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Commercially-Relevant Orthogonal Multi-Component 

Supramolecular Hydrogels for Programmed Cell Growth 

Vânia M. P. Vieira,[a] Ana C. Lima,[b] Menno de Jong,[b] David K. Smith*[a]  

 

Abstract: This paper reports the ability of synthetically-simple, 

commercially-viable sugar-derived 1,3:2,4-dibenzylidenesorbitol-

4’,4”-diacylhydrazide (DBS-CONHNH2) to support cell growth.  Simple 

mixing and orthogonal self-sorting can formulate heparin, agarose, 

and heparin-binding micelles into these gels – easily incorporating 

additional function.  Interestingly, the components used in the gel 

formulation, direct the ability of cells to grow, meaning the chemical 

programming of these multi-component gels is directly translated to 

the biological systems in contact with them.  This simple approach has 

potential for future development in regenerative medicine. 

Introduction 

Hydrogels have great potential in regenerative medicine and 

tissue engineering,[1]  primarily as a result of their rheological 

similarities to the extracellular matrix, and their ability to be tuned 

using chemical synthesis.[2]  Polymer gels (PGs) have been widely 

exploited in this regard.[1a,b,3]  In recent years, however, there has 

been increasing interest in hydrogels that self-assemble from low-

molecular-weight gelators (LMWGs) as a result of non-covalent 

interactions between molecular-scale building blocks.[4]  Such 

materials can be easily tuned at the molecular level via simple 

organic synthesis, and are reversible as a result of the self-

assembly event.  However, the use of LMWGs in tissue culture is 

much rarer than PGs.[5]  Most commonly, the LMWGs applied are 

based on relatively complex, self-assembling peptides with high 

molecular weights (>1000 Da); excitingly such systems have 

been shown to have regenerative medicine potential in vivo in 

animal model systems.[6]  However, reports of simpler LMWGs 

(<500 Da) in tissue engineering are even rarer.  In early work, 9-

fluorenylmethoxycarbonyl-dipeptide hydrogels were used,[7] with 

Ulijn and co-workers demonstrating the advantages of co-

assembly with Fmoc-RGD (arginine-glycine-aspartic acid) 

tripeptide to interact with anchorage-dependent cells.[8]  There 

have been other reports of peptide gelators with the goal of tuning 

biological outcomes through chemical functionality and 

rheological performance.[9]  Hamachi and co-workers used an 

amino acid derivative gelator and patterned it by etching with a 

laser to encourage spatially controlled cell growth.[10]  Perhaps 

surprisingly, there have been very limited reports of functional 

groups other than amino acids/peptides as LMWGs in tissue 

engineering, and given the amyloid-forming nature of many 

peptide gelators[5b] there is a significant need to explore other 

systems for potential in vivo use. Simple amide hydrogelators 

were used by Feng and co-workers – the chirality of the gelator 

impacted on tissue growth and incorporating a photo-active unit 

introduced photo-responsiveness.[11] Moving away from amides, 

Barthélémy and co-workers elegantly applied nucleobase-derived 

gels with human mesenchymal stem cells – cell survival was 

dependent on gelator structure.[12]  This gelator was used in 

combination with collagen to create hybrid materials.[13]  Others 

have also made use of guanosine-derived gels for cell culture.[14]  

Surprisingly, given their biological importance, there are very few 

examples of sugar-based LMWGs being used for tissue culture.  

There are limited examples of peptides modified with sugars,[15] 

and Barthélémy’s nucleobase gelators contain sugar units,[12,13] 

but other sugar-containing gelators applied in tissue engineering 

remain very rare.[16] 

In this work, we wanted to demonstrate a commercially-viable 

approach to simple self-assembled tissue culture materials. We 

selected gels based on sugar-derived gelator 1,3:2,4-

dibenzylidenesorbitol (DBS), an organogelator used in bulk-scale 

in the chemical industry, in (e.g.) personal care products and 

polymer clarification.[17]  We have developed hydrogelator 

versions of DBS,[18] made via simple two-step synthesis using 

cheap bulk chemicals and inherently-scalable industrially-relevant 

methods.  Here, we combine one of these simple, commercially-

relevant hydrogels with a multi-component approach to 

incorporate other units that can add useful functionality via mixing.  

Self-sorting within gels that contain a mixture of components, to 

yield materials capable of orthogonal function has emerged as 

one of the key advantages of using LMWGs.[19] 

We previously reported multi-component hydrogels based on 

a different gelator 1,3:2,4-dibenzylidene-D-sorbitol-p,p’-
dicarboxylic acid (DBS-COOH),[20] but these were not stable 

above pH 5.5, and were unsuitable for tissue culture.  For this 

study, we focussed attention on 1,3:2,4-dibenzylidene-D-sorbitol-

p-p’-diacylhydrazide (DBS-CONHNH2, Fig. 1), which is stable 

from ca. pH 2.5-11.5.  We aimed to combine this LMWG with 

agarose PG (to provide greater robustness), heparin (to assist 

angiogenesis and growth factor promotion),[21]  and self-

assembling C16-DAPMA micelles (to bind heparin and control its 

release).[22]  In this way, we hoped to easily generate multi-

functional gels compatible with tissue culture, opening up 

potential low cost regenerative medicine applications.
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Figure 1.  Components used to formulate the self-assembled gels studied in this paper – low-molecular-weight gelator, DBS-CONHNH2; polymer gelator, agarose; 

bioactive heparin and self-assembling micellar heparin binder, C16-DAPMA.

Results and Discussion 

Hydrogelator DBS-CONHNH2 was synthesised in very good yield 

using methods reported previously[18b] and  demonstrated to form 

gels in aqueous Tris-HCl buffer (pH 7.4, 10 mM) and NaCl (150 

mM) at a loading of 0.4% wt/vol in water, with a Tgel value of 86°C.  

The impact of the presence of heparin on the gelation event was 

then tested. 

In all cases, DBS-CONHNH2 still assembled into a gel 

(tested up to 1 mM heparin, 0.67 wt/vol%), with equivalent Tgel 

values of 83-86°C.  Infrared (IR) analysis indicated that the 

spectrum for the DBS-CONHNH2-heparin xerogel was equivalent 

to the sum of the individual spectra (Fig. S1, see ESI for more 

detailed discussion). Circular dichroism (CD) spectroscopy 

indicated a similar spectrum associated with self-assembled 

DBS-CONHNH2 with or without heparin, suggesting the two 

components are largely independent of one another (Fig. 2C).  In 

each case, the peak maximum is at 275 nm, with similar 

ellipticities of 82 and 68 mdeg respectively.  The kinetics of 

assembly were also very similar in the absence and presence of 

heparin as monitored by time-resolved CD spectroscopy (Fig. 2C), 

with self-assembly being effectively complete after ca. 3 minutes.  

TEM and SEM imaging of the DBS-CONHNH2 gel indicated the 

presence of twisted and branched nanofibers (Figs. 2A and S7).  

In the presence of heparin, the nanofibre morphologies were very 

similar, with unspecific aggregates corresponding to heparin also 

being observed (Figs. 2B and S8).  Rheology on the gel alone and 

in the presence of 1 mM heparin gave equivalent linear 

viscoelastic regions (LVR) extending to ca. 2.5% strain, and the 

G’ values were very similar, indicating limited effect of heparin on 

the overall network (Figs. 3A and S13).  

Figure 2.  A) TEM image of DBS-CONHNH2; scale bar, 200 nm; B) TEM image of DBS-CONHNH2 in the presence of heparin; scale bar, 200 nm; C) Time resolved 

CD spectroscopy, with one spectrum measured every 60 s, following the assembly of DBS-CONHNH2 (0.12% wt/vol) in the absence (left) and presence (right) of 

heparin (38 M) indicating that after the first two time-points (orange and blue lines), DBS-CONHNH2 assembly is switched on and the peak at 275 nm associated 

with the self-assembled state is observed; D) Heparin release from DBS-CONHNH2 hydrogel (0.4% wt/vol) loaded with heparin (1 mM). 
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Figure 3. A) Summary of G’ and G” rheological data for 0.4% wt/vol DBS-CONHNH2 alone and in the presence of heparin (1 mM) or agarose (1.0% wt/vol) indicating 

gel stiffening achieved by the addition of agarose;  B) Release of heparin from DBS-CONHNH2 gel surfaces (0.4% wt/vol) in the presence of varying agarose 

loadings (0% wt/vol, 0.5% wt/vol and 1.0% wt/vol); C) Release of heparin from DBS-CONHNH2 hydrogel (0.4% wt/vol) and agarose (1% wt/vol) containing heparin 

(1 mM), either using buffer on top of the gel for ‘surface release’ or making a free-standing gel for ‘cylinder release’.

We tested the ability of the network to release heparin, using 

methods that mimic cell culture conditions. A small amount of 

aqueous medium was placed on top of the gel and heparin 

release into it was quantified using a heparin-sensitive dye, 

Mallard Blue.[23]  Pleasingly, heparin release was observed – for a 

gel containing 1 mM heparin, 62% was released after 72 hours, 

with most of the release occurring in the first 24 hours (Fig. 2D).  

This is therefore a very simple method to formulate 

supramolecular gels capable of heparin release. 

Agarose was then mixed into the gelation system – this PG 

offers a way to endow LMWGs with greater robustness by forming 

a PG/LMWG hybrid hydrogel.[18a,24,25]  In the presence of 1% 

wt/vol agarose, the DBS-CONHNH2 gel has greater stiffness (ca. 

15000 Pa, Fig. 3A).  On further addition of heparin into this gel the 

stiffness fell back to 3800 Pa, indicating little impact of the 

agarose on gel stiffness in this case (Fig. S12), but strain 

resistance increased significantly (Fig. S13).  This reflects the 

much greater ease of handling of the materials including agarose.  

The presence of agarose did not significantly affect DBS-

CONHNH2 assembly as monitored by CD spectroscopy (Figs. S3 

and S4) – once again the peak shape was similar with a maximum 

at ca. 275 nm and an ellipticity of 50 mdeg. 

The presence of agarose did not affect the total amount of 

heparin release, with 62% release under our experimental 

conditions observed over 48 hours (Fig. 3B). However, the 

agarose loading modified release kinetics in the first 6 hours, 

which slowed down in the presence of 0.5% wt/vol agarose, and 

even more so with 1.0% wt/vol agarose, suggesting that heparin 

diffusion is slower within the hybrid gel.  The ease of handling of 

the hybrid hydrogel allowed us to also test heparin release from a 

self-standing cylinder of gel – the greater surface area and the 

larger receiving volume, enhanced the kinetics of heparin release 

(doubling the initial rate of release) and increased the total amount 

of heparin released to 90% (Fig. 3C). 

To control heparin, we also added C16-DAPMA, previously 

reported by us as a self-assembling multivalent (SAMul) heparin 

binder,[22] into the gels. At concentrations of C16-DAPMA up to 1.2 

mM, the DBS-CONHNH2 hydrogel remained stable, with a Tgel of 

83-86°C, the IR reflecting an overlap of the spectra of the 

individual components (Fig. S1), and minimal impact on the CD 

spectrum of DBS-CONHNH2 (Fig. S2) suggesting that the self- 

assembled micelles do not adversely impact the self-assembly of 

the gel nanofibres (in contrast to our previous studies with DBS-

COOH).[20]  TEM demonstrated the independent existence of 

DBS-CONHNH2 nanofibres and C16-DAPMA micelles (Fig. 4A).  

Rheology indicated that the presence of micelles had limited 

impact on gel stiffness, with G’ remaining similar, but the stability 

towards strain reduced to 1%. 

Heparin was then also added, with the intention it would 

interact with self-assembled C16-DAPMA, becoming trapped in 

the gel.  At 0.4 mM heparin, the gel remained stable with up to 1.6 

mM C16-DAPMA, but the Tgel values fell to ca. 66°C, indicating 

some impact on the nanoscale network.  The CD intensity 

associated with DBS-CONHNH2 was also lower (Fig, S2).  TEM 

visualised both DBS-CONHNH2 nanofibres, and the semi-

crystalline nanostructures distinctive of complexes between C16-

DAPMA and heparin (Figs. 4B, S5 and S6).[22b]  However, in 

addition, it was also possible to identify some larger aligned 

structures (ca. 900 ± 200 nm) that resembled needles (Fig. 4C).  

Closer inspection, supported by SEM (Figs. S9 and S10) 

indicated rigid alignment/crystallisation of gel nanofibers. We 

suggest this is induced by the highly organised semi-crystalline  
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Figure 4.  A) TEM image of DBS-CONHNH2 in the presence of C16-DAPMA (scale bar, 50 nm); B) TEM image of DBS-CONHNH2 in the presence of C16-DAPMA 

and heparin showing hierarchical nanoscale assemblies formed via complexation between C16-DAPMA cationic micelles and anionic heparin (scale bar, 50 nm); C) 

TEM image of aligned larger DBS-CONHNH2 nanofibres also observed in the presence of C16-DAPMA and heparin (scale bar, 500 nm); D) controlled release of 

heparin from multi-component self-sorted gels, C16-DAPMA (2 mM) limits heparin (1 mM) release from DBS-CONHNH2 (0.4% wt/vol) as a result of complexation.  

On raising pH from 7 to 10, complexation is disrupted to some extent, and greater heparin release is switched on.

hierarchical nanostructures formed when C16-DAPMA interacts 

with heparin. The presence of these structures did not, however, 

appear to have a major impact on the rheological performance of 

the gel.  The incorporation of C16-DAPMA into the gel significantly 

lowered heparin release, with only 24% being released after 72 

hours (Fig. 4D).  Raising the pH of the receiving solution to pH 10 

(borax/NaOH) increased the amount of heparin released over 72 

hours to 42% (Fig. 4D) - the elevated pH deprotonates C16-

DAPMA, disrupting its interactions with heparin and hence 

switching-on heparin release. 

We tested this family of gels in tissue culture experiments 

using mouse embryonic fibroblast (3T3) cells to determine their 

biocompatibility, and uncover the impact of each individual 

component on cell growth.  In this way, we hoped to learn how 

chemical programming, can direct biological outcomes. 

Initially, we performed experiments in which the cells were 

grown on the gels (Fig. S15).  Microscopy was challenging as a 

result of the gels being not completely optically transparent.  The 

metabolic activity of the cells, using a cell density of 50000 

cells/mL, on top of DBS-CONHNH2 hydrogels was studied using 

cell proliferation reagent WST-1, and indicated that the cells grew 

effectively on DBS-CONHNH2 – similar to or better than a control 

in which the cells were simply grown in medium in the well (Fig. 

S16-S18).  In the presence of relatively high concentrations of 

heparin (667 and 1330 g/mL), cell growth was inhibited – indeed 

by day 5, cell growth was just 10-15% of that observed on DBS-

CONHNH2 alone.  This agrees with literature reports in which high 

concentrations of heparin inhibit cell growth.[26]  However, in these 

initial experiments, there was a decrease in metabolic activity 

between days 5 and 7 because cell confluence had been reached, 

and the system was overloaded, leading to loss of adhesion and 

cell death.  We therefore optimised the experimental conditions 

by lowering the cell density and used lower loadings of heparin.  

In these optimised conditions, the growth of cells on DBS-

CONHNH2 was very good – the metabolic activity of the cells was 

compared on days 1, 3 and 7, and a significant increase in 

metabolic activity was observed, particularly between days 3 and 

7 (Fig. 5).  To ensure the cells were adhering to the DBS-

CONHNH2 hydrogel surface and not migrating into the well,  a cell 

migration assay was performed by simply preparing DBS-

CONHNH2 hydrogels (100 µL, 80 µL and 60 µL to test different 

gel thicknesses) in transwell inserts, and adding cells to the top of 

the gel (Figs. S30 and S31).  If the cells migrate they will cross 

the membrane and adhere to the bottom of the well, which could 

be followed by optical microscopy – no cells were detected on the 

bottom of the DBS-CONHNH2-loaded wells.  This proves that the 

metabolic activities correspond to cells attached to the surface of 

DBS-CONHNH2 hydrogels. 

On mixing low concentrations of heparin (10 µg/mL, 25 µg/mL 

and 50 µg/mL) into DBS-CONHNH2, the metabolic activity of the 

cells was consistently higher at day 7 (ca. 20-35%).  This 

suggests that heparin release can enhance cell growth.  The 

hybrid hydrogel containing DBS-CONHNH2 and agarose was 

tested and cell growth was ca. 20% lower by day 7.  Furthermore, 

the cell culture clearly struggled to establish itself with lower 

metabolic activity at days 1 and 3.  When cell growth on a pure 
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Figure 5.  Absorbance of WST-1 reagent at 440 nm with (from left to right): DBS-CONHNH2 hydrogel; DBS-CONHNH2 hydrogel with heparin (50 µg/mL, 25 µg/mL 

and 10 µg/mL); DBS-CONHNH2 hydrogels with heparin (50 µg/mL) and C16-DAPMA (140 µg/mL; DBS-CONHNH2 hydrogels with agarose (1% wt/vol); DBS-

CONHNH2 hydrogels with agarose (1% wt/vol) and heparin (50 g/mL); agarose alone (1% wt/vol) and positive control (medium with cells).  Cells are grown on top 

of the gels and monitored at day 1, 3 and 7. Schematic images indicate compositions of hybrid materials and outcomes of structural modification on cell growth.

agarose gel was tested,  almost none was observed.  Although 

agarose is known for being biocompatible and having mechanical 

properties suitable for cell culture, one of its main limitations 

relates to the fact that it does not contain moieties associated with 

cellular adhesion resulting in low cell proliferation.[27]  It is 

therefore interesting that in the hybrid LMWG/PG gel, reasonable 

cell growth is observed.  This suggests that DBS-CONHNH2 

endows the hybrid gel with cell adhesion potential, whilst agarose 

provides it with robustness and ease-of-handling, and ‘self-
standing’ capacity, facilitating the formation of gel scaffolds of 
different shapes.  This demonstrates how low cost self-

assembling additives such as DBS-CONHNH2 can add significant 

function and value to PG systems by simple mixing. 

When using gels containing C16-DAPMA and heparin, cell 

growth was completely inhibited.  We reasoned this was a result 

of cationic surfactant C16-DAPMA leaching from the gel (see 

below for further proof), disrupting cell membranes, showing the 

limitations of this system.[28] 

As important control experiments, cells were grown in wells, 

which had gels placed into transwell inserts placed on top of the 

medium (Fig. S19), to understand the cytocompatibility of the gels 

and the impact of additives within the gel, which can be released 

into the cell growth medium to modify cell growth.  Studies using 

WST-1 (Fig. S20) clearly demonstrated that, as before, cells 

grown in the presence of heparin showed small increases in 

metabolic activity (ca. 15%), indicative of beneficial effects of 

heparin release into the growth medium.  Conversely, cells grown 

in the presence of C16-DAPMA and heparin were completely 

inhibited.  When the gel combining just DBS-CONHNH2 and C16-

DAPMA, was tested, cell growth was once again completely 

prevented, clearly indicating that C16-DAPMA is released from 

these gels and is toxic to cell growth.  Interestingly, in this assay, 

agarose had no adverse impact on cell growth, supporting the 

view that in the previous assays, agarose was not inhibiting cell 

growth through any toxicity effect, but simply because cells cannot 

adhere.  Optical microscopy indicated effective cell growth in the 

presence of all DBS-CONHNH2 gels except those containing C16-

DAPMA (Figs. S21-S23), successful MitoTracker staining 

indicated no damage to the membrane or reduced membrane 

potential (Figs. S24-26) and live/dead staining experiments (Figs 

S27-S29) demonstrated that cells successfully grow in the 

presence of these gels. 

Conclusions 

In summary, this study demonstrates that DBS-CONHNH2 is a 

biocompatible low-molecular-weight hydrogelator that supports 

cell growth.  Given the simple synthesis of this gelator, feasible 

on large scale using commercially-relevant methods, this system 

has considerable potential for application in tissue engineering 

and regenerative medicine.  Furthermore, other nanosystems can 

be incorporated in the gel in a simple low-cost manner – 

specifically in this case, agarose, heparin and C16-DAPMA.  In 
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each case, we characterised these largely-orthogonal self-sorted 

materials and also explored the impact of additives on tissue 

culture.  Specifically, heparin can be released from the gel, which 

appears to have beneficial effects on cell culture even with simple 

3T3 cells.  Agarose makes the gels more robust and easy to 

handle, but lowers the ability of cells to adhere to the gel.  

However, in the hybrid LMWG/PG gel formed by DBS-CONHNH2 

with agarose, cell growth occurs – i.e., both components play an 

active role – agarose providing robustness and DBS-CONHNH2 

enabling cell growth.  Finally, the addition of C16-DAPMA limits 

release of heparin by binding to it.  However, gels incorporating 

C16-DAPMA are not compatible with tissue growth owing to it 

leaching from the gel and being cytotoxic. 

Overall, we have presented a simple low-cost approach to 

tissue engineering, and shown how a simple LMWG can be 

combined orthogonally with different additives, with the chemical 

inputs being able to program the biological outputs.  We propose 

that this approach may underpin developments in regenerative 

medicine, and offers a highly tunable strategy by which LMWGs 

can be optimised for use in, and control of, a biological setting. 
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