
This is a repository copy of On central idempotents in the Brauer algebra.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/133500/

Version: Accepted Version

Article:

King, OH, Martin, PP and Parker, AE orcid.org/0000-0001-7014-6150 (2018) On central 
idempotents in the Brauer algebra. Journal of Algebra, 512. pp. 20-46. ISSN 0021-8693 

https://doi.org/10.1016/j.jalgebra.2018.06.024

© 2018 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


ON CENTRAL IDEMPOTENTS IN THE BRAUER ALGEBRA

O. H. KING, P. P. MARTIN, AND A. E. PARKER

Abstract. We provide a method for constructing central idempotents in the Brauer algebra
(using the splitting of short exact sequences of bimodules). From this we determine certain

primitive central idempotents. By working over a suitable integral ring we hence demonstrate an
efficient method of constructing pieces of the representation theory of the Brauer algebra over a
field from the integral case.

1. Introduction

One of the main open problems in representation theory is to compute the decomposition
matrices of the symmetric groups over fields of finite characteristic. This problem has driven
much significant research (see for example [CL74, Chu99, DJ87, FL03, Jam78, JK81, JM79, Ric96]
and references therein), but the original problem itself remains almost entirely open. A natural
strategy in approaching this problem is to relate the symmetric group to algebraic systems with
more intrinsic structure, and then to study these – the connection with the general linear group
[Don86, Erd96, Gre80, Sch27, Wey39] is perhaps the classic example. Recently much progress has
been made on the representation theory of diagram algebras (subalgebras of partition algebras)
closely related to the symmetric group, such as the Brauer algebra. Indeed the decomposition ma-
trices of the Brauer algebra over the complex field are now known [Mar15], see for instance [CDV11]
for a detailed exposition of the combinatorics developed in [Mar15]. Behind this complex-field re-
sult lies a lot of integral representation theory (i.e. representation theory over suitable rings of
integers in the sense, for example, of [Ben98, §1.9]). Thus, while the connection with the symmetric
group trivialises (from a homological perspective) over the complex field, the integral representa-
tion theory of the Brauer algebra provides an intriguing approach to the main problem. The
challenge, then, is to push the integral representation theory of the Brauer algebra into that of the
symmetric group (as in [CDVM09b] for example).

Generally speaking of course, the integral representation theory is harder than the Artinian
representation theory — the representation theory over fields. But it is often possible to reconstruct
enough of the arithmetic and combinatorics of the integral theory from knowledge of part of the
Artinian theory, so that the remainder of the Artinian theory becomes accessible. Between the
integral representation theory and the representation theory over arbitrary quotient fields sits the
rational representation theory — the theory over the field of fractions [Ben98, Bra41]. The present
paper describes key results in pursuit of this strategy, by computing fundamental pieces of the
rational arithmetic of the Brauer algebra – primitive central idempotents.

The original idea for this dates back all the way to Brauer [Bra41]. The combinatorial-
homological approach is illustrated in practice for example by [MS94] in determining semisimplicity
criteria for partition algebras from integral ground-ring arithmetic, and [CDVM09b] through aba-
cus techniques for Brauer algebras.

Returning to the focus of this paper, the Brauer algebra Bn(δ) may be defined as a Z[δ]-algebra,
i.e. over a commutative ring with a single parameter. This allows us to define integral forms of
the cell modules (one can think of these as analogues of the Specht modules for the symmetric
group), which allows for independent specialisation of the parameter and the field via extension of
scalars. In our case, we will need to consider a ring where the above is possible, but where we can
also invert certain monic polynomials in δ. This ring K will be introduced in Section 2.2. Working
in this ring we will construct a family of central idempotents of the Brauer algebra. We then use
existing information about the algebra to establish connections to representation theory.
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In principle there are several possible approaches to finding idempotents in the Brauer algebra.
A result of Kilmoyer [CR81, Proposition 9.17] allows one to use the characters of a semisimple
algebra to construct its primitive central idempotents. Leduc and Ram [LR97] express the Brauer
algebra as a multimatrix algebra and then give a method for finding primitive central idempotents
by considering pairs of paths in the Bratteli diagram. Isaev and Molev [IM11] build on this by
introducing a method based on the ‘Jucys-Murphy elements’ of the Brauer algebra. A recent paper
of Doty, Lauve and Seelinger [DLS16] determines the central idempotents in so-called multiplicity
free families of algebras, of which the Brauer algebra is one. However for the types of questions we
would like to ask regarding the Brauer algebra, the method we describe in this paper has several
advantages over the existing ones. In particular our choice of the ring K gives us information
about the the form of the coefficients appearing in each idempotent. This allows us to easily draw
conclusions about the representation theory of the algebra before we have arrived at the final result.
Moreover K is akin to the integral ring in the setup of a p-modular system, so simply tensoring with
a field of finite characteristic will give idempotents that relate to the modular representation theory
of the algebra. Use of Kilmoyer’s proposition requires us to know the characters of the Brauer
algebra, which in itself is a non-trivial task, and the method employed by Leduc and Ram becomes
rather inefficient as n increases, and moreover is only valid over Q(δ). As such it is difficult to see
any results regarding the integral or exceptional representation theory of the algebra there until the
process has finished. Similar comments apply to Isaev and Molev’s method, where interim steps
are also based upon paths in the Bratteli diagram; and to Doty, Lauve and Seelinger’s method.

Our approach mirrors that of [MW99], in that we construct splitting idempotents of certain
exact sequences. We will see later that a short exact sequence of Λ-bimodules

(1) 0 → J → Λ → Λ/J → 0

splits if and only if there is an element ϕJ ∈ Λ satisfying

(i) ϕJ ≡ 1Λ mod J , and
(ii) JϕJ = ϕJJ = 0.

If ϕJ exists then it is unique and is a central idempotent in Λ. We call it the splitting idempotent
of the sequence (1). In our case, we will consider ideals Jn(ℓ) of Bn(δ) generated by diagrams
with ℓ or fewer propagating lines (see Section 2.2). We use as a labelling set, tableaux with entries
from the set {N,S, P} under an equivalence, (see Definition 2) and working over the ring K to be
introduced in Section 2.2 prove the following:

Theorem. Let {At : t ∈ Tn(ℓ)} be a set of representatives of the orbit of diagrams generating

Jn(ℓ) under conjugation by Sn, and Dt be the sum of elements in the orbit containing At. Define

Xn(ℓ) =
∑

t∈Tn(ℓ)
ctDt for some scalars ct. Then for u ∈ Jn(ℓ) the equation

uXn(ℓ) = −u

is always solvable in the ct. Moreover, setting ϕn(ℓ) = 1 +Xn(ℓ) gives the splitting idempotent of

the short exact sequence

0 → Jn(ℓ) → Bn(δ) → Bn(δ)/Jn(ℓ) → 0.

This paper is structured as follows: In Section 2 we set up the definitions for the rest of
the paper and classify the Sn-conjugacy classes of elements of Bn. In Section 3 we use this
to construct the splitting idempotents related to certain ideals in Bn. Section 4 contains some
background representation theory needed to obtain some of the primitive central idempotents of
Bn, and Section 5 provides several applications of the theory. Finally, there are two supplementary
sections: one with the splitting idempotents in B6 to show that the method we obtain does give
results that would previously have been inaccessible, and another comparing the complexity of our
method to a previously known procedure from [LR97] to justify its use.

2. Preliminaries

2.1. Young tableaux. Given a partition λ = (λ1, . . . , λm) of n ∈ N (i.e.
∑

i λi = n and λ1 ≥
λ2 ≥ · · · ≥ λm), written λ ⊢ n, also |λ| = n, we define the Young diagram [λ] to be the set

[λ] = {(i, j) ∈ N2 | 1 6 i 6 m, 1 6 j 6 λi}.
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We depict these graphically in the plane by a configuration of boxes in the “English convention”,
for instance the partition (5, 3, 3, 1) of 12 has Young diagram

.

We will confuse partitions and their Young diagrams in the usual way.
A Young tableau of shape λ is a function

t : [λ] −→ T,

where T is a non-empty set. We can equivalently think of t as a filling of the boxes of [λ] by
elements of T . We will also confuse these two definitions.

2.2. The Brauer algebra. If T is a finite set of size 2m for some m ∈ N, then write J(T ) for the
set of pair partitions of T , that is the set

J(T ) =
{

a1 ⊔ · · · ⊔ am | ai ⊂ T, |ai| = 2 for all i
}

For n ∈ N let n = {1, 2, . . . , n}, n′ = {1′, 2′, . . . , n′}, and define the function

op : n ∪ n′ −→ n ∪ n′(2)

x ∈ n 7−→ x′

x′ ∈ n′ 7−→ x.

Fix an indeterminate δ and let R be a commutative ring with distinguished parameter, δ. The
Brauer algebra Bn = Bn(δ) is the R-algebra with basis Jn = J(n ∪ n′) where the multiplication
will be defined below. We can represent any element A of Jn as a graph in the plane, with vertex
set n∪n′ and an edge between vertices x and y if {x, y} ∈ A. We will identify all graph depictions
of the same element A, and typically draw the vertices as two horizontal rows labelled by n and
n′ as in the following example. Note then that x and op(x) are vertically opposite one another.

Example 1. Let A =
{

{1, 4}, {2, 4′}, {3, 5}, {6, 3′}, {1′, 2′}, {5′, 6′}
}

∈ J6. This has the following
graphical depiction:

•

•

•

•

•

•

•

•

•

•

•

•

.

We wish to distinguish edges that connect nodes on the same side of the diagram or opposite
sides. To do this we define the type function on a pair partition A ∈ Jn:

tp : A −→ {N,S, P}(3)

{x, y} 7−→











N if x, y ∈ n,

S if x, y ∈ n′,

P otherwise.

We will refer to these three cases as northern horizontal arcs, southern horizontal arcs and propa-
gating lines respectively. This allows us to define the following subsets of Jn:

Jn[ℓ] =
{

A ∈ Jn | A contains precisely ℓ components ai such that tp(ai) = P
}

, and

Jn(ℓ) =
⋃

m6ℓ

Jn[m].

In other words Jn[ℓ] can be thought of as the set of diagrams with precisely ℓ propagating lines,
and Jn(ℓ) as the set of diagrams with at most ℓ propagating lines.

Multiplication in Bn is defined by vertical concatenation of diagrams. Given A,B ∈ Jn we
compute AB by drawing A on top of B so that the southern nodes of A and the northern nodes
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of B coincide pointwise. This defines a new graph A ◦ B on three rows of vertices. Let v(A,B)
be the number of connected components of A ◦ B involving only vertices in the middle row. By
considering the connected components of vertices on the top and bottom rows we obtain a pair
partition π(A◦B), and define AB = δv(A,B)π(A◦B). Note that this multiplication cannot increase
the number of propagating lines in a diagram, and hence the set Jn(ℓ) is an R-basis of an ideal
Jn(ℓ) ⊂ Bn.

The Brauer algebra is a unital algebra with identity element

1 = 1n =
{

{1, 1′}, {2, 2′}, . . . , {n, n′}
}

,

and is generated by elements u1, u2, . . . , un−1 and σ1, σ2, . . . , σn−1, where

ui =
(

1n\
{

{i, i′}, {i+ 1, (i+ 1)′}
})

∪
{

{i, i+ 1}, {i′, (i+ 1)′}
}

σi =
(

1n\
{

{i, i′}, {i+ 1, (i+ 1)′}
})

∪
{

{i, (i+ 1)′}, {i+ 1, i′}
}

.

We can depict these elements graphically as follows:

ui = · · · · · ·

•

•

•

•

•

•

•

•

•

•

•

•
i i+ 1

i′ (i+ 1)′

and σi = · · · · · ·

•

•

•

•

•

•

•

•

•

•

•

•
i

(i+ 1)′

i+ 1

i′

.

As mentioned in the introduction, we wish to work over a ring that is amenable to both special-
isation of δ and moving to fields of characteristic p > 0, whilst still allowing us to invert monic
polynomials in δ. For our purposes, this ring will be

K = {f/g | f, g ∈ Z[δ], g monic, deg(f) 6 deg(g)},

a subring of Q(δ) containing Z[δ−1]. The quotient of K by the principal ideal Kδ−1 is isomorphic
to Z. An element x ∈ K is a unit in K if and only if x ≡ ±1 mod Kδ−1. In order to use this ring,
we must substitute the generator ui by

(4) ui =
1

δ
ui.

We then view the Brauer algebra as the K-algebra generated by the σi and ui. Writing a pair
partition A as a product of generators A =

∏m
j=1 Aj where Aj = σij or uij for 1 6 ij 6 n− 1, we

let A =
∏m

j=1 Aj , where

Aj =

{

σji if Aj = σji ,

uji if Aj = uji .

Then a basis of Bn over K is given by

Jn = {A | A ∈ Jn}.

We analogously define

Jn[ℓ] = {A | A ∈ Jn[ℓ]},
Jn(ℓ) = {A | A ∈ Jn(ℓ)}, and

Jn(ℓ) = BnJn(ℓ)Bn.

Note that since all elements of Jn[n] are generated by the σi, we have Jn[n] = Jn[n].
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2.3. Spore function on pair partitions. The subalgebra KJn[n] of Bn generated by the σi is
isomorphic to KSn, where permutations are composed left-to-right. Thus Bn is both a left and
a right KSn-module by restriction. In particular we can conjugate pair partitions by elements
σ ∈ Sn, which amounts to relabelling the nodes x, x′ with σx and σx′. Write ASn for the orbit
of A ∈ Jn under conjugation by Sn. Note that A ∈ Jn[n] implies ASn ⊂ Jn[n] which is in natural
bijection with Sn, and there is the usual observation that conjugacy classes in Sn are indexed by
integer partitions of n. We also define

AΣ = ASn

Σ =
∑

B∈ASn

B,

the Sn-orbit sum of A.
The rest of this section is devoted to classifying the Sn-orbites of Jn under conjugation.

Definition 2. Given two Young tableaux s, t with entries in {N,S, P} and underlying Young
diagram λ = (λ1, . . . , λm) with λm 6= 0, we say s ∼ t if there exists a permutation σ ∈ Sm such
that the σi-th row of t can be obtained from the i-th row of s by cycling and/or reversing the
entries. It is clear then that ∼ is an equivalence relation. For n ∈ N, we let Tn be the set

Tn =
{

{N,S, P}[λ] | λ ⊢ n
}

/ ∼ .

Let also Tn(ℓ) be the subset of Tn containing all tableaux with at most ℓ entries equal to P .

Definition 3. We define the Spore function

Sp : Jn −→ Tn
as follows. For a pair partition A ∈ Jn begin by decomposing A into a disjoint union of non-empty
sets

A = A1 ⊔ · · · ⊔Am,

of maximal possible m, where for all a ∈ Ai, b ∈ Aj (i 6= j), if x ∈ a then op(x) 6∈ b, where op
is the function defined in (2) above. We also relabel so that |A1| > |A2| > . . . > |Am|. This
decomposition defines an integer partition λA of n, where (λA)i = |Ai|.

We now associate a Young tableau s of shape λA to A. For each part Ai of the above decompo-
sition of A we order the components a1, . . . , aλi

as follows. We choose a1 arbitrarily, and pick an
element x1 ∈ a1. Now given aj and xj ∈ aj we define aj+1 ∈ Ai to be the component containing
op(xj) and xj+1 to be the element of aj+1\{op(xj)}. This process ends when we return to the set
a1. Then Ai will have the form

Ai = {a1, a2, a3, . . . , a(λA)i}
=
{

{x1, op(x(λA)i)}, {op(x1), x2}, {op(x2), x3}, . . . , {op(x(λA)i−1), x(λA)i}
}

.

In the i-th row of the Young diagram [λA] we then fill the j-th box with the symbol tp(aj), where
tp is the type function defined in (3) above.

Proposition 4. The function Sp is well-defined.

Proof. We must show that any pair of tableaux s, t constructable from an element A ∈ Jn satisfy
s ∼ t. In the process described above we make several choices. Firstly, if any of the parts Ai contain
the same number of components, we can place the corresponding rows of the Young tableau in
any order. However we can obtain any of these tableaux by performing a permutation of the rows,
which will give the element σ ∈ Sm from Definition 2.

Once we have chosen an order on the parts Ai, the next choice is to pick a component a1 and
an element x1 ∈ a1. Choosing a different component for a1 amounts to cycling the sequence of the
ai, and choosing a different element x1 reverses the sequence. We therefore see that both tableaux
represent the same class in Tn. �

Remark 5. The process that defines Sp(A) does not depend on the actual values of the xj ∈ n∪n′,
only the components in which they reside. This is to be expected as we can change values of the
xj by Sn-conjugation, and the Spore function is intended to be invariant under this.

Before we move on to use the Spore function, we provide the following example.
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Example 6. Let A =
{

{1, 4}, {2, 4′}, {3, 5}, {6, 3′}, {1′, 2′}, {5′, 6′}
}

∈ J6. This decomposes into
A = A1 ⊔A2, where

A1 =
{

{1, 4}, {2, 4′}, {1′, 2′}
}

, and

A2 =
{

{3, 5}, {6, 3′}, {5′, 6′}
}

.

Starting with the first element of the first pair as written above, we obtain sequences (N,P, S) and
(N,S, P ) for A1 and A2 respectively. Therefore

Sp(A) = N S P
N P S

.

There is an alternative way of constructing the Spore function using the diagram form of the
Brauer algebra. Given the diagram of a pair partition A ∈ Jn, begin by labelling all northern
horizontal arcs by N , southern horizontal arcs by S and propagating arcs P . Then identify all
pairs of nodes i, i′ for 1 6 i 6 n. The resulting diagram has n nodes connected by a series of arcs
each labelled N , S or P , such that each node has valency 2. The connected components of this
diagram then partition the set of nodes. These components then define an integer partition λ of
n, where λi is the number of nodes in the i-th largest connected component. For each i, we choose
a node in the i-th largest component and a direction, walk around this component and record the
sequence of edge labels we encounter in the i-th row of the Young diagram [λ]. This defines a
Young tableaux t with entries in {N,S, P}. We therefore set Sp(A) = t ∈ Tn.
Example 7. Let A =

{

{1, 4}, {2, 4′}, {3, 5}, {6, 3′}, {1′, 2′}, {5′, 6′}
}

∈ J6 as before. We draw the
diagram and label the edges N , S or P below.

N

P

N

P
S S

After identifying opposite pairs of nodes we have the following diagram.

N

P

N

PS

S

We see that we have two connected components, each containing three nodes. Starting with the
leftmost node in each part and walking counter-clockwise around we record the same tableaux as
in Example 6.

A1 =
{

{1, 4}, {2, 4′}, {1′, 2′}
}

, and

A2 =
{

{3, 5}, {6, 3′}, {5′, 6′}
}

.

Starting with the first element of the first pair as written above, we obtain sequences (N,P, S) and
(N,S, P ) for A1 and A2 respectively. Therefore

Sp(A) = N S P
N P S

.

Proposition 8. For all A,B ∈ Jn, A
Sn = BSn if and only if Sp(A) = Sp(B).

Proof. The effect of conjugation by an element of the symmetric group on a diagram A is to apply
the same permutation to the the set n and n′. Therefore when we decompose A = A1 ⊔ · · · ⊔Am,
neither the size of the Ai nor the type of the component parts is affected. We therefore have that
for all A ∈ Jn and σ ∈ Sn,

Sp(A) = Sp(σAσ−1).

It follows that ASn = BSn implies Sp(A) = Sp(B).
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Now assume that Sp(A) = Sp(B). We saw in Remark 5 that the labels of the xj do not matter,
so we may assume that the first components A1 and B1 contains elements x, x′ for 1 6 x 6 (λA)1,
the second components contain x, x′ for (λA)1 +1 6 x 6 (λA)2 and so on. Since the two diagrams
then are formed of disjoint components of corresponding sizes, we may assume that there is only
one part in the decomposition A = A1 (hence also B = B1). Then it must be possible to write
A = {a1, . . . , an} and B = {b1, . . . , bn} such that tp(ai) = tp(bi) for all i. We also have sequences
of distinct elements xi ∈ ai and yi ∈ bi such that (ignoring primes) all values 1, . . . , n appear in
each sequence. We then construct a permutation σ ∈ Sn by setting σxi = yi for all i. Hence we
have A = σBσ−1, and therefore ASn = BSn . �

Proposition 9. For each ℓ, the image of Jn[ℓ] under Sp is the set of equivalence classes in Tn
whose representative tableaux have the following properties:

• there are the same number of N and S in each row;

• ignoring the P , the N and S alternate across each row;

• P appears ℓ times across the whole tableau.

Proof. For the first property, note that for each horizontal arc on the top of each component of
the diagram we must also have a horizontal arc on the bottom.

The second property follows from the fact that each node in the original diagram is connected
to precisely one edge, so we cannot have successive arcs at the top since this will require a node of
valency two between them (and similarly for the bottom).

The last property is by definition of Jn[ℓ], as this states that the original diagram has precisely
ℓ propagating lines. �

Remark. Note that the tableaux in the image of Jn[n] have all entries equal to P , and are therefore
in bijection with the set of partitions λ of n. This is to be expected, as Jn[n] is isomorphic as a
group to Sn.

3. Construction of the splitting idempotent

As outlined in the introduction, we will follow the approach of [MW99]. This relies on the
following lemma:

Lemma 10 ([MW99, Section 1]). Let J ⊂ Λ be an ideal of a unital algebra Λ, then the short exact

sequence of Λ-bimodules

0 → J → Λ → Λ/J → 0

splits if and only if there is an element ϕJ ∈ Λ with the following properties:

(i) ϕJ ≡ 1Λ mod J ;
(ii) ϕJJ = JϕJ = 0.

If ϕJ exists then it is the unique idempotent with these properties, and moreover ϕJ ∈ Z(Λ), the
centre of Λ.

For Λ′ ⊂ Λ a subalgebra (or indeed any subset), define ZΛ′(Λ) as the set of elements of Λ that
commute with Λ′. Obviously Z(Λ) ⊂ ZΛ′(Λ). Thus we can start to search for elements of Z(Λ)
by looking for elements of ZΛ′(Λ).

We will then examine ZKSn
(Bn), where KSn is the subalgebra of Bn with basis Jn[n]. We are

therefore interested in elements of Jn that are invariant under conjugation by all elements of Sn.
Consider an element x ∈ ZKSn

(Bn) of the form

x =
∑

A∈Jn

cAA (cA ∈ K)

= σxσ−1

=
∑

A∈Jn

cAσAσ−1

=
∑

A∈Jn

cσ−1AσA,
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where we have used the fact that conjugation by σ ∈ Sn is a permutation on Jn. Thus x ∈
ZKSn

(Bn) implies cA = cσAσ−1 for all σ. Evidently for any A,
∑

σ∈Sn

σAσ−1 ∈ ZKSn
(Bn).

In characteristic zero, all possible multiplicities in this sum are units, so ZSn
(Bn) has a basis of

elements of this form. However we wish to find a basis valid in arbitrary characteristic.

Lemma 11. For each t ∈ Im(Sp) ⊂ Tn, let At ∈ Jn be any pair partition such that Sp(At) = t.

Writing Dt = (At)Σ, the set

{Dt | t ∈ Im(Sp)}
is a basis of ZSn

(Bn).

Proof. It is clear that the elements AΣ (A ∈ Jn) span this space, and from Proposition 8 we see
that AΣ = BΣ if and only if Sp(A) = Sp(B). Thus different Dt sum over difference conjugacy
classes and if AΣ 6= BΣ no terms can overlap and the Dt are linearly independent. �

Recall from Section 2.2 that Jn(ℓ) is the ideal of Bn with basis Jn(ℓ), and for ℓ < n we write
ϕn(ℓ) for the corresponding splitting idempotent in the sense of Lemma 10. We will see below that
this idempotent exists for our chosen ring K. Define Xn(ℓ) by ϕn(ℓ) = 1 +Xn(ℓ). Since Xn(ℓ) is
central, and hence in ZSn

(Bn), we have

Xn(ℓ) =
∑

t∈Tn(ℓ)

ctDt

where the scalars ct are to be determined. By Lemma 10(ii) a necessary condition is given by
dXn(ℓ) = −d for d ∈ Jn(ℓ). Thus in particular for u = u1 u3 u5 . . . un−ℓ−1 (where the ui are as in
(4)) a necessary condition is

(5) uXn(ℓ) = −u.

We will use this equation to obtain several linear equations in the ct, show that these are linearly
independent and hence solve to obtain the values of ct.

We may assume that At has an arc between nodes 2j+1 and 2j+2 for j = 0, 1, . . . , 1
2 (n−ℓ−2).

Then uAt = At for all t ∈ Tn(ℓ). Moreover the following proposition shows that this relation is
uniquely satisfied by the action of u on At.

Proposition 12. Suppose A 6= At satisfies uA = δrAt for some r ∈ Z. Then r < 0.

Proof. Clearly r = 0 is the maximum possible power of δ since we are working in the ring K. So
we prove that if this maximum is attained, then A = At.

Firstly, it is clear that if r = 0, then we must cancel each factor 1
δ
from each of the ui constituting

u by forming closed loops. Thus nodes 2j+1 and 2j+2 must be joined for j = 0, 1, . . . , 1
2 (n−ℓ−2).

Next, the action of u cannot change the arrangement of any southern arcs, and it acts as the identity
on the remaining ℓ propagating or northern arcs. Clearly this implies that if uA = δrAt with r
maximal, then A = At. �

Writing Tn(ℓ) = {t1, . . . , tm} with Sp(u) = t1 we have a system of equations

(6)













p
(1)
1 (δ) p

(1)
2 (δ) · · · p

(1)
m (δ)

p
(2)
1 (δ) p

(2)
2 (δ) · · · p

(2)
m (δ)

...
...

. . .
...

p
(m)
1 (δ) p

(m)
2 (δ) · · · p

(m)
m (δ)























ct1
ct2
...

ctm











=











−δ−
1
2 (n−ℓ)

0
...
0











where the p
(k)
j are elements of K, p

(j)
j ≡ 1 mod Kδ−1, and p

(k)
j ∈ Kδ−1 for k 6= j. Therefore

the determinant of this matrix is also an element of K with leading term 1, which is generically
non-zero. In order to invert this matrix, it may be true that we have to work over the field of
rational polynomials in δ. However the following proposition shows that this is not the case.

Proposition 13. The coefficients cti all lie in K.
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Proof. Denote by M the m×m matrix in (6). Since detM ≡ 1 mod Kδ−1, it is a unit in K. An
application of Cramer’s rule then shows that

cti =
detMi

detM
,

where Mi is the matrix obtained by replacing the i-th column of M by (−δ−
1
2 (n−ℓ), 0, . . . , 0)T .

Therefore we must show that detMi is an element of K. But in the construction of Mi we are

simply replacing the p
(j)
i (δ) by either 0 or −δ−

1
2 (n−ℓ), which are also elements of K. Therefore

detMi ∈ K, and the result follows. �

The above proves the main theorem of this paper, that the condition (5) is also sufficient.

Theorem 14. For each t ∈ Tn(ℓ) let Dt = (At)Σ, where At ∈ Jn is any pair partition such that

Sp(At) = t. Setting Xn(ℓ) =
∑

t∈Tn(ℓ)
ctDt for some ct ∈ K and u = u1 u3 . . . un−ℓ−1, the equation

uXn(ℓ) = −u

is always solvable in the ct. Moreover, by defining ϕn(ℓ) = 1 + Xn(ℓ) we obtain the splitting

idempotent corresponding to the short exact sequence

0 → Jn(ℓ) → Bn → Bn/Jn(ℓ) → 0.

4. Representation theory and primitive central idempotents

In this section we will study the Brauer algebra over a field of characteristic zero, which for our
purposes amounts to extending scalars of the ring K to Q ⊗Z K and specialising δ to an element
of Z. We will assume some familiarity with the representation theory of the Brauer algebra over
a field (see for instance [CDVM09a], [CMPX06], [GL96], [Rui05]). In particular, the algebra Bn

is cellular [GL96], and thus comes equipped with cell modules. These cell modules are indexed by
integer partitions of n, n− 2, . . . , 0/1, and generically so too are the simple modules. Write ∆n(λ)
(resp. Ln(λ)) for the cell (resp. simple) module indexed by the partition λ.

The family Bn (n > 0) of Brauer algebras form a tower of recollement, in the sense of [CMPX06].
We therefore have a family of localisation functors

Fn : Bn-mod → Bn−2-mod

and globalisation functors
Gn : Bn-mod → Bn+2-mod.

For all n > 0 and Bn-modules M , we have Fn+2Gn(M) ∼= M , and each Gn is a full embedding.
Moreover for all partitions λ ⊢ n, n− 2, . . . , 0/1,

Fn(∆n(λ)) ∼=
{

∆n−2(λ) if λ ⊢ n− 2, n− 4, . . . , 0/1

0 if λ ⊢ n, and

Gn(∆n(λ)) ∼= ∆n+2(λ).

In the generic case over a field of characteristic zero or p > n the Brauer algebra is semisimple, and
the cell modules are both simple and indecomposable projective, so are generated by a primitive
central idempotent ϕn(λ). Therefore ϕn(ℓ) decomposes into a sum of ϕn(λ) where λ is a partition
of λ ⊢ ℓ+ 2, ℓ+ 4, . . . , n. For ℓ+ 2 < n this decomposition is not always easily obtained. However
when ℓ = n− 2 we have the following:

Lemma 15. For λ ⊢ n,
ϕn(λ) = ϕn(n− 2)eλ,

where eλ is the idempotent in QSn corresponding to the Specht module Sλ, viewed as an element

of Bn.

Proof. We show that the action of Bn on the module generated by ϕn(n−2)eλ is the same as that
on the cell module ∆n(λ). In the case of the latter, all elements with fewer than n propagating
lines act as zero, and the remaining act as they would on the Specht module Sλ.

Since ϕn(n − 2) is central, we need not worry about the order of multiplication above. Now
from Lemma 10, we see that ϕn(n− 2) acts as zero on any element with fewer than n propagating
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lines, and as the identity on the rest. Since all that remains are elements with n propagating lines,
they then act on the idempotent eλ as they do in the Specht module Sλ, proving the lemma. �

When specialising δ or moving to a field of characteristic p > 0, it is possible that the Brauer
algebra may no longer be semisimple. This will be reflected in the idempotents ϕn(ℓ) and ϕn(λ).
Indeed, some of these may no longer be well defined, and will need to be added together in order
to clear any singularities. This corresponds to having a non-trivial block in the algebra.

Note first that the denominators in ϕn(ℓ) are all monic polynomials in Z[δ], and so are well
defined in all characteristics. Assume then that we are working in a field of characteristic zero.
Rui’s semisimplicity criterion [Rui05, Theorem 1.2] tells us that these denominators will vanish
when δ is an element of a certain subset of the integers.

Continuing with the characteristic zero case, suppose λ ⊢ n. If the denominators appearing in
ϕn(λ) do not vanish at a chosen value of δ ∈ K then the cell module ∆n(λ) is equal to the simple
module Ln(λ) and there is a corresponding idempotent in Bn splitting

0 → Ann(Ln(λ)) → Bn → Bn/Ann(Ln(λ)) → 0.

Thus there can be no map Ln(λ) →֒ ∆n(µ) for any partition µ 6= λ. Equivalently, if a denominator
does vanish then there is a corresponding map. Moreover, if m is the largest propagating number
among the elements with diverging coefficients, then µ ⊢ m.

We can use globalisation and localisation to overcome the difficulty of computing the ϕn(λ) for
λ ⊢ ℓ < n. Indeed, due to the cellular structure of Bn, if Ln(λ) appears as a composition factor
of any ∆n(µ) then |µ| 6 |λ|. Therefore by localising to Bℓ, we do not lose any data about which
modules Ln(λ) appears in. We will make use of this in the examples in the next section.

5. Examples

Given their links to representation theory (cf. [Ben98, Chapter 1] for example), it should not be
surprising that in many cases the calculation of central idempotents is a highly non-trivial task, see
for instance Murphy’s construction of central idempotents in the symmetric group [Mur83]. The
method described above gives us a general process that, given enough time, will produce central
idempotents of Bn and from there some of the primitive central idempotents. In low ranks it is
even possible to calculate the ϕn(ℓ) (and some of the ϕn(λ)) explicitly by hand. We will do this
for n 6 4, but for the sake of brevity will suppress many of the details. Instead we will refer to
several features of the idempotents that can be interpreted in a representation theoretic manner.

5.1. Splitting idempotents. Our first task will be to calculate the idempotent ϕ2(0) in B2. By
Lemma 11, a basis of ZS2(B2) is indexed by the tableaux

s
(0)
1 = N S , s

(2)
1 = P P , and s

(2)
2 = P

P
.

The tableau corresponding to diagrams with no propagating lines is s
(0)
1 , and so

X2(0) = a
s
(0)
1
D

s
(0)
1
,

where D
s
(0)
1

= u1 ∈ B2. Theorem 14 requires u1X2(0) = −u1, which is satisfied by setting

a
s
(0)
1

= − 1
δ
. Therefore

ϕ2(0) = 1− 1

δ
u1.

We invite the reader to calculate the idempotent ϕ3(1) in B3, as we will not make use of it in
the rest of this paper. The case n = 4 will outline the method and provide enough detail to omit
the n = 3 case.

We now calculate the idempotents ϕ4(0) and ϕ4(2) in B4. This requires us to first find a basis
of ZS4

(B4), which again by Lemma 11 above is indexed by the tableaux

t
(0)
1 = N S N S , t

(0)
2 = N S

N S
,
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t
(2)
1 = N S P P , t

(2)
2 = N P S P , t

(2)
3 = N S P

P
, t

(2)
4 = N S

P P
, t

(2)
5 =

N S
P
P

,

t
(4)
1 = P P P P , t

(4)
2 = P P P

P
, t

(4)
3 = P P

P P
, t

(4)
4 =

P P
P
P

, and t
(4)
5 =

P
P
P
P

.

Considering first diagrams with no propagating lines, i.e. those tableaux t
(i)
j with i = 0, we have

X4(0) = b
t
(0)
1
D

t
(0)
1

+ b
t
(0)
2
D

t
(0)
2
,

where

D
t
(0)
1

=
•

•

•

•

•

•

•

•
+

•

•

•

•

•

•

•

•
+

•

•

•

•

•

•

•

•
+

•

•

•

•

•

•

•

•
+

•

•

•

•

•

•

•

•
+

•

•

•

•

•

•

•

•
and

D
t
(0)
2

=
•

•

•

•

•

•

•

•
+

•

•

•

•

•

•

•

•
+

•

•

•

•

•

•

•

•
.

Setting u = u1 u3 and requiring uX4(0) = −u, we obtain the system of equations

(

1 + δ−1 δ−1

2δ−1 1

)

(

b
t
(0)
1

b
t
(0)
2

)

=

(

0
−δ−2

)

.

Solving this gives

b
t
(0)
1

=
1

δ(δ + 2)(δ − 1)
and b

t
(0)
2

= − δ + 1

δ(δ + 2)(δ − 1)
,

and we have ϕ4(0) = 1 + b
t
(0)
1
D

t
(0)
1

+ b
t
(0)
2
D

t
(0)
2
.

We will now consider diagrams with at most 2 propagating lines, i.e. those tableaux t
(i)
j with

i = 0, 2, so that

X4(2) =

5
∑

i=1

c
t
(2)
i

D
t
(2)
i

+

2
∑

i=1

c
t
(0)
i

D
t
(0)
i

.

This time we set u = u1 and obtain the following system of 7 linearly independent equations.





















1 + δ−1 δ−1 2δ−1 0 2δ−1 0 0
2δ−1 1 0 2δ−1 0 δ−1 δ−1

0 0 1 + δ−1 δ−1 δ−1 δ−1 0
0 0 2δ−1 1 2δ−1 0 0
0 0 δ−1 δ−1 1 + δ−1 0 δ−1

0 0 4δ−1 0 0 1 0
0 0 0 0 4δ−1 0 1















































c
t
(0)
1

c
t
(0)
2

c
t
(2)
1

c
t
(2)
2

c
t
(2)
3

c
t
(2)
4

c
t
(2)
5



























=





















0
0
0
0
0
0

−δ−1





















.



12 O. H. KING, P. P. MARTIN, AND A. E. PARKER

Upon solving this we see that

c
t
(0)
1

= − 3δ + 2

(δ − 2)(δ − 1)(δ + 2)(δ + 4)

c
t
(0)
2

=
δ2 + 3δ + 6

(δ − 2)(δ − 1)(δ + 2)(δ + 4)

c
t
(2)
1

= − 1

(δ − 2)(δ + 2)(δ + 4)

c
t
(2)
2

= − 2

δ(δ − 2)(δ + 4)

c
t
(2)
3

=
δ + 3

(δ − 2)(δ + 2)(δ + 4)

c
t
(2)
4

=
4

δ(δ − 2)(δ + 2)(δ + 4)

c
t
(2)
5

= − δ3 + 4δ2 − 4

δ(δ − 2)(δ + 2)(δ + 4)
,

and ϕ4(2) = 1 +

5
∑

i=1

c
t
(2)
i

D
t
(2)
i

+

2
∑

i=1

c
t
(0)
i

D
t
(0)
i

.

Remark. Note that the values of δ for which ϕ4(0) and ϕ4(2) are well-defined coincide with the
values of δ for which B4(δ) is semisimple over a field of characteristic zero (see [Rui05]).

5.2. Connections with representation theory. We begin by studying the case n = 2. Note we
will use cycle notation for permutations in the calculations. From [Mur83], the primitive central
idempotents in QS2 are

e(2) =
1

2
(1 + (1 2)), and

e(12) =
1

2
(1− (1 2)).

By Lemma 15, we then have

ϕ2((2)) = ϕ2(0)e(2)

=
1

2
(1 + (1 2))− 1

δ
u1

=
1

2
(D

s
(2)
2

+D
s
(2)
1
)− 1

δ
D

s
(0)
1

ϕ2((1
2)) = ϕ2(0)e(12)

=
1

2
(1− (1 2))

=
1

2
(D

s
(2)
2

−D
s
(2)
1
).

When δ = 0, the coefficient of ϕ2((2)) corresponding to elements with zero propagating lines
diverges, indicating a non-zero homomorphism L2((2)) →֒ ∆2(∅).

Moving now to the n = 4 case, note first that we can globalise the n = 2 case and see that when
δ = 0, we have a non-zero homomorphism

∆4(2) → ∆4(∅)/M,

where M ⊂ ∆4(∅) is a submodule.
We now calculate the idempotent eλ ∈ QS4 with λ = (3, 1) using the results of [Mur83]:

e(3,1) =
3

8
+

1

8
(1 2)Σ − 1

8
(1 2)(3 4)Σ − 1

8
(1 2 3 4)Σ

=
1

8

(

−D
t
(4)
1

−D
t
(4)
3

+D
t
(4)
4

+ 3D
t
(4)
5

)

.
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Hence

ϕ4((3, 1)) = ϕ4(2)e(3,1)

= e(3,1) +
1

8δ(δ + 2)

(

δD
t
(2)
1

+ 2(δ + 2)D
t
(2)
2

− δD
t
(2)
3

− 4D
t
(2)
4

− 4(δ + 1)D
t
(2)
5

)

.(7)

From (7) above we see that when δ = 0 or −2, the idempotent ϕ4((3, 1)) is no longer well-defined.
The coefficients that blow up are attached to the diagrams with two propagating lines, signifying
the appearance of L4(3, 1) as a submodule of ∆4(µ) for µ ⊢ 2.

Finally we will show that a sum of idempotents that individually are not defined at a certain
value of δ, can in fact be well defined for this δ. In particular we will compute

(8) ϕ4(0)− ϕ4(2) + ϕ4((3, 1))

and show that it is well defined at δ = −2, even though each constituent is not. Since each part
is a linear combination of the D

t
(i)
j

we can sum each of the corresponding coefficients. Using the

order of the t
(i)
j from Section 5.1 we have

b
t
(0)
1

− c
t
(0)
1

=
4

δ(δ − 2)(δ + 4)

b
t
(0)
2

− c
t
(0)
2

=
−2(δ + 2)

δ(δ − 2)(δ + 4)

−c
t
(2)
1

+
1

8(δ + 2)
=

δ

8(δ − 2)(δ + 4)

−c
t
(2)
2

+
1

4δ
=

δ + 2

4(δ − 2)(δ + 4)

−c
t
(2)
3

− 1

8(δ + 2)
= − δ + 8

8(δ − 2)(δ + 4)

−c
t
(2)
4

− 1

2δ(δ + 2)
= − 1

2(δ − 2)(δ + 4)

−c
t
(2)
5

− δ + 1

2δ(δ + 2)
=

δ + 3

2(δ − 2)(δ + 4)
.

Note that theD
t
(4)
j

appear only in ϕ4((3, 1)), so we have omitted their coefficients here. We see then

that (8) is well defined at δ = −2. Since the element ϕ4(0) kills all modules ∆4(λ) with |λ| = 0 and
ϕ4(2) kills all ∆4(λ) with |λ| 6 2, this sum will kill all cell modules except ∆4((3, 1)), ∆4((2)) and
∆4((1

2)). We have already seen that when δ = −2 there is a homomorphism ∆4((3, 1)) → ∆4(µ)
for some µ ⊢ 2, and from the block characterisation of [CDVM09a] we see that in fact µ = (12).
From the same characterisation we see that ∆4((2)) is alone in its block. Therefore the sum (8)
corresponds to a union of these two blocks of B4.

A. The case n = 6

The examples above illustrate the method of computing central idempotents and how to glean
information about representation theory from them. In this supplementary section we calculate
the splitting idempotents in B6, a 10395-dimensional algebra, to show that the method we derived
does indeed give idempotents that were previously inaccessible.

Starting with the splitting idempotent for J6(0), we have

u
(0)
1 = N S N S N S , u

(0)
2 = N S N S

N S
, and u

(0)
3 =

N S
N S
N S

.

Then ϕ6(0) = 1 +
∑3

i=1 α
(0)
i D

u
(0)
i

, where

α
(0)
1 = − 2

δ(δ − 2)(δ − 1)(δ + 2)(δ + 4)
,



14 O. H. KING, P. P. MARTIN, AND A. E. PARKER

α
(0)
2 =

1

δ(δ − 2)(δ − 1)(δ + 4)
,

α
(0)
3 =

δ2 + 3δ − 2

δ(δ − 2)(δ − 1)(δ + 2)(δ + 4)
.

Next, for the splitting idempotent for J6(2) we have (in addition to the above)

u
(2)
1 = N S N S P P , u

(2)
2 = N S N P S P , u

(2)
3 = N S P N P S , u

(2)
4 = N S P N S P ,

u
(2)
5 = N S N S P

P
, u

(2)
6 = N S N S

P P
, u

(2)
7 = N S P P

N S
, u

(2)
8 = N P S P

N S
,

u
(2)
9 =

N S N S
P
P

, u
(2)
10 = N S P

N S P
, u

(2)
11 =

N S P
N S
P

, u
(2)
12 =

N S
N S
P P

, and u
(2)
13 =

N S
N S
P
P

.

Thus ϕ6(2) = 1 +
∑3

i=1 β
(0)
i D

u
(0)
i

+
∑13

i=1 β
(2)
i D

u
(2)
i

, where

β
(0)
1 =

13δ2 + 25δ + 18

(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(0)
2 = − 4(δ2 + 3δ + 3)

(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 4)(δ + 6)
,

β
(0)
3 =

2(δ4 + 7δ3 + 13δ2 + 13δ − 6)

(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
1 =

3(δ2 + δ + 2)

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
2 =

5δ + 6

δ(δ − 3)(δ − 2)(δ + 1)(δ + 4)(δ + 6)
,

β
(2)
3 =

5δ + 6

δ(δ − 3)(δ − 2)(δ + 1)(δ + 4)(δ + 6)
,

β
(2)
4 =

2(2δ2 + 3δ − 6)

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
5 = − 2δ3 + 10δ2 + 3δ − 6

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
6 = − 4(5δ + 6)

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
7 = − (δ + 3)(δ2 + δ + 2)

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
8 = − 2

(δ − 3)(δ − 2)(δ + 1)(δ + 6)
,

β
(2)
9 =

δ4 + 7δ3 + 8δ2 − 8δ − 24

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
10 = − δ3 + 6δ2 + 18δ + 12

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
11 =

δ4 + 7δ3 + 7δ2 − 11δ − 6

δ(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
,

β
(2)
12 =

8

(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 6)
,

β
(2)
13 = − δ4 + 8δ3 + 7δ2 − 40δ − 44

(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)
.
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Finally, we compute the splitting idempotent for J6(4). The remaining tableaux to consider are

u
(4)
1 = N S P P P P , u

(4)
2 = N P S P P P , u

(4)
3 = N P P S P P , u

(4)
4 = N S P P P

P
,

u
(4)
5 = N P S P P

P
, u

(4)
6 = N S P P

P P
, u

(4)
7 = N P S P

P P
, u

(4)
8 = P P P P

N S
,

u
(4)
9 =

N S P P
P
P

, u
(4)
10 =

N P S P
P
P

, u
(4)
11 = N S P

P P P
, u

(4)
12 =

N S P
P P
P

,

u
(4)
13 =

P P P
N S
P

, u
(4)
14 =

N S P
P
P
P

, u
(4)
15 =

N S
P P
P P

, u
(4)
16 =

N S
P P
P
P

, and u
(4)
17 =

N S
P
P
P
P

.

Therefore ϕ6(4) = 1 +
∑3

i=1 γ
(0)
i D

u
(0)
i

+
∑13

i=1 γ
(2)
i D

u
(2)
i

+
∑17

i=1 γ
(4)
i D

u
(4)
i

, where

γ
(0)
1 = − 17δ − 18

(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 6)(δ + 8)
,

γ
(0)
2 =

3δ3 + 23δ2 + 66δ − 24

(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 4)(δ + 6)(δ + 8)
,

γ
(0)
3 = − δ4 + 10δ3 + 19δ2 − 2δ + 408

(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
1 = − 7δ5 + 11δ4 − 27δ3 − 78δ2 + 216δ − 192

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
2 = − 11δ4 + 47δ3 − 6δ2 − 208δ − 96

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
3 = − 11δ4 + 47δ3 − 6δ2 − 208δ − 96

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
4 = − 2(4δ5 + 6δ4 − 29δ3 + 26δ2 − 136δ + 192)

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
5 =

5δ6 + 31δ5 − 62δ4 − 233δ3 + 298δ2 + 216δ − 192

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
6 =

4(15δ2 + 10δ − 88)

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
7 =

δ6 + 7δ5 + 31δ4 − 47δ3 − 78δ2 + 152δ − 192

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
8 =

2(δ5 + 9δ4 + 30δ3 − 52δ − 240)

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
9 = − 3δ6 + 26δ5 − 29δ4 − 400δ3 + 192δ2 + 1256δ − 544

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
10 =

δ6 + 9δ5 + 70δ4 + 78δ3 − 588δ2 − 80δ + 384

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
11 = − δ7 + 10δ6 + 20δ5 − 42δ4 − 249δ3 + 42δ2 + 536δ − 192

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
12 = − 8(δ5 + 7δ4 + 36δ3 − 26δ2 − 240δ + 96)

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(2)
13 =

δ8 + 11δ7 + 7δ6 − 171δ5 − 148δ4 + 716δ3 + 16δ2 − 192δ + 768

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,
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γ
(4)
1 = − δ3 − 14δ2 − 28δ − 48

(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
2 = − 2(2δ4 + 4δ3 − 11δ2 − 18δ − 40)

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
3 = − 2(3δ4 + 12δ3 − 16δ2 − 128δ + 192)

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
4 =

δ4 + 4δ3 − 22δ2 − 32δ + 28

(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
5 =

3δ5 + 20δ4 − 37δ3 − 200δ2 + 132δ + 208

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
6 =

2(13δ3 + 10δ2 − 62δ − 24)

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
7 =

4(10δ4 + 23δ3 − 120δ2 − 72δ + 96)

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
8 =

8(δ3 − 14δ2 − 28δ − 48)

δ(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
9 = − δ4 + 4δ3 − 29δ2 − 2δ + 100

(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 6)(δ + 8)
,

γ
(4)
10 = − 2(δ7 + 9δ6 − 9δ5 − 151δ4 + 20δ3 + 432δ2 + 16δ − 192)

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
11 =

21(δ2 + 2δ − 4)

(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
12 = − 4(3δ3 + 17δ2 − 27δ − 76)

(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
13 = − 6

(δ − 2)(δ − 1)(δ + 2)(δ + 4)(δ + 8)
,

γ
(4)
14 =

δ7 + 10δ6 − 8δ5 − 212δ4 − 11δ3 + 1042δ2 + 60δ − 1008

(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
15 = − 16(13δ3 + 10δ2 − 62δ − 24)

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
16 =

4(δ5 + 8δ4 − δ3 − 50δ2 − 16δ + 96)

δ(δ − 4)(δ − 3)(δ − 2)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
,

γ
(4)
17 = −δ9 + 11δ8 − 7δ7 − 295δ6 − 106δ5 + 2252δ4 + 352δ3 − 4464δ2 + 96δ + 1152

δ(δ − 4)(δ − 3)(δ − 2)(δ − 1)(δ + 1)(δ + 2)(δ + 4)(δ + 6)(δ + 8)
.

B. Efficiency of the construction

The expression of Bn(δ) as a multimatrix algebra in [LR97] allows one to calculate the primitive
central idempotents of Bn directly by summing the elements corresponding to certain paths in
the Bratteli diagram, see Figure B below. In particular we have a basis of Bn given by {EST }
where (S, T ) are pairs of paths from row 0 to the same point in row n of the Bratteli diagram.
Multiplication of these elements is given by the rule

ESTEUV = δTUESV .

For n = 3, we have the following:

P1 = ∅ → → →
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∅

∅

∅

Figure 1. The Bratteli diagram of B4.

Q1 = ∅ → → →

Q2 = ∅ → → →

R1 = ∅ → → →

S1 = ∅ → → →

S2 = ∅ → → →
S3 = ∅ → → ∅ →

Now by [LR97, Theorem 6.22] we can express the generators ui, σi of Bn as linear combinations of

the EST over the field Q(δ). In particular for B3 we have

u1 = δES1S1

s1 = −EP1P1 + ER1R1 − EQ1Q1 + EQ2Q2 + ES1S1 − ES2S2 + ES3S3

u2 =
1

δ
ES1S1 +

δ − 1

2
ES2S2 +

(x− 1)(x+ 2)

2x
ES3S3 +

√

x(x− 1)√
2x

(ES1S2 + ES2S1)

+

√

(x− 1)(x+ 2)√
2x

(ES1S3
+ ES3S1

) +

√

x(x− 1)2(x+ 2)

2x
(ES2S3

+ ES3S2
)

s2 = −EP1P1
+ ER1R1

+
1

2
(EQ1Q1

− EQ2Q2
) +

√
3

2
(EQ1Q2

+ EQ2Q1
) +

1

δ
ES1S1

+
1

2
ES2S2

+
(x− 2)

2x
ES3S3

−
√

x(x− 1)√
2x

(ES1S2 + ES2S1
) +

√

(x− 1)(x+ 2)√
2x

(ES1S3 + ES3S1
)
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+

√

x(x− 1)2(x+ 2)

2x(x− 1)
(ES2S3

+ ES3S2
).

Since the set {u1, s1, u2, s2} generates a Z[δ]-basis for B3 we can find this basis in terms of the EST ,
and hence find an expression for the EST in terms of the standard diagram basis. To calculate the
primitive central idempotent ϕn(λ) with this basis we must sum the elements ESS where S is a
path ending at λ. For instance for ϕ3((1)) we find the sum

ES1S1
+ ES2S2

+ ES3S3
=

δ + 1

(δ − 1)(δ + 2)
(u1 + u2 + s1u2s1)

− 1

(δ − 1)(δ + 2)
(u1u2 + u2u1 + u1s2 + u2s1 + s1u2 + s2u1).

This is simply the element X4(0) in the notation of this paper, which is already a much easier
calculation. Moreover in order to write the generators of the algebra in terms of the EST we must
calculate a coefficient for each pair of paths (S, T ) ending at the same partition. The number
of such pairs grows dramatically with n, as does the dimension of the algebra Bn and hence the
calculation to convert from one basis to the other. Finally the coefficients in the intermediate steps
do not reside in some integral or otherwise “nice” ring, which is a property of the method described
in this paper.
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