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ABSTRACT 

The effect of childhood obesity on medical costs incurred by the Australian Government is 

estimated using five waves of panel data from the Longitudinal Study of Australian Children, 

which is linked to public health insurance administrative records from Medicare Australia. 

Instrumental variables estimators are used to address concerns about measurement error and 

selection bias. The additional annual medical costs due to overweight and obesity among 6 to 

13 year olds is about $43 million (in 2015 AUD). This is driven by a higher utilisation of 

general practitioner and specialist doctors. The results suggest that the economic consequences 

of childhood obesity are much larger than previously estimated. 
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1. Introduction 

Childhood obesity is considered one of the most serious public health challenges of this century. 

One in four Australian children are overweight or obese, with many high income countries 

experiencing similarly high prevalence rates (OECD 2014). Childhood obesity is concerning 

not only because of the high risk of persistence into adulthood, but also the elevated risk of 

serious health conditions during childhood. These conditions include asthma, sleep apnea, bone 

and joint problems, hypertension, high cholesterol, type 2 diabetes and psychological problems 

(Reilly et al. 2003; Daniels 2006). Given a majority of health expenses in Australia are funded 

by the public purse (AIHW 2016), Australian policy makers are particularly interested in the 

medical costs attributable to obesity. Information on such costs not only allow health insurers 

to predict future health care expenses, but they also provide evidence that is needed for 

assessing the short-term value to governments and the wider society of childhood obesity 

prevention and treatment programs.  

Over the past decade, several studies have examined the health care costs associated 

with childhood and adolescent overweight and obesity (e.g. Johnson et al. 2006; Monheit et al. 

2009; Breitfelder et al. 2011; Au 2012; Wenig 2012; Turer et al. 2013; Batscheider et al. 2014; 

Wright and Prosser 2014; Clifford et al. 2015). A majority of studies find obesity in childhood 

or adolescence to be correlated with higher health care expenses.1 While informative, one 

limitation of previous studies is that they are unable to infer causality; that is, to determine the 

costs that are attributable to obesity, and not merely associated with obesity.  

There are three potential reasons why ordinary least squares (OLS) estimates of the 

costs of obesity may suffer from bias: i) omitted variables; ii) reverse causality; and iii) 

measurement error. The direction of bias due to omitted variables (or unobserved confounders) 

                                                 
1 An insignificant correlation has been reported by a few studies using the Medical Expenditure Panel Survey 
(MEPS) in the United States (Skinner et al. 2008; Turer et al. 2013; Wright and Prosser 2014) 
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is a priori unclear. For example, unobserved factors (such as poor parental health literacy or 

geographically remote neighbourhoods) may be correlated with both a higher likelihood of 

obesity and with lower utilisation or access to health care services among children. This would 

imply a negative selection bias and an underestimate of medical costs caused by obesity. 

Similarly, unobserved medical conditions such as cancer or autoimmune diseases (e.g. celiac 

disease) could explain both a lower likelihood of obesity (Collins et al. 2000; Fasano and 

Catassi 2005) and a greater utilisation of health care. On the other hand, there may be a positive 

bias if other medical conditions (such as depression or anxiety) lead to both an increase in 

weight (e.g. through emotional eating or medication side-effects) and health care utilisation.  

Reverse causality (or simultaneity bias) may occur if a visit to the doctor results in a 

treatment program or drug that affects the child’s weight. The direction of bias resulting from 

this could go in either direction. Finally, measurement error, which can arise if a child’s 

adiposity is measured imprecisely, is concerning because it can lead to an underestimate of the 

costs caused by obesity. Previous studies examining the consequences of obesity have 

traditionally recognised that using body mass index (BMI) that is derived from self- or parent-

reported height and weight may suffer from measurement error. This is not a concern in our 

study as we use BMI derived from clinically measured height and weight. However, we raise 

another source of measurement error in BMI, which arises due to the normal changes in weight 

relative to height as children grow and physically mature (Horlick 2001). Such short-term 

fluctuations imply that BMI measured at any one point in time may not accurately reflect a 

child’s adiposity; increases in BMI may be due to both increases in fat mass and fat-free mass 

(Lindsay et al. 2001; Maynard et al. 2001; Freedman et al. 2004).  

   This study aims to address these potential biases by employing an instrumental 

variables (IV) estimator to determine the effect of childhood obesity on health care costs 

incurred by the Australian Government. We build on recent studies that have used an IV 
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approach to determine the impact of obesity on health care utilisation (Cawley and 

Meyerhoefer 2012; Biener et al. 2017; Doherty et al. 2017; Kinge and Morris 2017). Cawley 

and Meyerhoefer (2012) estimate the medical costs caused by adult obesity in the United States 

using the weight of a biological relative as the instrumental variable. They show that the 

estimated effect of adult obesity on medical costs is much greater than previous non-IV 

estimates suggested. Using the BMI of biological parents as instruments for child’s BMI, Kinge 

and Morris (2017) find that childhood obesity increases the probability of a doctor visit and 

medications usage in England. Doherty et al. (2017) using the biological mother’s BMI as an 

instrument, find that in Ireland, obesity increases the probability of a GP visit and hospital stay 

among adolescents. Biener et al (2017) also instrument for child’s BMI using the biological 

mother’s BMI and find that obesity increases medical costs in the United States to a much 

larger extent than previously estimated.  

Our study uses a similar approach to investigate the causal effects of childhood obesity 

on publically-funded health care costs in Australia. We use the body mass index (BMI) of the 

child’s biological parents to instrument for the child’s BMI.  A key strength of this study is the 

use of panel data on a representative sample of Australian children, with measured height and 

weight of each child linked to government administrative records on the child’s health care 

utilisation and costs. We ensure that health care costs are incurred after weight is measured to 

reduce reverse causality concerns, and utilise the richness of the dataset to control for a wide 

range of child and parental characteristics that may influence health care seeking behaviour. In 

addition, we provide new insight into the longer-term costs attributable to childhood obesity 

by investigating how a higher BMI at age 6/7 affects health care costs over the next eight years 

that follow.  

We find that a heavier BMI significantly increases the total health care costs incurred, 

and the effect is considerably higher than the estimated association using ordinary least squares. 
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Falsification tests using BMI of step-parents support the validity of the instrumental variables, 

and robustness checks using information on a range of health conditions provides additional 

support for our instruments. We show that the increase in health care costs is largely driven by 

higher general practitioner and specialist visits, and is not due to mental health, dental, 

pathology, diagnostic or other services. Our estimates suggest that overweight and obesity in 

children aged 6 to 13 cost the Australian government approximately $43.2 million annually (in 

2015 AUD) over and above the costs for children of normal weight for non-hospital health care 

services. This indicates that the short-term economic consequences of childhood obesity arising 

from health problems alone is considerable and a failure to take this into account in economic 

evaluations of obesity reduction programs may lead to a substantial underestimate of the 

economic returns from investing in such programs.    

 

2. Data 

2.1   The Longitudinal Study of Australian Children 

The Longitudinal Study of Australian Children (LSAC) is a biennial representative panel 

survey of Australian children, which began in 2004 (see Soloff et al., 2005, for a detailed 

description of the study design). Briefly, postcodes were stratified by Australian State/Territory 

and by metropolitan and nonmetropolitan area. Postcodes from each strata were randomly 

selected, and within each postcode, children in the required age cohort were randomly selected 

from the Medicare enrolment database. Only one child per family was eligible for inclusion in 

the sample. This study uses data from the first five waves (2004 to 2012) of children from 

Cohort K, who were aged 4-5 years in the first wave. Of the original Wave 1 sample, the 

response rate for Waves 2, 3, 4 and 5 was 90%, 87%, 84% and 79% respectively, which is 

similar to other longitudinal studies of children (such as the Millennium Cohort Study in the 
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U.K.). Data on the child and their family’s social circumstances were collected through a face-

to face interview with the child’s primary carer. More sensitive information from the parents 

was collected using self-completion questionnaires.  

Physical measurements of the child’s height and weight were taken during the interview 

using digital scales and a stadiometer. These were used to calculate the child’s BMI (kg/m)2. 

In the main analyses, BMI z-scores, based on CDC growth charts (Kuczmarski et al. 2002) are 

used. BMI z-scores are more flexible than binary indicators of BMI categories, and still allow 

us to make health care cost predictions in terms of children who are overweight or obese. We 

test for non-linearity in the relationship between BMI z-scores and health care costs by 

including squared terms. For the descriptive analyses, children are categorised into 

underweight, normal weight, overweight and obese using international age- and gender-

specific cut-points (Cole et al. 2000).  

Because our approach utilises the height and weight of both biological parents in wave 

1, the main sample is restricted to 3,458 children who have biological parents with height and 

weight information at wave 1 (69% of total sample).2    

2.2.  Medicare Records 

Medicare is Australia’s publicly funded universal health insurance system. It provides free or 

subsidised health care to all citizens and permanent residents. The LSAC data is linked to 

Medicare records, which includes complete data on medical services funded under the 

Medicare Benefits Schedule (MBS) and pharmaceutical subsidies funded under the 

Pharmaceutical Benefits Scheme (PBS).  

Under the MBS, predetermined Medicare benefits are paid by the Australian 

Government for clinically relevant professional services. These include (but are not limited to) 

                                                 
2 Wave 1 contains the most complete information on the BMI of biological parents, so the use of wave 1 BMI 
allows us to maximise sample size. In a sensitivity analysis, we use only the biological mother’s BMI from wave 
1, which allows us to further increase the sample size to 3,955 children.  
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consultations by general practitioners and specialists, diagnostic and imaging, pathology, 

dental services and some allied health services. The benefit amount is applied nationwide. In a 

majority of cases (about 80% of all services), health practitioners charge exactly the benefit 

amount (known as bulk billing), and patients receive free health care at the point of service 

delivery. Where doctors choose to charge a fee above the Medicare benefit, patients will pay 

the difference out-of-pocket. Bulk billing incentives are also financed through the MBS. These 

provide additional payments to practitioners for bulk billing primary care services to children 

under 16 and concession card holders. The MBS also covers hospital services that are provided 

in private hospitals, however, because public hospital costs are not included in MBS records, 

we exclude all hospital services from this study. Inpatient services are relatively uncommon 

for this age group (about 4% of children reported staying in a hospital in a 12 month period). 

To provide some understanding of the effect of obesity on hospital services, we provide 

supporting evidence on the probability of a hospital stay (see Section 4.6). 

The PBS covers eligible prescription drugs for most medical conditions. It excludes 

over-the-counter medicines and in-hospital prescription drugs. The amount paid by the 

Government under the PBS equals the difference between a fixed patient copayment and the 

listed drug price (which are both indexed annually and applied nationwide).  

A sample of 4,534 LSAC children (93%) were successfully linked to Medicare records 

in Wave 1. A total Medicare cost is calculated by adding the annual costs for non-hospital 

services and pharmaceuticals incurred by each child under the MBS and PBS. Costs are 

adjusted to 2015 AUD. We exploit the longitudinal nature of the data to mitigate reverse 

causality by taking all costs from the 12-month window following the child’s height and weight 

measurement at each wave. In any given year, approximately 81% of children aged 6 to 13 

incur Medicare costs. This largely reflects utilisation of medical services (81% incur MBS costs 
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while only 19% incur PBS costs). A majority (91%) of Medicare expenses are through MBS 

in our data.     

 

Figure 1. Nonparametric regression of total costs on BMI 

 
Note: Total costs comprises of MBS and PBS expenses for the year following BMI measurement. Costs are 
adjusted for inflation and are in 2015 Australian dollars. Data is for the pooled sample (age 6 to 13), N=11,506. 
The dashed lines indicate the approximate cut-points for the BMI categories using age and gender specific cut-
offs from Cole et al.(2000): Underweight is to the left of the first line, normal weight is between the first two lines, 
overweight is between the second and third lines, obesity is to the right of the third line. 

 

 

Estimated nonparametric regressions between BMI z-scores and total costs are shown 

in Figure 1. The vertical dashed lines indicate the approximate cut-offs for BMI categories: 

underweight, normal overweight and obese. The figure shows that there is a shallow U-

shaped relationship between BMI and total Medicare costs, with average costs reaching the 

lowest level at around BMI z-score of 0 (the mean BMI for normal weight), and increasing as 

children move away from the normal weight range. The positive association between costs 

and BMI is particularly pronounced as BMI z-scores increase above 1 (overweight and obese 
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categories). There is much greater variation in costs for BMI z-scores below -1 (underweight 

category). Due to this large variation among children in the underweight category and the 

potential for underweight children to have health problems, we exclude underweight children 

(6% of our analysis sample). This allows the study to focus on the objective of estimating the 

excess medical costs due overweight and obesity.   

The mean total Medicare costs per year by BMI category and age are shown in Table 

1. Column (1) shows that on average, across ages 6 to 13, total costs are greater for children in 

heavier BMI categories. Children with obesity incur $299 per year in non-hospital Medicare 

costs, which is $61 (26%) more than children of normal weight. Overweight children incur $29 

(12%) more than normal weight children. Columns (2) to (5) show that on average, the 

inflation-adjusted costs for each BMI category increase as children get older. The difference in 

mean costs of obesity (or overweight) compared with normal weight are statistically significant 

at all ages except age 12/13 (column 5).   

 

Table 1. Mean total cost by BMI group and age 

 (1) (2) (3) (4) (5) 
 Pooled  

(Waves 2-5) 
 Age 6/7 
(Wave 2) 

Age 8/9 
(Wave 3) 

Age 10/11 
(Wave 4) 

Age 12/13 
(Wave 5) 

Normal 237.8 189.3 230.3 254.7 290.1 
 (4.43) (5.72) (8.38) (10.90) (10.66) 
Overweight 267.1 219.7 261.2 266.2 309.0 
 (9.37) (14.38) (17.35) (18.60) (21.43) 
Obese 298.7 229.4 309.3 327.7 319.3 
 (20.37) (29.89) (47.77) (36.02) (42.80) 
N 10804 2858 2804 2633 2509 

Note: Robust standard errors in parentheses. Total cost comprises of MBS and PBS expenses for the year 
following BMI measurement. Costs are adjusted for inflation and are in 2015 Australian dollars. Sample 
includes children who incurred zero costs. Underweight children are dropped from the sample. Survey 
weights are used for mean calculations. 
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3. Empirical Strategy 

3.1  Instrumental Variables Approach  

The main challenge with estimating the effect of childhood obesity on health care costs is the 

possibility of unobserved confounders such as other health conditions and illness, access to 

health care services, family environment and parents’ attitudes and behaviour. The presence of 

such unobserved confounders means that estimates from OLS models may be biased. In the 

absence of an experiment which randomises children into differing levels of BMI (or obesity 

status), we must rely on observational data and methods that allow us to emulate randomisation 

of children’s BMI. The instrumental variables approach, and the use of body weight of 

biological relatives as instruments has been used previously to estimate the labour market 

consequences of obesity (e.g. Cawley 2004; Lindeboom et al. 2010), and more recently, to 

estimate the effect of obesity on medical costs (Cawley and Meyerhoefer 2012). The use of a 

biological relative’s weight takes advantage of the genetic variation in the propensity for 

obesity. Specifically, it aims to exploit ‘Mendelian randomisation’, which refers to the random 

assignment of an individual’s genotype at conception. An important feature of Mendelian 

randomisation is that the genetic variation in the propensity for obesity captures differences in 

obesity that are persistent throughout the individual’s life and therefore can be used to reduce 

measurement error bias that arises due to short-term fluctuations in BMI (Davey Smith and 

Ebrahim 2005).  

Following the approach of previous studies, we use the BMI of biological parents as 

instruments for the child’s BMI.  The use of parents’ BMI as instruments, instead of siblings, 

has the advantage of not limiting our estimation to a sample of children who have siblings. 

Specifically, we take the BMI of the child’s biological mother and biological father, which are 

calculated from self-reported height and weight, from the first wave of LSAC in 2004. By 

taking the height and weight observed at Wave 1 and using the child’s BMI observed from 



 11

Wave 2 onwards, we reduce the possibility that the relationship between the parents’ BMI and 

child’s BMI is due to contemporaneous shocks or operating in the direction from child to parent. 

Wave 1 contains the most complete information on the BMI of biological parents, so the use 

of parental BMI from wave 1 (instead of contemporaneous waves) also allows us to maximise 

sample size. This measure from wave 1 is used even if parents separate in later waves and 

therefore does not restrict the estimation sample to households with two biological parents. Our 

preferred model includes BMI of both biological parents because 50% of a child’s 

chromosomes are inherited from each parent. In sensitivity analyses, we estimate the IV models 

using only the biological mother’s BMI from wave 1 (this allows a slightly larger sample due 

to more complete data on mother’s BMI), and we further estimate IV models using either 

biological mother or father’s BMI as a single instrument for our main estimation sample.  

In order for the chosen instruments to be suitable, they must strongly predict the child’s 

BMI. That roughly 45 to 75% of the variation in bodyweight across individuals has been 

attributed to genetics (Farooqi and O’Rahilly 2007), suggests that the BMI of biological parents 

is likely to be powerful predictor of the child’s weight. One limitation is that parental BMI is 

derived from self-reported height and weight and may therefore be measured with error.3 Many 

studies demonstrate that BMI from self-reported height and weight is highly correlated with 

measured BMI (e.g. Stunkard and Albaum 1981; Spencer et al. 2002) and thus is still likely to 

be a strong predictor of child’s BMI. The large F-statistic in our first-stage regression (shown 

in Section 4.1, Table 2), which surpasses the conventional minimum of 10 (Stock et al. 2002) 

supports the strength of our instruments. Chalak (2017) suggests a mismeasured instrument 

can be used to provide consistent IV estimates, provided the exclusion restriction is satisfied 

(as is required in any IV model). 

                                                 
3 Studies have shown that the error is non-classical; there is a tendency for self-reported height and weight to 
result in an underestimation of BMI (Cawley et al. 2015).    
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3.2    Instrument validity 

The use of parents’ BMI as instruments relies on the exclusion restriction assumption; that they 

are uncorrelated with the error term in the second stage equation after controlling for the child’s 

BMI and other covariates. The validity of the instruments would be questionable if both the 

parent and child’s BMI were influenced by a third factor (such as household environment or 

parental health habits/preferences) which is also correlated with unobserved determinants of 

the child’s health care utilisation. One might be concerned by the possibility that a parent’s 

health preferences and habits create a household environment that influences body weight for 

the whole family (e.g. through family meals/snacks, and physical activity habits). These same 

parental health preferences could conceivably influence decisions around seeking health care 

for their child.       

As discussed in earlier papers (e.g. Cawley 2004; Lindeboom et al. 2010; Cawley and 

Meyerhoefer 2012), despite widespread belief in the importance of a shared home environment 

in predicting body weight and obesity, the evidence from studies on adopted children and twins 

overwhelmingly suggests that the there is no (or very little) relationship between the two 

(Stunkard  et al. 1986; Grilo and Pogue-Geile 1991; Price and Gottesman 1991; Sørensen and 

Stunkard 1993; Vogler et al. 1995; Maes et al. 1997; Wardle et al. 2008; Haberstick et al. 2010).  

For example, Stunkard  et al. (1986) found that there was “no relation between the index 

of adoptive parents and the adoptee weight class” (p.193), and concluded that “genetic 

influences have an important role in determining human fatness in adults, whereas the family 

environment alone has no apparent effect” (p.193). The BMI of adoptive parents is assumed to 

capture the relevant family environment (i.e., non-genetic factors) for determining body weight, 

which is likely to include parental habits and attitudes to health.  
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In a review of the environmental influences on weight and obesity, Grilo and Pogue-

Geile (1991) determined that “experiences that are shared among family members appear 

largely irrelevant in determining individual differences in weight and obesity” (p.520). More 

recent evidence suggests that the same finding applies to preadolescent children for whom the 

family home is a contemporaneous environment, and who are growing up during a time of 

dramatic rises in childhood obesity rates (Wardle et al. 2008). This is particularly relevant for 

the cohort in the current study.  The current evidence suggests non-genetic variation in parents’ 

weight is unlikely to influence the child’s weight. We are confident that there is enough support 

for the validity of the BMI of biological parents, especially with the inclusion of a range of 

parental characteristics that are likely to capture health preferences (i.e., age, education level, 

employment status, smoking status and depression score) as covariates. In addition, the use of 

both parent’s BMI as instruments allows us to conduct Hansen J tests of overidentifying 

restrictions; these tests are consistent with the validity of the instrument.  

Nevertheless, we conduct falsification tests using BMI from the child’s step-father (see 

Section 4.3) and these results all indicate that there is no correlation between the family 

environment relevant for weight (proxied by the step-parent’s BMI) and the child’s BMI, 

providing further support that the validity assumption holds in our sample.  

A further threat to the validity of the instruments lies in the specific functioning of the 

genes associated with obesity, in particular, the mechanisms through which they affect our 

outcome of interest (see von Hinke et al. 2016 for a detailed discussion). If the genetic variants 

related to adiposity are co-inherited with other genetic variants (known as linkage 

disequilibrium) or affect multiple traits or risk factors (known as pleitropy) that directly affect 

health care utilisation, then the exclusion restriction assumption of the instruments may not 

hold (Davey Smith and Ebrahim 2005; von Hinke et al. 2016). Linkage disequilibrium and 

pleitropy will only lead to biased IV estimates if there is a direct effect on health care utilisation; 



 14

if the adiposity-increasing genes are linked with other genes or functions that only influence 

health care utilisation via its effect on obesity, then the IV estimates will be consistent (Sheehan 

et al. 2008).   

Although knowledge of the genetic architecture of common diseases is increasing, we 

do not yet have a complete understanding of the physical functions of genes involved in disease 

risk (Altshuler et al. 2008), and therefore we cannot know with certainty whether linkage 

disequilibrium or pleitropy are invalidating our instruments. However, in order to provide some 

evidence on the extent to which these potential threats to validity are influencing our estimates, 

we estimate falsification tests (in Section 4.3) using information on the child’s health 

conditions. The idea behind the falsification tests is that an effect of child BMI on health 

conditions that are supposedly unrelated to obesity may signal linkage disequilibrium or 

pleitropy.  

A third biological process, which the Mendelian randomisation literature suggests may 

lead to biased IV estimates, is ‘canalisation’. This refers to the dampening of the effects of 

genetic variation during development via compensatory processes (Davey Smith and Ebrahim 

2003). For example, due to canalisation, an individual who has a genetic variant associated 

with obesity may not experience adverse health outcomes, despite having obesity. Because the 

genotype influences health outcomes through alternative channels (not via obesity), it can 

violate the exclusion restriction assumption. Canalisation can lead to an attenuation of the 

estimated IV estimates (Dixon et al. 2016). However, testing for this is difficult because a child 

may still have obesity, but would not experience adverse health outcomes normally caused by 

obesity.   
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3.3  Two-part model of health care costs 

We estimate a two-part model of health care costs (e.g. Mullahy 1998; Jones 2000), which 

involves estimating the probability of incurring positive Medicare costs, followed by 

estimating the amount of health care costs, conditional on incurring any. We specify the first 

part as a linear probability model (LPM) and the second part as a linear model of log costs.4   

In essence, the predicted probabilities from the first part of the model are multiplied with the 

predicted costs from the second part to derive unconditional predicted costs.   

The distribution of the residuals in the log-linear model for costs are approximately 

normally distributed (skewness 0.11, kurtosis 2.66) and a conventional Park test on the log-

scale residuals indicates there is no heteroscedasticity by BMI or any of the other continuous 

variables (age, mother’s age, SEIFA index). Nevertheless, to transform predictions from the 

log-linear model into costs, we apply an adjusted Duan smearing estimate (Veazie et al. 2003), 

which increases the precision of the transformed estimates when the distribution of the error 

term is non-normal or unknown (Duan 1983; Manning 1998; Manning and Mullahy 2001). The 

smearing estimate is the predicted variance based on the regression of the squared residuals on 

the predicted health care costs from the log linear model. After application of the smearing 

estimate, our mean transformed predicted costs are near identical to mean actual costs.  

To determine the additional health care costs of children with overweight or obesity, 

costs are predicted for children in normal weight, overweight and obese categories by setting 

the BMI z-score equal to the mean z-score of children in the relevant weight category. For 

example, for the pooled sample, the mean BMI z-score equalled 0.13, 1.45 and 2.15 for normal, 

                                                 
4 Specifying the first part as a logit model provides identical estimates to the LPM. Both parts of the two-part 
model are estimated by linear IV methods using Stata user-written code ‘ivreg2’ (Baum 2002). An alternative 
approach that is commonly used in models of health care costs is a generalised linear model (GLM), however the 
log linear model produced a better or near-identical fit for our data when compared with GLMs. We compared 
the model fit of GLMs with gamma and poisson distributions with log, power (0.5), and power (-1) links by 
examining the skewness of the residuals, the Pearson correlation between the residuals the predicted cost values, 
Link test, the mean prediction error, mean absolute prediction error, root mean square error and Copas test with 
v-fold cross validation for out-of-sample performance and over-fitting.   
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overweight and obese categories respectively. The predicted cost when BMI z-scores were set 

to ‘obese’ (or ‘overweight’) were subtracted from the predicted cost when BMI z-scores were 

set to ‘normal’ to give the additional cost attributable to obesity (overweight). Costs were 

predicted for each child and then averaged over the population of children. Standard errors 

were calculated using the bootstrap method (500 replications) which takes into account the 

sampling design. 

In all regression models, we include a rich set of control variables. Demographics: 

gender, age (in months), ethnicity proxied by language spoken at home (English, European, 

Asian or other), and number of older/younger siblings. Early childhood/in utero environment: 

whether birth weight was low (<2500g), whether child was breast fed at 6 months and whether 

mother smoked while pregnant with respondent. Socioeconomic background: whether parent 

is single, health care concession status, measure of neighbourhood deprivation (SEIFA index), 

income quintiles, state or territory, geographical area (city, inner regional, remote or rural), 

mother and father’s education level (university, diploma, high school, below high school). 

Because mother’s characteristics can influence the child’s health as well as the decision to seek 

treatment for the child, we include the following mother’s characteristics: age, employment 

status (full-time employed, part-time employed, unemployed, not in the labour force), K-6 

depression scale score (1-5), current smoker. Wave fixed effects were included for all pooled 

models. The descriptive statistics of the control variables are shown in the Appendix Table A1. 

To maintain sample size, missing variable dummies were included for household income, 

mother’s smoking status (while pregnant and current), breast fed status, father’s education, 

mother’s employment and mother’s depression scale. Respondents with missing values for 
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these variables were coded as zero and indicators for these observations are included in the 

models.5 

We estimate the predicted costs for the pooled sample (from ages 6/7 to 12/13, with 

standard errors clustered at the individual level), and for each separate age group.  The effect 

of obesity on total Medicare costs are estimated first, followed by a breakdown of costs by 

medical services (MBS) and Pharmaceuticals (PBS). 

 

4. Results 

4.1 Instrumental variables estimates – the effect of obesity on total Medicare costs     

The main results for each part of the two-part model of health care costs are shown in Table 2. 

Columns (1) and (2) show the estimates from the reduced form equations, which regress child’s 

health care costs on the two instruments (mother and father’s BMI). These show that the 

instruments are not significantly associated with the probability that the child incurs any 

Medicare costs (column 1), but are positively associated with costs among children who incur 

Medicare costs (column 2). In the latter equation, mother and father’s BMI are jointly 

significant (p=0.01), with father’s BMI being a stronger predictor than mother’s BMI.6   The 

results from the first stage regression of the IV estimator are shown in Panel A of columns (3) 

and (4). The results show that for both the total sample (3) and the conditional sample (4), the 

BMI of both parents are highly correlated with the child’s BMI – a one unit increase in BMI 

increases the child’s BMI z-score by about 0.04 standard deviations. It is noteworthy that both 

parents’ BMI are strong predictors, with father’s BMI a slightly stronger predictor than 

                                                 
5 Using the sample with complete observations for all covariates (n = 9,055) results in very similar, but slightly 
larger coefficient estimates. 
6 To allow more comparability with the size of the IV structural equation estimates, the coefficient estimates from 
the reduced form equation after standardising the mother and father’s BMI (mean = 0, SD=1) were 0.025 and 
0.033 respectively.  
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mother’s BMI. The partial F-statistic for the instruments ranges from 116 to 134, which 

suggests that the instruments are powerful predictors of the child’s BMI.  

In Appendix Table A2 we show, using quantile regressions of the first stage equation, 

that the mother and father’s BMI are strong and stable predictors of the child’s BMI across the 

distribution of child’s BMI, including in the upper tail associated with childhood obesity. In 

Appendix Figure A1, we plot the relationship between health care costs and child’s BMI, 

comparing the actual BMI z-scores with fitted values (from the first stage equation) using 

locally weighted scatterplot smoothing. The figure shows that, compared to actual BMI values, 

predicted BMI z-scores show a steeper gradient with health care costs, suggesting negative 

selection bias. It also shows that the relationship between health costs and BMI (both actual 

and predicted) appears linear, especially over the relevant positive range of BMI z-scores. 

The results from the second stage equation are shown in Panel B for the probability of 

incurring positive costs (column 3) and the log of costs (column 4). For both parts of the model, 

the large p-values of the Hansen J statistic provide support for the assumption that the 

instruments are valid.  The effect of child’s BMI on the probability of incurring any Medicare 

costs is small and insignificant. However, BMI has a large and positive effect on conditional 

costs (p<0.01). It shows that a one standard deviation increase in BMI z-scores leads to 

approximately a 17% increase in costs.7  

For comparison, OLS estimates (of the linear probability model for part one and linear 

model for part two of the health care cost model) are shown in columns (5) and (6) respectively.  

The effect in part one of the model is similarly small and statistically insignificant. The effect 

                                                 
7 Sensitivity analyses that use only the biological mother’s BMI or only the biological father’s BMI as a single 
instrument give similar results. Using the same sample, the effect of child’s BMI on conditional costs is about 14% 
using mother’s BMI and 19% using father’s BMI (p<0.05). The 95% confidence intervals of these estimates 
overlap. Using just the biological mother’s BMI in a larger sample of children (not restricted to also having 
biological father’s BMI data), the effect of child’s BMI on conditional costs is also similar at about 18%  (p<0.01), 
suggesting our main effects are not influenced by the smaller sample size used.   
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in part two is positive and highly significant, but considerably smaller in size to the IV estimates; 

here a standard deviation increase in BMI z-score is associated with a 6% increase in costs. 

For another point of comparison, we present estimates from a within-child fixed effects 

(FE) estimator in columns (7) and (8). The FE estimates are considerably smaller than the IV 

(and OLS) estimates and statistically insignificant for both parts of the health care cost model. 

This estimator essentially measures the relationship between changes in a child’s BMI z-scores 

and changes in their health care costs from one wave to the next. It controls for all time-

invariant characteristics of the child and parent, including potential confounders such as 

personality traits and health preferences. However, it will also sweep out the time-invariant 

contribution of genes related to obesity. This means, the FE estimator is identified differently 

to the IV estimator; i.e., from non-genetic variations in a child’s BMI over time. We therefore 

do not emphasise comparisons between the IV and FE estimates. Additionally, if measurement 

error in BMI is present, then the FE estimator will exacerbate the downward bias due to 

measurement error. The FE estimator will also produce biased estimates if there are unobserved 

time-varying factors that affect both the child’s BMI and their health care utilisation (e.g. a 

change in sport participation or injuries).  
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Table 2. Estimates from reduced-form equation IV, OLS and FE estimators   
 

 Reduced Form Instrumental variables 
(IV) 

Non-IV  
(OLS) 

Fixed-Effects  
(FE) 

 (1) 
 Part one: 

Positive costs 

(2) 
Part two: 
Log costs 

(3) 
 Part one: 

Positive costs 

(4) 
Part two: 
Log costs 

(5) 
 Part one: 

Positive costs 

(6) 
Part two: 
Log costs 

(7) 
 Part one: 

Positive costs 

(8) 
Part two: 
Log costs 

A)   First Stage     
 Child’s Medicare costs Child’s BMI z-score     
    Mum’s BMI in wave 1 0.001 0.005 0.036*** 0.035***     
 (0.001) (0.003) (0.003) (0.003)     
    Dad’s BMI in wave 1 0.001 0.008** 0.038*** 0.039***     

 (0.001) (0.004) (0.004) (0.004)     
    F-stat of instruments   134.35 116.25     

         
B)   Second Stage     

   Child’s Medicare costs     
    BMI z-score   0.017 0.165*** 0.005 0.057*** -0.000 0.038 

   (0.018) (0.055) (0.006) (0.017) (0.011) (0.030) 
         
Hansen J p-value   0.979 0.424     

         
Observations 10804 8688 10804 8688 10804 8688 10804 8688 

Notes: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01. Models are pooled over ages 6-13 (i.e., waves 2-5). Child’s Medicare costs comprise of 
MBS and PBS expenses for the year following BMI measurement. All models control for the full set of covariates. Underweight are excluded from regressions. Instruments 
in IV model are child’s biological mother and father’s BMI, measured at wave 1.  
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To test for possible non-linearity in the relationship between child’s BMI and health 

care costs, we add the square of BMI z-scores in both the OLS and IV models. The OLS results 

are very similar to that in Table 2: the estimated association between a one standard deviation 

increase in BMI z-scores and health care costs is jointly insignificant for part one and 0.056 

(jointly significant, P=0.013) for part two. For the IV model, BMI z-score and its square are 

jointly insignificant for part one and for part two the estimated effect of BMI z-scores is 0.394 

(jointly significant at the 10% level, P=0.063). BMI squared is not statistically significant in 

any of the models. Compared with the model including the BMI squared term, our main model 

performs better on model fit tests, including mean prediction error, mean absolute prediction 

error, root mean square error and the Copas test with v-fold cross validation. Further checks 

with the reduced form model indicate that father and mother’s BMI squared are not significant 

predictors of the child’s health care costs. Therefore, our preferred model specification does 

not include BMI squared terms.  

Our IV estimates are considerably larger than the OLS estimates. This difference 

between IV and OLS estimates is in line with previous studies that use an IV estimator to 

determine the effect of BMI on health care utilisation (Cawley and Meyerhoefer 2012; Biener 

et al. 2017; Doherty et al. 2017; Kinge and Morris 2017). The impact of measurement error on 

the OLS estimates is one possible explanation for this difference. By exploiting genetic 

variation in BMI, the IV models capture the long-term effects of BMI (Davey Smith and 

Ebrahim 2005). This means they avoid problems of short-term fluctuations in BMI and 

measurement error, which would downwardly bias OLS estimates (Davey Smith and Ebrahim 

2005). Short-term fluctuations in BMI are likely to be particularly relevant in our population 

due to growth spurts and normal variations in height and weight gain during childhood (He and 

Karlberg 2001; Maynard et al. 2001).     
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The larger IV estimates could also imply that there are unobserved confounders that 

lead to an under-utilisation of health care services for children with obesity, i.e., negative 

selection bias. It is possible that there are greater barriers to accessing health care services in 

areas where obesity is more prevalent, for example in rural and remote regions or in low 

socioeconomic neighbourhoods. Qualitative studies on rural and remote Australian adolescents 

have shown that a number of difficulties in accessing health care exist, including: limited 

number of health care providers, high waiting times, longer distances to travel, a lack of reliable 

transport, higher out of pocket costs and limited choice of providers (Quine et al. 2003; Aisbett 

et al. 2007). Concerns about a lack of anonymity and social stigma may further contribute to 

an underutilisation of health services, especially in small communities (Quine et al. 2003; 

Aisbett et al. 2007).  

We test whether poorer access to health care in rural communities is a plausible 

explanation for the larger IV estimates by comparing the downward bias in OLS estimates in a 

subsample of urban/city dwellers (N=5835) with non-urban (regional, rural or remote area) 

dwellers (N=4969). We find that the downward bias in OLS estimates is considerably larger 

among children who live in non-urban areas; for the conditional costs, the IV estimate (0.16) 

is 9.7 times the size of OLS estimates, whereas for children in urban areas, the IV estimate 

(0.17) is only 1.9 times the size of OLS estimate (see Appendix Table A3).          

Other possible explanations for the larger IV estimates compared with OLS estimates 

include health neglect, which would suggest that parents (or children themselves) underinvest 

in all things health-related (including good nutrition and health care), or the presence of medical 

conditions (such as cancer or autoimmune diseases) that lead to both higher medical costs and 

a lower BMI (e.g. through loss of appetite). 
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4.2 Predicted costs of overweight and obesity     

The predicted annual total Medicare costs that are attributable to overweight and obesity for 

the pooled sample and by age group are shown in Table 3. Estimates from the pooled OLS 

(non-IV) models, shown for comparison in column (1), suggest that overweight and obesity 

are associated with about a $21 and $33 higher total Medicare cost respectively, compared with 

a child who is normal weight. After taking into account unobserved confounders, the IV 

estimates in column (2) show that on average, compared to a child who is normal weight, an 

overweight child costs Medicare $63 (28%) more, and an obese child costs $103 (45%) more 

per year in non-hospital costs. Columns (3) to (6) show that the costs due to overweight are 

significantly higher across all childhood ages, but for obesity, there is greater variance in the 

costs and therefore significant differences are only seen in younger ages. The costs attributable 

to both overweight and obesity are greatest at age 6/7; compared to being normal weight, 

overweight costs an additional $81 (46%) and obesity an additional $143 (81%) at age 6/7.  

 
Table 3. Predicted annual total Medicare costs per child by BMI category and age  
 Non-IV  IV 
 (1)  (2) (3) (4) (5) (6) 
 Pooled  Pooled Age  

6/7 
Age 
 8/9 

Age 
10/11 

Age 
12/13 

Annual cost ($):        
Normal 240.53  226.84 175.52 222.22 237.96 283.97 
 (5.273)  (7.525) (7.516) (10.985) (12.543) (15.437) 
Overweight 261.34  289.33 256.13 283.04 305.19 314.65 
 (6.666)  (16.906) (30.005) (26.506) (25.655) (29.564) 
Obese 273.17  329.73 318.33 322.40 345.65 331.88 
 (9.499)  (33.559) (58.986) (47.824) (53.055) (51.349) 
Cost above normal 
weight ($): 

       

Overweight 20.76  62.50 80.61 60.82 67.23 30.68 
 (6.065)  (21.930) (7.805) (10.374) (11.414) (11.828) 
Obese 32.65  102.90 142.81 100.19 107.69 47.91 
 (9.761)  (38.950) (64.119) (55.538) (62.418) (62.812) 
 10804  10804 2858 2804 2633 2509 

Note: Bootstrapped standard errors in parentheses. Estimated from two part models. All models include the full 
set of covariates. Pooled models are ages 6-13 (waves 2-5). Obese, overweight and normal weight are defined as 
the average BMI z-score for that BMI category in the relevant year. Adapted Duan smearing factor is applied to 
the transformed cost estimates. Costs are in 2015 AUD. 
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4.3  Falsification tests 

4.3.1   Testing for non-genetic influences 

To assess the credibility of our instrumental variables approach, we first test whether we would 

get similarly strong first stage estimates if we used the BMI of parents who are not biologically 

related, but live in the same household. If a large amount of variation in BMI is indeed due to 

non-genetic variation in parental preferences and the household environment, then we might 

expect the BMI of a step-parent to be equally as strong as that of a biological parent. 

  

Table 4. Estimates from the first-stage equation – examining the role of stepfather’s BMI in 
determining child’s BMI  
 

 (1) (2) 
   
Father's BMI 0.049*** 0.039*** 
 (0.004) (0.004) 
Step-father 1.106** 0.991** 
 (0.485) (0.470) 
Step-father x Father's BMI -0.044*** -0.039** 
 (0.017) (0.016) 
Biological Mother's BMI  0.034*** 
  (0.003) 
Observations 8943 8850 

Note: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01. First stage 
estimates from instrumental variables model. Dependent variable is child’s BMI z-score. All models 
are pooled over ages 6-13 (waves 2-5) and include the full set of covariates. Father's BMI and 
Mother's BMI are measured in Wave 1. Step-father is an indicator of whether the father is a step-
father (non-biological). Sample includes children with biological and step-fathers.  

 
 
 

In Table 4, we present results from the first stage equation when we use the BMI of all 

fathers (including step-fathers (3% of the sample)) as an instrument for the child’s BMI. In 

column (1), the instrumental variable set is the father’s BMI, an indicator for the father being 

a step-father and an interaction term between step-father and their BMI. In column (2), we add 

the biological mother’s BMI as an additional instrument. These results indicate that a unit 

increase in the BMI of a biological father is associated with a 0.39 standard deviation increase 
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in the BMI of the child. However, for a step-father, a unit increase in BMI is associated with 0 

change in the BMI of the child (=0.39 + (-0.39*1)).  This suggests that a step-father’s BMI 

does not predict the child’s BMI. 

Appendix Table A4 runs the placebo test another way, using a sub-sample of children 

who have step-fathers. The first-stage equation estimates for step-father’s BMI are shown in 

column (1), and indicate that step-father’s BMI is a poor predictor of child’s BMI (the partial 

F-statistic is only 1.86). The biological mother’s BMI, which is added in column (2), is shown 

to be a strong and statistically significant predictor of child’s BMI, but step-father’s BMI 

remains a poor predictor. Although the estimation sample is small, the results provide 

additional support that the main driver behind the association between parent BMI and child 

BMI is through genetics rather than the household environment. 

 
4.3.1  Testing for alternative genetic pathways  

Health conditions are not included in the main model because they are the main mechanism 

through which overweight and obesity influences health care costs. In line with previous 

studies (e.g. Johnson et al. 2006; Cawley and Meyerhoefer 2012; Batscheider et al. 2014), this 

approach allows the model to capture health care costs of obesity that arise through any health 

condition.  However, one might be concerned with the validity of the instruments if the same 

genes that affect BMI are associated with other health conditions (either through pleitropy or 

linkage disequilibrium), and these conditions independently affect health care utilisation. 

While we cannot rule out pleitropy or linkage disequilibrium, we can control for a wide range 

of health conditions to understand the extent of bias that this may lead to.  

Our main models already include early childhood indicators (low birth weight, breast-

fed and mother smoked while pregnant) which are likely to capture effects in utero or during 

infancy, which may increase health risk independently from obesity. To further account for 

health conditions, we re-estimate the main IV model including indicators for several common 
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health conditions that are not recognised as being caused by obesity: attention deficit disorder 

(ADD), eczema and ear infections. These conditions are reported by the primary parent. The 

coefficient estimates from the two-part model, shown in Appendix Table A5 (columns 1 and 

2), show that while all three conditions are associated with higher medical costs, BMI still has 

a large significant independent effect in the second part of the model (the conditional effect is 

0.151, p<0.01). 

 In columns (3) and (4) we present the estimates when 15 other health limitations or 

disabilities (reported by the parent) are included in addition to the above three health 

conditions.8 The estimated BMI coefficient in the conditional model (column 4) reduces to 

0.141, but remains significant (p<0.01). The results reassuringly indicate that other associated 

health conditions are not likely to be driving the main estimated effect.          

 Another way to test the validity of our model is to determine whether child’s BMI 

impacts those health conditions that are plausibly linked to having a heavier BMI, and does not 

impact health conditions that are unlikely to be caused by BMI. We select health conditions 

that had at least 1% of the sample with the condition to minimize imprecision due to small 

sample size. The conditions are sleep problems, asthma, attention deficit disorder, eczema, ear 

infections, difficulty learning and other physical problems. We estimate separate IV models 

using the seven different health conditions as the dependent variable, maintaining the same 

covariates and instrumental variables as our main model. The estimates from OLS and IV 

models are shown in Appendix Table A6.9   

  The IV results suggest that a heavier BMI significantly increases the likelihood that the 

child will have sleep problems and other physical problems. The medical literature indicates 

                                                 
8 The 15 health limitations and disabilities are the complete list of conditions asked in LSAC at every wave. These 
are: sight problems, hearing problems, speech problems, blackouts, difficulty learning, limited use of arms or 
fingers, difficulty gripping, limited use of legs and feet, other physical condition, other disfigurement, difficulty 
breathing, chronic pain, nervous condition, mental illness, and head injury. 
9 We get almost identical results if we instead use probit and IV probit models.  
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that obesity in children increases the risk of sleep apnea and abnormal sleep patterns, and 

several other physical complications, including orthopedic abnormalities, gastroenterological 

conditions, insulin resistance, type 2 diabetes and hypertension (Daniels 2006), which might 

be captured under “other physical problems”. Our models do not predict an effect of BMI on 

health conditions that are not recognised as being consequences of an elevated BMI (such as 

ear infections, ADD and eczema). While the conditions examined here are only a subsample 

of possible health conditions, the results increase confidence that the IV estimates of higher 

health care costs caused by obesity are likely to be operating through health conditions that are 

plausibly caused by a heavier BMI, and not through alternative genetic pathways. 

4.4  Aggregate costs attributable to childhood overweight and obesity 

In Australia, there are approximately 2.34 million children aged 6 to 13 (Australian Bureau of 

Statistics 2016), of whom about 7% are obese and 18% are overweight (estimates from LSAC). 

Extrapolating the results from the pooled IV model to the Australian population indicates that 

for children aged 6 to 13, compared to children of normal weight the additional non-hospital 

Medicare cost attributable to obesity is approximately $16.6 million and the further cost 

attributable to overweight is $26.6 million (in 2015 AUD).10  These results are shown in Table 

5 together with the estimated costs under a non-IV approach. Failing to account for unobserved 

confounders would lead to an underestimate of the total cost incurred by overweight and obese 

children by approximately $29 million. 

 

 

 

                                                 
10 Population weighted means of obesity and overweight were estimated at each wave of LSAC to derive age-
specific prevalence rates. These were multiplied by the population of children at the relevant age group using 
2016 population estimates (Australian Bureau of Statistics 2016). Annual costs per person, derived from the 
pooled two part model, were multiplied by the population obese (or overweight) and then averaged across the 
sample population. Standard errors were calculated using the bootstrap method (500 reps), taking the sampling 
design into account.    
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Table 5. Annual Medicare cost attributable to obesity and overweight children aged 6 to 13 
(millions of 2015 AUD)  

    
 Non-IV  

estimates 
IV  

estimates 
Population  

    
Obesity $5.264 $16.586 161,192 
 (1.417) (4.477)  
Overweight $8.839 $26.614 425,831 
 (2.065) (6.627)  

Note: Bootstrapped standard errors in parentheses. Medicare costs includes all non-hospital MBS 
and PBS costs. Average cost per child obese and overweight are from pooled two part models 
used (shown in columns 1 and 2 of Table 3). Population estimates derived by applying rates of 
overweight and obese from LSAC at each age group to the Australian Demographic Statistics 
(Australian Bureau of Statistics 2016).  

 

4.5  Heterogeneity by type of Medicare cost 

Table 6 presents estimates from the predicted costs (derived from the two-part models) by main 

source of expenditure; medical services (MBS) or pharmaceuticals (PBS). The estimates from 

the non-IV estimators are shown in columns (1) and (3) for comparison. Both the IV and non-

IV estimates show that a majority of the additional cost attributable to overweight and obesity 

is through an increase in MBS medical services. The IV estimates in Column (2) show that on 

average, a child who is overweight incurs an additional $44 and a child who is obese incurs an 

additional $71 in MBS costs per year compared with a normal weight child. The additional 

costs incurred through the PBS are smaller and less precisely estimated.   

It is useful to gain an understanding of which types of Medical services are being 

utilised more frequently as a result of obesity. In Appendix Table A7, we show estimates from 

linear OLS and IV regressions on the effect of BMI on the number of MBS items incurred 

under the following mutually exclusive and complete list of MBS categories: general 

practitioner (GP) visits, bulk billing incentive payments, specialist visits, mental health services, 

diagnostic and imaging, pathology and other.  
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Table 6. Predicted annual Medicare costs per child by BMI category and split by type of 
Medicare cost (in 2015 AUD) 

 MBS costs  
(Medical care) 

PBS costs 
(Pharmaceuticals) 

 (1) (2) (3) (4) 
 Non-IV  IV Non-IV IV 
Annual cost ($):     
Normal 217.56 209.45 22.60 19.64 
 (4.375) (6.313) (1.878) (2.105) 
Overweight 235.57 253.44 24.32 30.76 
 (5.664) (13.660) (2.552) (7.406) 
Obese 245.73 280.72 25.29 39.00 
 (8.155) (26.072) (3.481) (16.203) 
Cost above normal weight ($):     
Overweight 17.93 43.99 1.76 11.12 
 (5.236) (17.820) (2.033) (8.526) 
Obese 28.17 71.27 2.69 19.37 
 (8.418) (30.537) (2.818) (11.363) 
Observations 10804 10804 10804 10804 

Note: Bootstrapped standard errors in parentheses. MBS = Medicare Benefits Schedule. PBS = 
Pharmaceutical Benefits Scheme. Estimated from two part models. All models are pooled over ages 6-13 
(waves 2-5). Obese, overweight and normal weight are defined as the average BMI z-score for that BMI 
category in the relevant year. Adapted Duan smearing factor is applied to the transformed cost estimates. 
Costs are in 2015 AUD. 

 
 

The results for the pooled sample (aged 6-13) under both OLS and IV approaches 

indicate that a higher BMI leads to greater GP utilisation and this in turn is associated with 

more bulk billing incentive payments.11 Under the IV estimator, an increase in BMI by one 

standard deviation increases the number of GP consultations by about half a visit per year, or 

about 17% at the mean (0.500/2.829). The IV results indicate that specialist doctor 

consultations also increase as BMI increases (by around 30% at the mean (0.104/0.353) for a 

one standard deviation increase in BMI). However, there is no significant effect of BMI on the 

utilisation of mental health, diagnostic, pathology, or other services.  

 

                                                 
11 Bulk billing incentive payments are commonly tied to GP consultations to children due to the Government’s 
program to incentivise bulk billing (free medical care at the point of service) to patients under the age of 16 for 
non-referred services. Non-referred services are typically provided by GPs, but can also include certain pathology 
or diagnostic imaging services.  
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4.6. Hospital utilisation 

While Medicare costs in our data do not contain hospital costs,12 we estimate the effect of BMI 

on the likelihood the child is hospitalised (for an overnight stay for any reason) to gain some 

insight into how much this omission may affect total Government health care costs. Hospital 

visits are reported retrospectively for the past 12 month period by the parent at each wave. We 

use data on hospital stays from the subsequent wave to ensure temporal ordering from BMI to 

hospital stays. Hospital stays for children of the age group in this study are relatively 

uncommon. On average, about 4.2% of children aged 6 to 13 reportedly stay at least once in a 

hospital in a subsequent 12 month period. Appendix Table A8 shows linear IV estimates using 

the same instruments and covariates as in our main models. The results indicate that BMI does 

not have a significant effect on the likelihood of staying in a hospital for the pooled sample 

(age 6 to 13) or at each separate age. While this analysis is on the probability of a (reported) 

hospital stay and not on health care costs due to hospital stays, it provides some indicative 

evidence that hospital costs may not differ significantly by the child’s BMI. Therefore, the 

overall impact of obesity on Government health care costs may not be too different from the 

estimates in this study, despite the omission of hospital costs.  

 

4.7. Longer-term health care costs 

While the focus of this study is on short-term costs due to a higher BMI among children, we 

utilise the panel nature of the data to provide some indication of the longer-term costs. We do 

this by first estimating the effect of a child’s BMI at age 6/7 (wave 2) on the total health care 

costs over the eight subsequent years, until age 14/15, and second, by estimating the effect of 

BMI at age 6/7 on annual health care costs for each year until age 14/15. Here, the dependent 

                                                 
12 Public hospital records are administered separately by each Australian State and Territory, and are not part of 
the Australian Medicare administrative records. 
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variable is the inverse hyperbolic sine of total (or annual) costs. This transformation 

approximates the natural log of costs, but it allows individuals with zero costs to be modelled 

in one equation (Pence 2006), thereby simplifying the interpretation of the overall effect of 

BMI.  

  

Figure 2. IV estimates of the effect of BMI z-scores at age 6/7 on annual Medicare costs from 
age 7/8 to age 14/15. 

 

Notes: Each dot represents the coefficient estimate for BMI z-score at age 6/7 (wave 2) from the IV model. 
The dependent variable is the inverse hyperbolic sine of total annual costs by age. The models all include 
the full set of covariates at age 6/7. Underweight children are excluded from regressions. Instrumental 
variables are the child’s biological mother and father’s BMI, measured at wave 1. 

  

The coefficient estimates from OLS and IV estimates for the total costs suggest that a 

child with a one standard deviation higher BMI at age 6/7 incurs health care costs that are about 

8% (p<0.05) and 10% (p>0.10) higher respectively over the subsequent eight-year period. Due 
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to large standard errors, the IV estimates are statistically insignificant.13 The IV coefficient 

estimates for the longer-tem annual health care costs are shown in Figure 2. The results suggest 

that a higher BMI at age 6/7 has a positive effect on health care costs for the subsequent five 

years (with stronger and statistically significant effects at age 7/8 and 11/12), but the effect 

wanes from age 12/13 when the children reach early adolescence. 

 

5.  Discussion 

In line with global trends, the rate of paediatric obesity in Australia has tripled in recent decades 

(Wang and Lobstein 2006). While recent studies have shown a positive association between 

obesity and health care costs during childhood (Au 2012; Batscheider et al. 2014; Clifford et 

al. 2015), there is little evidence to date on the magnitude of health care consequences caused 

by childhood obesity. This study contributes to this space by investigating the government-

funded health care cost consequences of childhood obesity in Australia. Identification of the 

effect of childhood obesity is achieved through an instrumental variables approach and the use 

of BMI of biological parents as instrumental variables. This approach harnesses the large role 

of genetics in determining obesity. Our main results demonstrate that among children aged 6 

to 13, relative to having a BMI in the normal weight range, the non-hospital Medicare costs 

that are due to being overweight are $63 (28%) more, and that are due to obesity are $103 (45%) 

more per year per child. Extrapolating these results to the Australian population of children 

aged 6 to 13 suggests that this amounts to a total cost due to overweight and obesity of 

approximately $43 million (2015 AUD) per year. This represents about 0.1% of the total 

Australian government expenditure on Medicare in 2014-15 (AIHW 2016).   

                                                 
13 However, if we condition on children with positive costs over the eight-year period (99% of the sample), the 
IV estimates are statistically significant; a one standard deviation higher BMI at age 6/7 increases total costs by 
17% (p<0.10).    
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Our IV estimates are considerably larger than non-IV estimates, which could indicate that 

measurement error in BMI or unobserved factors are biasing OLS estimates downwards. This 

indicates that previous estimates of health care costs associated with childhood obesity in 

Australia (Au 2012; Clifford et al. 2015) are likely to underestimate the total cost attributable 

to obesity. The larger IV estimates compared to non-IV estimates is in line with previous 

studies that have used an IV approach to estimate the health care utilisation caused by obesity 

among youths in Ireland (Doherty et al. 2017), England (Kinge and Morris 2017) and the 

United States (Biener et al. 2017).  In the only other study using an IV approach that measures 

utilisation in costs, Biener et al. (2017) find that obesity raises annual medical costs by US 

$1,354 per child, which is four times larger than their non-IV estimates of US $310 per annum 

per child. Our comparably smaller IV estimate for obesity (which converts to approximately 

US $80 per annum per child) may be due to our focus on government-funded primary care 

services and medications, while Biener et al. (2017) also include hospital, out of pocket and 

private health insurance costs. While we are unable to provide estimates on the effect of 

childhood obesity on hospital costs, our analyses using parent-reported visits to the hospital 

suggest that the probability of staying overnight in a hospital does not differ by BMI, and 

therefore the consequences of the omission of hospital data may be small in our context. Other 

possible explanations for differences in findings include sample age differences (their children 

were aged 11 to 17, while ours were aged 6 to 13) and broader cross-country differences in 

health care expenditure (total health spending per capita in the US is double that of Australia 

(OECD 2018)).  

When we disaggregate the costs by age, we find that the costs of having a higher BMI 

are greatest at ages 6/7 and smallest at age 12/13. This finding is in line with (Kinge and Morris 

2017), who also find large positive effects of BMI and obesity on doctor utilisation among 

younger children (aged 4 to 12), but not older children (aged 13 to 18). However, in contrast, 
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Doherty et al. (2017) find that the probability of seeing a general practitioner or inpatient stay 

is only significantly higher for children with obesity at age 13 and not at age 9. The differences 

in findings may be due to health system contexts or to differences in results when health care 

costs instead of the probability of a visit is examined.  

Our study finds that childhood obesity leads to considerably higher medical expenses 

that are borne by the public. To the extent that this represents a negative externality (and not 

simply a transfer of costs) (Cawley 2015), our results support the justification for greater 

government investment in programs to reduce obesity. The findings have implications for 

economic evaluations of policies and interventions aimed at reducing childhood overweight 

and obesity. Existing economic evaluations which have used estimates of health care costs 

associated with childhood obesity (e.g. Gortmaker et al. 2015) or that have not included any 

health care costs (cost-offsets) incurred during childhood (e.g. Haby et al. 2006), are likely to 

underestimate the expected returns on investing in effective programs.       

 We find that the excess costs due to overweight and obesity are driven by medical care 

expenses through the MBS, specifically, from a higher utilisation of general practitioner and 

specialist doctor services. A child’s BMI does not significantly affect the utilisation of mental 

health, dental, pathology, diagnostic or other medical services, nor does it have a significant 

effect on prescription pharmaceutical expenses through the PBS.  

Health care costs are measured as the total cost over the one year following BMI 

measurement. While this period captures short-term health effects due to obesity, it does not 

capture health conditions that are slower-developing or that do not have any health 

consequences until adulthood. Our supplementary analyses on the longer-term costs of BMI 

indicate that a higher BMI at age 6/7 increases health care costs over several subsequent years. 

This may be partly due to slower-developing conditions, or possibly due to a persistence of 

BMI. The waning of the effect after age 11/12 suggests a higher BMI at age 6/7 is not causing 
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irreversible chronic conditions. Further research into the dynamics of BMI and health care costs 

is needed to understand the role of BMI persistence. As future waves of LSAC become 

available, it will be possible to understand the health care consequences of childhood obesity 

beyond early adolescence.  

 Key strengths of this study are that it uses height and weight that are measured for each 

child, and this is linked to complete administrative records of non-hospital health care expenses 

through Australia’s Medicare health insurance system. This minimises bias due to reporting 

error that may be present in studies that rely on parent-reports of height and weight, and/or 

retrospectively reported utilisation of medical care. An additional strength is that longitudinal 

data and precise dates of service utilisation enable temporal ordering from obesity 

measurement to health care utilisation. This minimises potential concerns arising from reverse 

causality. Furthermore, the rich survey data contained in LSAC allows us to control for a wide 

range of possible confounders, including socioeconomic background early childhood health 

conditions and parental characteristics (e.g. such as education level, employment status, 

smoking status and mental health), which may be associated with both parental BMI and health 

care seeking behaviour.  

 However, our paper has several limitations. First, the validity of the instruments. Our 

identification assumes that the BMI of biological parents is strongly correlated with the child’s 

BMI, but not with the child’s health care expenses. As with all other IV approaches, we cannot 

directly test that the exclusion restriction holds. A large literature indicates that genetics plays 

a strong role in determining obesity, and that the shared family environment plays little or no 

detectable role in the similarity in BMI across family members. While we include a rich set of 

control variables and the results from the overidentification test and falsification tests using 

step-parent’s BMI and  health conditions all provide support for the validity of our instruments, 

we acknowledge the possibility that the genes that affect weight may be related to other traits 
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that directly affect residual health care costs. It is not obvious what these could be, given the 

large set of parental and child covariates that we include. Nevertheless, as recognised by earlier 

studies (e.g. Cawley and Meyerhoefer 2012) this is a possible limitation of the instruments. 

Similarly, we recognise that alternative genetic pathways that arise through pleitropy, 

linkage disequilibrium and canalisation could potentially invalidate our instruments. Our 

falsification tests suggest that BMI relates to higher health care costs through plausible health 

conditions, and not through conditions that are supposedly unrelated to obesity. However, we 

acknowledge it is not possible to rule out alternative genetic pathways.    

We also acknowledge the possibility that a parent’s BMI may influence the health care 

utilisation of parents, which may in turn influence the contact that children have with health 

care providers, irrespective of the child’s BMI. However, when we regress the probability of a 

child incurring health care costs on each parent’s BMI as well as the child’s BMI and all 

covariates, the mother and father’s BMI are each associated with less than 0.05% of the 

increase in health care costs and neither are significant (p>0.6). While not definitive, this test 

provides further evidence to support the validity of the instruments.   

Our IV results should be interpreted as a local average treatment effect (LATE). The effect 

of obesity on health care costs may be heterogeneous and the IV estimates identify the effect 

on health care costs that are due to a child’s BMI that is induced by parents’ historical BMI 

(taken when the child was 5 years old). In other words, the variation in children’s BMI comes 

from variation in the genetic predisposition to a higher BMI, which is expressed in childhood. 

Encouragingly, quantile regressions of the first stage equation indicate that the instruments 

influence the child’s BMI across the BMI distribution, including the upper tail where children 

are obese. Because a majority of children are raised by their biological parents, our IV estimates 

are likely to be generalizable to the wider population. However, our estimated effect may not 

be generalisable to children who’s elevated BMI is entirely due to non-genetic factors.  
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This raises the question, how useful are our results for inferring the medical cost 

consequences of childhood obesity reduction policies? After all, policies are unlikely to alter 

the genetic makeup of children. It is likely that an interaction between genes and the 

environment explains the current obesity epidemic. As Barness et al. (2007) explain, “The 

steadily increasing prevalence of obesity among children and adults in many countries suggests 

that the environment is becoming more permissive to the expression of genetic tendencies 

toward obesity which may have been advantageous to our ancestors in a more hostile 

environment.” (p.3022). To the extent that policies can reduce the BMI of children who are 

genetically predisposed to obesity, our estimates suggest that obesity reduction policies will 

lead to considerable medical cost savings during childhood.            

Despite limitations, this study provides unique evidence on the publicly-funded health care 

costs caused by childhood obesity in Australia. Economic studies that have evaluated the 

benefits of childhood obesity programs have typically ignored any cost savings due to medical 

expenses of obesity during childhood, under the assumption that health consequences do not 

materialise until adulthood (e.g. Haby et al. 2006). This study demonstrates that medical costs 

of obesity incurred during childhood are substantial and larger than previously estimated. This 

implies that the economic returns from investing in childhood obesity prevention programs has 

been considerably underestimated.    
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Table A1 Summary statistics of all key variables 

 Mean SD Min Max 
Health care costs:     
Medicare costs > 0 0.812 (0.391) 0 1 
Total Annual Medicare costs ($) 246.796 (372.943) 0 4913 
MBS costs > 0  0.808 (0.394) 0 1.000 
Annual MBS costs ($) 223.366 (320.109) 0 4913 
PBS costs >0 0.188 (0.390) 0 1.000 
Annual PBS costs ($) 23.429 (138.976) 0 3955 
Covariates:     
BMI z-score 0.490 (0.846) -1.4 3.0 
Male 0.523 (0.499) 0 1 
Age (months) 116.924 (27.609) 75 166 
English 0.870 (0.336) 0 1 
European 0.036 (0.187) 0 1 
Asian 0.054 (0.227) 0 1 
Other language 0.039 (0.194) 0 1 
Birthweight <2500g) 0.062 (0.240) 0 1 
Breastfed at 6 months 0.594 (0.491) 0 1 
Mother smoked while pregnant 0.127 (0.333) 0 1 
No. older siblings 0.828 (0.906) 0 8 
No. younger siblings 0.777 (0.876) 0 5 
Single mum 0.066 (0.249) 0 1 
Health care concession card 0.312 (0.463) 0 1 
SEIFA 10.124 (0.735) 6.2 12.1 
Income quintile 1 0.175 (0.380) 0 1 
Income quintile 2 0.171 (0.376) 0 1 
Income quintile 3 0.174 (0.379) 0 1 
Income quintile 4 0.176 (0.381) 0 1 
Income quintile 5 0.161 (0.368) 0 1 
NSW state 0.335 (0.472) 0 1 
VIC state 0.245 (0.430) 0 1 
QLD state 0.206 (0.405) 0 1 
SA state 0.069 (0.253) 0 1 
WA state 0.092 (0.288) 0 1 
TAS state 0.028 (0.164) 0 1 
NT territory 0.007 (0.086) 0 1 
ACT territory 0.018 (0.132) 0 1 
City 0.556 (0.497) 0 1 
Inner regional 0.259 (0.438) 0 1 
Remote 0.029 (0.167) 0 1 
Mum university degree 0.303 (0.460) 0 1 
Mum diploma 0.416 (0.493) 0 1 
Mum year 12 0.103 (0.304) 0 1 
Mum no high school 0.178 (0.382) 0 1 
Dad university degree 0.285 (0.451) 0 1 
Dad diploma 0.443 (0.497) 0 1 
Dad year 12 0.080 (0.271) 0 1 
Dad no high school 0.123 (0.329) 0 1 
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age mother at birth 31.067 (4.798) 15 48 
Mum full time employed 0.249 (0.433) 0 1 
Mum part time employed 0.496 (0.500) 0 1 
Mum unemployed 0.025 (0.157) 0 1 
Mum not in labour force 0.229 (0.420) 0 1 
Mum K6 Depression score 4.274 (1.093) 0 5 
Mum current smoker 0.141 (0.348) 0 1 
Wave 3 0.257 (0.437) 0 1 
Wave 4 0.239 (0.426) 0 1 
Wave 5 0.238 (0.426) 0 1 
N 10804    

Note: Means are calculated using population sampling weights. Underweight children excluded from sample. 
Also included as covariates in main models but not shown in the table are missing indicators for household 
income, mother’s smoking status (while pregnant and current), breast fed status, father’s education, mother’s 
employment and mother’s depression scale. All estimates are from pooled data (age 6-13). 
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Table A2. Estimates of the first stage regression: comparing OLS and Quantile regression 
models of child's BMI on the instruments 
 

 OLS  Quantile Regression 
 (1)  (2) (3) (4) (5) (6) 
   Q 0.1 Q 0.25 Q 0.5 Q 0.75 Q 0.90 
Mother's BMI 0.036***  0.026*** 0.036*** 0.041*** 0.041*** 0.037*** 
 (0.003)  (0.002) (0.002) (0.002) (0.002) (0.002) 
Father's BMI 0.038***  0.031*** 0.042*** 0.043*** 0.041*** 0.037*** 
 (0.004)  (0.003) (0.003) (0.003) (0.003) (0.002) 
Observations 10804  10804 10804 10804 10804 10804 

Note: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01. Dependent variable is child’s 
BMI z-score. Column 1 estimated using OLS. Columns 2-6 estimated using Quantile Regression at selected 
quantiles. All models are pooled over ages 6 to 13 (waves 2-5). Models include the full set of covariates. 
Instruments in IV model are child’s biological mother and father’s BMI taken at wave 1. Underweight children 
are excluded from the sample. 
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Table A3. OLS and IV estimates of the effect of child’s BMI z-scores on total Medicare costs 
by area of residence 

 Urban Non-urban 
 (1) (2) (3) (4) 
 Part one: 

Positive costs 
Part two:  
Log costs 

Part one: 
Positive costs 

Part two:  
Log costs 

A) OLS     
BMI z-score 0.009 0.092*** -0.000 0.016 
 (0.007) (0.022) (0.008) (0.026) 
     
B) IV     
BMI z-score 0.012 0.174** 0.021 0.155* 
 (0.024) (0.074) (0.026) (0.080) 
     
Observations 5835 4794 4969 3894 

Notes: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01. Urban = subsample of 
population living in cities. Non-urban = subsample of population living in regional, rural or remote areas 
(i.e., not in cities). Models are pooled over ages 6-13 (i.e., waves 2-5). Child’s Medicare costs comprise of 
MBS and PBS expenses for the year following BMI measurement. All models control for the full set of 
covariates. Underweight are excluded from regressions. Instruments in IV model are child’s biological 
mother and father’s BMI, measured at wave 1.  
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Table A4. Estimates from the first-stage equation for sample of children with step-fathers  
 (1) (2) 
Stepfather's BMI 0.028 0.024 
 (0.021) (0.017) 
Biological Mother's BMI  0.049*** 
  (0.013) 
   
   
Observations 273 272 
F-statistic 1.858 7.518 

Note: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01. 
Dependent variable is child’s BMI z-score. All models are pooled over ages 6-13 (waves 
2-5) and include the full set of covariates. Step-father's BMI & Mother's BMI are 
measured in Wave 1. 
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Table A5. IV estimates on the effect of child’s BMI z-scores on total Medicare costs over 
ages 6 to 13, including health conditions  
 

 (1) 
 Part one: 
Positive 

costs 

(2) 
Part two: 
Log costs 

(3) 
 Part one: 
Positive 

costs 

(4) 
Part two: 
Log costs 

BMI z-score 0.014 0.151*** 0.012 0.141*** 
 (0.018) (0.055) (0.018) (0.053) 
Attention deficit disorder 0.138*** 0.912*** 0.125*** 0.862*** 
 (0.017) (0.088) (0.017) (0.090) 
Eczema 0.053*** 0.215*** 0.053*** 0.214*** 
 (0.012) (0.041) (0.012) (0.041) 
Ear infections 0.091*** 0.240*** 0.087*** 0.232*** 
 (0.020) (0.074) (0.020) (0.073) 
Sight problems   0.063* 0.230** 
   (0.035) (0.103) 
Hearing problems    0.011 0.014 
   (0.040) (0.108) 
Speech problems   0.031 -0.055 
   (0.025) (0.089) 
Blackouts    -0.003 0.824*** 
   (0.064) (0.212) 
Difficulty learning   0.053** 0.208** 
   (0.022) (0.088) 
Limited use of arms or fingers   -0.032 0.363 
   (0.069) (0.238) 
Difficulty gripping   0.049 -0.153 
   (0.039) (0.186) 
Limited use of legs and feet   0.051 0.313 
   (0.046) (0.208) 
Other physical condition   -0.011 0.071 
   (0.035) (0.120) 
Other disfigurement   0.074 0.552 
   (0.053) (0.367) 
Difficulty breathing   0.072** 0.254** 
   (0.035) (0.125) 
Chronic pain   0.029 -0.320** 
   (0.041) (0.151) 
Nervous condition   0.004 0.035 
   (0.047) (0.182) 
Mental illness   -0.000 0.417** 
   (0.050) (0.175) 
Head injury   0.087 0.361* 
   (0.054) (0.219) 
Observations 10803 8687 10803 8687 

Notes: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.  All models are pooled 
over ages 6-13 (waves 2-5) and control for the full set of covariates. Underweight are excluded from 
regressions. Instruments are child’s biological mother and father’s BMI, measured at wave 1.  
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Table A6. IV estimates on the effect of child’s BMI z-scores on selected health conditions 
 (1) 

 OLS 
(2) 
IV 

(3) 
Mean 

Sleep problems 0.017** 0.076*** 0.307 
 (0.007) (0.024)  
Asthma 0.017* 0.039 0.302 
 (0.009) (0.032)  
Attention deficit disorder -0.006** 0.008 0.021 
 (0.003) (0.008)  
Eczema -0.005 0.019 0.111 
 (0.005) (0.020)  
Ear infections 0.003 0.010 0.027 
 (0.003) (0.009)  
Difficulty learning 0.000 0.004 0.026 
 (0.002) (0.008)  
Other physical condition 0.003** 0.016** 0.013 
 (0.002) (0.007)  
Notes: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.  Each row is 
a separate regression and shown are the coefficient estimates for child’s BMI z-score. Mean of 
health conditions (dependent variables) in column (3) are calculated using population sampling 
weights. All models are pooled over ages 6-13 (waves 2-5) and control for the full set of covariates. 
Sample consists of 10,803 observations. Underweight are excluded from regressions. Instruments 
are child’s biological mother and father’s BMI, measured at wave 1.  
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Table A7. OLS and IV estimates of the effect of BMI on number of MBS service items 
utilised  
 
 (1) (2) (3) (4) (5) (6) (7) 
 GP visit Bulk 

Billing 
Specialist 

visit 
Mental 
Health 

Diag-
nostic 

Path-
ology 

Other 

A) OLS        
BMI z-score 0.216*** 0.202*** 0.023 -0.010 0.023 0.034 0.029* 
 (0.052) (0.051) (0.015) (0.019) (0.014) (0.037) (0.018) 
        
B) IV        
BMI z-score 0.500*** 0.628*** 0.104** 0.066 0.039 0.191 -0.044 
 (0.191) (0.204) (0.053) (0.059) (0.045) (0.127) (0.054) 
        
Outcome 
mean 

2.946 2.370 0.348 0.187 0.519 0.873 0.587 

        
Observations 8638 8638 8638 8638 8638 8638 8638 

Note: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.  MBS = Medicare Benefits 
Schedule. All models are pooled over ages 6-13 (waves 2-5) and control for the full set of covariates. Underweight 
excluded from regressions. 
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Table A8. IV estimates of the effect of child’s BMI on the probability of having a hospital 
stay   
 

 (1) (2) (3) (4) (5) 
 Pooled Age 6/7 Age 8/9 Age 10/11 Age12/13 
BMI z-score 0.007 0.031 0.001 -0.015 0.009 
 (0.009) (0.021) (0.018) (0.014) (0.018) 
      
Mean outcome 0.042 0.047 0.039 0.035 0.044 
Observations 10193 2769 2687 2471 2266 

Note: Clustered standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.  Full set of covariates 
included in all models. Hospital stay is coded as 1 if parent reported in the subsequent wave that their 
child stayed overnight in a hospital at least once in the last 12 months; therefore indicates a hospital stay 
one year into the future from when BMI was measured. Underweight excluded from regressions. 
Instruments in IV model are the BMI of the child’s biological mother and father. Estimates from linear 
IV models (near-identical results are obtained from IV probit models). 
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Figure A1. Locally weighted scatterplot smoothing: health care costs and BMI z-scores 
(actual versus fitted) 

   
Notes: pooled over ages 6-13 (waves 2-5). Fitted BMI values are from regression BMI on the 
instruments (child’s biological mother and father’s BMI, measured at wave 1) and full set of 
covariates. 
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