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Background: Idiopathic Juvenile Osteoporosis (IJO) is a condition that refers to significantly 

lower than expected bone mass manifesting in childhood, for which there is no identifiable 

aetiology. IJO classically presents in early pubertal period with multiple fractures including 

metaphyseal and vertebral crush fractures, and low bone�mass. However, with advances in 

genetic screening, several causes of IJO have been recently reported in literature.  

Methods: Here we describe two patients and provide information on their clinical phenotype, 

genotype and bone material analysis in one of the patients. 

Results: Patient 1: 40�year old adult male diagnosed with IJO in childhood who re�presented 

with a hip fracture as an adult. Genetic analysis identified a pathogenic ���	 hemizygous 

variant, c.1765del in exon 16. Patient 2: 15�year old boy with multiple vertebral fractures and 

bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. 

Genetic analysis identified a maternally inherited ���	 pathogenic c.1295T>A variant in 

exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular 

volume and bone turnover indices and elevated bone matrix mineralisation. 

Discussion: We propose that genetic testing for ���	� should be undertaken in patients 

presenting with a current or previous history of IJO as this has implications for genetic 

counselling and cascade screening of wider family members. The extensive evaluation of the 

transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. 

Conclusion: This report includes a review of IJO and genetic causes of osteoporosis, and 

suggests that existing cases of IJO should be screened for ���	�in addition to other candidate 

genes known to cause childhood�onset primary osteoporosis. Through analysis of bone 

material properties in Patient 2, we can conclude that ���	 does have a role in bone 

mineralisation. 
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 Idiopathic juvenile osteoporosis (IJO) is the descriptive term used to define primary 

osteoporosis of unknown aetiology presenting in childhood. It is usually associated with 

vertebral and metaphyseal fractures in the years leading to puberty. It has been previously 

reported to not be associated with heritable genetic variants and usually diagnosed by a 

process of elimination through exclusion of other causes of decreased bone density [Rauch et 

al., 2000]. The classic pathophysiology of IJO involves a dysfunction in cancellous bone 

formation in two ways: fewer remodelling cycles and reduction in quantity of bone formed in 

each of these cycles. This leads to thin trabeculae by the time of maturity
 
[Rauch et al., 2000]. 

 Hartikka et al., 2005 reported heterozygous variants in �
��� in a small number of 

children with IJO more than a decade ago [Hartikka et al., 2005]. Genetic causes of 

osteoporosis have now been increasingly identified due to advances in genetic screening, 

with variants in genes with dominant, recessive and X�linked recessive inheritance patterns 

[Biha et al., 2016; Fahiminiya et al., 2014; Kampe et al., 2015; Roch�Braz et al., 2016].
 
 

� ���	 (OMIM 300131) has 16 exons and is located on Xq23, it encodes a highly 

conserved plastin 3 that binds actin and shown to have an effect on bone mineral density. 

Plastin 3 is ubiquitously expressed in solid tissues and involved in the binding and bundling 

of actin filaments in the cytoskeleton. Variants in ���	 lead to significantly reduced bone 

mineral density [Laarschot et al., 2016; Laine et al., 2015; McGovern et al., 2015]. Although, 

the exact function of ���	 in bone is still unknown, suggested roles of Plastin 3 includes the 

processes of mechanosensing, converting applied mechanical loading forces into molecular 

signals that are interpreted by the cells. More recently, it has been suggested to have a role in 

the mineralisation process. Being located on the X chromosome, PLS3�induced osteoporosis 
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has a more severe effect on males than females, although heterozygous carrier females are 

also known have early�onset osteoporosis.  

 Here, we report two patients initially diagnosed clinically as IJO in whom ���	 

pathogenic variants were identified. Although, there have been several large pedigrees 

reported with plastin�induced osteoporosis in the literature, bone material properties have not 

been extensively studied and results have been varied. In the current report, we demonstrate 

this variability further and attempt genotype�phenotype correlation in order to untangle the 

results on detailed bone material analyses. 

�

'"�(��")$�"�%�'(�*�%$�

��	
	�����������

+��	�
�� ,� The first patient is a 40�year old Caucasian male who initially presented to a 

Paediatric Metabolic Bone service outside of our centre at the age of 12 years, with a history 

of musculoskeletal aches and pains and morning stiffness.  

 On examination at that time, he was noted to be short in the trunk, and showed 

difficulty moving from a position of forward flexion to an upright position. X�rays were 

reported as showing generalised osteopenia with compression of almost all lower thoracic 

and lumbar vertebrae, consistent with a clinical diagnosis of ‘Osteoporosis’ or ‘Osteogenesis 

Imperfecta’. He had an elevated alkaline phosphatase but no other abnormality was noted on 

investigation. He was given a diagnosis of IJO at age 13. He was instructed to wear a 

supportive back brace but received no specific therapy. It is of note that his mother, then in 

her 40s, had already been diagnosed with osteoporosis (Figure 1A). He was subsequently lost 

to follow�up. 
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 Aged 38, this patient was referred to the Adult Metabolic Bone service, following a 

fracture of his hip, which occurred during an accident at work. Additionally, he gave a history 

of a traumatic foot fracture. On examination, he had white sclerae, was not facially 

dysmorphic with no other features suggestive of OI or other metabolic bone disease. During 

diagnostic work�up, he was noted to have multiple vertebral fractures and recalled the history 

of IJO. Investigations did not identify any other contributory causes. His bone density was 

below the expected range for age; lumbar spine T�score was �4.8 (although the presence of 

vertebral fractures affects the reliability of the result), Z�score was �4.8, total hip T score was 

�3.5 with a Z�score of �3.6. Spinal imaging demonstrated fractures of all lumbar vertebrae and 

most of the thoracic vertebrae (with the exception of T3) (Figure 1B and C). He was 

prescribed Alendronate, supplementary calcium and vitamin D. 

 This patient was referred to Genetics, aged 39. A detailed family pedigree was taken 

which confirmed that his mother, now in her 70’s, had been diagnosed with osteoporosis at 

an early age. More recently, after long term bisphosphonate treatment, she had sustained 

bilateral atypical femoral fractures (two years apart). He has two teenage sons who have had 

no concerns regarding their bone health. He had targeted gene testing for �
�� and ���	.  

 His family history was then expanded from his mother’s osteoporosis to include the 

osteoporosis of his maternal uncle. His sister had sustained no fractures. Although, family 

studies have been requested, no samples have been forthcoming. 

+��	�
��-��The second patient is a 15�year old boy referred to the Metabolic Bone service 

with a history of recurrent fractures. He is the first child of healthy, non�consanguineous 

Caucasian parents with no significant family history apart from osteoporosis in maternal aunt 

and maternal grandmother. He has a younger sibling who is fit and well (Figure 2A). 
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 His initial fracture aged 2 was of his left forearm following minor trauma, then aged 6 

of his right forearm and wrist. Aged 12 years, when he was first seen in the Metabolic Bone 

clinic, his back was noted to be straight but his spine imaging showed multiple vertebral 

crush fractures both in the lumbar and thoracic spine affecting 7 vertebrae altogether (Figure 

2B). Both his lumbar spine and total body less head BMD (Bone mineral density) were below 

the normal range for age with aBMD (arealBMD) Z�scores of �2.7 and �2.6 respectively. 

Bone biopsy performed prior to starting treatment with bisphosphonates showed features 

detailed below including reduced osteoblast and osteoclast surfaces, trabecular loss and 

reduced connectivity, and cortical thinning. He was also noted to have elevated bone specific 

alkaline phosphatase for age, which subsequently normalised, possibly reflecting recent 

fractures. He was commenced on treatment with three�monthly Pamidronate infusions at 

1mg/kg on three successive days with good initial response.  

 Eight months after starting treatment, his lateral vertebral analysis showed 6 vertebrae 

with reduced height; his age�matched lumbar spine aBMD Z�score had risen from �2.7 prior 

to treatment to �1.4 and his total body less head aBMD Z�score rose from  �2.6 to �1.7. 

Further treatment for 2.5 years with Pamidronate followed, with a switch to Zoledronic acid 

thereafter.  His lumbar spine aBMD continued to increase despite reducing the dose of 

treatment to 60% of the regular dose. His aBMD rose to +1.3 and his current DXA image 

shows significant vertebral endplate sclerosis with some improvement in the overall shape 

and height of the previously crush�fractured vertebrae (Figure 2C). 

 He was referred to the Genetics clinic in view of his bone fragility and a diagnosis of 

autism spectrum disorder (ASD). A detailed family pedigree was taken which confirmed that 

his mother had sustained a fracture of her forearm but there was a more significant fracture 

history in a maternal aunt who had been diagnosed with osteoporosis in her 30’s. He was 
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enrolled to a research study looking at the association of bone fragility and autism with 

appropriate consent and trio whole exome sequencing was undertaken. 

#�
��.	�������.����� ��
��/��
�	���	���#�������������(������
�����	
��0/#(�1��

 A transiliac bone biopsy was obtained from Patient 2 before the initiation of 

bisphosphonate (BP) treatment, following double labeling with tetracycline to allow for 

dynamic measurement of bone formation. Sample preparation and histomorphometric 

analyses were performed using standard procedures
10

. Results were compared to reference 

data of healthy age�matched controls and children with OI type I [Glorieux et al., 2000; 

Rauch et al., 2000].� Subsequently, the residual block was prepared to assess bone 

mineralization density distribution (BMDD), reflecting the calcium content of cortical and 

trabecular bone matrix, by qBEI as described elsewhere [Roschger et al., 2008]. The BMDD 

parameters values were compared to healthy controls and children with OI type I [Fratzl�

Zelman et al., 2009; Fratzl�Zelman et al., 2016; Roschger et al., 2008].
  
�

�

�($&)�$�

+��	�
�� ,� Targeted genomic sequencing of exons 2�16 of ���	 detected a hemizygous 

deletion, c.1765del in exon 16 of ���	. This likely pathogenic variant was predicted to result 

in a p.Ala589fs change. The predicted result for this variant was a frameshift, leading to the 

creation of a premature termination codon 21 amino acids downstream. This particular 

variant had not been reported on the LOVD database entry on ���	 but other such frameshift 

variants in ���	 have been reported in association with osteoporosis. 

+��	�
��-��Targeted sequencing for genes associated with OI including autosomal dominant 

panel (���������&�������) and �
�� testing were negative. Previous genetic testing also 

included normal 60Kb arrayCGH in view of his diagnosis of ASD. 
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 This patient was then enrolled to a research study studying the association of autism 

and OI funded by Newlife Foundation. This study had been approved by the South Yorkshire 

Research Ethics Committee and appropriate institutional boards and the research has been 

performed in accordance with the 1964 Helsinki Declaration. Trio whole exome sequencing 

showed he was hemizygous for the c.1295T>A pathogenic variant in exon 12 of ���	. This 

variant was predicted to result in a p.Leu432* change and although, not previously reported 

in literature, similar variants in ���	 have been reported in association with osteoporosis. 

Further testing showed that his mother carried the same ���	 variant. 

 The qualitative assessment of the bone biopsy sample obtained from the patient prior 

initiation of bisphosphonate therapy revealed very small and isolated trabecular features; one 

very trabecularised cortex and one well delineated cortical plate (see Figure 3A). Under 

polarized light, cortical and trabecular bone showed an ordered lamellar pattern. In particular, 

the parallel lamellar organisation of the cortical plates suggested that they were formed by 

primary bone apposition through processes of bone modeling and modeling drift (Figure 3B). 

The bone histomorphometric analyses confirmed that the amount of trabecular (bone volume 

per tissue volume) was severely reduced compared to aged�matched controls and rather in the 

range of OI patients (See Table 1). However, in contrast to OI bone, all parameters of bone 

formation and bone resorption were also found to be very low. Compared to healthy control 

values, osteoid thickness, mineral apposition rate and the mineralising surface were 

decreased. The percentage of trabecular surfaces covered either by osteoblasts or osteoclasts 

was reduced by about 80 and 90 percent, respectively (Figure 3C). It should be noted that 

more osteoclasts and osteoblasts were viewed in the cortical areas (not shown) mirroring an 

active trabecularisation process.  

 The qBEI analyses revealed a hypermineralisation of the bone matrix similar as in OI 

bone. In both, the trabecular and cortical compartment, the BMDD curve was shifted towards 
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higher mineral content compared to healthy controls (Figure 3D, E). Consistently, the 

average calcium content of the matrix (CaMean), the most frequently occurring calcium 

concentration (CaPeak) and the portion of highly mineralized bone (CaHigh) were elevated in 

both bone compartments, while the percentage of lowly mineralised matrix (CaLow) was 

markedly reduced (See Table 2).  

�

%�$�&$$����

 Osteoporosis is a complicated diagnosis to make, due to the range of factors that can 

contribute to its pathogenesis. It is characterised by reduced bone mass and an increased 

predisposition for bone fractures. Current definition of childhood�onset primary osteoporosis 

requires a clinically significant fracture history and BMD Z�score at or below �2.0 [Kämpe et 

al., 2015]. A clinically significant fracture history can be defined as two or more long bone 

fractures aged 10 years or below and three or more long bone fractures aged 19 years or 

below. However, vertebral compression fractures often are alone enough to make this 

diagnosis even with a normal BMD. Diagnostic workup should include exclusion of other co�

morbidities such as celiac disease, inflammatory bowel disease, eating disorders, Vitamin D 

and calcium deficiency.  

 Current strategies for genetic testing for childhood�onset osteoporosis include targeted 

gene panels including genes that cause OI, �
�������� and ���	. However, with costs of 

genetic testing coming down and more genes being discovered, whole exome/ genome 

sequencing is likely to replace targeted gene panels as first�line testing in the near future.  

� ���	 (OMIM number: 300131) is located on chromosome Xq23. It contains 16 exons 

and spans 90kb. It encodes plastin 3 protein, which is an actin binding protein found in 

intestinal microvilli, hair cell stereocilia and fibroblast filopodia. Additionally, it seems to 
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have a role in development of bone, an influence on growth of axons, and expressed in 

circulating cells in cases of colorectal cancer [Laarschot et al., 2016; Laine et al., 2015; 

McGovern et al., 2015]. 

 The bone regulatory actions of ���	 are not fully known. It has been demonstrated 

that overexpression protects against spinal muscular atrophy. It has also been observed in 

zebrafish that knockout pls3 fish develop craniofacial bone structure malformations, which 

was reversible using human PLS3 mRNA [McGovern et al., 2015]. Dijk et al., 2013 observed 

that the chicken homologue for PLS3 (fimbrin) is highly expressed in osteocyte dendrites 

responsible for mechanosensation [Dijk et al., 2013]. The authors propose loss of 

mechanosensation as a possible mechanism for the osteoporosis effects.  

 Whilst the particular variants exhibited by both these patients in this study have not 

been published elsewhere, other frameshift variants in this gene have been found to cause X�

linked osteoporosis. Maternal heterozygotes have been shown to be either unaffected or show 

early osteoporosis symptoms, as was the case with these patients [Dagleish et al., 2017]. 

 Since its first description of PLS3�osteoporosis in five families with apparent X�

linked osteoporosis, there have been other case reports adding to the literature and expanding 

the phenotype of this condition [Dijk et al., 2013; van de Laarschot et al., 2016; Kannu et al., 

2017; Lv et al., 2017; Kämpe et al., 2017]. From the literature so far and corroborated by our 

patients, the phenotype consists of vertebral compression fractures, peripheral including long 

bone fractures and low BMD but without features such as blue sclerae, short stature, joint 

hyperlaxity or facial features typical of ‘Classical OI’ which is helpful in terms of genotype�

phenotype correlation. Therefore, in patients with predominant history of vertebral fractures 

and/or low BMD without features of OI and family history suggestive of X�linked 

osteoporosis, PLS3�osteoporosis remains the top differential diagnosis. It is also important to 
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make this diagnosis as carrier females albeit more mildly affected than males must be 

screened and kept under appropriate follow�up.  

 Patient 2 had features of autism spectrum disorder in addition to bone fragility and 

was recruited to a research study to explore this association further. Exome data has not 

identified any other variants of interest apart from the ���	 variant which is X�linked. So far, 

���	 patients have been reported to have normal intellectual development. Interestingly, 

reports of PLS3�osteoporosis patients include those paediatric patients labelled as having 

‘spastic cerebral palsy’, ‘waddling gait’ and there has been a suggestion that ���	 is linked to 

spinal muscular atrophy (SMA) [Hosseinbarkooie at al., 2017]. It is therefore, important to 

assess neuromuscular function and CNS assessment in further detail in these patients. Plastin 

3 is said to be a protective modifier in SMA and reported to have a role in neuromuscular 

synapse maintenance which adds further weight to the suggestion that in addition to the role 

in bone mineralisation, this plastin may also have a role in intellectual development. It 

remains to be seen whether he has an alternate diagnosis to explain the ASD or the ���	�

variant is somehow contributing to his diagnosis of ASD. Further trio genome sequencing 

studies are ongoing to search for an alternate aetiology. 

 The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel 

bone phenotype associated with ���	 variant. Fahiminiya et al., 2014 first reported pediatric 

patients with normal bone formation and normal BMDD [Fahiminiya et al., 2014]. In a more 

recent study from Kämpe et al., 2017, data from a ���	 variant carrier was presented that 

showed increased osteoid formation and concomitant hypomineralization of the bone matrix 

[Kämpe et al., 2017]. In sharp contrast, Patient 2 of the present study had low bone turnover, 

low osteoid formation compared to healthy controls and very low values compared to OI as 

shown on Table 1. Indeed, children with OI tend to have elevated indices of bone formation 

and resorption that was definitively not observed in the present case
 
[Rauch et al., 2000]. 
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However, this ���	 patient shares with OI patients, the characteristic decreased trabecular 

bone volume and the abnormally high mineral content of the bone matrix as revealed by 

qBEI (Table 2) [Rauch et al., 2000]. This suggests that the increased matrix mineralisation in 

our ���	 patient (Patient 2) results primarily from a long history of very low bone turnover.  

 Indeed, the mineralisation of bone tissue increases with time and it takes years for a 

newly formed bone packet to become fully mineralized. Thus, in a situation where little or no 

bone is remodeled, one would expect a rising of the mineral content of the bone matrix and 

high bone matrix mineralisation making the bone tissue stiffer, harder and more brittle 

[Roschger et al., 2008; Bishop et al., 2016]. It has to be underlined that during skeletal 

growth, bone turnover is generally increased and the bone matrix tends to be rather lower 

mineralised than hypermineralised [Fratzl�Zelman et al., 2009]. Interestingly, the highly 

trabecularised cortical envelopes observed in our patient suggest that bone modeling remains 

active in the ���	 patient. An ongoing cortical bone formation represents possibly a 

compensatory mechanism to counteract the lack of an adequate amount of trabecular bone. It 

seems very likely that bone fragility in Patient 2 results from a decrease in bone mass that can 

only be inadequately compensated by increased primary bone formation and from alteration 

of bone material properties similar to that seen in children with OI.  

 Genotype�phenotype correlation in terms of bone material properties is difficult as 

there is limitation in obtaining a transiliac bone biopsy from all patients due to its invasive 

nature. Phenotypic variability even with the same family is a well�observed genetics 

phenomenon and often complex to explain. PLS3�osteoporosis reports so far include large 

pedigrees with a combination of whole gene deletions, intragenic deletions (likely resulting in 

haploinsufficiency in females or complete absence of plastin 3 in males), frameshift, splice 

site and missense variants (likely resulting in truncated or abnormal protein) which makes 

direct correlation of bone material properties difficult. From the ���	�patients in who bone 
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material analyses has been undertaken so far, we could cautiously conclude that ���	�does 

have a role in bone mineralisation, although the effect of it may be dependent on age and 

timing of bone biopsy. However, further reports of this nature are required to reproduce the 

effect of ���	 on bone material and elucidate the exact function of ���	 in bone. 

 Lindert et al., 2016 identified variants in ������ in two families with several 

affected males identifying another X�linked gene resulting in heritable bone fragility [Lindert 

et al., 2016]. The phenotype of these patients was not in keeping with the diagnosis of IJO 

and was suggestive of a severe OI phenotype. In addition to the implicit benefit of screening 

for ���	, the literature suggests that it would also be beneficial to screen �
���� and ���� 

in patients with a presumed diagnosis of IJO. The proteins encoded by these genes form part 

of a major bone anabolic pathway; variants in genes for other factors interacting with the 

pathway including ���	�, ���� and �
�� have all also been associated with low bone 

mass and fracture. Variations in �
�� can cause opposing effects on the bone density of the 

patient; a loss�of�function variant causes osteoporosis�pseudoglioma (OPPG) [Hartikka et al., 

2005; Biha et al., 2016; Palsgaard et al., 2016], whereas a gain�of�function variant can cause 

dramatic increases in bone density [Niziolek et al., 2015]. Confirming the genetic aetiology in 

IJO/ childhood�onset primary osteoporosis is important due to implications for patients’ 

diagnosis and treatment; for the wider family in terms of cascade screening especially in a X�

linked condition, providing accurate information on recurrence risk (as in Patient 1 where 

there is no risk for his unaffected sons which is reassuring for the family).  

 In conclusion, IJO/ childhood�onset primary osteoporosis can be a complicated 

diagnosis, resulting from early onset bone fragility. We recommend that all young male 

patients with this prospective diagnosis undergo diagnostic analysis of ���	, either as part of 

targeted gene panel testing for bone fragility or a single gene testing where there is reduced 

access to genomic sequencing technologies. Given the emerging phenotype of PLS3�
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osteoporosis, further case reports of this nature are important to expand on the spectrum of 

clinical presentation and add to the ���	�mutation database. 
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2	�����,"4�#��
�����Family pedigree of Patient 1; Spinal imaging in Patient 1 at 38�years of 

age demonstrating vertebral fractures of all lumbar vertebrae and most of the thoracic 

vertebrae (with the exception of T3) and residual deformities; low BMD on DXA imaging. 

2	�����-"4�#��
���� Family pedigree of Patient 2; Pretreatment lateral DXA image of the 

spine at 12�years of age showing multiple vertebrae with reduced height and altered shape; 

Lateral DXA image of the spine at 15�years of age showing endplate sclerosis and minor 

improvement in the overall size and shape of vertebrae following 3.5 years of bisphosphonate 

treatment. 

2	�����5"�(� Bone histology and BMDD in Patient 2 

A: Backscattered electron image from the entire transiliac bone biopsy sample. Note the one 

highly trabecularised abnormal cortical plate, (Trabecularised Ct) in contrast to the well 

delineated normal cortex (Ct) on the other side and the isolated and small trabecular features 

in the cancellous bone compartment. 

B: Cortical plate, histological section, Goldner´s stained viewed under polarised light. Note 

the parallel lamellar arrangement of the collagen fibrils. 

C: Trabecular bone, histological section, Goldner´s stained (mineralised bone is green, non�

mineralised is osteoid red). Trabeculae appear very thin, isolated and without an osteoid 

seam. 

D and E: BMDD curves obtained from cortical bone (D) and cancellous bone (E): both 

curves are shifted towards higher values of the mineral content in comparison to the reference 

cohort of healthy children.�
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Histomorphometric results in the Patient with ���	 variant compared to age�matched control values 

Histomorphometric variables 

References  

Healthy 

children* 

P2 

Difference vs. 

healthy 

controls (%) 

References 

OI type I** 

 

Age (years) 11�13.9 12  � 7.6 ± 3.8 

Structural parameters: 

Bone volume per Tissue volume  (%) 24.4 ± 4.3 7.4 �69.7 11.0 ± 5.2 

Trabecular thickness ([m) 148 ± 23 75.7 �48.9 105.0 ± 25 

Trabecular number (1/mm) 1.66 ± 0.22 0.9 �45.8 1.3 ± 0.39 

Cortical Width (mm) 0.90 ± 0.33  0.8
#
 �11.2 0.52 ± 0.2 

Static parameters of bone formation 

Osteoid thickness (µm) 6.7 ± 1.7 2.7 �59.7 5.5 ± 1.7 

Osteoid surface per bone surface (%) 22.1 ± 7.8 19.2 �13.1 48 ± 14 

Osteoid volume per bone volume (%) 2.12 ± 1.0 1.4 �34.0 5.2 ± 2.6 

Osteoblast surface per bone surface (%) 6.7 ± 4.5 1.1 �83.6 19.4 ± 9.5 

Dynamic parameters of bone formation 

Mineralizing surface per bone surface (%) 11.07 ± 5.0 6.8 �38.6 48 ± 16 

Mineral apposition rate (µm/d) 0.87 ±0.09 0.72 �17.2 0.73 ± 0.18 

Adjusted apposition rate (µm/d) 0.46 ± 0.10 0.25 �45.7 0.35 ± 0.14 

Bone formation rate per bone surface (µm/y) 37.3 ± 16.7 17.7 �52.6 77 ± 34 

Bone formation rate per bone volume (%/y) 49.9 ± 21.4 50.4 +1.0% 116 ± 62  

Mineralization lag time  (d) 14.5 ± 3.00 10.8 �25.52 16.5 (12.5 �19.8) 

Static parameters of bone resorption 

Eroded surface per bone surface (%) 14.9 ± 5.6 0.9 � 94.0 15.6  (13.7 � 21.8) 

Osteoclast surface per bone surface (%) 1.14 ± 0.74 0.1 � 91.2 1.37 (1.05 � 1.70) 

Number of osteoclasts per bone surface (1/mm) 0.29 ± 0.14 0.05 � 82.8 0.047 ± 0.29 

�

Reference data are given as mean ±SD or median with interquartile range (25%; 75%); 7�Published values from Glorieux et al., 200010 ; 77�Published values from Rauch et al., 200011 ; # Thickness was only evaluated 

in the one well�delineated cortical plate   
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BMDD in the patient with ���	�variant (Patient 2) compared to control values 

BMDD variables 

References values 

from healthy 

children and 

adolescents * 

Patient 

2 

Difference 

vs. healthy 

controls 

(%) 

References 

OI type I **, *** 

Cancellous bone 

CaMean (weight % Ca) 20.95 (0.57) 22.91 + 9.4 22.43 (0.63) 

CaPeak (weight % Ca) 21.66 (0.52) 23.92 +10.4 23.39 (0.57) 

CaWidth (^ weight % Ca) 3.47 (3.12; 3.64) 3.81 +9.8 3.08 (0.28) 

CaLow (%) 6.14 (4.90; 7.99) 5.72 �6.8 5.94 (2.05) 

CaHigh (%) 0.89 (0.43; 1.47) 19.00 
21�fold 

increased 
7.54 (5.00; 11.82) 

Cortical bone 

CaMean (weight % Ca) 
20.45 (19.69; 

21.04) 
22.52 +10.1 22.51 (0.46) 

CaPeak (weight % Ca) 
21.14 (20.62; 

21.75) 
23.31 +10.3 23.29 (0.48) 

CaWidth (^ weight % Ca) 3.81 (3.38; 4.38) 3.73 �2.1 3.28 (0.25) 

CaLow (%) 9.06 (6.22; 15.00) 4.33 �52.2 4.40 (0.80) 

CaHigh (%) 0.46 (0.28; 1.22) 8.49 
18�fold 

increased 
8.60 (4.00) 

Reference data are given as mean ±SD or median with interquartile range (25%; 75%); 

Definition of BMDD variables from Roschger et al., 200812 CaMean: the mean calcium concentration (weighted mean); CaPeak:  the most frequently occurring calcium concentration (the peak position of the BMDD) 

in the sample; CaWidth: the width of the BMDD distribution (full width at half maximum) reflecting the heterogeneity in matrix mineralization; CaLow: the percentage of low mineralized bone area, which is 

mineralized below 17.68 weight% calcium, normally reflecting bone areas undergoing primary mineralization; CaHigh: the percentage of highly mineralized bone matrix, having the calcium content above 25.30 

weight% calcium. 

* Published values from Fratzl�Zelman et al., 200913; ** Published values from Roschger et al., 200814 (for cancellous OI bone); Fratzl�Zelman et al., 201615 (for cortical OI bone).�
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Figure 2B: 
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Figure 2C: 
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