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A dynamic model of quality competition with endogenous prices�

Roberto Celliniy Luigi Sicilianiz Odd Rune Straumex

June 6, 2018

Abstract

We develop a dynamic model of price and quality competition in order to analyse the

e¤ects of competition on quality provision and to which extent an unregulated market is able

to provide a socially optimal quality level. Our model combines a di¤erential-game approach

with a Hotelling spatial competition framework, and our analysis applies in particular to

industries such as long-term care, health care, child care and education. If providers (nursing

homes, hospitals, schools, nurseries) use closed-loop decision rules, which imply strategic

interaction over time, we show that, although increased competition leads to higher quality

in the steady state, quality provision is nevertheless lower than under open-loop rules, and

also suboptimally low from a welfare perspective. Thus, our analysis identi�es dynamic

strategic interaction between competing providers as a potential source of ine¢ciency in

quality provision.
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1 Introduction

Quality is a key aspect of services in long-term care, health care, child care and education,

which in turn a¤ects the way providers compete. In these industries, providers, i.e., nursing

homes, hospitals, nurseries and schools (or universities), can attract more consumers not only

by lowering the price, but also by increasing quality of the services they o¤er. For example,

nursing homes can recruit more nurses, to increase time spent with residents, or recruit more

quali�ed nurses to provide additional medical services; hospitals can provide better quality of

care, both clinical quality and amenities; nurseries can introduce or improve didactic activities;

schools can improve their curriculum or contact hours with pupils (students). These sectors

count for a signi�cant share of the economy and are the subject of intense political debates and

policy reform.

In many OECD countries, providers in these industries compete on both quality and price.

This is typically the case for the markets for long-term care, where nursing homes compete

on quality and price in the US, the UK and several other European countries (e.g., France).

This also applies to nurseries (kindergartens) and child care provision, although some countries

impose relatively strict price regulation on nurseries (e.g., Norway). In the US, universities

compete on both quality and price, and this is also the case in the UK where students currently

pay signi�cant fees, mostly funded through student loans. In the US, hospitals compete on

both price and quality for patients who are not part of the Medicare and Medicaid programmes.

This is also the case for private hospitals in many European countries o¤ering specialist services

and surgical treatments, and other health services which are not (or poorly) covered by public

insurance, e.g., dental care. In England, before 1997 hospitals competed on quality and price

to obtain a contract with the Health Authority. Since 1997 a �xed price system has been

introduced, but there are current discussions to eliminate the �xed price regime and allow

�exibility in pricing across hospitals to accommodate local needs.

If consumers (residents, patients, parents, students) make their purchasing decisions partly

based on quality, a provider�s incentive for attracting more demand by providing higher quality

is positively related to the price of the product o¤ered, so that price and quality decisions tend
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to interact in a way that makes the e¤ect of competition on quality generally ambiguous. It

is therefore of theoretical interest to analyse which factors can potentially determine whether

competition has a positive or negative impact on quality provision.

Whether competition stimulates or sti�es quality provision is also a question of great interest

for policy makers. Many countries have recently introduced or enhanced public reporting of

quality measures as a means to stimulate quality competition in these industries. There is a

proliferation of quality indicators to compare providers, including publishing of rankings based

on these indicators on a regular basis (e.g., �league tables� of nursing homes, hospitals, schools and

universities).1 The aim is to make demand more responsive to quality and therefore stimulate

providers to compete harder and o¤er better quality. However, the e¤ect of such measures to

increase competition might be very di¤erent depending on whether the providers also compete

on prices, which tends to vary across countries. Our analysis therefore provides a relevant

framework for studying the e¤ects of such competition policies on quality in contexts where

prices are not regulated. Furthermore, our analysis also provides insights on the e¤ects of price

deregulation on quality provision. In particular, we analyse whether free pricing can lead to a

socially optimal quality provision or not, making the normative part of our analysis therefore

highly relevant.

To answer our two key research questions, i.e., (i) if competition increases or reduces quality,

and (ii) if quality is socially optimal, we make two main assumptions. First, we model demand

within a Hotelling spatial framework. Second, we model quality as a stock variable. Both

assumptions capture important features of industries such as long-term care, health care, child

care and education.

In relation to the �rst, these are industries where the unit demand assumption of the Hotelling

model is an appropriate description of consumer choice. In long-term care, child care and

education markets, each consumer (resident, child, pupil/student) demands one admission to

a nursing home, a nursery and a school/university, respectively. In health care markets, each

consumer needs (demands) one surgical/medical treatment from a speci�c health care provider.

The spatial dimension of the model also re�ects the fact that geographical distance is a key

1Detailed examples of quality indicators in these industries are provided in Section 8.
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determinant of demand in these industries, where consumers usually have a strong preference

for the closest provider, unless providers that are located further away can o¤er a su¢ciently

higher quality or lower price.2 Finally, the standard Hotelling assumption of �xed total demand,

which we also adopt in our analysis, is a reasonable approximation for the above-mentioned

industries, where total demand tends to be relatively inelastic.3

We model quality as a stock variable in a dynamic context, where quality provision requires

investments and where quality is treated as a stock that can be increased over time only if the

investment in quality is higher than its depreciation. This is a highly relevant feature of many

dimensions of quality, since increased quality might require investments in new machinery (IT

and communication systems, MRI machines) and additional training of the provider�s workforce

(nurses, doctors, teachers), for example. Given our dynamic set-up, we use a di¤erential-game

approach to derive the equilibrium price and quality provision4 within a Hotelling framework,

where two horizontally di¤erentiated providers choose prices and quality investments over time.

Competition is a multifaceted concept, which within the proposed analytical framework we

capture in three di¤erent ways. Each of these capture distinct features of the above-mentioned

industries. Our three measures are: (i) the comparison of open-loop and closed-loop solutions

(described in more detail below); (ii) a reduction in the transportation cost parameter as an

inverse measure of competition intensity; this is a measure that captures the degree of product

substitutability, which is one of the most commonly used measures of competition in markets

with restricted entry (Vives, 2008)5 and (iii) the degree of cross-shareholding (as used by, e.g.,

Symeonidis, 2000), which allows us to consider a (continuous) switch from monopoly to duopoly.

(i) Within the di¤erential-game model, two di¤erent solution concepts are considered, corre-

sponding to two di¤erent assumptions regarding the information set available to the players. We

2For example, empirical studies of the US for nursing homes suggest that distance to the provider is a key
predictor of choice of nursing homes (Zwanziger et al., 2002; Shugarman and Brown, 2006; Grabowski et al., 2013;
Rahman and Foster, 2015); this is also the case for hospitals where travelling distance and quality are the main
predictors of hospital choice (Kessler and McClellan, 2000; Tay, 2003; Gutacker et al., 2016); and for schools
(Hastings et al., 2005; Gibbons et al, 2008; Chumacero et al., 2011).

3See Werner et al. (2012) for nursing homes; Brekke et al. (2014) for hospitals.
4Price competition in oligopoly models, taking a di¤erential-game approach, is studied in Vives (1985), Qiu

(1997), Driskill and McCa¤erty (1989), Colombo and Labrecciosa (2015) among many others.
5A more standard measure of competition is the number of �rms. However, in our dynamic setting, an

n-provider model is not analytically solvable under feedback rules.
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�rst derive the open-loop solution, where players are assumed to know the initial state (i.e., the

initial quality stocks of the providers) but do not (or cannot) observe the evolution of states over

time. This implies that each player has to decide its optimal dynamic plan at the beginning of

the game and then stick to it forever. We compare this benchmark with a closed-loop solution,

where each player can observe the dynamic evolution of states and therefore react to changes

in the quality stock of the competitor. More speci�cally, we derive the Markovian closed-loop

feedback solution, where the players� decisions at each point in time depend on the current state

(which summarises the entire history of the game).

The closed-loop solution is in general more realistic but the nature of the industries con-

sidered (long term care, child care, health care and education) makes the open-loop solution

potentially relevant beyond being a theoretical benchmark. For example, for hospitals and nurs-

ing homes, some states in the US have certi�cate of needs (CON) regulation which implies that

providers might have to commit to investment plans that make the dynamic competitive frame-

work perhaps more in line with the open-loop solution. Schools and universities may have to

apply for planning permissions and lay out investment plans before they can be approved by

the local municipalities. More generally, the heavily regulated nature of these industries suggest

that competition based on open-loop versus closed-loop decision rules can to some extent be

thought of as a policy choice. In this respect, our analysis also provides insights on the e¤ects

of regulatory measures that a¤ect the strategic context faced by providers.

(ii) Competition intensity can be easily related to policies which introduce or enhance public

reporting of quality measures, discussed above, to help consumers (residents, parents, patients,

students) choose providers (nursing homes, hospitals, schools and universities). (iii) The degree

of cross-shareholding can also be related to policy initiatives; although providers are supposed

to compete, they are often also supposed to �collaborate�. For example, hospitals and schools are

encouraged or have to be part of local networks which encourage the spreading of good practice,

share data, and design a common curriculum (Chone, 2016). These activities encourage, to some

extent, providers to act as one entity, which is measured in the degree of cross-shareholding.

Our analysis produces three sets of results. First, steady-state quality in the open-loop
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solution does not depend on competition intensity, regardless of whether it is measured by

product substitutability or cross-shareholding. This is in contrast to the closed-loop solution,

where product substitutability (cross-shareholding) has a positive (ambiguous) e¤ect on steady-

state quality. Second, we �nd that steady-state quality is lower in the closed-loop than in

the open-loop solution, for any degree of product substitutability and for any degree of cross-

shareholding, as long as the marginal cost of quality and/or the transportation cost parameter

is su¢ciently high (to rule out multiplicity of equilibria). The reason is that, in the former case,

each provider has an incentive to reduce current quality investments in order to dampen future

price competition. This incentive is absent in the open-loop solution, where the players do not

interact strategically over time. Third, and �nally, we �nd that quality provision is socially

optimal in the open-loop solution, which implies that the closed-loop solution is characterised

by underprovision of quality in steady state.

We discuss how the �rst �nding relates to the empirical evidence in Section 8. We extensively

elaborate on the policy implications of our �ndings for the industries to which our analysis applies

in the concluding Section 9. Finally, it should be emphasised that our analysis obviously also

applies to many other industries where providers compete on both price and quality and where

competition has a spatial dimension. One example is the airline industry, which is often modelled

in a spatial competition framework since the time-scheduling of �ights can be interpreted as

locations on a time line.6

The rest of the paper is organised as follows. In the next section we present an overview

and discussion of related theoretical literature. The model is then formally presented in Section

3. In Section 4 we solve the model under the assumption that players use open-loop decision

rules. The open-loop equilibrium is then used as a benchmark for comparison with the closed-

loop solution � where the players engage in dynamic strategic interaction � which is analysed

in Section 5. The welfare properties of the two solutions are analysed and discussed in Section

6. In Section 7 we introduce two di¤erent extensions to our base analysis: (i) the degree of

cross-shareholding as an alternative measure of competition intensity, and (ii) an alternative

cost function with quality-dependent and convex production costs. In Section 8 we present and

6See, e.g., Borenstein and Netz (1999) and Salvanes et al. (2005).
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discuss empirical evidence of the relationship between competition and quality in some of the

industries for which our analysis applies. Policy implications and concluding remarks are o¤ered

in Section 9.

2 Review of the theoretical literature

Our paper contributes to the theoretical literature on the relationship between competition

intensity and quality provision. This relationship is generally determined by two counteracting

e¤ects: (i) more competition increases the incentives to provide quality for given prices, but (ii)

more competition also reduces the price-cost margin, which in turn reduces the incentives for

quality provision. The relative strength of these two general e¤ects depends on the speci�cs of

the theoretical framework used.

Standard spatial competition models produce a well-known �neutrality� result, where the two

aforementioned e¤ects exactly cancel each other out, and competition intensity (measured by

transportation costs; i.e., product substitutability) has no e¤ect on equilibrium quality provi-

sion.7 Brekke, Siciliani and Straume (2010) have shown that the neutrality result is broken in

the presence of income e¤ects (where price changes a¤ect the marginal utility of consumers),

which creates a positive relationship between competition intensity and quality provision.8 In

the present paper we identify another factor which breaks this neutrality result, namely dynamic

strategic interaction (as in the closed-loop solution).9

There is of course also a large literature studying price and quality competition within a

vertical di¤erentiation framework, where consumers di¤er in their willingness-to-pay for product

quality, and where each �rm produces either a single product of a given quality or a range of

products of di¤erent qualities that are o¤ered at di¤erent prices.10 The present analysis is cast in

7See, e.g., Ma and Burgess (1993) for the case of competition on a Hotelling line, and Gravelle (1999) for the
case of competition on a Salop circle.

8Using the number of �rms/brands as a competition measure, Economides (1993) �nds that more competition
leads to lower quality provision. This result, which is driven by a negative relationship between the number of
�rms and �rm-level demand, can also be reversed under more general utility and cost assumptions, as shown by
Brekke, Siciliani and Straume (2010).

9There is also a small literature studing the relationship between competition and quality using a representative
consumer framework (e.g., Sutton, 1996, Banker et al., 1998, Symeonidis, 2000). In this strand of the literature,
more competition is typically found to have an ambiguous e¤ect on equilibrium quality provision.

10Seminal contributions include Gabszewicz and Thisse (1979, 1980) and Shaked and Sutton (1982, 1983) for
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a horizontal (rather than vertical) di¤erentiation framework for two reasons. Firstly, and most

crucially, a symmetric model is necessary for analytical tractability, which is a critical issue in

di¤erential games with feedback decision rules. Secondly, a symmetric model (i.e., based on

horizontal di¤erentiation) allows us to focus on symmetric equilibria, with equal quality across

all �rms/goods, which arguably makes it better suited for analysing the relationship between

competition intensity and quality provision, since the latter concept is very precisely de�ned

in a symmetric equilibrium. Models based on vertical di¤erentiation, on the other hand, are

arguably better suited for analysing questions related to asymmetric outcomes, such as incentives

for quality di¤erentiation.11

The relationship between competition and quality is closely related to the question of whether

an unregulated market will produce a socially optimal quality provision. Our analysis also

contributes towards answering this question. In a seminal paper, Spence (1975) showed that a

monopolist will provide a quality level that is lower (higher) than the socially optimal level if the

marginal valuation of quality is lower (higher) for the marginal than for the average consumer. In

standard spatial competition models, the marginal valuation of quality is equal (in equilibrium)

for the marginal and average consumer, implying socially optimal quality provision, if price and

quality decisions are taken simultaneously (see, e.g., Ma and Burgess, 1993). This optimality

result also carries over to the case of dynamic competition under open-loop rules (which implies

an absence of truly dynamic strategic interaction). However, our �nding of a suboptimal quality

level in the closed-loop solution reveals that dynamic strategic interaction between competing

�rms creates an additional ine¢ciency that contributes to underprovision of quality.

The e¢ciency properties of the open-loop and closed-loop solutions, with respect to qual-

ity provision, have an interesting parallel in the e¢ciency properties of simultaneous-move and

sequential-move versions of an equivalent one-shot game. Whereas simultaneous price and qual-

ity decisions yield socially e¢cient quality provision, as described above, sequential decision-

making � where the �rms can commit to quality choices before they set prices � yields lower,

the case of single-product �rms and Mussa and Rosen (1978), Gal-Or (1983) and Champsaur and Rochet (1989)
for the case of multi-product �rms.

11For example, Motta (1993) shows that incentives for vertical di¤erentiation (in duopoly) are larger under
Bertrand than under Cournot competition.
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and therefore sub-optimal, quality provision in equilibrium.12 The mechanism is similar to the

one giving rise to di¤erent steady-state quality levels in the open-loop and closed-loop solutions

of the dynamic model analysed in the present paper. Our analysis can therefore be seen as

giving additional support to the sequential-move assumption in one-shot games. Even if price

and quality choices are made simultaneously in each period of the game, dynamic strategic inter-

action (as in the closed-loop solution) will create the same type of incentives for underprovision

of quality as in a one-shot game with sequential moves.

Our work also relates to studies which employ a di¤erential-game approach. Piga (1998,

2000) analyses oligopolistic markets in which �rms set price and advertising levels. Advertising

has some characteristics that are similar to quality, and can be interpreted as a tool to increase

the perceived product quality. However, the way advertising is modelled in these two studies is

distinctly di¤erent from the way quality competition is modelled in the present paper. Impor-

tantly, advertising is modelled as a public good that increases market size. In contrast, quality

investments have a business-stealing e¤ect in our model. In Piga�s models, the ranking of de-

sirability of the outcomes depend on the information rule adopted (open-loop vs feedback).13

Cellini et al. (2008) focus on persuasive advertising and compare the outcomes of price and

quantity competition, and reach the conclusion that price competition entails more advertising.

Brekke et al. (2010) provide a model where oligopolistic �rms (hospitals) set qualities in

the presence of regulated prices (with a �xed price reimbursed by the government for every

additional patient). Quality is also modelled as a stock variable and a Hotelling framework

is used. They show that quality is lower under the closed-loop solution than under the open-

loop solution when the marginal cost of production is increasing (to capture hospitals� smooth

capacity constraints, given that hospital entry is heavily regulated). In contrast, the two solution

concepts yield identical quality provision when the marginal cost of production is constant. In

the current study we also �nd that quality is lower under the closed-loop solution. Critically,

12Ma and Burgess (1993) derive this result in the context of a Hotelling model, while Economides (1993) derive
the equivalent result in the context of a Salop model.

13Like in the current study, Piga (1998) applies a Hotelling framework but, di¤erently, market size (and not
quality) is the state variable, which evolves over time according the amount of advertising undertaken by the two
�rms. In contrast, Piga (2000) presents a model with price as the state variable, in line with the assumption that
prices are sticky.
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this result is obtained under a constant marginal cost assumption and is due to the endogeneity

of prices.14

Other studies of dynamic quality competition, combining a spatial competition framework

with a di¤erential-game approach, include Brekke et al. (2012), who consider quality competition

with regulated prices when demand reacts sluggishly to quality changes, and Siciliani et al.

(2013), who use a similar framework but with the additional assumption of motivated providers.

There are several di¤erence between these studies and the current one, the most important being

the endogeneity of prices. Another paper using a spatial competition framework with quality as

the choice variable, but applying di¤erent assumption about dynamics, is Cellini and Lamantia

(2015), who study how the imposition of a minimum quality standard a¤ects the equilibrium

allocation and the dynamic properties of the system. Following Bischi et al. (2007) and Bischi

et al. (2015), they also consider di¤erent behavioural rules adopted by the providers, apart from

the open- or closed-loop rules.

Finally, investment in R&D which a¤ects the production cost or product characteristics �

with some parallels to investment in product quality � are studied by Hinloopen (2000, 2003)

and Cellini and Lambertini (2005, 2009), among others. Intensity in R&D, and the incentive

towards cooperative behaviour, depend on the form of market competition (price vs quantity

competition) and the information structure, with a variety of possible outcomes. In general,

more intense competition arises when the �rms� choice variable is price (rather than quantity),

leading to higher consumer surplus in steady-state equilibrium (as is well known, even from

static games), and with closed- (rather than open-) loop information structures.

3 Model

Consider a market with two providers located at either end of the unit line S = [0; 1]. On

this line segment there is a uniform distribution of consumers, with total mass normalised to

1. Assuming unit demand, the utility of a consumer who is located at x 2 S and buys from

14An analogous result is obtained by Brekke et al. (2012) when demand is modelled as sluggish and quality
can be changed instantaneously under a �xed price regime.
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Provider i, located at zi 2 f0; 1g, is given by

U (x; zi) = kqi � � jx� zij � pi; (1)

where qi and pi are the quality and price, respectively, of the good o¤ered by Provider i, k is a

parameter measuring the marginal willingness to pay for quality, and � is the marginal trans-

portation cost, which measures the degree of horizontal product di¤erentiation. We assume full

market coverage: each consumers buys one unit of the good, from the most preferred provider.

Since the distance between providers is equal to one, the consumer who is indi¤erent between

Provider i and Provider j is located at xDi , implicitly given by

kqi � �xDi � pi = kqj � �
�
1� xDi

�
� pj ; (2)

and explicitly given by xDi =
1
2 +

k(qi�qj)
2� � (pi�pj)

2� , or in a more accurate way which takes into

account the possible case of corner solutions:15

xDi = max

�
0;min

�
1

2
+
k (qi � qj)

2�
� (pi � pj)

2�
; 1

��
(3)

This is also the demand for Provider i, given the assumptions of (i) uniform consumer distribution

with mass 1, (ii) exogenous locations of providers, and (iii) full market coverage.

A key parameter in our model is � , which is given a relatively broad interpretation. On the

one hand, � re�ects consumers� cost of travelling, which is an important aspect of the industries

we have in mind, where distance is often a key predictor of consumers� choice of provider, as

discussed in the previous section (and footnote 2). On the other hand, from (3) we see that

demand responsiveness to quality or price changes depends unambiguously on � , which explains

why this parameter is a commonly used (inverse) measure of the intensity of competition in

spatial competition models. Thus, we interpret � as a broad measure of competition intensity

that re�ects factors beyond literal transportation costs.

15All equilibrium solutions in the models of this article are internal, and no speci�c parametric conditions are
necessary to avoid corner solutions.
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In order to ensure existence, uniqueness and stability of the steady-state solution in all

models considered, we need to impose a parameter restriction that, in qualitative terms, implies

that the cost of travelling (�) is su¢ciently large relative to the marginal willingness to pay

for quality (k).16 This parameter restriction implies that our analysis applies to industries in

which travelling costs are su¢ciently important. However, this is indeed a key characteristic of

the speci�c industries we have in mind, since distance to the provider is a key determinant of

consumer choice: residents, patients and pupils tend to choose the closest or local nursing home,

hospital and school, respectively (see Introduction for references). For example, Gutacker et al.

(2016) �nd that one standard deviation increase in health gains (which entails an large increase

in quality) would increase patient willingness to travel by only about one kilometer. Similarly,

for school choice, Hastings et al. (2005) �nd that an average student would choose the nearest

school over a school three miles further away in which quality (measured by average test scores)

were 1-2 standard deviations higher. This suggests that, in these industries, travelling distance

is relatively more important than quality for consumers, which, in our model, translates into �

being large relative to k. For negligible transportation costs, the problem is not well behaved

anymore. Quality competition between providers would entail large quality investments with

negative pro�ts. Moreover, a small deviation in quality will persuade all consumers to switch to

the provider o¤ering the higher quality, which might lead to corner solutions.

We assume that product quality changes over time, due to investment by providers and

depreciation. De�ne I(t) as the investment in quality at time t, and � > 0 as the depreciation

rate of the quality stock. Analytically, the law of motion of quality is given by

dqi(t)

dt
:=

�
qi(t) = Ii(t)� �qi(t): (4)

Quality is therefore modelled as a stock variable which increases when investment in quality is

higher that the depreciation rate. This is a plausible assumption. Quality is unlikely to change

instantaneously. It requires investment in machines, skilled workforce, and careful planning.

16For example, in the open-loop model considered in Section 4, the critical point is a minimum and not
a maximum if � is su¢ciently low. The explicit parameter restrictions needed for existence, uniqueness and
stability are given along with the derived open-loop and closed-loop solutions in Sections 4 and 5, respectively.
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Each provider has a cost function C (�), which, at each point in time, depends on the qual-

ity investment, the quality stock, and output. For analytical tractability, the cost function is

parameterised as follows:17

C
�
xDi ; Ii; qi

�
= cxDi +

1

2

�
I2i + �q

2
i

�
; (5)

where c > 0,  > 0 and � > 0. Thus, we assume constant marginal cost of production,

and increasing and strictly convex costs of quality investments Ii. We also assume that each

provider�s costs are increasing and convex in the quality stock qi.
18

Assuming pro�t-maximising behaviour, the instantaneous objective function of Provider i is

given by

�i (t) = (pi(t)� c)xDi (qi (t) ; qj (t) ; pi (t) ; pj (t))�


2
Ii(t)

2 � �
2
qi(t)

2; (6)

and, de�ning � as the (constant, positive) preference discount rate, the objective function of

Provider i over the in�nite time horizon is

+1Z

0

�i (t) e
��tdt: (7)

In the following we model the behaviour of providers, and �nd the corresponding equilibrium,

under two alternative assumptions concerning the information set used by providers at each point

in time. First, we model the open-loop strategy, where each provider sets its optimal investment

plan at the start of the game and then sticks to it forever. Under this solution concept, the

optimal value of the choice variables simply depends on time (and the value of state variables at

the beginning of time). The open-loop solution concept requires minimal amount of information;

in some instances, it has been criticised for being �too static� in nature (Dockner et al., 2000,

p. 30). However, as explained in the Introduction, in the industries that constitute the main

applications of our analysis, providers are sometimes subjected to regulations enforcing long-

term investment plans, which implies that the providers might operate in a strategic environment

17Alternative parameterisations of the cost function are considered in Section 7.2.
18An intuitive justi�cation for this assumption is that a higher quality level makes the required maintenance

operations more and more demanding.
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that resembles the open-loop setting.

The open-loop Nash equilibrium is, in general, only weakly time consistent (as de�ned, e.g.,

by Başar and Olsder, 1995). This is not the case under the feedback closed-loop strategy, where

the choice variables set by players at any instant of time depend on the current value of the states.

The feedback strategies are sometimes also labelled as �Markovian�, since only the current values

of the states matter, irrespective of the past history � which is re�ected in the current value of

the state vector. The optimal strategies are commonly derived from the solution to Bellman�s

equation, and the Nash equilibrium under the feedback closed-loop strategy is strongly time

consistent.

There are classes of di¤erential games in which the closed-loop solution degenerates and

the time path of the control variables coincides with the path of the open-loop solution. In

these cases, even the open-loop solution is strongly time consistent. Examples of classes where

this coincidence holds are linear state di¤erential games, state-redundant games, state-separable

games, and exponential games (Mehlmann, 1988, ch. 4, and Dockner et al., 2000, ch. 7, provide

an overview). However, this is not the case in our present model, which has a linear-quadratic

structure, and where the control variables follow di¤erent paths under open-loop and closed-loop

solutions, and hence lead to di¤erent steady-state solutions.

A large body of theoretical and applied analyses compare the strategy and the equilibrium

properties under the two solution concepts, which coincide only in some speci�c circumstances

(see, e.g., Mehlman, 1988, Ch. 4; Dockner et al., 2000, Ch. 7). A variety of outcomes can

emerge: while it is impossible, in general, to state which solution concept leads to the highest

payo¤s for the players, and which leads to the highest level of social welfare, it is arguably the

case that the feedback closed-loop solution generally entails a stronger degree of competition,

since players are able to respond at each point in time to the choice of their competitors.

In these models, it is usual to focus on the steady-state allocation, which can be interpreted

as the counterpart of the equilibrium outcome of a static game. As shown below, both the

open-loop and the feedback closed-loop equilibrium in our model lead the system to a steady

state. Given our �standard� assumptions concerning technology and demand, it is not surprising
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that the (symmetric) steady state we focus on is stable (in the saddle sense) under the open-loop

rule, and it is globally stable under the feedback closed-loop rule.

4 Open-loop solution

Provider i�s maximisation problem is given by

Maximise
Ii(t); pi(t)

+1Z

0

�i (t) e
��tdt; (8)

subject to
�
qi(t) = Ii(t)� �qi(t); (9)

�
qj(t) = Ij(t)� �qj(t); (10)

qi(0) = qi0 > 0; (11)

qj(0) = qj0 > 0: (12)

Let �i(t) and �j(t) be the current value co-state variables associated with the two state equations.

The current-value Hamiltonian is as follows, where time (t) is omitted to ease notation:

Hi = (pi � c)
�
1

2
+
k (qi � qj)

2�
� pi � pj

2�

�
� 
2
I2i �

�

2
qi
2 + �i (Ii � �qi) + �j (Ij � �qj) : (13)

The solution satis�es the following conditions: (a) @Hi=@Ii = 0, (b) @Hi=@pi = 0; (c)
�
�i =

��i � @Hi=@qi, (d)
�
qi = @Hi=@�i, (e)

�
�j = ��j � @Hi=@qj . More extensively, we have:

�i = Ii; (14)

0 =
1

2
+
k (qi � qj)

2�
� (pi � pj)

2�
� (pi � c)

2�
; (15)

�
�i = �i (� + �) + �qi �

(pi � c) k
2�

; (16)

�
�j = (� + �)�j +

(pi � c) k
2�

; (17)

�
qi = Ii � �qi; (18)
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to be considered along with the transversality condition limt!+1 e��t�i(t)qi(t) = 0. The second-

order conditions are satis�ed if the Hamiltonian is concave in the control and state variables

(Léonard and Van Long, 1992). We have HIiIi = �  < 0, Hpipi = � 1
�
< 0 and Hqiqi =

�� < 0. Since HIiqi = HIipi = 0, the only remaining condition needed to ensure concavity is

HpipiHqiqi � (Hqipi)2 = 1
4�2

�
4�� � k2

�
> 0.

From (14) and (16) we derive

�
Ii = (� + �) Ii +

�


qi �

(pi � c) k
2�

; (19)

and from (15) we derive

pi =
c+ � + k(qi � qj) + pj

2
: (20)

Symmetrically, the problem of Provider j yields pj = [c+ � + k(qj � qi) + pi]=2: Hence, in Nash

equilibrium, where both (20) and the symmetric solution for Provider j hold simultaneously, it

must be the case that

pi = c+ � +
k(qi � qj)

3
and pj = c+ � +

k(qj � qi)
3

: (21)

In the steady state we have
�
qi = 0, qi = qj = q

OL and pi = pj = p
OL, implying

pOL = c+ � ; (22)

qOL =
k

2 (� (� + �) + �)
; (23)

and

IOL = �qOL: (24)

Regarding the adjustment around the steady state,
�
qh,

�
Ih and

�
ph are linear functions of qh,

Ih and ph (h = i; j), as evidenced by (18), (19) and the di¤erentiation of (21). The complete

dynamics of the system can be characterised by six di¤erential equations. Consider, however,

that
�
ph (h = i; j) are proportional to

�
qh. Thus, some information regarding the dynamics can
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be obtained by focussing the attention on the two-variable system made by
�
qi and

�
Ii, whose

Jacobian matrix is

J =
@(

�
Ii;

�
qi)

@(Ii; qi)
=

2
64
(� + �)

1

6���k2
6�

��

3
75 : (25)

This matrix has a positive trace, �, and a negative determinant if 4�� > k2, which makes

the steady state locally stable in the saddle sense.19 Under this condition, the locus
�
I = 0 is

negatively sloped in the (I; q)-space and the locus
�
q = 0 is positively sloped. The saddle path

is negatively sloped. Thus, if q(0) > qOL, quality decreases over time toward the steady state,

while investment increases; in this case, p(0) > pOL and the price decreases over time.

The comparative statics results regarding the steady-state levels of price and quality are

intuitive. The steady-state price equates the sum of marginal production and transportation

cost. This result is analogous to the Nash equilibrium of an equivalent static model. Steady-state

investment and quality are also decreasing in the marginal cost of quality (�) and investment (),

and decreasing in the time preference discount rate (�). Notice also that a higher depreciation

rate of quality (�) is associated with lower steady-state quality, while the e¤ect on investment

can be non-monotonic and depends on the exact parameter con�guration.

The most interesting characteristic of the open-loop solution, though, is the fact that the

steady-state quality is not a function the degree of product substitutability. Applying the

standard interpretation of � as being an inverse measure of competition intensity, we obtain the

following result:

Proposition 1 When the providers use open-loop decision rules, steady-state quality does not

depend on the intensity of competition in the market.

All else equal, stronger competition increases the elasticity of (provider-speci�c) demand with

respect to both price and quality, which leads to lower prices but has two counteracting e¤ects

on quality provision: a positive direct e¤ect and an indirect negative e¤ect, since a lower price

19The condition 4�� > k2 is su¢cient but not necessary. This condition also ensures positive steady-state

pro�ts since �OL = �
2
�

k2(�2+�)
8(�(�+�)+�)2

> 0 i¤ 4�� > k2
(�2+�)�

(�2+�+��)2
where

(�2+�)�

(�2+�+��)2
< 1.
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reduces the incentive to increase quality. In standard spatial competition models, in a static

setting, these two e¤ects exactly cancel each other, implying that competition intensity does not

a¤ect equilibrium quality provision.20 Proposition 1 con�rms that this �neutrality� result carries

over to a dynamic setting, as long as the providers use open-loop decision rules. This is perhaps

not all that surprising, given the somewhat �static� nature of the open-loop solution, where the

optimal investment plan is decided once and for all at the outset of the game.

5 Closed-loop solution

In this section we present the closed-loop solution, where each provider knows not only the

initial state of the system, but can also observe (and therefore react to) the quality stock of the

competing provider in all periods. More speci�cally, we present the closed-loop feedback solution,

where the players � at each point in time � make decisions by taking into account the current

value of states (which summarises the entire past history of the game). While the closed-loop

feedback solution is strongly time-consistent, and therefore arguably a more appealing solution

concept in a context of dynamic competition, this solution is also considerably more complicated

to calculate. In this section we therefore present directly the optimal dynamic decision rules in

the closed-loop feedback solution and relegate the derivation of these rules to Appendix A.1.

If the parameters � and/or � are su¢ciently large relative to k, which we will henceforth

assume is the case, there is a unique globally asymptotically stable closed-loop solution. The

optimal pricing rule for Provider i in this solution is given by

pi (t) := �
CL
i (qi (t) ; qj (t)) = c+ � +

k (qi (t)� qj (t))
3

: (26)

At each point in time, there is a positive relationship between the quality stock and the price

charged by each provider. All else equal, higher quality implies higher demand, which makes

demand less price elastic and therefore increases the pro�t-maximising price. Obviously, an

increase in the competitor�s quality level has the opposite e¤ect. Since the two providers optimal

20See, e.g., Ma and Burgess (1993) for the case of Hotelling competition and Gravelle (1999) for the case of
Salop competition.
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pricing rules are symmetric, it follows that

pi (t)� pj (t) =
2k (qi (t)� qj (t))

3
: (27)

Thus, at each point in time, the provider with higher quality charges a higher price.

The optimal quality investment rule for Provider i in the closed-loop solution is

Ii (t) := �
CL (qi (t) ; qj (t)) =

1


(�1 + �3qi + �5qj) ; (28)

where

�1 =
k

3 ( (� + �)� �3)
> 0; (29)

�3 = s �
r


54

�
4
p
(y � 2g) y + (5y � 2g)

�
< 0; (30)

and

�5 = �
1

2

r
4

27

�
y � g �

p
y (y � 2g)

�
< 0; (31)

and where y := 6
�
s2 + �

�
, s := � + 1

2� and g :=
k2

�
. The negative sign of �3 is assumed to

ensure global asymptotic stability. For the solution to be real, we must also assume that y � 2g.

Finally, given that �3 < 0, the slightly stricter condition y � 8
3g is su¢cient (but not necessary)

to ensure that the solution is unique (multiplicity of equilibria is further discussed below). As

for the equilibrium dynamics o¤ the steady state, these are similar to the open-loop solution

(details omitted but available from authors).

In qualitative terms, the conditions �3 < 0 and y � 8
3g, or, more explicitly,

9�

��
� +

�

2

�2
 + �

�
� 4k2

are both satis�ed if the transportation cost parameter � is su¢ciently large relative to the

marginal valuation of quality, k. Notice that, in qualitative terms, this condition is analogous

to the condition 4�� � k2 > 0 that ensures concavity of (13) and therefore existence of the

open-loop solution. In fact, it is easily shown that the condition 4�� � k2 > 0 is su¢cient to
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ensure stability and uniqueness also of the closed-loop solution if the marginal cost of quality

investments  is su¢ciently large relative to the marginal cost of the (maintenance of the) quality

stock �, which is plausible.

The key property of the quality investment rule given by (28), is the negative sign of �5, which

implies that quality investments are intertemporal strategic substitutes;21 the higher the quality

stock of a given provider, the lower the optimal investment level of the competing provider. The

intuition for this property is related to the interaction between price and quality investment

choices. All else equal, an increase in the quality stock of Provider j leads to reduced demand

for Provider i, and this provider will therefore optimally reduce its price, as shown by (26).

However, this price reduction implies a lower price-cost margin for Provider i, which in turn

implies a reduction in the marginal pro�t gain of attracting more demand by increasing quality.

Provider i will therefore respond by reducing its quality investments.22

5.1 Steady state

In the steady state, where qi = qj , equilibrium prices in the closed-loop solution are given by

pCL = c+ � (32)

and are therefore equal to the steady-state prices in the open-loop solution (and to the equi-

librium prices in an equivalent static game). Steady-state quality in the closed-loop solution is

implicitly given by the steady-state condition Ii = �qi, and explicitly given by
23

qCL =
k

3 ( (� + �)� �3) (� � (�3 + �5))
: (33)

21As de�ned by Jun and Vives (2004), intertemporal strategic substitutability implies that the control of each
player responds negatively to the state of the other player.

22 In a static model of price and quality competition, Brekke et al. (2017) show that the strategic substitutability
of quality choices holds for more general demand functions, and also holds for the case of variable (output-
dependent) quality costs, as long as the e¤ect of higher quality on marginal production costs is not too strong.

23 It is worth noticing that we are restricting our attention to the case in which, at the steady state, quali-
ties are the same, and hence quality di¤erences (if any) disappear over time. However, as is usual in these kinds
of di¤erential games, we cannot exclude a priori that other, asymmetric, equilibria do exist (see, e.g. Dockner et
al., 2000; Jorgenssen and Zaccour, 2004).

20



In addition to �3 < 0, global asymptotic stability also requires �3 + �5 < 0 and �3 � �5 < 0,

which also ensures that quality is positive. Notice that, since �5 < 0, the condition �3 < 0

ensures that

�3 + �5 = s �
r
y

6
< 0: (34)

How does steady-state quality under feedback rules depend on the degree of competition

(inversely measured by �)? Since �3 +�5 does not depend on g, and therefore does not depend

on � , it is relatively straightforward to see that

@qCL

@�
=
@qCL

@�3
+

@�3
@g
+

@g

@�
�

< 0: (35)

Thus:

Proposition 2 When providers adopt feedback closed-loop decision rules, steady-state quality

is increasing in the degree of competition.

As previously explained, increased competition has two counteracting e¤ects on the providers�

incentives to invest in quality. For given prices, demand becomes more quality elastic, which

increases the pro�t-gain of quality investments. On the other hand, demand also becomes more

price elastic, leading to lower prices, which in turn dampens incentives for quality investments.

In contrast to the open-loop case, where these two e¤ects exactly cancel each other in steady

state, the �rst (direct) e¤ect dominates the second (indirect) e¤ect under dynamic competition

with feedback rules, yielding a positive relationship between competition intensity and quality

provision in steady state.

5.2 Comparison of closed loop and open loop

We have already seen that steady-state prices are equal under both solution concepts. However,

steady-state quality provisions di¤er between the two solution concepts. A comparison (proof

in Appendix A.2) yields the following result:

Proposition 3 Steady-state quality is lower in the closed-loop solution than in the open-loop
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solution.

This result is perhaps somewhat surprising. Although higher competition intensity leads to

higher steady-state quality levels in the closed-loop solution, as shown in Proposition 2, quality

provision is nevertheless always lower in the arguably more �competitive� strategic environment

� when the players use feedback closed-loop rules � than in the open-loop setting.

The intuition behind this result is related to how current quality investments a¤ect future

price competition. Suppose that, at time t, Provider i has a higher quality level than Provider

j (i.e., qi (t) > qj (t)). The optimal pricing rule, given by (26), then dictates that Provider j

should �compensate� for the lower quality stock by setting a lower price than Provider i. In other

words, higher quality investments by one provider today will trigger stronger price competition

from the other provider in the future, which � all else equal � dampens the incentives for quality

investments. Thus, when the providers use feedback decision rules and can, at each point in

time, adjust their investment and price decisions according to the evolution of states, each

provider has a strategic incentive to reduce its quality investments in order to dampen future

price competition from the rival provider.24 This is in contrast to the open-loop solution, where

there is no strategic interaction over time, and where the above-mentioned strategic e¤ect is

not present. This explains why steady-state quality is lower in the closed-loop solution than in

the open-loop solution. Finally, note that since pro�ts are decreasing in quality, the condition

required for pro�ts being positive under the open-loop solution (see footnote 17) implies that

pro�ts are also positive under the closed-loop solution.

The result in Proposition 3 and the intuition behind it has a striking analogy in the di¤erence

between simultaneous and sequential decisions in a one-shot version of the game. As shown by

Ma and Burgess (1993), equilibrium quality is lower when quality and price decisions are made

sequentially rather than simultaneously, and the reason is precisely the strategic incentive to

lower quality in order to dampen price competition when quality decisions are made before

24Colombo and Labrecciosa (2015) present a di¤erential game of oligopoly, in which a similar mechanism is at
work. They consider the case in which �rms have to use a renewable productive asset, and show that the decision
on current price taken by a player a¤ects the future incentive of opponents to move their own price: this dynamic
interdependence can lead Bertrand competition to be less e¢cient than Cournot competition.
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prices are set.25 This suggests that, in the case at hand, simultaneous-move and sequential-

move games in a static setting provide results which are reasonable parallels of the open-loop

and the closed-loop solutions, respectively, in a dynamic setting.

5.3 Multiplicity of equilibria

For completeness we discuss the possibility of multiplicity of equilibria, which we have ruled out

above by assuming that the marginal cost of quality or the transportation costs are su¢ciently

large relative to consumers� marginal valuation of quality. If 2g < y < 8g=3 (or, more explicitly,

k2

�
< 3

��
� + 1

2�
�2
 + �

�
< 4

3
k2

�
) another solution candidate might co-exist (solution S5 in

Appendix A.1) with the one described above (solution S3 in Appendix A.1) for a subset of

this parameter space. More precisely, the global stability condition requires �3 � �5 < 0,

which is satis�ed only if
�
3y � 4g � 6

p
3B
� p

E
4g > s, where B = 1

6

�
y
2 � g

�
y > 0; and E =

4
27

�
y � g + 2

p
3B
�
> 0. This global stability condition is always satis�ed under the unrealistic

assumption that the marginal cost of investments tends to zero (i.e.  ! 0). The condition is

highly non-linear in . We can show through numerical simulations that when the marginal cost

of investment  is su¢ciently high then multiplicity does not arise. If multiplicity does arise

over a small set of parameter values, the alternative solution suggests that i) quality decreases

with competition, rather than increases with competition as suggested by Proposition 2 (see

Appendix A.3 for proof); ii) quality can be higher under closed-loop solution than the open-

loop solution (while it is always lower under the closed-loop solution in Proposition 3; proof

omitted and obtained through a numerical example). Therefore, the results are reversed under

the alternative solution. To keep our analysis focused we impose the su¢cient condition that the

marginal cost of quality or the transportation costs are su¢ciently large relative to consumers�

marginal valuation of quality, which eliminates the possibility of multiple equilibria.

25Notice that the strategy of reducing quality in order to dampen price competition does not �succeed� in
equilibrium, in the sense that steady-state prices in the closed-loop solution are identical to the ones on the
open-loop solution. This is also true for the equivalent simultaneous-move and sequential-move versions of the
one-shot game. The reason is of course the symmetric nature of the game, where the e¤ects of unilateral quality
reductions on prices are cancelled out in equilibrium, since both �rms face exactly the same incentives.
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6 Welfare

We de�ne social welfare as the discounted present value of the sum of aggregate consumer

surplus and pro�ts accruing over the in�nite time horizon. Since total demand is �xed, this is

equivalent to aggregate gross consumer utility minus the total costs of production, transportation

and quality provision.26 We derive the �rst-best optimal solution by letting the social planner

choose the quality investment and market share for each provider, in order to maximise social

welfare. Formally, this problem is given by

Maximise
Ii(t); Ij(t); xDi (t)

W =

+1Z

0

2
66664

xDi (t)Z

0

(v � �x+ kqi(t)) dx+
1Z

xDi (t)

(v � � (1� x) + kqj(t)) dx

�c� 
2 Ii(t)

2 � �
2 qi(t)

2 � 
2 Ij(t)

2 � �
2 qj(t)

2

3
77775
e��tdt;

(36)

subject to
�
qi(t) = Ii(t)� �qi(t); (37)

�
qj(t) = Ij(t)� �qj(t); (38)

qi(0) = qi0 > 0; (39)

qj(0) = qj0 > 0: (40)

Let �i(t) and �j(t) be the current value co-state variables associated with the two state equations.

The current-value Hamiltonian is:

H = v�c� �
2
+kqix

D
i +kqj

�
1� xDi

�
� 
2

�
I2i + Ij

2
�
� �
2

�
qi
2 + qj

2
�
+�i (Ii � �qi)+�j (Ij � �qj) :

(41)

26Notice that social welfare does not depend directly on prices, which are here just instruments of surplus
distribution between �rms and consumers, with no e¢ciency losses involved.
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The solution is given by (a) @H=@Ii = 0 , (b) @H=@Ij = 0, (c) @H=@xDi = 0, (d)
�
�i =

��i � @H=@qi, (e)
�
�j = ��j � @H=@qj , (f)

�
qi = @Hi=@�i, (h)

�
qj = @H=@�j , or more extensively,

�i = Ii; �j = Ij ; (42)

0 = k (qi � qj) ; (43)

�
�i = (�+ �)�i + �qi � kxDi ; (44)

�
�j = (�+ �)�j + �qj � k(1� xDi ); (45)

�
qi = Ii � �qi;

�
qj = Ij � �qj : (46)

In the symmetric steady state we have: �� = I�, (�+ �)�� + �q� � k
2 = 0 and q

� = I�

�
, which

gives

q� =
k

2 (� (�+ �) + �)
= qOL: (47)

Therefore, steady-state quality under open-loop decision rules coincides with the �rst-best

steady-state quality level. Considering the result in Proposition 3, the following result follows

immediately:

Proposition 4 Compared with the �rst-best optimal level, quality is optimally provided in the

open-loop solution and is underprovided in the closed-loop solution.

The welfare-optimal quality provision in the open-loop solution is explained by a combination

of linear provider-level demand and �xed total demand, which implies that consumers� marginal

and average valuations of quality are identical. As demonstrated by Spence (1975) in a monopoly

setting, whether quality is over- or under-provided depends on the di¤erence between marginal

and average willingness-to-pay for quality. However, the result of Proposition 4 shows that

dynamic strategic interaction with feedback decision rules creates an ine¢ciency that leads to

underprovision of quality in the closed-loop solution.27

27The fact that time, and more speci�cally competition over time, can be a source of ine¢cient equilibria is
well known in di¤erent contexts; for instance, Cellini and Lambertini (1998) show that accumulation of capital
over time could be a source of ine¢cient market allocation in a di¤erential game framework. Furthermore, Araujo
and Guimaraes (2015) show that time can be a source of ine¢ciency in an oligopoly market with delay options.
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The welfare properties of the open-loop and closed-loop solutions mimic the welfare proper-

ties of the Hotelling model with price and quality competition in a one-shot game, where quality

is optimally provided with simultaneous decision making, whereas sequential quality and price

decisions imply an underprovision of quality in equilibrium (as shown by Ma and Burgess, 1993).

This should come as no great surprise, since we have already established the equivalence between

open-loop and closed-loop in a dynamic setting and, respectively, the simultaneous-move and

sequential-move versions of the one-shot game.28

7 Extensions

In this section we extend our main analysis along two di¤erent dimensions. First, we investigate

whether our main results are robust to an alternative measure of competition intensity based

on the degree of cross-shareholding. Second, we consider an alternative cost function where

production costs are convex and also depend on the quality level.

7.1 Cross-shareholding

Suppose that the instantaneous objective function of Provider i is given by �i (t) + ��j (t),

where � 2 (0; 1) measures the degree of cross-shareholding. A reduction of � captures, in a

continuous way, a transition from monopoly to duopoly and is therefore an alternative measure

of competition intensity, as used by, e.g., Symeonidis (2000) and Vives (2008).29

28However, as established by Proposition 2, a relevant di¤erence between the steady-state quality in the closed-
loop solution and the equilibrium quality in the sequential-move one-shot game is that the former depends on the
degree of product substitutability while the latter does not. Put di¤erently, the �neutrality� result obtained by
static games no longer holds if we consider dynamic competition.

29The Hotelling assumptions of full market coverage and non-binding reservation prices are not compatible
with monopoly, which would yield in�nitely high prices. A �nite upper bound on equilibrium prices therefore
requires a strictly positive value of �.
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7.1.1 Open-loop solution

The current-value Hamiltonian is now given by

Hi = (pi � c)
�
1

2
+
k (qi � qj)

2�
� pi � pj

2�

�

+� (pj � c)
�
1

2
+
k (qj � qi)

2�
� pj � pi

2�

�
(48)

�
2
I2i �

�

2
qi
2 + �i (Ii � �qi) + �j (Ij � �qj) :

By deriving optimality conditions equivalent to those given in Section 4, the steady state values

of price and quality are given by30

pOL = c+
�

1� � ; (49)

qOL =
k

2 (� + � (� + �))
: (50)

We see that an increase in competition (measured by a reduction of cross-shareholding) leads

to a lower price but has no e¤ect on steady-state quality provision, which is identical to the one

derived in Section 4. Thus:

Proposition 5 When providers use open-loop decision rules, steady-state quality does not de-

pend on the intensity of competition, regardless of whether this is measured by product substi-

tutability or by the degree of cross-shareholding between the providers.

7.1.2 Closed-loop solution

As in Section 5, if the parameters � and/or � are su¢ciently large relative to k, there is a

unique globally asymptotically stable closed-loop solution (see Appendix A.5 for details of the

derivation). The optimal pricing rule for Provider i in this solution is given by

pi (t) = c+
�

1� � +
k (qi (t)� qj (t))

3 + �
: (51)

30The second-order conditions, which also guarantee positive steady-state pro�ts, are identical to the ones of
the corresponding problem in Section 4.
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The optimal investment rule is still given by (28), but with the following two re-parameterisations:

(i) �1, as de�ned by (29), is replaced by

b�1 :=
�1
3 + �

; (52)

and (ii) the parameter g in (30) and (31) is replaced by

bg := 9 (1 + �)2

(3 + �)2
g: (53)

The steady-state value of quality is therefore still given by (33), but with the two above-

mentioned re-parameterisations. This solution has the following properties (see Appendix A.5

for a proof):

Proposition 6 When providers use closed-loop decision rules:

(i) A reduction in cross-shareholding between the providers has an a priori ambiguous e¤ect

on steady-state quality provision.

(ii) Steady-state quality provision is lower than in the open-loop solution for all degrees of

cross-shareholding.

Thus, whereas quality provision is still lower in the closed-loop than in the open-loop solution,

increased competition � measured by a reduction in cross-shareholding � now has an a priori

indeterminate e¤ect on steady-state quality provision in the closed-loop solution. This is caused

by the presence of two counteracting e¤ects: a lower value of � reduces �1 but increases �3,

leading to an ambiguous overall e¤ect.

7.2 Convex and quality-dependent production costs

Let us now investigate if and how our main results in Sections 3-5 depend on the assumed cost

structure. Suppose that the cost function of Provider i is given by

C
�
xDi ; Ii; qi

�
= c1qix

D
i +

1

2

�
c2
�
xDi
�2
+ I2i + �q

2
i

�
; (54)
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where c1; c2 > 0. This speci�cation implies that marginal production costs are increasing in

both output and quality.

7.2.1 Open-loop solution

The current-value Hamiltonian is now given by

Hi = (pi � c1qi)
�
1

2
+
k (qi � qj)

2�
� pi � pj

2�

�

�c2
2

�
1

2
+
k (qi � qj)

2�
� pi � pj

2�

�2
(55)

�
2
I2i �

�

2
qi
2 + �i (Ii � �qi) + �j (Ij � �qj) :

By deriving optimality conditions equivalent to those given in Section 4, the steady-state values

of price and quality are given by31

pOL = � +
c2
2
+ c1q

OL; (56)

qOL =
k � c1

2 (� + � (� + �))
: (57)

In contrast to the open-loop solution derived in Section 4, the steady-state price is now increasing

in the quality level. This is caused by the assumption of quality-dependent production costs

(c1 > 0). Higher quality increases marginal costs, which in turns leads to a price increase.

However, as in Section 4, steady-state quality does not depend on the intensity of competition,

as measured by the degree of product substitutability. Thus:

Proposition 7 Proposition 1 holds with both quality-dependent (c1 > 0) and convex (c2 > 0)

31The second-order conditions are satis�ed if � > (k � c1) = (4� + c2). The additional condition

� >

�
� + �2

�
(k � c1)

2
� �c2 (� + 2� (� + �)) + 

2�2c2 (� + �)
2

4� (� + 2� (� + �)) + 42�2 (� + �)2

ensure positive steady-state pro�ts, given by

�OL =
� (4� + c2) (� + 2� (� + �)) + 

2�2 (� + �)2 (4� + c2)� (k � c1)
2 �� + �2

�

8 (� + � (� + �))2
:
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production costs.

7.2.2 Closed-loop solution

It can be shown (see Appendix A.6) that the closed-loop solution is identical to the one presented

in Section 4, but with the following three re-parameterisations: (i) the parameter k is replaced

by ek := k � c1 in all expressions where it appears, (ii) �1, as de�ned by (29), is replaced by

e�1 :=
3 (4� + c2)

4 (3� + c2)
�1 (58)

and (ii) the parameter g in (30) and (31) is replaced by

eg := 9� (4� + c2)

4 (3� + c2)
2 g: (59)

This allows us to state the following results (see Appendix A.7 for a proof):

Proposition 8 (i) Proposition 2 holds with quality-dependent production costs (c1 > 0).

(ii) Proposition 2 holds with convex production costs if c2 is su¢ciently small. Otherwise,

the relationship between competition intensity and steady-state quality in the closed-loop solution

is ambiguous.

(iii) Proposition 3 and 4 hold with both quality-dependent (c1 > 0) and convex (c2 > 0)

production costs.

These results con�rm that, overall, the results derived from our base model do not depend

crucially on the assumed cost structure of the providers. The only exception is the relationship

between competition intensity and quality provision in the closed-loop solution, where the sign of

this relationship depends on the degree of production cost convexity. When seen in conjunction,

the results in this section suggest that our most robust result is the underprovision of quality in

the closed-loop solution.
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8 Discussion on empirical evidence

In this section we relate our results to the empirical evidence and to possible empirical strategies

which could be used in future studies to test the predictions of our model. Our analysis provides

the clear-cut prediction that competition increases quality under the closed-loop solution, but

not under the open-loop solution. Therefore, empirical evidence which �nds that more compe-

tition (e.g., public reporting) increases quality gives support to the hypothesis that providers

compete under the closed-loop rule. Instead, a non-signi�cant e¤ect supports the hypothesis

that providers compete under the open-loop rule.

In the introduction, we have also argued that certi�cate of needs (CON) regulation in the

US or similar regulatory requirements in Europe imply that providers might have to commit to

investment plans, an environment which is reminiscent of the open-loop solution. Therefore, the

implication for empirical work is that the e¤ect of competition on quality should be weaker in

the presence of such regulations or for industries which are more heavily regulated. However,

our model also predicts that quality is higher under the open loop solution: empirically, under

this interpretation, this would be consistent with studies that test whether the introduction of

CON regulation increased quality. Finally, our model implies that policies which introduce or

encourage partnerships and collaborations across providers, a measure of the degree of cross-

shareholding, might increase or reduce quality.

Our model therefore provides a theoretical framework for testing the e¤ect of competition

on quality in industries such as long-term care, health care, child care and education. There is

a proliferation of quality data in these sectors which are increasingly used for empirical work.

For nursing homes, common quality measures include number of residents with pressure sores,

decubitis ulcers, dehydration and urinary tract infection (outcome measures), catheters, feeding

tubes and physical restraints (process measures); and total number of nurses, proportion of reg-

istered nurses on total nursing sta¤ (structural measures) (see, e.g., Grabowski and Hirth, 2003;

Grabowski and Angelelli, 2004). For hospitals, common quality measures include risk-adjusted

mortality rates, either overall or for speci�c conditions (heart attack, stroke, hip fracture), and

30-day re-admission rates, either overall or for speci�c treatments (e.g., hip and knee replace-
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ment, coronary bypass) (Gaynor and Town, 2011). For schools and university, quality can be

measured with test scores (Hoxby, 2000; Gibbons, Silva and Machin, 2008; OECD, 2014), stu-

dent satisfaction, and employment outcomes (e.g., salaries or graduate employment rates for a

given subject).

Though limited, the body of empirical evidence on nursing homes seems consistent with

our �ndings. Zhao (2016) evaluates the e¤ect of public reporting which improved access to

information of nursing homes along key dimensions. The study �nds that while the e¤ect of

competition on nursing home quality is positive and small, this e¤ect becomes signi�cantly

stronger with public reporting. These results are in line with the older study by Grabowski and

Town (2011), which introduced quality measures on the Nursing Home Compare website, during

1999-2005. They �nd that nursing homes facing greater competition improved their quality more

compared to facilities in less competitive markets once public reporting was introduced, though

public reporting itself had a small e¤ect on quality.

The literature from the US on hospital competition outside of Medicare and Medicaid where

prices are not �xed, also tends to �nd that competition increases quality, but not always.

Gowrisankaran and Town (2003) �nd that risk-adjusted mortality is higher in more compet-

itive areas in Los Angeles county. Sohn and Rathouz (2003) also �nd that mortality for patients

receiving coronary angioplasty (PTCA) are lower for hospitals facing more competition. Escarce

et al. (2006) �nd that hospitals in more competitive areas had lower AMI, hip fracture and stroke

mortality in California, New York, but not in Wisconsin, suggesting heterogeneity across states.

However, Mukamel et al. (2002) �nd that competition, as measured by the introduction of

selective contracting, increased risk-adjusted mortality. Two studies from England, also suggest

that competition reduces quality when prices were not �xed in the early nineties (Propper et al.,

2004; Burgess et al., 2008), though the hospital sector remained heavily regulated and quality

indicators were absent making it di¢cult for hospitals to compete on quality (see Gaynor and

Town, 2011, for a fuller review of the literature).

Within the education sector in the US, the extensive review by Bel�eld and Levin (2003)

suggests that school competition is generally associated with an increase in educational outcomes,
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e.g., test scores, across a range of institutional settings but the e¤ect is quantitatively modest.

9 Policy implications and concluding remarks

Our analysis has several policy implications for industries such as long term care, health care,

child care and education. Our key �nding suggests that competition policies in these industries,

such as those that facilitate public reporting and comparison across providers, can be useful in

increasing quality, and this seems consistent with empirical evidence reviewed in the previous

section. The result is new and in contrast with previous static models which show that within a

spatial framework, a key feature of the industries at stake, competition does not a¤ect quality and

this is due to competition also reducing price and therefore weakening the incentives to compete

on quality (e.g., Ma and Burgess, 1993). It is the dynamic strategic interaction which makes

the direct e¤ect to compete on quality stronger than the indirect e¤ect through a reduction in

price, so that competition ultimately increases quality. The static models would instead predict

that public reporting would be an ine¤ective policy to raise quality.

This positive �nding comes however with a disappointing result. We show that quality is

always under-provided under the more realistic closed-loop solution. Although public reporting

makes the gap between �rst-best and actual quality smaller, quality is never as high as the

one desired by the regulator (or social planner). One possibility would be for the regulator to

induce the providers to mimic the open-loop solution, where quality is instead provided at the

socially optimal level. This could be achieved by regulation which induces providers to make

and commit to long-term investment plans which cannot be frequently revised. Such regulation

raises however the issue of enforcement of such plans which could probably be achieved by a

strong regulator with credible monitoring tools.

A more extreme form of regulation would be to introduce �xed prices since in this case, more

competition always increases quality (Brekke et al., 2010). Moreover, the regulator can always

set the price at a level which is high enough to induce the optimal quality provision and combine

it with a lump-sum transfer to ensure providers do not make pro�ts. In practice, however, �xed

price regulation often follows automated rules which set prices equal to average costs (as for
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hospitals within Medicare and Medicaid, and other European countries) and these are unlikely

to lead to optimal quality provision (Kristensen et al., 2016). In addition, �xed price regulation

has also other known limitations, e.g., in relation to the ability to accommodate for heterogeneity

in costs and other parameters (La¤ont and Tirole, 1993), and the risk of regulatory and political

capture.

Our model has been tailor-made to �t a particular set of industries, in which quality is a key

concern and policies to stimulate competition are widespread. However, given that competition

on both price and quality is prevalent in a wide range of industries, a natural question to ask is

whether the main results from our analysis also apply under alternative analytical frameworks

that are not based on spatial competition with unit demand. The answer is yes, to some extent,

but only under particular conditions. For example, using a Shubik-Levitan demand system

(Shubik and Levitan, 1980), which is based on a representative consumer approach, steady-

state quality provision tend to be lower in the closed-loop than in the open-loop, as we �nd in

the present analysis, if the degree of product substitutability is su¢ciently high.32 However,

we should stress that the relatively clear-cut results derived from our analysis rely to some

extent on the particular assumptions of the modelling framework. This means that, whereas

our results are arguably highly relevant for the particular industries that we highlight, they do

not necessarily apply to all other industries more generally.
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(Online) Appendix

A.1. Derivation of the closed-loop solution in Section 4

The provider�s instantaneous objective function is

(pi � c)
�
1

2
+
k (qi � qj)

2�
� pi � pj

2�

�
� 
2
I2i �

�

2
qi
2 (A1)

which � faced with the linear dynamic constraint � gives rise to a linear-quadratic problem.

Hence, we de�ne the value function as

V i(qi; qj) = �0 + �1qi + �2qj + (�3=2)q
2
i + (�4=2)q

2
j + �5qiqj : (A2)

De�ne Ii = �i(qi; qj) and Ij = �j(qi; qj). The value function has to satisfy the Hamilton-Jacobi-

Bellman (HJB) equation:

�V i(qi; qj) = max
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2

+V iqi(qi; qj) (Ii � �qi) + V iqj (qi; qj) (Ij � �qj)

9
>=
>;
: (A3)

Maximisation of the right-hand-side with respect to Ii yields V
i
qi
= Ii, which after substitution

gives

Ii = �i(qi; qj) =
�1 + �3qi + �5qj


: (A4)

Similarly, we obtain

Ij = �j(qi; qj) =
�1 + �3qj + �5qi


: (A5)

Maximisation of the right-hand-side with respect to pi and pj yields

1

2
+
k (qi � qj)

2�
� pi � pj

2�
� (pi � c)

1

2�
= 0; (A6)

1

2
+
k (qj � qi)

2�
� pj � pi

2�
� (pj � c)

1

2�
= 0; (A7)
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from which we obtain the simple expression:

pi = �i(qi; qj) = c+ � +
k (qi � qj)

3
; (A8)

pj = �j(qi; qj) = c+ � �
k (qi � qj)

3
: (A9)

By substituting Ii = �i(qi; qj), Ij = �j(qi; qj), V
i
qi
(qi; qj) = �1 + �3qi + �5qj and V

i
qj
= �2 +

�4qj + �5qi into the HJB equation, we obtain

�V i(qi; qj) =

8
>>>>>>><
>>>>>>>:

�
� +

k(qi�qj)
3

��
1
2 +

k(qi�qj)
6�

�

� 1
2 (�1 + �3qi + �5qj)

2 � �
2 qi

2

+(�1 + �3qi + �5qj)
�
�1+�3qi+�5qj


� �qi

�

+(�2 + �4qj + �5qi)
�
�1+�3qj+�5qi


� �qj

�

9
>>>>>>>=
>>>>>>>;

; (A10)

and, after substitution of V i, we obtain

�
��0 �

1

2
� � 1

2
�21 �

1


�1�2

�

+qi

�
�1 (� + �)�

1

3
k � 1


�1�3 �

1


�2�5 �

1


�1�5

�

+qj

�
�2 (� + �) +

1

3
k � 1


�2�3 �

1


�1�4 �

1


�1�5

�
(A11)

+q2i

�
�3

�
� +

1

2
�

�
� 1

2
�23 �

1


�25 +

1

2
� � 1

18

k2

�

�

+q2j

�
�4

�
� +

1

2
�

�
� 1


�3�4 �

1

2
�25 �

1

18

k2

�

�

+qiqj

�
(2� + �)�5 +

1

9

k2

�
� 2


�3�5 �

1


�4�5

�

= 0

For the equality to hold, the terms in brackets in the above equation have to be equal to zero.

Notice that the last three terms do not depend on �0, �1 and �2, but only on �3, �4 and �5.

We therefore focus on the following system of three equations in three unknowns (�3, �4 and
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�5):

�3

�
� +

1

2
�

�
� 1

2
�23 �

1


�25 +

1

2
� � 1

18

k2

�
= 0; (A12)

�4

�
� +

1

2
�

�
� 1


�3�4 �

1

2
�25 �

1

18

k2

�
= 0; (A13)

�5 (2� + �) +
1

9

k2

�
� 2


�3�5 �

1


�4�5 = 0: (A14)

De�ne g := k2

�
and s :=

�
� + 1

2�
�
. We can re-write the system more succinctly as

s�3 �
1

2
�23 �

1


�25 +

1

2
� � 1

18
g = 0; (A15)

s�4 �
1


�3�4 �

1

2
�25 �

1

18
g = 0; (A16)

2s�5 +
1

9
g � 2


�3�5 �

1


�4�5 = 0: (A17)

De�ne

A : =

s


�
3

2
y � g

�
> 0; (A18)

B : =
1

6

�y
2
� g
�
y > 0; (A19)

C : =
4

27

�
y � g � 2

p
3B
�
> 0; (A20)

E : =
4

27

�
y � g + 2

p
3B
�
> 0; (A21)

where y := 6
�
s2 + �

�
, and where the condition y > 2g ensures that these parameters (and

therefore the possible solutions) are real. The positive sign of C is con�rmed by noticing that

y � g > 2
p
3B , (y � g)2 >

 
2

s
3

�
1

6

�y
2
� g
�
y

�!2
; (A22)

which always holds since

(y � g)2 �
 
2

s
3

�
1

6

�y
2
� g
�
y

�!2
= g2 > 0: (A23)
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There are six possible solutions to (A15)-(A17), given by:

�3 = s � 1
9
A; �4 =

2 (6y + 5g)

9 (6y � 4g)A; �5 =
2

9
A (S1)

�3 = s +
1

9
A; �4 = �

2 (6y + 5g)

9 (6y � 4g)A; �5 = �
2

9
A (S2)

�3 = s �
�
6y � 5g
4g

� 81

16g
C

�p
C;�4 =

1

2

p
C;�5 = �

1

2

p
C (S3)

�3 = s +

�
6y � 5g
4g

� 81

16g
C

�p
C;�4 = �

1

2

p
C;�5 =

1

2

p
C (S4)

�3 = s �
�
6y � 5g
4g

� 81

16g
E

�p
E;�4 =

1

2

p
E;�5 = �

1

2

p
E (S5)

�3 = s +

�
6y � 5g
4g

� 81

16g
E

�p
E;�4 = �

1

2

p
E;�5 =

1

2

p
E (S6)

Global asymptotic stability requires �3 < 0, �3+�5 < 0 and �3��5 < 0. We can immediately

eliminate (S2) because �3 > 0. The same is true for (S1), since �3+�5 = s+
1
9A > 0. Regarding

(S4), notice that a su¢cient condition for �3 > 0 is

6y � 5g
4g

� 81

16g
C =

1

4g

�
3y � 2g + 6

p
3B
�
> 0; (A24)

which always holds for y > 2g. Similarly, regarding (S6), a su¢cient condition for �3 > 0 is

6y � 5g
4g

� 81

16g
E =

1

4g

�
3y � 2g � 6

p
3B
�
> 0; (A25)

which always holds since

(3y � 2g)2 �
�
6
p
3B
�2
= 2g (2g + 3y) > 0: (A26)

Thus, (S4) and (S6) can also be ruled out because �3 > 0. In the two remaining solutions � (S3)

and (S5) � we have �5 < 0, implying that �3 + �5 < �3 < �3 � �5. For these two solutions, the

conditions for global asymptotic stability therefore reduce to �3 � �5 < 0. For (S5) we have

�3 � �5 = s �
�
6y � 7g � 81

4
E

� p
E

4g
; (A27)
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where

6y � 7g � 81

4
E = 3y � 4g � 6

p
3B: (A28)

A necessary (but not su¢cient) condition for �3 � �5 < 0 is

(3y � 4g)2 �
�
6
p
3B
�2
= �2g (3y � 8g) > 0; (A29)

which is violated for y > 8
3g. Thus, the condition y >

8
3g is su¢cient (but not necessary) to rule

out (S5).

Finally, for the only solution left, (S3), we have

�3 � �5 = s �
�
6y � 7g � 81

4
C

� p
C

4g
: (A30)

Global stability requires that the expression in (A30) is negative. Since

@ (�3 � �5)
@y

= �

�
3g + 27

4C
�p

3

36
p
12B

q
27
4 C

< 0 (A31)

and

@ (�3 � �5)
@g

=

�
27
4C + g

�p
3

9
p
12B

q
27
4 C

> 0; (A32)

it follows that (A30) is negative if y is su¢ciently large relative to g. Given the de�nitions of

y and g, this condition requires that � and/or � must be su¢ciently large relative to k. This

condition is similar to the su¢cient condition required to have the saddle dynamics in the open-

loop solution. It also ensures y > 8
3g, which is a su¢cient condition for (S3) to be the unique

globally asymptotically stable closed-loop solution.
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In the steady state closed-loop solution we have

Ii =
�1 + �3qi + �5qj


; (A33)

Ii = �qi; (A34)

qCL =
�1

� � �3 � �5
; (A35)

where �3 and �5 are given by (S3). From the second and third line in (A11) we can de�ne the

following system of two equations in �1 and �2:

�1 (� + �)�
k

3
� �1�3


� �2�5


� �1�5


= 0; (A36)

�2 (� + �) +
k

3
� �2�3


� �1�4


� �1�5


= 0: (A37)

Solving this system yields the following solution for �1:

�1 =
k (�3 + �5 � (� + �) )

3
�
(� + �) (2�3 + �5 � (� + �) 2)� �23 + �25 � �3�5 + �4�5

� : (A38)

From (S3), note that �4 = ��5. We can therefore re-write �1 as

�1 =
k (�3 + �5 � (� + �) )

3 (( (� + �) ((2�3 + �5)� (� + �) ))� �3 (�5 + �3))
=

k

3 ( (� + �)� �3)
; (A39)

so that

qCL =
�1

� � �3 � �5
=

k

3 ( (� + �)� �3) (� � �3 � �5)
: (A40)

A.2. Proof of Proposition 2

The closed-loop solution requires g � y
2 . Since g is monotonically decreasing in � while y does

not depend on � , this implies that the closed-loop solution exists for su¢ciently high values of

� . At the lower limit of � , implicitly given by y = 2g, steady-state quality in the closed-loop
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solution is

qCL
��
y=2g

=
k

�
2k2

3� �
�2

2

�
+ �

4

�r
2
�
2k2

3� �
�2

2

�
+ (�)2 � �

� ; (A41)

whereas steady-state quality in the open-loop solution is

qOL
��
y=2g

=
k

2k2

3� �
�2

2

: (A42)

A straightforward comparison of (A41) and (A42) shows that

qOL
��
y=2g

> qCL
��
y=2g

if

s
2

�
2k2

3�
� �

2

2

�
+ (�)2 � � > 0; (A43)

or, equivalently,

qOL
��
y=2g

> qCL
��
y=2g

if

s
2k

qOLjy=2g
+ (�)2 � � > 0; (A44)

which always holds. Since qOL is independent of � while qCL is monotonically decreasing in � ,

it follows that qOL > qCL for all g � y
2 . Q.E.D.

A.3. Multiplicity of equilibria

If 2g < y < 8g=3 then solution S5 (in Appendix A.1) co-exists with S3 for a subset of this

parameter space. The global stability condition requires �3 � �5 < 0, which is satis�ed if
�
3y � 4g � 6

p
3B
� p

E
4g > s. This is always the case for  ! 0. Through numerical simulations

we can show this is not the case for  su¢ciently high (omitted).

Solution S5 is given by

�3 = s �
�
6y � 5g
4g

� 81

16g
E

�p
E;�4 =

1

2

p
E;�5 = �

1

2

p
E: (A45)

Steady-state quality in this equilibrium is then given by qCL = k
3((�+�)��3)(���3��5) ; which is

structurally identical to S3. Notice also that �3 + �5 = s �
q

y
6 in both S3 and S5. Thus,

�3 + �5 is independent of g (and therefore independent of �) also in S5. We can then easily
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characterise the relationship between qCL and � in S5, which is given by

@qCL

@�
=
@qCL

@�3
+

@�3
@g
�

@g

@�
�

> 0: (A46)

This relationship is reversed compared to S3, since, in S5,

@�3
@g

= �
p
6

18

2
p
y (y � 2g)� (y � 2g)

(y � 2g)
r

�
5y � 2g � 4

p
y (y � 2g)

� < 0: (A47)

Therefore, competition (lower transportation costs) reduce quality under S5.

A.4. The closed-loop solution with cross-shareholding

The problem is still linear-quadratic with a value function as in (A2). The derivation follows

the logic of Section A.1 and some steps are therefore skipped. The HJB equation is now

�V i(qi; qj) = max

8
>>>><
>>>>:

(pi � c)
�
1
2 +

k(qi�qj)
2� � pi�pj

2�

�

+� (pj � c)
�
1
2 +

k(qj�qi)
2� � pj�pi

2�

�
� 

2 I
2
i � �

2 qi
2

+V iqi(qi; qj) (Ii � �qi) + V iqj (qi; qj) (Ij � �qj)

9
>>>>=
>>>>;
: (A48)

Maximisation with respect to prices yields

pi = c+
�

1� � +
k (qi � qj)
3 + �

: (A49)

The HJB equation can therefore be written as

�V i(qi; qj) =

8
>>>>>>>>>>><
>>>>>>>>>>>:

�
�
1�� +

k(qi�qj)
3+�

��
1
2 +

k(1+�)(qi�qj)
2�(3+�)

�

+�
�

�
1�� �

k(qi�qj)
3+�

��
1
2 �

k(1+�)(qi�qj)
2�(3+�)

�

� 1
2 (�1 + �3qi + �5qj)

2 � �
2 qi

2

+(�1 + �3qi + �5qj)
�
�1+�3qi+�5qj


� �qi

�

+(�2 + �4qj + �5qi)
�
�1+�3qj+�5qi


� �qj

�

9
>>>>>>>>>>>=
>>>>>>>>>>>;

; (A50)
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which, after substitution of V i, yields

� (� + 3)2
�
(1� �)

�
2��0 � �21 � 2�1�2

�
� � (1 + �)

�

+2� (3 + �) (1� �) qi [ (� + �) (3 + �)�1 � (3 + �) (�1�3 + �1�5 + �2�5)� k]

+2� (3 + �) (1� �) qj [ (� + �) (3 + �)�2 + k � (3 + �) (�1�4 + �2�3 + �1�5)]

+ (1� �) q2i

2
64


�
� (3 + �)2 � � (1 + �)2 k2

�

+� (3 + �)2 (2� + �)�3 � � (3 + �)2
�
�23 + 2�

2
5

�

3
75 (A51)

+(1� �) q2j
h
� (3 + �)2 (2� + �)�4 �  (� + 1)2 k2 � � (3 + �)2

�
2�3�4 + �

2
5

�i

+2 (1� �) qiqj
h
 (1 + �)2 k2 + � (3 + �)2 (2� + �)�5 � � (3 + �)2 (2�3 + �4)�5

i

= 0:

The parameters �3, �4 and �5 are found by solving the system of equations de�ned by the

last three terms in (A51) being simultaneously equal to zero. This system can be written as

�

2
� (1 + �)2

2 (3 + �)2
k2

�
+
�
� +

�

2

�
�3 �

1

2
�23 �

1


�25 = 0; (A52)

�
� +

�

2

�
�4 �

(1 + �)2

2 (3 + �)2
k2

�
� 1


�3�4 �

1

2
�25 = 0; (A53)

(1 + �)2

(3 + �)2
k2

�
+ (2� + �)�5 �

2


�3�5 �

1


�4�5 = 0: (A54)

This system is identical to (A15)-(A17) if we rede�ne g as bg := 9(1+�)2

(3+�)2
k2

�
, which implies that

the unique solution to the system is given by (S3) with g = bg. Thus, steady-state quality in

the closed-loop solution is given by (A35), where �3 and �5 are given by (S3) with g = bg. The

parameter �1 is found by solving

(3 + �)

3
(� + �)�1 �

k

3
� (3 + �)

3
(�1�3 + �1�5 + �2�5) = 0; (A55)

(3 + �)

3
(� + �)�2 +

k

3
� (3 + �)

3
(�1�4 + �2�3 + �1�5) = 0; (A56)

50



which, when using the fact that �4 = ��5, yields

�1 =
k

(3 + �) ( (� + �)� �3)
; (A57)

which is equal to the equilibrium value of �1 in (A39) multiplied by 1= (3 + �).

A.5. Proof of Proposition 6

(i): Note �rst that �3 + �5 does not depend on bg, and therefore does not depend on �. On the

other hand, � a¤ects both �1 (directly) and �3 (through the e¤ect on bg). The overall e¤ect is

therefore given by

@qCL

@�
=
@qCL

@�1

@�1
@�

+
@qCL

@�3

@�3
@bg

@bg
@�
: (A58)

It is easy to verify that @qCL=@�1 > 0, @q
CL=@�3 > 0, @�1=@� < 0, @�3=@bg > 0 and @bg=@� > 0.

Thus, the �rst term in (A58) is negative whereas the second term is positive, making the sign

of @qCL=@� a priori indeterminate.

(ii): The closed-loop solution requires bg � y
2 . Since bg is monotonically decreasing in � while

y does not depend on � , this implies that the closed-loop solution exists for su¢ciently high

values of � . At the lower limit of � , implicitly given by y = 2bg, steady-state quality in the

closed-loop solution is

qCL
��
y=2bg

=
4k

(� + 3)

�
3(�+1)
(�+3)

q
4k2
3� � �

��
2(�+1)
(�+3)

q
4k2
3� + �

� ; (A59)

whereas steady-state quality in the open-loop solution is

qOL
��
y=2bg

=
k

6k2

�
(�+1)2

(�+3)2
� �2

: (A60)

After some manipulations, (A59) can be expressed as

qCL
��
y=2bg

=
k

�+3
3

�
6k2

�
(�+1)2

(�+3)2
� �2 + �

�
�
4 +

3(�+1)
4(�+3)

q
4k2
3�

�� : (A61)
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It is immediately evident that the denominator in (A61) is larger than the denominator in (A60),

implying that qCL
��
y=2bg

< qOL
��
y=2bg

. Since qOL is independent of � while qCL is monotonically

decreasing in � , it follows that qOL > qCL for all bg � y
2 . Q.E.D.

A.6. The closed-loop solution with convex and quality-dependent production

costs

The problem is still linear-quadratic with a value function as in (A2). The derivation follows

the logic of Section A.1 and some steps are therefore skipped. The HJB equation is now

�V i(qi; qj) = max

8
>>>><
>>>>:

(pi � c1qi)
�
1
2 +

k(qi�qj)
2� � pi�pj

2�

�

� c2
2

�
1
2 +

k(qi�qj)
2� � pi�pj

2�

�2
� 

2 I
2
i � �

2 qi
2

+V iqi(qi; qj) (Ii � �qi) + V iqj (qi; qj) (Ij � �qj)

9
>>>>=
>>>>;
: (A62)

Maximisation with respect to prices yields

pi =
(3� + c2) (2� + c2) + k (2� + c2) (qi � qj) + c1 (2� (2qi + qj) + c2 (qi + qj))

6� + 2c2
: (A63)

The HJB equation can therefore be written as

�V i(qi; qj) =

8
>>>>>>>><
>>>>>>>>:

(4�+c2)(3�+c2+ek(qi�qj))
2

8(3�+c2)
2

� 1
2 (�1 + �3qi + �5qj)

2 � �
2 qi

2

+(�1 + �3qi + �5qj)
�
�1+�3qi+�5qj


� �qi

�

+(�2 + �4qj + �5qi)
�
�1+�3qj+�5qi


� �qj

�

9
>>>>>>>>=
>>>>>>>>;

; (A64)
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where ek := k � c1, and which, after substitution of V i, yields

(3� + c2)
2 �4�21 + 4� + 8�1�2 + c2 � 8��0

�

+2qi (3� + c2)

2
64
 (4� + c2)ek � 4 (� + �) (3� + c2)�1
+4 (3� + c2) (�1�3 + �1�5 + �2�5)

3
75

+2qj (3� + c2)

2
64

4 (3� + c2) (�1�4 + �1�5 + �2�3)

�4 (� + �) (3� + c2)�2 �  (4� + c2)ek

3
75

+q2i

2
64


�
ek2 (4� + c2)� 4� (3� + c2)2

�

�4 (3� + c2)2 (2� + �)�3 + 4 (3� + c2)2
�
�23 + 2�

2
5

�

3
75 (A65)

+q2j

2
64
ek2 (4� + c2)� 4 (3� + c2)2 (2� + �)�4

+4 (3� + c2)
2 ��25 + 2�3�4

�

3
75

+2qiqj

2
64
4 (3� + c2)

2 (�4�5 + 2�3�5)� ek2 (4� + c2)

�4 (3� + c2)2 (2� + �)�5

3
75

= 0

The parameters �3, �4 and �5 are found by solving the system of equations de�ned by the

last three terms in (A65) being simultaneously equal to zero. This system can be written as

�3

�
� +

1

2
�

�
� 1

2

�
�23 + 2�

2
5

�
+
1

2
� �

ek2
18�

9� (4� + c2)

4 (3� + c2)
2 = 0; (A66)

�4

�
� +

1

2
�

�
� 1



�
�3�4 +

1

2
�25

�
�
ek2
18�

9� (4� + c2)

4 (3� + c2)
2 = 0; (A67)

�5 (2� + �)�
1


(�4�5 + 2�3�5) +

ek2
9�

9� (4� + c2)

4 (3� + c2)
2 = 0; (A68)

which is identical to (A15)-(A17) if, in (A15)-(A17), k is replaced by ek and g is replaced by

eg := 9�(4�+c2)

4(3�+c2)
2 . Thus, with these re-parameterisations, for y >

8
3eg the unique solution to (A66)-
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(A68) is given by (S3) in Section A.1. Finally, the parameter �1 is derived from the system

 (4� + c2)ek � 4 (� + �) (3� + c2)�1 + 4 (3� + c2) (�1�3 + �1�5 + �2�5) = 0; (A69)

4 (3� + c2) (�1�4 + �1�5 + �2�3)� 4 (� + �) (3� + c2)�2 �  (4� + c2)ek = 0; (A70)

which, using the fact that �4 = ��5, yields

�1 =
ek (4� + c2)

4 (3� + c2) ( (� + �)� �3)
; (A71)

which, with the re-parameterisation k = ek, is equal to the equilibrium value of �1 in (A39)

multiplied by 3(4�+c2)
4(3�+c2)

.

A.7. Proof of Proposition 8

(i) If c2 = 0, the only di¤erence between the closed-loop solutions for c1 = 0 and c1 > 0 is the

re-parameterisation ek := k � c1, which does not a¤ect the result in Proposition 2.

(ii) If c2 > 0, steady-state quality is given by

qCL =
�1

� � �3 � �5
; (A72)

where �1 is given by (A71) and where �3 and �5 are given by (S3), with g replaced by eg :=
9�(4�+c2)

4(3�+c2)
2 g and k replaced by ek := k � c1. Since �3 + �5 does not depend on eg, the e¤ect of

product substitutability on steady-state quality is given by

@qCL

@�
=
@qCL

@�1

@�1
@�

+
@qCL

@�3

@�3
@eg

@eg
@�
; (A73)

where

@�1
@�

=
c2ek

4 (3� + c2)
2 ( (� + �)� �3)

> 0 (A74)

and

@eg
@�

= �9 (6� + c2)
ek2

2 (3� + c2)
3 < 0: (A75)
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Since @qCL

@�1
> 0, @q

CL

@�3
> 0 and @�3

@eg
> 0, the �rst term in (A73) is positive, whereas the second

term is negative. The �rst term vanishes if c2 approaches zero. Thus, by continuity, Proposition

2 still holds if c2 is su¢ciently small. For su¢ciently high values of c2, it is easily con�rmed, by

numerical examples, that @qCL=@� can take positive values.

(iii) Proposition 3 is con�rmed by noting, from (57), that qOL does not depend on c2. We

already know that qCL < qOL for c2 = 0, which implies constant marginal production costs.

Thus, qCL < qOL also for c2 > 0 if @q
CL=@c2 < 0. This is true, since

@�1
@c2

= �

3k
p
Y1

0
B@
10� (3� + c2)

�
4� +  (2� + �)2

�

+3k2 (4� + c2) + 6��
p
Y1

1
CA

4Y1
�p
Y1 + 3� (3� + c2)

�2 < 0 (A76)

and

@ (�3 + �5)

@c2
= �k

2
�p
Y2 +

p
Y1
�
(5� + c2)

p
Y2
p
Y1

4 (3� + c2)
2 Y2Y1

< 0; (A77)

where

Y1 :=
2

3
(5y � 2eg)  (3� + c2)2 > 0 (A78)

and

Y2 :=
4

3
(y � eg)  (3� + c2)2 > 0: (A79)

Finally, given that qCL < qOL, Proposition 4 is con�rmed by showing that qOL still coincides

with the steady-state level associated with the welfare maximisation problem given by (36). The

current-value Hamiltonian for this problem is

H = v � �
2
+ kqix

D
i + kqj

�
1� xDi

�

�c1
�
qix

D
i + qj

�
1� xDi

��
� c2
2

��
xDi
�2
+
�
1� xDi

�2�
(A80)

�
2

�
I2i + Ij

2
�
� �
2

�
qi
2 + qj

2
�
+ �i (Ii � �qi) + �j (Ij � �qj) :

The optimality conditions are equal to (42)-(46) in Section 6 if we everywhere replace k by k�c1
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and also replace (43) by

0 = (k � c1) (qi � qj)� c2
�
2xDi � 1

�
: (A81)

In the symmetric steady state we have: �� = I�, (�+ �)�� + �q� � (k�c1)
2 = 0 and q� = I�

�
,

which gives

q� =
k � c1

2 (� (�+ �) + �)
= qOL: (A82)

Therefore, steady-state quality under open-loop decision rules coincides with the �rst-best

steady-state quality level also under the assumptions of convex and quality-dependent pro-

duction costs. Q.E.D.
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