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Abstract19

A system is said to be resilient if slight deviations from expected behavior during run-time20

does not lead to catastrophic degradation of performance: minor deviations should result in no21

more than minor performance degradation. In mixed-criticality systems, such degradation should22

additionally be criticality-cognizant. The applicability of control theory is explored for the design23

of resilient run-time scheduling algorithms for mixed-criticality systems. Recent results in control24

theory have shown how appropriately designed controllers can provide guaranteed service to hard-25

real-time servers; this prior work is extended to allow for such guarantees to be made concurrently26

to multiple criticality-cognizant servers. The applicability of this approach is explored via several27

experimental simulations in a dual-criticality setting. These experiments demonstrate that our28

control-based run-time schedulers can be synthesized in such a manner that bounded deviations29

from expected behavior result in the high-criticality server suffering no performance degradation30

and the lower-criticality one, bounded performance degradation.31
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1 Introduction36

There is an increasing trend in embedded systems towards implementing multiple function-37

alities upon a shared platform. It may be the case that all these functionalities are not38
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equally important to the overall correctness of the embedded system; one widely-studied39

model for representing timing requirements in such systems was proposed by Vestal in a40

seminal paper [33]. Vestal observed that “In many applications, the consequences of missing41

a deadline vary in severity from task to task. In RTCA DO 178B, for example, system42

safety analysis assigns to each task a criticality level (ranging from A to D), where erroneous43

behavior by a level A task might cause loss of aircraft but erroneous behavior by a level44

D task might at worst cause inconvenient or suboptimal behavior.”1 Vestal went on to45

conjecture that “the higher the degree of assurance required that actual task execution times46

will never exceed the WCET parameters used for analysis, the larger and more conservative47

the latter values become in practice.” (This conjecture appears reasonable. Very conservative48

WCET-estimation tools have been developed, typically based upon static analysis of code,49

that yield WCET bounds that may be very large, but that we can trust to a very high level of50

assurance. Less conservative WCET-estimation tools, which are typically measurement based,51

tend to obtain smaller estimates, but these estimates may be trust-worthy to lower levels of52

assurance since the worst-case behaviors of the system may not have become revealed during53

the measurements.) The “Vestal model” for representing, and validating the correctness of,54

mixed-criticality systems is based upon this conjecture. In this model,55

§1. A fixed number of distinct criticality levels are defined throughout the system. In56

this paper, we will assume that there are two such criticality levels, designated lo and hi,57

with the interpretation that functionalities designated as being of the lo criticality level58

need to have their correctness validated to a lower level of assurance than functionalities59

designated as being of the hi criticality level.60

§2. Each piece of code in the system is characterized as being of one of the criticality levels61

lo or hi, and by two WCET parameter estimates. One WCET estimate is determined62

using tools and techniques consistent with the lower criticality level lo, while the other63

estimate is determined using tools and techniques consistent with the higher criticality64

level hi.65

§3. Prior to run-time, the correct timing behavior (e.g., meeting deadlines) of all the66

functionalities are validated under the assumption that each piece of code will execute67

for a duration not exceeding its lo-criticality WCET estimate; in addition, the correct68

timing behavior of the hi-criticality functionalities (but not the lo-criticality ones) are69

validated under the assumption that each piece of code may execute for a duration up to70

its hi-criticality WCET estimate.71

1.1 Verification versus resilience72

The Vestal approach to modeling and analysis of mixed-criticality systems, as originally73

proposed [33], is concerned solely with verification — determining, prior to run-time, whether74

a system will behave correctly during run-time if its run-time behavior is compliant with the75

models used to represent it. Clearly, such pre-runtime verification is desirable in safety-critical76

systems. There is an additional aspect of correctness that is also desirable: the system’s77

run-time behavior should be resilient or robust in the event that run-time behavior does not78

1 RTCA DO 178B is a guideline dealing with the safety of safety-critical software used in certain avionics
systems. Although the term “criticality” typically has a precise technical meaning in most safety
standards documents, its use in [33], and subsequent use in much of the mixed-criticality scheduling
theory literature, appears to be in a rather general sense as a designation of the level of assurance
against failure that is desired. In this paper we are using the term in this more general sense, in keeping
with prior literature in mixed-criticality scheduling.
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conform to the models that were assumed during verification; if this happens, a robust system79

design ensures that performance degrades gracefully, if at all. It is this run-time resilience80

aspect of system behavior that is the primary focus of this paper. (While the precise semantics81

of graceful degradation should be for a particular system may depend upon the characteristics82

of the system, some general principles are applicable; for example, less important aspects of83

system functionalities should be compromised before more important ones.)84

The Vestal model of [33] and its derivatives and generalizations have formed the basis of85

a large body of research: schedulability tests, scheduling algorithms, etc. — see, e.g., [5, 6]86

for a survey. Much of this research is focused upon the pre-runtime verification aspect87

of correctness rather than the run-time resilience. For instance, many mixed-criticality88

scheduling algorithms allow for lo-criticality pieces of code to be aborted if any piece of code89

executes beyond its lo-criticality WCET estimate. Such a scheduling algorithm may still90

pass the pre-runtime verification test (since such tests are only concerned with the correctness91

of the hi-criticality functionalities under such circumstances), but would not be considered92

resilient. Some recent research has attempted to provide some resilience to lo-criticality93

pieces of code in the event of some piece of code executing beyond its lo-criticality WCET94

estimate; these approaches are reviewed in Section 7.95

1.2 This research96

In this paper, we explore the use of control-theoretic principles to achieve resilience in mixed-97

criticality systems. We consider over-runs of hi-criticality pieces of code (in the sense of them98

executing for more than their lo-criticality WCET estimates) to be rare events that are best99

coped with by run-time adaptability. Some over-runs can be masked by under-runs by other100

hi-criticality pieces of code; others will require system-wide adaptation. These adaptations101

should be commensurate with the scale of the over-run — dropping all lo-criticality pieces102

of code because a single hi-criticality piece of code has executed for slightly more than103

its lo-criticality WCET is clearly an over-reaction. A resilient system should cope with104

uncertainty in a measured way.105

Some recent advances in real-time control (see, e.g., [22] and the references therein)106

have motivated us to explore whether the desired resilience can be achieved using a control-107

theoretic approach. The scheduling strategy we propose has the hi-criticality workload108

executing within an execution-time server that is provisioned with a budget sufficient to109

satisfy the lo-criticality WCET requirements of this hi-criticality workload; another, similar,110

server is used to encapsulate the execution requirements of the lo-criticality workload. At111

run-time if the hi-criticality server’s budget proves inadequate for meeting the execution112

requirements of the hi-criticality workload (due to some hi-criticality pieces of code executing113

for more than their lo-criticality WCET estimates) then the system is deemed to have114

suffered a disturbance or perturbation. We employ a control feedback mechanism to govern115

budget allocations going forward from the disturbance. This control-theoretic feedback116

approach allows a number of questions to be answered concerning the run-time behavior of117

the scheduling strategy, such as118

How long following a disturbance will it take the system to return to a non-perturbed119

state?120

What guaranteed level of service can be obtained for the lo-criticality workload?121

What is the maximum magnitude of disturbance that can be accommodated allowing for122

stable control and for the hi-criticality workload to remain schedulable?123

ECRTS 2018
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1.3 Organization124

The remainder of this paper is organized as follows. Section 2 presents the background for125

this work, while Section 3 presents AdaptMC, the proposed approach, in detail. Section 4126

discusses how AdaptMC is designed and tuned, while Section 5 presents how hard real-time127

guarantees can be provided, by means of the calculation of the supply bound function.128

Section 6 presents a numerical evaluation of AdaptMC. Section 7 reviews the related work,129

while Section 8 concludes the paper.130

2 Background131

The use of feedback control to allocate resources has traditionally been applied to time-132

varying workloads [28, 7, 1], and the kinds of offered guarantees have been probabilistic or133

soft real-time. Recently, however, a control scheme called the Self-Adaptive Server (SAS) has134

been proposed [22], that provides both good average behavior and hard real-time guarantees.135

Such a guarantee is given by computing the supply bound function [21, 18, 27, 2] of a periodic136

resource supply controlled by feedback [17].137

The main idea behind SAS is as follows. Each server in the system is assigned a budget138

of time to execute. The server is allowed execute more or less than the budget, but at the139

next round it will be assigned a budget that is corrected with a term that is proportional to140

the over- or under-run of the server. In [22] this simple, yet effective, control structure is141

analyzed under the assumption that the maximum over- or under-run are bounded. The142

designed controller is proven to effectively adapt the budget at run-time, while the supply143

bound function associated with the controller can be computed offline.144

3 The Proposed Approach145

We are concerned with mixed-criticality systems in which the lo-criticality WCET values146

represent typical or common-case behavior: executions rarely exceed these WCET values147

and when they do, it is typically by small amounts. We seek to devise resilient scheduling148

strategies for such mixed-criticality systems. As briefly stated in Section 1, our proposed149

scheduling strategy uses two servers, one each for servicing the hi-criticality and lo-criticality150

workloads.2 In dimensioning these servers’ budgets, our objective will be to modestly over-151

allocate the hi-criticality server in the sense that “most of the time” we would expect the152

entire provisioned budget to not be needed. If an occasional modest over-run occurs in153

the amount of execution required by the hi-criticality server (say, by an amount x over154

the budgeted amount), our run-time scheduling strategy is to allow the hi-criticality server155

to over-execute by this entire amount x, and then reduce the budget for the lo-criticality156

server by an amount somewhat smaller than x. Informally speaking, the hope is that after157

dealing with this one-time over-run, the hi-criticality server will not need to use its entire158

budgeted amount for some duration, and hence can compensate the lo-criticality server over159

2 For the kinds of application systems that we are interested in, work (in the form of “jobs”) is typically
generated by recurrent – periodic and sporadic – tasks; determining appropriate budget and period
parameters for servers capable of accommodating the computational requirements of such recurrent tasks
is an important issue that has been widely studied in the real-time scheduling community [18, 27, 2].
However, the issue of dimensioning such servers is orthogonal to the focus of this paper and we will not
discuss it further, instead assuming that some appropriate scheme is used to determine appropriate
server parameters such that if all jobs execute at their lo-criticality WCET estimates, then each server
is able to correctly execute those jobs for which it is responsible.
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Figure 1 Server schedule over time.

this duration. However, (as we will see) our control-based scheduling strategy is robust to160

scenarios in which the hi-criticality server over-runs for an extended duration as well; if this161

happens, the lo-criticality server ends up getting under-served over an extended duration.162

In order to develop a control-based strategy capable of achieving these goals, we needed163

to extend and adapt SAS (Self-Adaptive Server) [22] in several directions. The feedback164

mechanism derived in this paper is an extension of SAS to the mixed-criticality context that165

enables:166

1. the adjustment of server budgets based on disturbances at both hi-criticality and lo-167

criticality servers (achieved by cross gains of the controller), and168

2. the exploitation of the asymmetric nature of disturbances that are permitted for the169

lo-criticality server (which may occasionally be under-served but never receives more170

than its budgeted amount) to provide less conservative supply bound functions.171

The presence of these two characteristics, needed in the mixed-criticality context, renders172

the results in [22] inapplicable directly; hence the extensions reported here. Section 3.1173

below describes the adaptive scheduling strategy we have developed; the control algorithm174

underpinning this strategy is described in Section 3.2175

3.1 Run-Time Scheduling Strategy176

We propose a 2-levels hierarchical scheduler with two schedulers at the top level, one for177

servicing lo-criticality work and the other, for servicing hi-criticality work (see Figure 1).178

Let Q̄H and Q̄L denote the target budgets for the two servers, and P̄ = Q̄H + Q̄L the target179

period. We will describe later the manner in which values are assigned to these target180

budget parameters; intuitively speaking, we would assign them values such that under181

normal circumstances (i.e., all jobs completing within their lo-criticality WCET estimates)182

a periodic schedule with period P̄ in which the hi-criticality server executing for a duration183

Q̄H is followed by the lo-criticality server executing for a duration Q̄L, would meet all timing184

requirements for all the hi-criticality and the lo-criticality workload.185

During run-time these two servers are repeatedly scheduled alternately. Let us refer to186

the k’th time that both servers are scheduled as the k’th round. Let QH(k) and QL(k) denote187

the tentative budgets that the control algorithm computes at the end of the k’th round, for188

allocating to the two servers for the (k + 1)’th round. Initially, we have QH(0) = Q̄H and189

QL(0) = Q̄L; i.e., for the first round the tentative budgets are set to be equal to the target190

budgets.191

Now suppose that during the (k +1)’th round for some k, the hi-criticality server needs to192

execute for a duration greater than this tentative budget QH(k) in order to ensure the correct193

execution of all hi-criticality jobs (budget overrun). We allow it to do so, and let SH(k + 1)194

denote the duration for which it executes — SH(k + 1) is called the actual budget assigned195

to the hi-criticality server during the (k + 1)’th round, and εH(k) =
(
SH(k + 1) − QH(k)

)
is196

called the disturbance experienced by the hi-criticality server, i.e., the discrepancy between197

the target and actual budget. In response to such a disturbance, our control algorithm198

ECRTS 2018
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modifies the tentative budgets QH(k + 1) and QL(k + 1) computed for both servers for the199

next round, to compensate for the budget overrun and preserve the bandwidth.200

3.2 The Control Algorithm201

As stated earlier, our control-based scheduler is designed under the assumption that jobs202

executing beyond their lo-criticality WCET estimates will be rare events. The target budget203

Q̄H for the hi-criticality server should be chosen to somewhat exceed the minimum needed in204

order to accommodate the lo-criticality WCET requirements for all the hi-criticality jobs;205

hence, if only one or a few jobs over-run their lo-criticality WCETs during a round, such206

over-runs are often masked by the excess budget and by under-runs of other hi-criticality207

jobs. It should only rarely be the case that such over-runs during any round get expressed as208

disturbances (i.e., as an εH(k) value for some k); in the rare events when this does happen,209

our control algorithm requires that it be of magnitude that is bounded by an a priori known210

constant ε̄H: |εH(k)| ≤ ε̄H.211

In order to accommodate these disturbances in the hi-criticality servers, our control212

algorithm will occasionally under-schedule the lo-criticality server, providing it a supply213

SL(k + 1) that is strictly less than the tentative budget QL(k) that had been computed214

for it — when this happens, the lo-criticality server is said to experience a disturbance215

εL(k) =
(
SL(k + 1) − QL(k)

)
. We assume that such a disturbance will also be of magnitude216

that is bounded by another a priori known constant ε̄L, i.e., maximum budget over-run of217

the lo-criticality server.218

Analogously, our run-time scheduler also bounds the “negative” disturbance to the hi-219

criticality server: the amount by which the actual amount of execution supplied during a220

round is less than the tentative budget, to have a magnitude no greater than ε̄H. Summarizing221

the above discussion on disturbances, we obtain the following bounds on the magnitudes of222

the disturbances that could be experienced by both the servers:223

−ε̄H ≤ εH(k) ≤ ε̄H, −ε̄L ≤ εL(k) ≤ 0. (1)224

As we had stated earlier, the actual budgets SH(k + 1) and SL(k + 1) assigned to the servers225

may be expressed as being equal to the computed tentative budgets QH(k) and QL(k), plus226

the disturbances εH(k) and εL(k).227

SH(k + 1) = QH(k) + εH(k)228

SL(k + 1) = QL(k) + εL(k)229

The tentative budgets QH(k + 1) and QL(k + 1) that are computed by the control algorithm230

may similarly be expressed as the sum of tentative budgets computed for the previous round231

and a corrective term (called the “control signal”) denoted uH(k) and uL(k), that is computed232

by the control algorithm at the end of each round:233

QH(k + 1) = QH(k) + uH(k)234

QL(k + 1) = QL(k) + uL(k)235

Letting236

x(k) =







SH(k)

SL(k)

QH(k)

QL(k)







, u(k) =

[
uH(k)

uL(k)

]

, ε(k) =

[
εH(k)

εL(k)

]

,237
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one can express the control system dynamics — the change in values of the actual and238

tentative budgets across rounds that we have discussed above — in a more compact form, as239

follows:240

x(k + 1) =

A
︷ ︸︸ ︷






0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1







x(k) +

Bu
︷ ︸︸ ︷






0 0

0 0

1 0

0 1







u(k) +

Bε
︷ ︸︸ ︷






1 0

0 1

0 0

0 0







ε(k). (2)241

242

We now discuss how the control signals are computed by the control algorithm (this243

computation is commonly referred to as the control strategy). In designing the controller, we244

assign values to four real-valued gain parameters KHH, KHL, KLH, and KLL – the parameter245

design is discussed in Section 4 — and compute the control signals as follows:246

uH(k) = KHH

(
Q̄H − SH(k)

)
+ KHL/γ

(
Q̄L − SL(k)

)
,

uL(k) = γKLH

(
Q̄H − SH(k + 1)

)
+ KLL

(
Q̄L − SL(k)

)
.

(3)247

The parameters KHH, KHL, KLH, and KLL weigh the discrepancy between the target and248

actual budgets; the values assigned to these parameters reflect the effect each discrepancy249

has on the control signal. (Observe that in computing the control signal uL(k) that will be250

applied to the lo-criticality server, we are able to exploit the fact that the value of SH(k + 1)251

is already known when the lo-criticality server is scheduled during the (k + 1)’th round; we252

therefore choose to exploit this fact to compute a “better” values for uL(k).)253

By substituting the control strategy as represented by Eqn (3) into Eqn (2), rearranging254

terms, and letting γ denote the ratio of the target budgets, i.e., γ = Q̄L/Q̄H, the closed-loop255

system dynamics may be represented as follows:256

SH(k + 1) = QH(k) + εH(k) (4)257

SL(k + 1) = QL(k) + εL(k) (5)258

QH(k + 1) = QH(k) + KHH(Q̄H − SH(k)) + KHL/γ(Q̄L − SL(k)) (6)259

QL(k + 1) = QL(k) + KLL(Q̄L − SL(k)) + KLHγ(Q̄H − SH(k + 1)) (7)260
261

or, in a more compact way:262

x(k + 1) = ACL x(k) + BQ Q̄ + Bε,CL ε(k) (8)263

with264

ACL =







0 0 1 0

0 0 0 1

−KHH − KHL

γ
1 0

0 −KLL −γKLH 1







, BQ =







0 0

0 0

KHH

KHL

γ

γKLH KLL







,265

Q̄ =

[
Q̄H

Q̄L

]

, Bε,CL =







1 0

0 1

0 0

−γKLH 0







.266

267

The eigenvalues of ACL determine the convergence time towards the value x for the system268

state. These can be obtained from the characteristic polynomial of ACL:269

p(z) = z4 − 2z3 + (KHH + KLL + 1) z2 − (KHH + KLL + KHLKLH)z + KHHKLL. (9)270
271

ECRTS 2018
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Since the considered system is linear, we can use the superposition principle3, and consider272

separately the effect of Q̄ and ε on the evolution of x. The z-transform of (8) is:273

X(z) = (zI − ACL)−1
(
x(0) + BQQ̄ + Bε,CLE(z)

)
(10)274

275

Evaluating the transfer function from the error ε to the state x for z = 1 computes, in control276

theoretical terms, the asymptotic effect of the unitary constant disturbance ε on the state x;277

in the considered case, evaluating (zI − ACL)−1Bε,CL for z = 1 yields:278

(I − ACL)−1Bε,CL =







0 0

0 0

−1 0

0 −1







279

280

that proves that the effect of ε on S (the first two rows) vanishes asymptotically to zero281

independently of the values assigned to the gain parameters. The effect of a unitary constant282

disturbance on the budgets Q, on the other hand, is to compensate ε by reducing the budget283

of exactly a unity so that value of S will compensate perfectly the disturbance ε.284

4 Designing the Control Algorithm285

In Section 3 we described how the control logic can be used to adjust the resource budgets286

allocated to hi and lo-criticality servers. In this section, we are going to explore the287

assignment of values to the control gain parameters KHH, KHL, KLH, and KLL such that the288

resulting budget dynamics are guaranteed to possess the desirable control-theoretic properties289

of compensation and stability.290

◮ Definition 1 (Compensation property). A single disturbance ε(k) on the hi/lo-criticality291

server results in an opposite or null effect on the value of S(k + 1) (i.e., the actual budget) of292

the lo/hi-criticality server, i.e.,293

∃n > 0 : εi(k) = −α(k + n)uj(k + n), α(k + n) ≥ 0, i, j ∈ {H, L}, and i 6= j.294
295

The intuition of the compensation property is that whenever the hi-criticality server exceeds296

its budget (SH(k + 1) > QH(k)), the lo-criticality server compensates for this disturbance by297

temporarily reducing its budget. On the other hand, when the lo-criticality server requires298

less time for its execution (SL(k + 1) < QL(k)), then the hi-criticality server will be allowed299

to temporarily increase its budget. Finally, when the hi-criticality server executes for less300

time (SH(k + 1) < QH(k)), then the lo-criticality server can temporarily increase its budget.301

The overall objective is to both preserve the bandwidth of the two servers, and to reach302

the target period P̄ = Q̄H + Q̄L.303

◮ Theorem 2. If304

KHH > 0, KHL ≥ 0, KLH ≥ 0, KLL > 0, (11)305

then the system (8) exhibits the compensation property.306

3 The superposition principle for linear systems states that the net response caused by multiple stimuli
upon such a system is equal to the sum of the responses that would have been caused by each individual
stimulus.
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Proof. First, let us consider the case when Kii > 0, KHL = KLH = 0, i ∈ {H, L} makes the hi-307

and lo-criticality systems completely decoupled. It is trivial to show that the compensation308

property holds, since εH has no effect on the lo-criticality server, and εL has no effect on the309

hi-criticality server.310

Therefore, we focus on the case Kij > 0, i, j ∈ {H, L}. Since we are dealing with a311

linear system, we can consider the effect of the disturbances separately, and then use the312

superposition principle. Without loss of generality, let us consider a positive disturbance313

εH > 0, and an initial condition Si(0) = Qi(0) = Q̄i, i ∈ {H, L}. First, consider the case314

when Kij > 0, i, j ∈ {H, L}. εH has the effect of increasing the value of SH, according to (4),315

without affecting immediately the value of SL, according to (5). If Kij > 0, i, j ∈ {H, L}, an316

increasing value of SH will make decrease both the tentative budgets, as per (6), and (7).317

Therefore, in the next step, the tentative budget allocated to the two servers is decreased,318

with the effect that SH is above the desired budget Q̄H, while SL is below the desired budget319

Q̄L.320

Analogous considerations can be done for the respective negative case. This concludes321

the proof. ◭322

Notice that the compensation property of the control scheme of (8) relates to the transient323

behavior caused by the occurrence of a disturbance — it does not guarantee that the effect324

of a disturbance will eventually vanish. Hence a second essential property of the control325

scheme of (8) is stability. If stability is not guaranteed, then it is not possible to preserve the326

bandwidth, and not even to preserve the target period P̄ . We want the effect of transient327

perturbations to be transient, and desire that the actual server budgets tend towards the328

specified target budget values. Theorem 2 guarantees some properties on the initial transient,329

but it does not guarantee the convergence of the system behavior towards the desired budget;330

guaranteeing such convergence is equivalent, in control theory terminology, to requiring331

stability of the controlled system.332

Stability of discrete-time systems, such as the one specified by Expression (8), is guaranteed333

if and only if the roots of the characteristic polynomial p(z) of (9) are within the unit circle334

over the complex plane C. That is335

p(z) = 0 ⇒ |z| < 1.336

Such a condition on the polynomial p(z) can be translated into a condition over the coefficients337

of the polynomial and, in turn, into a condition over the control gains KHH, KHL, KLH, and338

KLL. Jury’s stability criterion (see, for example, [23, Sec 3.15.2]) offers a necessary and339

sufficient condition for the stability of a discrete-time system in the form of a set of inequalities340

which are functions of the coefficients of the characteristic polynomial. By applying Jury’s341

criterion to the polynomial p(z) of (9), one can obtain four analytic conditions on the values342

of the parameters Kij, i, j ∈ {H, L} that guarantee stability. We do not present these343

conditions here since they are quite lengthy and complex, but point out that they can be344

computed through a symbolic manipulation tool4 from the expression of p(z).345

The intersection of the inequalities (11) with the stability conditions that are obtained346

with the Jury criterion describes the region of the feasible controller gains that guarantee both347

the compensation property and the stability of the controller. Figure 2 shows the contour348

plot of the stability regions for the parameters KHH, KLL, for different values of Ki = KHLKLH349

4 We used the Matlab function available at https://se.mathworks.com/matlabcentral/fileexchange/
13904-jury in combination with the Matlab symbolic toolbox.
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(identified in the figure with different colors). Notice that the region is symmetric with350

respect to the plane KHH = KLL, and that for increasing Ki the stability region shrinks.351

Moreover, for Ki = 0, the stability region is 0 < KHH < 1, and 0 < KLL < 1.
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Figure 2 Region of feasible control gains. The illustrated regions correspond to the values of

Ki ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.35}, respectively from the larger region to the smaller one.

Black dots represent the gains of the controllers selected for the examples illustrated in Section 6.

352

5 Bounding the Resource Supply353

Feedback control for real-time resource allocation was initially used for tracking time-varying354

workloads [28, 7, 1]. Because of the unpredictable nature of variations, the type of offered355

guarantees are probabilistic or soft real-time. Recently, however, it was shown that a control356

scheme can provide both a good average behavior and hard-real-time guarantees [22]. Such357

a guarantee was given by computing the “supply bound function” of a periodic resource358

supply controlled by a feedback loop such as the one described by Expression (8).359

Bounds to supply functions are a commonly used abstraction for modeling the minimum360

amount of a computing resource that is available over time [21, 18, 27, 2]. They have361

demonstrated their applicability to realistic use cases (e.g., avionics [12]) and there exist362

measurement-based tools to determine them from actual system execution traces [20]. Let363

us briefly recall the main concepts. Let s(t) be the indicator function of the availability of a364

resource:365

s(t) =

{

1 the resource is available at time t

0 the resource is not available at time t,
(12)366

Then the supply bound function sbf(t) is such that it is367

∀t0, t, sbf(t) ≤

∫ t0+t

t0

s(τ) dτ. (13)368

Clearly, from (13), the bound sbf(t) may not be unique. The aim of much of the research in369

this area is to find valid bounds sbf(t) fulfilling (13), which are as high as possible.370
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In [22], the resource availability schedule is modeled as a sequence of active intervals371

of duration S(k) in which the resource is provided, alternating with intervals of idle time372

of duration Z(k). An example of such a schedule and the corresponding representation by373

means of the sequences S(k) and Z(k) is illustrated in Figure 3. Such a model offers some374

advantages over the traditional model by the indicator function of a schedule (as in Eq. 12).375

In fact, it was proved (Lemma 1 in [22]) that the supply function lower bound sbf(t) can

t = 0

S(1) S(2) S(3)Z(1) Z(2)

Figure 3 Active intervals interleaved with idle intervals.

376

be written as a function of the sequences of active and idle intervals. Specifically, it was377

shown that if the resource offered by a schedule is modeled by a sequence of supply intervals378

of length {S(k)}k=1,2,... interleaved by a sequence of idle intervals of length {Z(k)}k=1,2,...,379

then the following constitutes a valid supply bound function for this resource availability:380

sbf(t) = min {t − σZ(n), σS(n)} , t ∈ In, n ∈ N (14)381

with the sequence of intervals {In}n∈N defined as382

In =

{[
0, σZ(1)

)
n = 0

[
σZ(n) + σS(n − 1), σZ(n + 1) + σS(n)

)
n ≥ 1

(15)383

and with384

σS(n) = inf
n0

n0+n−1∑

k=n0

S(k), σZ(n) = sup
n0

n0+n−1∑

k=n0

Z(k), (16)385

properly extended at n = 0 with σS(0) = σZ(0) = 0. The worst-case nature of the bound is386

condensed in σS(n) that is the smallest sum of the lengths of n consecutive active intervals387

(respectively, σZ(n) is the largest sum of the length of n consecutive idle intervals). Figure 4388

illustrates an example of supply function sbf(t). In the figure, we also draw on top the extent389

of the intervals In.

I0 I1 I2

sbf(t)

t

σS(1)

σZ(1)

σS(2)

σZ(2)

σS(3)

σZ(3)

Figure 4 An example of supply bound function sbf(t) for a resource supply described by sequences

S(k) and Z(k) of active and idle intervals.

390
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5.1 Characterizing the Server Supply Functions391

One criticism of many mixed-criticality scheduling algorithms that have been proposed is392

that the lo-criticality workload is severely penalized (e.g., dropped entirely) in the event of393

the mixed-criticality system behavior exceeding its lo-criticality specifications. As stated394

earlier, this violates the principle of resilience or robustness, which requires that slight395

deviations from lo-criticality specifications should result in slight degradation of performance396

(in mixed-criticality settings, to only the lo-criticality workload). In this section, we discuss397

how an appropriate assignment of values to the gains of the controller KHH, KHL, KLH, and398

KLL enables such resilience by guaranteeing some resource supply to the lo-criticality server.399

Our overall approach is inspired by, and based upon, the analysis proposed by Papadopou-400

los et al. [22]. However, there are several differences in the server requirements/assumptions401

between our model and the model in [22], that renders the main result (Theorem 1 of [22,402

page 231]) inapplicable for our purposes.403

First, while disturbances were assumed in [22] to have symmetric bounds, in this paper the404

lo-criticality server may only experience a a negative disturbance, as in (1); equivalently,405

the lo-criticality server is never allowed to execute beyond the tentative budget that is406

computed for it by the control strategy.407

Second, in our mixed-criticality run-time algorithm, the servers assigning the computing408

resource are coupled by cross gains KHL and KLH: letting i, j ∈ {H, L}, it is possible to409

correct the server budget Si(k + 1) based on any disturbance εj(k). This enables a more410

prompt compensation.411

The following theorem characterizes the relationship between the run-time behavior of the412

two servers, and enables us to determine the supply function of both the hi-criticality and413

lo-criticality servers. In the theorem we use the notation hij(k), gij(k), and rij(k) to denote414

the impulse, step, and ramp responses, respectively, of the system with input εj(k) and415

output Si(k), with i, j ∈ {H, L} (see Appendix A for the definitions of the considered input416

signals).417

◮ Theorem 3. Consider a pair of hi-criticality and lo-criticality servers, whose budgets SH(k)418

and SL(k) are subject to disturbances εH(k) and εL(k) respectively, with closed-loop system419

dynamics as specified by Equation (8). If the disturbances are bounded as specified by (1),420

then the supply function sbfH(t) of the hi-criticality server is as specified in Equation (14)421

with422

σS(n) = nQ̄H − ε̄HNHH(n) −
ε̄L

2

(
IHL(n) + NHL(n)

)
,

σZ(n) = nQ̄L + ε̄HNLH(n) +
ε̄L

2

(
JLL(n) + NLL(n)

)
,

(17)423

and the supply function sbfL(t) of the lo-criticality server is as specified in Equation (14)424

with425

σS(n) = nQ̄L − ε̄HNLH(n) −
ε̄L

2

(
ILL(n) + NLL(n)

)
,

σZ(n) = nQ̄H + ε̄HNHH(n) +
ε̄L

2

(
JHL(n) + NHL(n)

)
.

(18)426
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The coefficients Nij(n), IiL(n), and JiL(n) used in the equations above are set as427

Nij(n) =

∞∑

k=0

∣
∣gij(k) − gij(k − n)

∣
∣

IiL(n) = sup
k

{
riL(k) − riL(k − n)

}

JiL(n) = sup
k

{
riL(k − n) − riL(k)

}

(19)428

with i, j ∈ {H, L} corresponding to the lo-criticality and hi-criticality servers, respectively.429

Proof. In the appendix (Appendix A). ◭430

Theorem 3 enables us to determine the supply function of both the hi-criticality and lo-431

criticality servers. In the next section, several design choices for the control gain parameters432

are illustrated and discussed; it is shown how different desired behaviors can be achieved by433

an appropriate choice of gain parameters.434

6 Evaluation via Simulation435

By characterizing the run-time dynamics of both the hi-criticality and the lo-criticality436

server, Equation (8) and Theorem 3 allow us to estimate the system response to different437

kinds of transient deviations from the expected “common-case” behavior, as characterized438

by the lo-criticality WCET estimates. We now explore, via some simulation experiments,439

(i) the manner in which the choice of gain parameter values influences the precise nature of440

resilience exhibited by the run-time scheduler, and (ii) how our proposed scheme compares441

with a simpler alternative strategy that is not based on the application of control-theoretic442

principles.443

6.1 The Influence of Parameter Values444

A closed-form solution of the dynamics of the system (8) may be obtained with the Lagrange445

formula for the solution of a set of linear difference equations (see, e.g., [23, Section 12.3.5,446

Eq. (12.3-34a)] for a text-book discussion). We consider the following set of parameters that447

are expressed as Ki = {KHH, KHL, KLH, KLL}:448

K1 = {0.4, 0.1, 0.1, 0.35}, K2 = {0.15, 0.1, 0.1, 0.15}, K3 = {0.25, 0.1, 0.1, 0.25},

K4 = {0.5, 0.1, 0.1, 0.5}, K5 = {0.75, 0.1, 0.1, 0.75}
449

Notice that all the selected sets of parameters satisfy the stability conditions, and the450

compensation property conditions, and therefore lie in the region as depicted in Figure 2.451

We considered the case of the following target budgets: Q̄H = 10, Q̄L = 8, i.e., γ = 0.8,452

and εH = 1, εL = 1. The resulting supply functions are presented in Figure 5. One can see453

that the supply function associated with K1 is higher than the others.454

If keeping with common practice in control theory, we also analyzed the controller455

response to a constant disturbance. Figure 6 shows the effect of the disturbance while456

varying the values of Kij, i, j ∈ {H, L}. From Figure 6 we conclude that the best value for457

the parameters is K1, since it provides a faster convergence to the target budget, and with458

negligible oscillations.459
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Figure 5 Supply functions for the considered set of control parameters.
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Figure 7 Comparison between AdaptMC and PPA.

6.2 Comparison with an Alternative Scheme460

We now compare the presented approach with a Period-Preserving Approach (PPA), described461

next. Based upon the findings described in Section 6.1 above, in these experiments we have462

selected the parameter values K1 for AdaptMC.463

In the PPA the hi-criticality and lo-criticality servers execute in sequence and periodically,464

with a fixed period P (equal to the target period for AdaptMC). Within each period, the465

hi-criticality server executes as much as it needs, allowing for any overrun, and the remaining466

budget of the period is allocated to the lo-criticality server. Formally, with the introduced467

notation:468

SH(k + 1) = QH(k) + εH(k)469

SL(k) = P − SH(k + 1)470
471

where P now is a fixed value. PPA represents the simplest and most intuitive way to472

compensate for non-ideal executions of the hi-criticality server.473

In order to present the main differences between AdaptMC and PPA, we consider a474

scenario in which three types of disturbances occur in the system: impulse, constant, and475

linearly increasing. (In a well-designed mixed-criticality system, the most common form476

of deviation from expected behavior should be of the kind best modeled as an impulse477

disturbance – an overload that lasts for just one round and occurs rarely enough that the478

effect of one such overload will have completely dissipated by the time the next one occurs.)479

The system is initialized as SH(0) = QH(0) = Q̄H = 10, and SL(0) = QL(0) = Q̄L = 8,480

P = 18 and no disturbance ε is present. An impulse overrun occurs at round 10, a constant481

overrun occurs between rounds 30 and 50, and a linearly increasing disturbance begins at482

round 65, and increases until it becomes of magnitude ε̄H. Figure 7 summarizes the obtained483

numerical results. The graphs in the first row show the time evolution of the hi-criticality484

server overruns: this is the disturbance, and is the same for the AdaptMC and PPA. The485
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graphs in the second row compares the actual time executed by the two servers with the486

two methods. AdaptMC reacts to the disturbances by trying to preserve the target budgets,487

and making minor adjustments to the tentative budgets. PPA, on the other hand, favors488

the overruns of the hi-criticality server, while the execution of the lo-criticality server is489

severely affected. Finally, the last row of Figure 7 shows the ratio between the bandwidth490

allocated for the lo-criticality server, i.e., SL/P , and the actual bandwidth allocated for the491

hi-criticality server, i.e., SH/P . We call this, the bandwidth ratio, and it is defined as: SL/SH.492

The target bandwidth is Q̄L/P = 8/18, and Q̄H/P = 10/18, i.e., the target bandwidth ratio493

is Q̄L/Q̄H = 8/10. The average bandwidth ratio allocated with AdaptMC is much closer494

to the target bandwidth ratio than with PPA , and even the maximum deviation from the495

target bandwidth is minimized by AdaptMC thanks to the feedback scheme.496

7 Related Work497

The key property of the control-theoretic approach to budget control described in this paper498

is the dynamic manner in which it modifies budgets to deal with different sizes and types of499

task overruns; this stands in sharp contrast to the approach adopted in most other scheduling500

schemes for mixed-criticality systems. In these schemes during run-time the system is defined501

to be in one of two modes of behaviors. In the lo-criticality or “normal” mode all tasks502

are executing within their lo-criticality WCET estimates and all deadlines (of both hi- and503

lo-criticality tasks) are being met. As soon as any hi-criticality task executes for more504

than its lo-criticality WCET estimate then there is a system-wide mode change to the505

hi-criticality mode. In this new mode the behavior of the system is quite different. The506

change to the hi-criticality mode occurs even if a single hi-criticality task executes for a507

miniscule amount more than its lo-criticality WCET estimate or, at the other extreme, if508

all hi-criticality tasks execute at their hi-criticality WCET estimate. The system responds509

in the same way: there is no attempt to define behaviors that are commensurate with the510

magnitude of the overrun (the disturbance or perturbation as defined in this paper).511

Following a criticality mode change there are a number of approaches that have been512

developed to define the degraded behavior of the system in the hi-criticality mode. The most513

extreme is to just implement the assumptions made during the verification of the system.514

Here, in the hi-criticality mode, only the hi-criticality tasks are guaranteed; hence all the515

lo-criticality tasks can be abandoned (aborted). This is clearly an unacceptable approach as516

no attempt is made to survive the overrun; there is no resilience in the run-time behavior of517

the system. Forms of resilience that have been developed include:518

1. Reduce priorities of the lo-criticality tasks [3], or similar with EDF scheduling [13].519

2. Increase the periods and deadlines of lo-criticality jobs [32, 31, 15, 30, 29, 25], called520

task stretching, the elastic task model or multi-rate.521

3. Impose only a weakly-hard constraint on the lo-criticality jobs [9].522

4. Decrease the computation times of some or all of the lo-criticality tasks [4], perhaps by523

utilizing an imprecise mixed-criticality (IMC) model [19, 24] or budget control [10].524

5. Abandon lo-criticality work in a disciplined sequence [8, 14, 11, 26, 16].525

A flexible scheme utilizing hierarchical scheduling is proposed by Gu et al. [10]. They526

differentiate between minor violations of lo-criticality execution time which can be dealt527

with within a component (an internal mode change) and more extensive violations that528

requires a system-wide external mode change.529

By removing entirely the notion of a mode change (and hence a single perhaps quite530

severe change in system behavior), the approach proposed in this paper results in more531
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gradual and measured responses to rare temporal glitches, such responses being automatically532

delivered by the developed feedback scheme.533

8 Conclusions and Future Work534

In this paper we have shown how a control-theoretic approach based upon servers can be535

used to manage the budgets allocated to dual-criticality workloads. The control strategy536

developed automatically responds to minor perturbations in the needs of the hi-criticality537

server with minimum and bounded degradation in the service provided to the lo-criticality538

server. The controller is defined by four “gain” parameters whose values must be constrained539

in order to ensure stable and appropriate (compensated) control; nevertheless there remains540

considerable freedom for the designer to tune the behavior of the controller. This has been541

demonstrated by some simple examples.542

This initial study has been limited to just two criticality levels and two servers (one543

per level). Future work will first look to increase the number of levels supported, and to544

investigate if there is any benefit to be gained from having more than one hi-criticality server545

(and more than one lo-criticality server).546
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A Proof of Theorem 3639

Before entering the details of the proofs, we remind that a linear time-invariant (LTI) system640

can be uniquely characterized by its impulse response h(k) that is the output y(k) when the641

system is stimulated with an impulsive input u(k)642

u(k) =

{

1 k = 0

0 otherwise.
643

In next lemmas, we are also using the step response644

g(k) =

k∑

i=0

h(k), (20)645

and the ramp response646

r(k) =
k∑

i=0

g(i) (21)647

of a LTI system.648

Thanks to the linear and time-invariance of the system, the output y(k) to any input649

u(k) is given by the convolution of the impulse response h(k) and the input u(k), that is650

y(k) = h(k) ⊗ u(k) =

k∑

i=0

u(i)h(k − i).651

With these basic notions recalled, next we state a technical lemma that bounds the output652

y(k) of a LTI system when the input u(k) belongs to a bounded interval [ũ − ε̄, ũ + ε̄].653

◮ Lemma 1. Given an asymptotically stable discrete-time LTI system with impulse response654

h(k), step response g(k), input u(k), and output655

y(k) = h(k) ⊗ u(k).656

If the input u(k) is bounded as follows657

u(k) = ũ + ε(k), ũ ∈ R, −ε̄ ≤ ε(k) ≤ ε̄,658
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then, the output y(k) is bounded by659

|ũ| inf
k

{sign(ũ)g(k)} − ε̄ ‖h‖1 ≤ y(k) ≤ |ũ| sup
k

{sign(ũ)g(k)} + ε̄ ‖h‖1, (22)660

661

with the ℓ1-norm of a signal defined as662

‖h‖1 =

∞∑

k=0

|h(k)|.663

Proof. By definition of y(k) as convolution of the impulse response h(k) with the input664

signal u(k), it follows665

y(k) =

k∑

i=0

u(i)h(k − i) =

k∑

i=0

(ũ + ε(i))h(k − i)666

= ũ

k∑

i=0

h(k − i) +

k∑

i=0

ε(i)h(k − i)667

= ũ g(k) +

k∑

i=0

ε(i)h(k − i)668

≤ |ũ| sup
k

{sign(ũ)g(k)} + ε̄ ‖h(k)‖1669

670

with671

‖h(k)‖1 =

∞∑

k=0

|h(k)|.672

Analogously673

y(k) ≥ |ũ| inf
k

{sign(ũ)g(k)} − ε̄ ‖h(k)‖1,674

675

which concludes the proof. ◭676

The next Corollary determines the upper and lower bounds to the sum of n consecutive677

outputs, by exploiting Lemma 1.678

◮ Corollary 1. Given an asymptotically stable discrete-time LTI system, if the input u(k)679

bounded as follows680

u(k) = ũ + ε(k), ũ ∈ R, −ε̄ ≤ ε(k) ≤ ε̄.681

Then, the sum of n consecutive outputs is bounded by682

−
(
|ũ| I(n) + ε̄ N (n)

)
≤

n0+n−1∑

k=n0

y(k) ≤ |ũ| J (n) + ε̄ N (n), (23)683

684

with685

N (n) =

∞∑

k=0

|g(k) − g(k − n)|, (24)686

I(n) = sup
k

{− sign(ũ)(r(k) − r(k − n))} (25)687

J (n) = sup
k

{sign(ũ)(r(k) − r(k − n))} (26)688

689

and g(k) and r(k) being the step and ramp response, respectively.690
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Proof. The output y(k) of a LTI system is the convolution of the impulse response h(g) and691

the input u(k)692

y(k) = h(k) ⊗ u(k).693

Because of the linearity of the convolution, the sum of n consecutive output is694

k+n−1∑

i=k

y(i) =

(
k+n−1∑

i=k

h(i)

)

⊗ u(k) =
(
g(k) − g(k − n)

)
⊗ u(k).695

696

Finally, by applying Equation (22) of Lemma 1, Equation (23) of the Corollary follows. ◭697

Proof of Theorem 3. Let us first determine the supply function sbfH(t) of the hi-criticality698

server. We aim at modeling the resource supplied to the hi-criticality server as a sequence of699

active intervals of lengths S(k), interleaved by a sequence of idle intervals of lengths Z(k)700

that corresponds to the schedule of the lo-criticality server. Formally,701

S(k) = SH(k), Z(k) = SL(k). (27)702

In fact, by doing so, Lemma 1 of [22] can give us the supply function of (14) through the703

proper value of σS(n) and σZ(n), as defined in (16).704

First of all, the system of (8) that determines the dynamics of SH(k) is linear. Hence, by705

the superposition principle the output SH(k) is equal to the sum of three components:706

1. the output Q̄H when εH(k) = 0 and εL(k) = 0,707

2. the output yHH(k) when Q̄H = 0 and εL(k) = 0, and708

3. the output yHL(k) when Q̄H = 0 and εH(k) = 0,709

that is710

SH(k) = Q̄H + hHH(k) ⊗ εH(k)
︸ ︷︷ ︸

yHH(k)

+ hHL(k) ⊗ εL(k)
︸ ︷︷ ︸

yHL(k)

(28)711

and hHi(k) is the response of SH(k) to an impulse on the input εi(k), with i ∈ {L, H}.712

Let us now compute σS(n) that is, from (16), a lower bound to the sum of the length of713

n consecutive budgets SH(k)714

σS(n) = inf
n0

n0+n−1∑

k=n0

S(k) = inf
n0

n0+n−1∑

k=n0

SH(k) = nQ̄H + inf
n0

n0+n−1∑

k=n0

(
yHH(k) + yHL(k)

)
. (29)715

716

To bound the sum of n consecutive values of yHH(k) and yHL(k), we can invoke Corollary 1.717

Let us start with718

yHH(k) = hHH(k) ⊗ εH(k).719

From the hypothesis of (1), εH(k) is bounded by720

−ε̄H ≤ εH(k) ≤ ε̄H721

and then Eq. (23) of Corollary (1) states that722

−ε̄HNHH(n) ≤
n0+n−1∑

k=n0

yHH(k),723
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with NHH(n) as in (19). Similarly, from the asymmetric bound to εL(k) of (1), from (23) it724

follows that725

−
ε̄L

2
(IHL(n) + NHL(n)) ≤

n0+n−1∑

k=n0

yHL(k),726

from which the expression of σS(n) of (17) follows.727

The expression of σZ(n) of (17) can be found by following similar steps:728

1. by setting the sequence of idle intervals Z(k) equal to the sequence of the lo-criticality729

budgets SL(k), as in (27);730

2. by writing the sequence SL(k) as the sum of Q̄L and the sequences yLH(k) and yLL(k) that731

corresponds to the responses to the disturbances εL(k) and εL(k) on SL(k) (similarly as732

in (28); and733

3. by exploiting Corollary 1 to bound yLH(k) and yLL(k).734

The expressions of σS(n) and σZ(n) give the expression of the sbfH(t).735

Analogously, by setting736

S(k) = SL(k), Z(k) = SH(k),737

and following the same steps illustrated above, it is possible to determine the proper values738

of σS(n) and σZ(n) of (18) and then the supply function sbfL(t) of the lo-criticality server.739

This concludes the proof. ◭740
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