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Abstract— Theuse of the multiscale generalized radial basis
function (M SRBF) network for image feature extraction is
proposed for the first time. The MSRBF network holds a
simple but flexible structure capable to modelling complex
systems. However M SRBF is originally designed to identify
observational-type input-output systems. We aim to use this
efficient network to get to concise but accurate models of
digital images thanks to: a) the use of multiple scalesin the
RBF kernel width, and b) the adoption of the forward
regression orthogonal least squares (FROLS) algorithm to
refine the model structure selection. Thereafter the new
tailored model is excited to produce output signals aimed at
be compressed by the discrete cosine transform (DCT),
adopted in this work to compact signals’ energy into a few
coefficients. To recognise images as MSRBF networks, a
mathematical modelling was done by considering the first
ones as multiple-input single-output systems. Based on the
new methodology a novel computer aided diagnosis (CAD)
system for cancer detection in X-ray mammograms was
designed. Classification results show that the new CAD
method helped reach a competitive diagnostic accuracy of
93.5%. It was similarly found that the MSRBF network is
ableto construct tailored and precise image models.

Keywords, Nonlinear system identification; Image
processing; Discrete Cosine Transform; Radial Basis

Functions; Computer Aided Diagnosis; Neural Networks
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better approximatiam However, the more hidden layers
are included in the network the more complex the training
becomes, even though it has been proved that one single
hidden-layer is enough to estimate any continuous
function [2][4]. A special class of ANN are the single-
hidden layer networks also known as radial basis functions
(RBF). These networks hold a linearity weighted structure
that ease the training and avoids nonlinear procedures [5]
The typical architecture of RBF is illustrated in Figure 1.
Although simple RBF soundssa good choice, the models
they produce may lacsf flexibility to model dynamic or
discontinuous systems. An alternative to this limitation is
the multiscale version of RBF, termed Generalized
Multiscale RBF Networks (MSRBF) that provide a trade-
off among simple RBF Networks and the advantages
provided by more complex networks [3p the best of our
knowledge, MSRBF networks has not been employed in
CAD systems or image processing techniques. In this work
we adopt the MSRBF networks philosophy and combine it
with DCT to extract information from images with
classification purpose3he method was tested as a CAD
system for breast cancer. Previous work on CAD systems
involving system identification and/or neural networks is
abundant, but we made a review of the most representative
techniques. A technique unrelated to CAD but similar to
our method uses RBF and DCT for face recognition [6]
The approach uses DCT as dimensionality reduction

Digital image processing techniques encompass amethod,

increasing variety of approaches that can help to recognize
or extract patterns to enable a subsequent statistical
inference such as the extraction of feature values for
classification [1] Among the latter, there has been
growing acceptance of system identification approgches
which are mainly oriented to build models based only on
the historical record ofystem’s inputs and outputs [2]
This kind of models may also recognize patterns feom
system behaviour without prior knowledgeitsfstructure

This pattern recognition capability is what make system
identification models so attractivi@a image processing
Computer aided diagnosis (CAD) is a field of intense
development that incorporates image processing in the
medical field and has made the most of advances in
intelligent systems to support radiologists in decision-
making [3]. One of the most popular system identification

apfroalfhesAl\;rlll CAD Systtﬁ”.‘s are tfll(e b?rt'f'c'a:j Tleurall—'isher's linear discriminant to extract feature values and
networx ( ) given their remarkable modelling RBF for classifying the vectors. Although metrics are not
Xomparable the authors were able to create an insensitive

Radial Basis
Hidden layer

Input layer Output layer

Figure 1. Multiple-input single-output architectuaea RBFNN

authors like to use multi-layered ANN to try to obtain
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to luminosity variations method. In [7] a CAD technique [T 1T
for breast cancer based on the polynomial NARX model, - — : =
the FROLS algorithm and the k-means classifier is = — U
presented. The method propose the modelling of an image - o —
as an input-output dynamic system in order to put together ~~H ]
a parametric model based on the image to be characterized. L
The classification results demonstrated a competitive
performance. In [8] a CAD system using the extreme
learning machine (ELM) for breast cancer detection wagethodology to a CAD system, the image is initially
introduced. This unsupervised training method beaten ttévided into sub-images, which is the level at which the
metrics of previous methods, but the algorithm depends diPmputational process is performedge considered that

a very accurate parameter setting. In [9] RBF neurdhe size of a subimage (64 x 64 pixels) is suitable for

networks are used for classification and the gray-level cdzontaining the region of interest (ROI) such as a tumours or
occurrence matrix for feature extraction in a CAD syste m|crocaIC|f|ca.t|ons..T(') improve the focus range reg_ardmg
thour location within the image, an additional image

gégglﬁs;n%aqﬁzr t?aectECt'?g'aTgioﬂa;if'ﬁggncéfnsugfeoplitting was implemented to boost the characterization
propag P rough a two-fold simultaneous processing (Figure 2).

resulting the proposed method to be more a‘?c‘_”at? fhen, each sub-subimage read and structured as
accuracy (93.98% vs.79.5%) and tumour distinCtionygnjinear autoregressive with exogenous input (NARX)
(100% vs. 89.47%). In [10] an easy to implement CAD{13] model array, which is in turn processed by the
approach uses independent component analysis for featWgsRBE network to produce a new arrange of candidate
extraction and RBFNN for classification to attain anterms made of kernel functions. Then, the FROLS
accuracy of 88.23% and abnormality distinction rate oklgorithm evaluates the candidates and creates a compact
79.31%. In [11] an NN technique for breast cancebut accurate image model. When the model is ready, a
detection is introduced. It usagray level co-occurrence series of input reference signals are used to excite the model
matrix for feature extraction and the scaled conjugatéo generate a corresponding series of output signals, which
gradient back propagation to train the network. Theare finally processed via the DCT and put together to obtain
classification results were positive for accuracy and feature vector. This same process is performed with all
sensitivity (93.1% of, 99%) but only moderately good formammographis subimages in order to compare, by means
specificity (83%). Finally, an integrated CAD system forofaclassificatiqn algorithm, their values with those qf other
breast cancer detection using a particular network kind g&mples previously tagged as healthy, benign or
presented [12]. The authors propose the generalizé&ahgna”t)- The CAD classification scheme is resumed in
pseudo-Zernike moment for feature extraction which i '9ure 3.

claimed to be robust to noise, and a novel adaptivg Discrete-time system structuring

differential evolution wavelet neural network iS At hig stage the method scans the image data and store

recommended as classifier. In the tests, two mammograas 5 time series so that pixel neighbourhoods along the
databases are used, MIAS and DDSM, attaining accuragfage put together a list of input-output observations with

Figure 2 Subimage splitting for a two-fold characterization

rates of 89% and 87% respectively. a structure based on the NARX model as follows [7][2]:
This work puts forward a novel image processing ¥(t) = F[y(t — 1), y(t — 2),..,y(t —n,),

framework for feature extraction based on an improved u(t—d),u(t—d—-1),..,u(t —d —ny)]
version of RBF networks, adds to them the advantages of +e(t) (2)

DCT information compression and adapts successfully the
new methodology into a new CAD systems for breaswhere F[-] is a nonlinear function;(t) the system output
cancer detection. The following chapter describes thsequencey(t) the system input sequenes, and
information flow and the logic behind the proposed
method including new and adopted procedures. Chapter [Il o NN i
shows the experiments and results of the methodology il Classification flesting

Chapter IV presents a discussion on the findings,
difficulties and future work. Training set
.Testmammogram

Image labelling
Feature extraction

Il.  METHODOLOGY

The DCT MSRBF feature value extraction method is
mainly based on three algorithms: RBF neural network in
the multi-scale version, the FROLS algorithm and the
Discrete Cosine Transform. However, to adapt this

Feature matrix

) Diagnosis
’ \\\ "l <

Figure 3. Adaptation of MSRBF DCT to a CAD system
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n, the maximum lags for the system output and input (seéf. Model structure selection

in this work =1), andl a time delay set here t@ = 1.

B. MSRBF network

The generalized radial basis function networks (MSRBFL

were proposed as a trade-off alternative between t

simple RBF networks and the more complex neura

networks involving nonlinear optimization [SBesides,

this networks hold a simple structure while are capable t
identify and modeling complex nonlinear systems. Th

MSRBF network information flow in our methodology is
shown in Figuret.

The MSRBF network implemented in this work present

the following structure [5],[20]

y(@® = f(x(®) = _
€=0 Z§:0 Z:lnc=1 Hi,j,m(pi,j,m(x(t): a‘f;{])' Cm)
(2)

Having the basis functiong; ;, (x(t): a,ﬁ"),cm defined
as

@i jm(x(©):68P, ¢) =

2
exp [— X (M) ] €)

()
Jm,k

wheref is the unknown functiony; ;., is the general
Gaussian kerneg; ; ,, are the model parametets:” the

Gaussian scales ang, the Gaussian centres. Specia
in the Gaussian paramet
determination. In our method we implemented an adaptiv

attention must be put

method to determine the number of centres and the
means++ algorithm to estimate each. For the scales

choses ™)

The forward orthogonal least squares regression (FROLS)
algorithm [14] is designed to build, term by term, the best
and most concise models from a pool of candidate terms.
This process is equivalent to the neural network trajning
ince model centres and scales are determined through the
inimization of the error with respect to the output vector
y(t), which is a known pattern. The FROLS algorithm is
based on the original OLS estimator [15jgreedily looks

for the term that best minimizes the error of the

eexplanatory variables with respect to the model

outputy(t) by taking as reference the error reduction ratio
(ERR) estimator. However, FROLS adds to OLS the
ability to add exclusively terms that provide information

Yhan has not been previously included in the model.

In order to reduce the computational cost and warranty
good and concise models, we defined the number of model
terms to be included based on two conditions: to reach a
minimum global accuracy 1(— Y, ERR) of 0.9985, or
otherwise add another term up to a maximum of two.

D. DCT & Feature extraction

The main contribution of the discrete cosine transform
(DCT) is its data compression capability [18p explain
the DCT straightforwardly we can imagine a veat@f
certain length and the DCT as matrix transformation
such that by multiplying them we will obtain a second
vectoru of smaller length than less thansuch tat:

(4)

Another way of looking at it is to think th&tbreaks down

vC=u

v into a weighted sum of biscosine sequences[17]. &h
é'gea behind using the DCT is to apgtyto the MSRBF

gmdel output signals to obtaamother vector from which
nly a few numbers will serve as feature values (Figlire

graphic example of the DCT compression is illustrated
In Figure 6.

, SO that we had 16 scales by Gaussian kernel.

After the kernel function calculation, a matrix of functionsE. Classification and detection
was constructed in order to allow the FROLS algorithm torhe final step of the tests lay upon the classification

select the model structure.

Subimage
|

[ Discrete-time system structuring |

| RBF centres | | RBF scales |

[ ms-RBF neural network |

[ FR-OLS model structure selection |

| RBF weights estimation |

[
v v

(_ MS-RBF model >

Figure 4 MSRBF-DCT flowchart

algorithm. For this purpose the algorithm k-means++ was

Mammogram
I

v
| Image reorientation |
v

| Mammogram partition |

Preprocessing

| Subimage splitting |
I

I
[ [
A4

| ms-RBF model |

v
| MS-RBF model |Processing A

| Excitation Model A | | Excitation Model B |

[ pcrofa | [ DcrofB |

Figure 5 DCT feature extraction flowchart
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Subimage Image split ERR Legend
—_ Data
0,
r N 99.78% | _ Model
N - Data
0,
\\ i 99.82% | — Model

a)
Figure 6 DCT energy compression illustration. (a) Input signal,
(b) signal compression, (c) data collection priority.

b) 0 WNW*\

Intensity level

selected This technique is inspired in the classical
algorithm with the advantage of using an improved
seeding method to choose centres, producing a o
classification up to 70% faster [18].

Raster scan pcsmcn

Ill.  EXPERIMENTS AND RESUTS
To assess the MSRBF DCT method, the experiments

Figure 7 Two pairs of fitto-data curves and ERR values.

engaged various steps. The chosen public repository was a) Fg
the mini-MIAS database of mammograms [19]. It includes ‘
322 grayscale X-ray films of 1024 pixels x 1024 pixels of .
the medio-lateral oblique view in PGM format. The b) F&-
evaluation aim is to assess the characterization quality of la—bl 2725 3905 4,702 4,715 27,91

27,500
22,500

the feature extraction method with supervised learning by
evaluating its classification quality for a defined set of

images. To reduce the chance of attaining biased
performance values, we made a randomized data-splitting
of the 322 breast scans following a 65% to 35% ratio for
training and testing Furthermore, to counteract the high

image variability, we carried out = 4 different training he initial luation is aimed at iudai he ability of th
and test scenarios aimed at averaging the fmT € initial evaluation Is aimed at judging the ability of the

performance measures. For instance, the global accura )pdel to fit the observational data. Figure 7 shows the
for n scenarios of training and testing is defined by: example of a dense tissue-type subimage, its subdivisions
(two-fold characterization) and the ERR of models with

respect to the data of each case.

Also a plot overlying the fit of both models versus the
original data is shown. It can be observed that the model
To train the classifiera matrix of 21,637 feature vectors adjustments are indeed reliable since the curves of

was assembled, of which 95.5% belonged to healthy angtediction and data in the two pairs of curves are nearly
4.5% were identified as abnormal, being 2.29% benign anglerlapped.

2.21% malign After this we tracked if the characterization method was
The average time to train the MSRBF network of acapable to provide coherence in terms of distance. We
subimage was 5.8 seconds. Instehe, time required to  found this relationship favourable, as we exemplify in
build the classifier training matrix was of several weeksrigure 8 In it, five pairs of images (a) and (b) holding

due to the need for a careful selection of the mediCEdifferent concordance degree are represented_
samples and the difficulty implied by the similarity

between glandular and dense healthy samples wéh th

Euclidean distance/

Figure 8. Subimage pairs examples (coupled verticatig
MSRBF DCT feature vectors pair-distan@&e more the visual
dissimilarity, the larger the distance.

Accuracy, = =Y, Accuracy;

(5)

Tablel. MS-RBF DCT performance results and
breast tissue-type ratio by test.

suspicious ones. After that, to put together a training

matrix for a specific training-testing partition it was only Testl | Test2 | Test3 | Test4
necessary to generate a subset of the complete training |2 Fattty % 3180 1 s1801 98051 34
ssary to gen . P 9 8 Dense% 2920 | 3186| 2832 2389
matrix by removing from it the mammogram-related Clandulas I I I
vectors selected for testing. All programs were coded in @ | Accuracy% 9381 | 91.96| 9381 9469
MATLAB R2014b 64-bit and executed in a computer § Sensitivity% | 8500 | 8750| 87.80 87.89
running the Windows 7 Professional operating system |Z |..SPecifcity% | 9863 | 9452| 97.22] 9750
ith Intel (R) C T™) i5-4590 t 3.30GH % PPV% 97.14 89.74 94.74 93.55
with Intel (R) Core (TM) i5- processor at S. z Z NPV% 9231 | 9324| 9333] 9512
d processing and 4 GB of RAM B | Lesion distincti
speed p g : Lesion distinctinon % 81.97 | 80.88| 7455| 76.00
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95.0 L " : . : Table I. MS-RBF DCT average performance results.
SR S SRR N S Statistical Measure| Avg. result %
9
‘3‘ 94.0 ! ! Accuracy 93.57
E o f : Sensitivity 87.05
o 7 2 E
< Specificity 96.97
w 93.04
K] : i PPV 93.79
£ 9254
g —e— Diagnosis Accuracy NPV 93.50
a0 : : Lesion distinctinon 78.35
91,5 4— . . . v
24 26 28 30 32
Dense Tissue-type in Testing (%)
Figure 9. Accuracy as function of the presence Table 1l. Comparison of MSRBF-DCT with previous work.
of dense mammograms in the test. Model ImageSet | Acc. % | Sens. % | Spec. %
2D-NARX[7] | mini-MIAS 91 93 89.5
Below each pair, the Euclidean distance between the ELM [8] mini-MIAS 91 90 98
elements is presented as wellaaglot showing how the GLCM[9] | mniMIAS | 939 | 972 | 915
dist . itivel the i disol ¢ ICA-RBF [10] | mini-MIAS 88.2 - -
!S an_ce Increases pOSI Ively as the iImages display greater LDA-ANN [11] | min-MIAS 931 9 &3
disparity. The experimental performance results of the four GPZM[12] | miniMIAS | 893 | 835 | 934
tests from different partitions of the database are described MSRBF-DCT | mini-MIAS | 935 | 87 96.9

in Table I. It also displays percentages by mammogram-
type included in each test. The overall results are verfs an example, Figure Hhows the case of a false positive
positive, especially in terms of accuracy, specificity anddetected in a healthy dense subimage. It can be seen that
NPV. As assumed, it may be noted that the composition ehalignant tumour tissue (a) and dense healthy tissue (b)
the elements in the test affects in some proportion thean have similar composition and intensity levels.
classification result. This is an interesting point to take intdrigure 11 suggets that there is a lessability to
account because it could lead some classification studieléstinguish the class of abnormality in the presence of fatty
to confusing results. mammograms in the test, which is opposite to what was
To ease the analysis of the resulting variation of tests iexpected. However, a positive trend between fatty tests
dependence of the mammogram-type, we plottedets and the effective detection of any kind of
interesting trends. Figure 9 shows a negative relationshigbnormalities was as well suggested.
between the appearance of dense mammogend the The overall rating numbers of this study are presented in
classification accuracy. This may be due to dense healttiyable Il. It is noticeable that sensitivity, PPV and lesion
images resemble some tumours also having high densityistinction values are not as high as expected, possibly
because the high similitude between dense and glandular
healthy tissue with certain abnormality variations.
Finally, a comparison of our method and previous work is
presented in Tablelll In general our method is
. competitive but did not reach such a high sensitivity as
Figure 10 Fals:)malign detection oc:lirred in a healthy Som(_a most approaCh?Sf We believe this imperfec_tion C(_)uld
dense subimage (b) attracted by a malign sample (a). be yielded by our training strategy, since to avoid a high
occurrence of false positives caused by the resemblance
between healthy dense tissue and some types of tumour, it

P [ ——— was necessary to increase the amount of dense samples in

o & the training database.

LT s

R S o IV. CONCLUSION AND FUTURE WORK

k] L —e+— Lesion distinction . ]

o 30 This paper presents an advantageous modelling neural

E L I s S e network framework designed originally to model

§ 7 T— nonlinear observational input-output serias a novel

74 . .
——————— image feature extraction method and CAD system.
3 32 33 34 35 36 37 38 39 . . .
ot Tiasuo Tyne in Testing (1 Furthermore, we incorporated the Discrete Cosine
Figure 11. Sensitivity and lesion distinction accyras functions Transform algorlthm to make the most of thtSRBF

of the presence of fatty mammograms in the test. image models.



Experiments to classify tumouis X-ray mammograms
showed that the method is capable to contend with well-
known previous CAD systems based on systenfio]
identification. The proposed method reedh a
classification accuracy above 93While we recognise
that theMSRBF DCT method is not perfect, exconsider
that some below-average metrics may betdue fault in
the training strategy and an important similarity of dens?lz]
tumours and healthy dense tissue.

As regards the comparison with previous wank
reference about the tissue-type composition included in t']‘fa]
test set was found, a factor we think can produce changes
in the global performance. The comparison exercise of t e,
model performance taking into account different training-
testing compositions lead us to infer that getting results
with a single partition in a heterogeneous database maj;
generate unwanted trends in dependence on the percentage
of challenging elements. Future work includes the use of a
receiver operating characteristic (ROC) curve to determingé]
the best balance in the training matrix composition to get
to an optimal balance between sensitivity and specificity[17]
In addition, the transfer of our methodology to other
medical study areas such as brain diseases and lung canger
detection is desirable.

(11]
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