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Abstract—In this paper, we provide self-configuration and
adaptation capabilities to UWSN thanks to Q-learning. UWSN
deployed for the long term over large areas for environmental
monitoring are possible applications of our work. Sensor nodes
deployed on the sea bottom are devoted to measure a physical
quantity of interest transmitted to surface buoys considered as
access points. Packet transmission are asynchronous and low
overheads are desirable so as to save throughput and battery
life. Prior to a transmission, the nodes choose, depending on the
channel conditions, which access point maximizes the probability
of successful decoding a the receiver side. Results show that Q-
learning is able to perform close to an ideal “genie-aided” scheme,
without the need of a detailed knowledge on the environment.

I. INTRODUCTION

Underwater sensor networks (UWSN) have drawn the at-

tention of the underwater acoustic (UWA) communications

research community for more than two decades. As the number

of surveys on the topic can testify [1]–[8], research has been

conducted in many fields from the physical to the routing layer

and a wide variety of applications have been investigated. The

specificity of the UWA environment calls for the development

of dedicated protocols, such as those proposed in [9]–[12].

Furthermore, the UW channel varies on different time scales

[13], [14] and the transmission ranges and depths may change

due to mobility. Therefore, some adaptation capabilities of the

modems and networks are desirable.

Adaptive medium access (MAC) protocols have been pro-

posed in [15], [16]. Synchronization between transmitters is

assumed in [15], which is difficult to maintain underwater. In

[16] a delay-tolerant handshaking mechanism is implemented,

which necessitates some overheads. More recently, [17]–[21]

have investigated decentralized spectrum sharing between non-

cooperative UW communication links. Communications take

place outside any network, without protocol, synchronization

or information exchanges between different links. Spectrum

sharing is achieved by implementing an equilibrium strategy of

a properly defined game. A limitation is the possible unfairness

and inefficiency of noncooperative equilibria. Recently, rein-

forcement learning (RL) [22], [23] has successfully provided

adaptive MAC layers for radio wireless sensor networks [24]–

[26]. In these works, Q-Learning is used to enable dynamic

spectrum access in LTE networks [24] and to schedule TDMA-

based MAC schemes [25], [26]. In the UWA community, [27],

[28] use Q-Learning to adapt transmission parameters to the

temporal variations of the channel in a single user context.

In this paper, we exploit similar ideas for application in

UWSN where asynchronism, low overheads and adaptability

are desirable. Many things can motivate asynchronous oper-

ations in UWA communications: lack of GPS, low capacity

links and long propagation delays which inhibits signaling

for distributed synchronizations, drift/motion of devices, etc.

Low overheads improve data throughput and battery life. Self-

configuration and adaptation capabilities are also needed so

as to enable operations in dynamic environments. UWSN

deployed for the long term over large areas for environmental

monitoring are possible applications of our work. Sensor nodes

deployed on the sea bottom are devoted to measure a physical

quantity of interest transmitted to surface buoys or sink nodes.

To allow for adaptability, we consider nodes with choices of

transmission strategies. This choice could be an access point

(like a surface buoy or a sink node), a frequency bandwidth,

a time slot, etc .., or a combination of different parameters.

As an example, in this paper we focus on choices of access

points. This defines the actions sets of the nodes considered

as learning agents. Transmissions are asynchronous and data

packets might collide at the reception. However, the signal-

to-interference-plus-noise-ratio (SINR) may still be sufficient

to decode the packet of interest, depending on the path losses

suffered. It is considered that decoding all the packet is not

sensible, but we rather want to maximize the number of

successfully transmitted packets. This assumption is made

in the light of works on random access compressed sensing

[29], [30] where the phenomenon under monitoring admits

a sparse representation in the spatial domain, allowing for

reconstruction of the measures without all the packets to be

received correctly. When a node transmits a data packet, it

must choose which access point is best to establish a reliable

communication depending on the channel conditions.

The proposed algorithm enables nodes to autonomously

make choices of access points in order to maximize their

probability of successful transmission. Q-learning [23] offers

a way to allow nodes to learn about the environment and react

to changes in the network topology, channel fading statistics

or transmission geometry. Overheads are minimal as it does

not require synchronization or information exchange between

nodes or between nodes and their receivers, apart from a

1-bit feedback signal from the receivers. We evaluate the

performance in terms of the average probability of success-

ful transmission through simulations and compare with the

ideal adaptive channel selection scheme which would have

perfect knowledge of the channels before every transmissions.
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Average path losses are simulated with Bellhop [31] This

give an average channel gain around which random log-

normal fluctuations are added to simulate time-varying UWA

channels.

II. TRANSMISSION MODELS

A set I of I non-cooperative transmitters (TXs) is supposed

to transmit packets to a set A of A receivers (RXs). The RXs

are access points such as surface buoys, sinks or relay nodes,

and they collect data from sensor nodes considered as TXs.

Each TX i ∈ I accesses only one RX a ∈ A at a time, and may

eventually cause interference to the others. It is assumed that

I > A, so that RXs are accessed by several concurrent TXs,

which may also interfere with each other when transmitting

at the same time. The receivers decode each transmitter

separately using a single-user decoding (SUD) scheme, the

others being considered as an unknown interference.

Each TX generates, asynchronously and independently of

the others, λ packets per second whose inter-arrivals are

exponentially distributed. On average, there are I × λ packets

per second transmitted within the network. For each packet

generated, the corresponding TX must choose an RX so as

to maximize the probability of successful transmission. Direct

sequence spread spectrum (DSSS) communications are con-

sidered, so as to enhance transmissions robustness by taking

advantage of the processing gain [32], [33]. A spreading code

is associated with each RX. All the TXs know the spreading

codes so that they can choose an RX by choosing the sequence

with which they spread their signals. We suppose all the

sequences to have the same length and the same spreading gain

G. The RXs are able to decode only packets spread with their

own sequences. Transmissions are asynchronous, so that the

codes of the different RXs cannot be considered as perfectly

orthogonal. Thus, the TXs may interfere with all the RXs.

Let Tp denote the packet duration and consider a TX i ∈ I
transmitting a packet to the RX a. The packet is transmitted

with power Pi uniformly spread on a bandwidth B centered

on fc, and arrives at RX a at a time ti. It has incurred an

attenuation depending on the time-varying transfer function

of the channel between i and a. The UWA channel time

variations can be decomposed into two parts [34], [35]: a

large-scale fading component, which makes the received power

vary slowly compared to the packet length, and a small-

scale fading whose coherence time is much shorter than Tp.

Let Hi,a(t, f) be the randomly time-varying channel transfer

function between TX i and RX a. The average attenuation on

the packet arrived at time ti can be expressed as

ρ̄i,a(ti) =
1

Tp

∫ ti+Tp

ti

ρi,a(t)dt (1)

where

ρi,a(t) =
1

B

∫ fc+B/2

fc−B/2

|Hi,a(f, t)|
2 df (2)

is a realization of a random process which depends on the

fading processes underlying Hi,a(f, t).
During the reception of a packet from TX i, collisions from

others TXs might occur as long as it exists some j 6= i ∈ I

such that the arrival time of its packet at the RX chosen by i,
denoted by tj , is within [ti − Tp, ti + Tp]. Let the interference

power perceived on the TX i’s packet denoted by the random

variable

Ii,a(ti) =
1

Tp

∫ ti+Tp

ti

∑

j 6=i

ρj,a(t)Pj1[tj ,tj+Tp](t) dt (3)

which also depends on the channels fading processes, as well

as on the arrival times of all the packets generated.

The successful transmission of a packet by the TX i to

the RX a will be evaluated through the average SINR on the

packet

γi,a(ti) =
ρ̄i,a(ti)Pi

σ2
a + Ii,a(ti)

×G, (4)

where σ2
a is the ambient noise power at the RX a. It is

considered that the packet of TX i is successfully decoded

at the chosen RX a if γi,a ≥ Γi, where Γi is some SINR

constraint.

In a practical set-up, the SINR should be estimated at the

RX side using pilot symbols included within the packets. The

choice of a satisfaction criterion based on the SINR is not

mandatory since the type of metric chosen does not have an

influence on the general behavior of the proposed algorithm.

One could choose, for example, a bit error rate constraint

on the packet or whether the packet is correctly decoded

using a cyclic redundancy check. Therefore, the assumption

of perfect knowledge of the SINR is not sensible in what

will be presented next. However, the choices of the values for

rewards/punishments of successful/failed transmissions (see

(5)) may have an influence but these discussions go beyond

the scope of this paper. These values will be chosen in a very

pragmatic manner in the next section.

III. CHANNEL SELECTION WITH Q-LEARNING

We propose to use the RL algorithm called Q-Learning

to enable the nodes to autonomously choose the receivers

which maximize their probability of successful transmission.

The TXs are considered as independent agents having several

actions to their disposal. In the scenario previously described,

the possible actions correspond to a choice of a RX in

A = {1, · · · , A} to transmit the current packet at a given time.

As each RX is associated to a spreading sequence, to choose

an RX is equivalent to choose a spreading sequence, which

can be written in the sensors memory prior to deployment.

For all i ∈ I, the action space is thus defined as Ai = A. In

order to ease the presentation, we take the point of view of a

particular agent i in the following.

Let Ti = 0, 1, 2, · · · be the set of time indexes (possibly

mapped to the real line) at which TX i ’s packets arrive at

any RX (neglecting the propagation delays). The algorithm

proceeds as follows. The TX first chooses the RX ai,t ∈ A
to sent the packet which arrives at time t ∈ Ti. Note that

the packet was sent at time t − ∆i,ai
, where ∆i,ai

is the

propagation delay between TX i and RX ai. The RX is

supposed able to compute the SINR of the agent i on the

basis of Eq (4). The agent i receives a reward Ri,t+1 which



depends on whether the SINR contraint is met or not. The

reward is thus defined as

Ri,t+1
∆
=

{

+1 if γi(ai,t) ≥ Γi

−1 if γi(ai,t) < Γi
(5)

and can take the form of a 1 bit feedback from the RX ai,t
to the TX i to acknowledge the successful reception of the

packet. On the basis of the cumulated received rewards, the

agent will update the action chosen for the next packets by

favoring those that generate positive rewards the most often.

The agents do not know what can be the channel gains and

the arrival times of other packets, and they are not supposed

to observe them. So, from the point of view of agent i and for

a given action ai, Ri,t+1 is a random variable with unknown

distribution. The agent i seeks to maximize its expected reward

through a judicious choice of action, i.e. it solves

max
ai,t∈Ai

E [Ri,t+1] . (6)

The expected rewards must be estimated. Let Qi,t be an

estimator of E [Ri,t+1] when considered as a function of ai,
the action taken at time t and for which a reward Ri,t is

received. For all ai ∈ Ai

Qi,t(ai) = Qi,t−1(ai) + α [Ri,t −Qi,t−1(ai)]

= (1 − α)t−1Qi,0 +

t−1
∑

k=1

α(1− α)t−kRi,k1[ai,k=ai].

(7)

with α ∈ [0, 1] the step size (or learning rate) parameter and

Qi,0 an initial value. By maintaining a table with Q-Values

Q(ai) associated to each action ai ∈ Ai and updating it over

time, an agent can devise how worth it is to play a given

action. The step-size parameter is used to weight differently

the new estimates compared to the old ones, allowing to track

non-stationary problems [22]. By selecting actions and getting

rewards accordingly, the agent learns about the environment.

This is expressed through the successive improvements in the

estimation of the expected rewards by the Q-Values. When the

agent exploits its current knowledge, its selects the “greedy”

action at the time considered :

ai,t = argmax
ai∈Ai

Qi,t−1(ai). (8)

Nevertheless, it is necessary to try each action sufficiently

often to guarantee a good estimation of the Q-Values. Explo-

ration is thus needed. Here, we consider the exploration strat-

egy consisting in exploring with probability ǫ and choosing the

greedy action with probability 1− ǫ. Algorithm 1 sums up the

procedure previously described (the agent’s index is omitted).

If several Q-Values are maxima, we randomize between the

corresponding actions.

IV. NUMERICAL RESULTS

The proposed scheme is evaluated through simulations. A

set I = 80 TXs and N = 8 RXs are considered. The

transmitters can be considered, for example, as sensor nodes

immersed at the sea bottom and the receivers are surface

buoys. Communications take place on a bandwidth B = 8
kHz centered at fc = 12 kHz. Each node sends packet at a

Algorithm 1 Q-Learning

1: parameters: ǫ, α
2: t = 0
3: ∀ ai ∈ Ai Qi,t(ai) = 0
4: for t = 1, 2, · · · do

5:

ai,t =

{

argmax
ai∈Ai

Qi,t−1(ai) w. p. 1− ǫ

a random action w. p. ǫ

6: Ri,t ← reward for ai,t based on Equation (5)

7: Qi,t(ai,t) = Qi,t−1(ai,t) + α [Ri,t −Qi,t−1(ai,t)]
8: end for
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Fig. 1. Average cumulative rewards over time for channel selections based
on Q-Learning and two other schemes. Solid lines depicts the performance
averaged on the number TXs. Dashed lines are minimum and maximum
performance among TXs.

rate λ = 0.1. There are thus 8 packets per seconds on average

transmitted by the whole set of nodes to the 8 buoys. Packets

are spread with a DSSS sequence of L = 128 chips, offering

a processing gain of G = 21 dB. We approximate the chip

duration by Tchip ≈ 1/B = 0.125 µs so that the symbol

duration is L × Tchip = 16 µs. The packet duration is set to

Tp = 1 s, so that 62 symbols are transmitted per packets. In

a practical set-up where the sensors are devoted to measure

a physical quantity, such a packet length can be sufficient

to transmit one or several measurements, depending on the

constellation size. The terminals locations are randomly drawn

in an area of 64 km2, with a minimum distance separating TXs

and RXs of 100 m and 500 m respectively. The water depth is

1000 m. TXs are immersed randomly between 1000 and 800

meters, while RXs are immersed between 5 and 20 meters.

The channels gains coefficients ρi,n(t) are simulated as

order 1, log-normal auto-regressive processes such that ∀ i ∈
I, ∀ n ∈ N (with t understood as discrete time indexes in

the following):

ρi,n(t) = 10
1

10
(gi,n(t)+ḡi,n) (9)

where

gi,n(t) = φ gi,n(t− 1) + ǫi,n(t) (10)



with ǫi,n(t) ∼ N (0, σ2
dB). This models the large-scale fading

of the channel. The constant φ is computed so as to have

a coherence time of τc = 60 s and the power spread is

σ2
dB = 10 dB. The large-scale fading process is centered

around a mean ḡi,n corresponding to the transmission loss

returned by the Bellhop ray-tracing simulator [31]. This

simulator traces acoustic rays from a TX to an RX given

the transmission geometry parameters (depths, ranges) and a

sound speed profile. This SSP was acquired in North Atlantic

at longitudes [−70◦, −60◦] and latitudes [22◦, 30◦]1 and was

truncated at a 1 km depth for the needs of the simulation.

An impulse response is then computed on the basis of the

ray tracing. Transmission losses can then be computed by

integrating over frequencies to give the coefficient ḡi,n. The

transmission power is constrained to 170 dB ref µPa and the

noise power is computed according to the path loss to have a

reference signal to noise ratio (SNR) of 10 dB at 1 km. The

SINR constraint is set to Γi = 10 dB.

Each node runs Algorithm 1. The step-size is set to α = 0.1
and the exploration is ǫ = 0.05. Usually, ǫ is small so as to

benefit of exploitation when the algorithm as converged to

consistent choices. The step-size is set empirically here, as

several simulations have shown no sensibility regarding the

average long-term cumulated rewards. This is explained by

the channels stationarity when considered on sufficiently long

duration, as the log-normal fading always fluctuates around

the same average path loss. When a packet is received by the

chosen RX, the SINR is computed with Equation (4) and the

corresponding reward is sent back to the TX for updating its

action. All propagation delays are taken into account.

Performance is evaluated in terms of the average cumu-

lated rewards. Comparisons are made with the naive random

(uniform) selection of RXs and with a “genie-aided“ adaptive

scheme where, before a packet is sent, the TXs know perfectly

what will be the channel gains at the RXs side and choose the

one with the best gain. This ideal scheme would necessitate

information exchanges between TXs and RXs prior to every

packet transmission, which would produce large overheads.

Nevertheless this a reasonable upper-bound for comparison.

Figure 1 shows the results. It can be seen that the Q-Learning

selection is beneficial compared to the random access proce-

dure, as expected. Most importantly, it performs quite close

to the ideal scheme but with much less knowledge required

about the environment (only the rewards encoded into a 1-

bit feedback). The cumulated rewards of Q-learning translate

asymptotically into a probability of successful transmission of

90,3%. This probability is 97% for the ideal scheme and 68,4%

for random access. The ideal scheme shows less deviation of

individual nodes performance from the average. The reward

value standard deviations tend to 8.5% in the ideal scheme,

14.6% in Q-learning and 13.2% in random access.

Figure 2 shows the Q-Values and actions choices of two

randomly chosen TXs in case of a breakdown of RX #4,

which was initially preferred. The breakdown appears after 15

minutes of operation. It can be seen that the node modifies its

behavior after receiving sufficient punishments. The number

1see also the example provided by [36]
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Fig. 2. Evolution of the Q-Values of two TXs in case of a breakdown of
the access point (RX) #4 after 15 minutes.

of successive punishments needed to consider RX #4 as a bad

choice depends on α. The choice of another RX depends then

on the exploration previously performed. It is also interesting

to see that convergence behaviors can be quite different from

one node to another. Node #55 seems to converge towards the

choice of a single RX after the breakdown, while node #2

seems to converge to a probability distribution over the RXs

choice. This shows the adaptation capability of the proposed

scheme.

V. CONCLUSION

In this paper, we have shown the benefits of RL to un-

derwater acoustic networks through the study of a particular

application scenario. These algorithms are able to offer some

self-configuration and adaptation capabilities in a decentral-

ized way, without the need of large overheads or messages

exchanges between network nodes to retrieve information

about the channel state. However, we believe that what we

have proposed is not limited to the type of underwater sensor

network described here. For example, one could consider

nodes having different transmission strategies than choices of

an access point in a discrete set. The same method could

be used in any problem where UW transmitters have some

degrees of freedom in their transmission strategy and can

easily get some feedback about how good it was to take

a particular action at a time. Another strength of some RL

algorithms such as Q-learning is that they do not rely on a

detailed model of the problem. This is desirable in UW where

there is no consensus on the channel statistical properties and

where it is usually difficult to predict precisely the conditions

in which modems or networks will operate.
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