds5 for 2h at 4�C in 50ml of the binding buffer [20mMTris-HCl pH 7.5, 150mMNaCl, 0.1% Triton X-100] in the presence

of Smc3head. After incubation, the protein mixture and GST-Scc2 were added together to Glutathione Sepharose 4B beads. The

reaction mixtures were further incubated for 1 h at 5�C. The beads were washed 4 times with the binding buffer. The bound proteins

were separated on SDS-PAGE gels, which were stained with Coomassie blue, dried and analyzed with a phosphorimager (GE

Healthcare).

QUANTIFICATION AND STATISTICAL ANALYSIS

ATPase assay

ATPase activity was measured by recording absorption at 360nm every 30 s for 90min using a PHERAstar FS. DAU at 360nm was

translated to Pi release using an equation derived by a standard curve of KH2PO4 (EnzChek kit). Rates were calculated from the slope

of the linear phase (first 10min). At least two independent biological experiments were performed for each experiment.

qPCR

Experiments were performed in triplicate, the data was averaged and the standard deviation calculated.

DATA AND SOFTWARE AVAILABILITY

Scripts

All scripts written for this analysis method are available to download from https://github.com/naomipetela/nasmythlab-ngs.

Calibrated ChIP-seq data

The accession number for the calibrated ChIP-seq data (raw and analyzed) reported in this paper is GEO: GSE106182.
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