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Abstract Recent observations have shown that bulk flow motions in structured solar plas-

mas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin–

Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both

how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the

critical flow speed is for the formation of the KHI. We investigate both these aspects in a

novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior

of the slab is defined as having different equilibrium values of the background density, pres-

sure, and temperature on either side. A steady flow and constant magnetic field are present in

the slab interior. Approximate solutions to the dispersion relation are obtained analytically

and classified with respect to mode and speed. General solutions and the KHI thresholds are

obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off

speeds for magnetoacoustic waves are lowered by the external asymmetry.

Keywords MHD waves · Kelvin–Helmholtz instability

1. Introduction

The propagation of linear magnetohydrodynamic (MHD) waves along magnetic slabs has

long been a topic of study in the context of solar physics (see, e.g. Roberts, 1981). The

presence of a steady flow in the equilibrium state of the system affects the propagation in

at least two important ways. First, perturbations may cause shearing motions in the flow,

which then could lead to the Kelvin–Helmholtz instability (KHI) (see Figure 1). Second, the
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Figure 1 Stages of a Kelvin–Helmholtz instability (KHI). We assume that a magnetic interface (a) separating

two regions with background flows in opposite directions is subject to a perturbation (b). As the system

evolves in time, sufficiently strong flows will amplify the perturbation, causing nonlinear wave steepening

(c), until vortex formation occurs (d). Further evolution typically renders the system turbulent.

phase speeds and the cut-off speeds of each mode of propagation are shifted proportional

to the speed of the flow (see, e.g. Nakariakov and Roberts, 1995). Interactions between

propagating waves and flows are not limited to these two instances, however. Other areas of

study include negative-energy wave instabilities, if dissipative effects are taken into account

(Cairns, 1979; Joarder, Nakariakov, and Roberts, 1997), or resonant flow instabilities, if

resonant wave excitation is considered (see Tirry et al., 1998; Taroyan and Erdélyi, 2002).

More information on the above topics may be found in Taroyan and Ruderman (2011) and

Ryutova (2015).

The effects of steady flows have been investigated in a number of different waveguide

geometries and magnetic topologies. Nakariakov and Roberts (1995) studied the effect of

a steady flow in an infinite slab of magnetised plasma in a magnetic environment. Terra-

Homem, Erdélyi, and Ballai (2003) then explored the effects that a steady flow has on the

propagation of both linear and nonlinear waves in a straight infinite cylindrical flux tube.

This latter work expanded on the analysis of Somasundaram, Venkatraman, and Sengottuvel

(1999). For a more general approach to analysing the stability of steady MHD flows, see,

for example, Goedbloed (2009a,b).

More recently, Soler et al. (2010) described the effects of an azimuthally dependent flow

on the stability of a straight flux tube, while Zaqarashvili, Vörös, and Zhelyazkov (2014)

investigated the stability of an incompressible, twisted cylindrical flux tube, subject to a

straight flow, in a magnetic environment. Finally, Zaqarashvili, Zhelyazkov, and Ofman

(2015) studied the stability of an incompressible, rotating, and twisted cylinder. The theo-

retical results of the latter two works were applied in Kuridze et al. (2016) to determine the

stability of chromospheric jets, and to estimate the growth time of the KHI.

Recent observational results have reinforced the idea that plasma flows are present

throughout the solar atmosphere. Berger et al. (2010) and Ryutova et al. (2010) uncovered

details about mass flows and the formation of the KHI in solar prominences. KHI formation

in the corona has also received considerable attention (see Foullon et al., 2011, 2013; Ofman

and Thompson, 2011). For a recent review, see Zhelyazkov (2015).

Of significant interest are the observations by Foullon et al. (2011) of a KHI on the flank

of a CME. The authors interpret the system configuration as consisting of three regions:

the dense solar ejecta, the CME sheath, and the low-density corona, with the KHI occur-

ring in the region between the ejecta sheath and the corona. A similar three-layer system

is described by Möstl, Temmer, and Veronig (2013). By interpreting the CME boundary

as a steady magnetic slab embedded in an asymmetric magnetic environment, the authors

demonstrated that through increasing the magnetic field strength on only one side of the

slab, the field provided a stabilising effect on that side only. This numerical study shows that
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Figure 2 Steady magnetic slab

embedded in a static asymmetric

unmagnetised environment.

exterior asymmetry may be an important factor when considering the physics of magnetic

slabs.

The three-layer system, envisioned as a slab in an asymmetric environment, has recently

been studied by Allcock and Erdélyi (2017) and Zsámberger, Allcock, and Erdélyi (2018)

in the context of linear wave propagation. Here, we focus on the effects that a steady flow

within the slab has on the propagation of magnetoacoustic waves, and on how the asymmetry

affects the KHI threshold values. In Section 2, we assume that our system is governed by the

ideal MHD equations, and we derive the dispersion relation for waves propagating along the

slab. In Section 3, we obtain approximate solutions to the dispersion relation in the thin slab

limit, and classify the modes in terms of the characteristic speeds of the system. In Section 4,

we obtain general solutions to the dispersion relation and also the KHI thresholds. Finally,

Section 5 summarises the results and provides context for their implications.

2. The Dispersion Relation

We introduce a slab of plasma bounded by two interfaces at ±x0, of density, pressure, and

temperature ρ0, p0, and T0, respectively, and magnetic field B0 = (0,0,B0), which is subject

to a steady flow U0 = (0,0,U0). The slab is embedded in an asymmetric environment, de-

fined as having density, pressure, and temperature ρ1, p1, and T1 on the left side, and ρ2, p2,

and T2 on the right side, as illustrated in Figure 2. The exterior is neither subject to magnetic

fields nor to flows. It follows that the fluid in the interior region of the slab is governed by

the ideal MHD equations, while the exterior regions are described using the gas equations.

We wish to obtain a governing equation describing the propagation of linear magnetoa-

coustic waves along the parallel interfaces. Linearising the ideal MHD equations, subject to

the previously defined background conditions, allows us to write them in the form

Dρ

Dt
+ ρ0∇ · v = 0,

ρ0

Dv

Dt
= −∇

(

p +
1

μ
bzB0

)

+
B0

μ

∂b

∂z
,

Dp

Dt
= c2

0

Dρ

Dt
,

Db

Dt
= −B0(∇ · v) + B0

∂v

∂z
.

(1)
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Here ρ,p,b = (bx, by, bz), and v = (vx, vy, vz) are small perturbations from the equi-

librium, and D
Dt

= ∂
∂t

+ U0
∂
∂z

is the material derivative. The sound speed is defined as

c2
0 = γp0/ρ0.

Since we are only concerned with magnetoacoustic waves, we may disregard all depen-

dence on the y-component without loss of generality. Equations 1 may, thus, be written in

component form as

ρ0

Dvx

Dt
= −

∂

∂x

(

p +
B0

μ0

bz

)

+
B0

μ0

∂bx

∂z
,

ρ0

Dvz

Dt
= −

∂p

∂z
,

Dp

Dt
= −c2

0ρ0∇ · v,

Dbx

Dt
= B0

∂vx

∂z
,

Dbz

Dt
= −B0

∂vx

∂x
.

(2)

We Fourier-decompose Equations 2 for waves propagating along the slab by assuming

that f (r, t) = f̂ (x)e−i(ωt−kz), where f stands for any of the small perturbations, and f̂ is the

amplitude of each perturbation. Here, ω is the angular frequency, and k is the wavenumber

in the z-direction. This procedure allows us to remove all differential terms in the linearised

MHD equation, except for derivatives with respect to x. Equations 2 become

iρ0�v̂x =
d

dx

(

p̂ +
B0

μ0

b̂z

)

+ ik
B0

μ0

b̂x,

ρ0�v̂z = kp̂,

�p̂ = c2
0ρ0

(

−i
dv̂x

dx
+ kv̂z

)

,

�b̂x = −B0kv̂x,

i�b̂z = B0

dv̂x

dx
,

(3)

where � = ω − kU0 is the Doppler-shifted frequency.

Equations 3 may be manipulated such that, except for v̂x , all other perturbed quantities

are eliminated, leaving us with the governing equation for the velocity amplitude:

v̂′′
x − m2

0v̂x = 0, m2
0 =

(k2v2
A − �2)(k2c2

0 − �2)

(c2
0 + v2

A)(k2c2
T − �2)

, (4)

where the Alfvén speed vA and tube speed cT are defined as

v2
A =

B2
0

μ0ρ0

, c2
T =

c2
0v

2
A

c2
0 + v2

A

.

The same scheme may be applied to the exterior layers, with the consideration that in both

semi-infinite layers, there are no magnetic fields or flows present. The governing equations
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for the outer layers are thus

v̂′′
x − m2

j v̂x = 0, m2
j = k2 −

ω2

c2
j

, for j = 1,2, (5)

where the exterior sound speeds are defined as c2
j = γpj/ρj .

We find trapped wave solutions to Equations 4 and 5. For the solutions to Equations 5 to

be realistic, they need to be evanescent (i.e. all perturbations must vanish at ±∞), meaning

that m2
j > 0 is required for j = 1,2. This yields the general solution of Equations 4 and 5

v̂xj (x) =

⎧

⎪

⎨

⎪

⎩

A(coshm1x + sinhm1x), x < −x0,

B coshm0x + C sinhm0x, |x| ≤ x0,

D(coshm2x − sinhm2x), x > x0,

(6)

where A, B , C, and D are arbitrary constants. By inspection, we establish that two wave

modes are allowed to propagate under the given constraints: one that is evanescent towards

the centre of the slab (for m2
0 > 0), and one that is spatially oscillatory throughout the slab

(for m2
0 < 0). These modes of propagation are the so-called surface and body modes, respec-

tively (see, e.g. Roberts, 1981).

Equation 6 is subject to boundary conditions at the interfaces, namely, the continuity of

the Lagrangian displacement, and the continuity of total pressure:

v̂x1(x = −x0)

ω
=

v̂x0(x = −x0)

�
,

v̂x2(x = x0)

ω
=

v̂x0(x = x0)

�
,

[pT]−x0
= 0, [pT]x0

= 0,

(7)

where the total pressure is defined as

p̂T(x) = v̂′
xj (x)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iρ1ω

m2
1

, x < −x0,

−
iρ0(k

2v2
A − �2)

m2
0�

, |x| ≤ x0,

iρ2ω

m2
2

, x > x0.

(8)

Using Equation 6 and the associated boundary conditions 7 and 8, we obtain a system of

four coupled homogeneous algebraic equations

⎛

⎜

⎜

⎝

c1 − s1 −c0ω/� s0ω/� 0

0 c0ω/� s0ω/� s2 − c2

�1(c1 − s1) −�0s0 �0c0 0

0 −�0s0 −�0c0 �2(c2 − s2)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

A

B

C

D

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0

0

0

0

⎞

⎟

⎟

⎠

, (9)

where, for brevity, we introduced cj = coshmjx0, sj = sinhmjx0, for j = 0,1,2, and

�0 =
iρ0(k

2v2
A − �2)

m0�
, �1 =

iρ1ω

m1

, �2 =
iρ2ω

m2

.
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For Equation 9 to have non-trivial solutions, we require the determinant of the matrix on the

left-hand side to be equal to zero. Evaluating this condition, we obtain

(�0s0 − �1c0ω/�)(�0c0 − �2s0ω/�) + (�0c0 − �1s0ω/�)(�0s0 − �2c0ω/�) = 0,

(10)

which, after some algebra, yields the dispersion relation for magnetoacoustic waves in a

steady magnetic slab embedded in an asymmetric non-magnetic environment

m2
0ω

4 +
ρ0

ρ1

m1

ρ0

ρ2

m2

(

k2v2
A − �2

)2
−

1

2
m0ω

2
(

k2v2
A − �2

)

(

ρ0

ρ1

m1 +
ρ0

ρ2

m2

)

×
(

tanh(m0x0) + coth(m0x0)
)

= 0.

(11)

Equation 11 is a generalisation of the dispersion relations found in Nakariakov and

Roberts (1995) and Allcock and Erdélyi (2017). The dispersion relation of Allcock and

Erdélyi (2017) may be immediately recovered by removing the background flow, i.e. setting

U0 = 0. On the other hand, if we retain the background flow but eliminate the asymmetric

density profile (i.e. ρ1 = ρ2), we recover the dispersion relation of Nakariakov and Roberts

(1995).

An interesting feature of Equation 11 is that as opposed to similar results obtained by

Roberts (1981) and Nakariakov and Roberts (1995), it does not factorise into two separate

equations. In these studies, due to the symmetry of the environment, the disturbances may be

divided into two modes of oscillation: the sausage mode, where the two interfaces oscillate

in anti-phase, and the kink mode, where they oscillate in phase. The amplitude of the velocity

perturbation, v̂x(x), is an odd function in the case of a sausage mode, and an even function

in the case of a kink mode. Moreover, when factorising the dispersion relation, the equation

containing tanh(m0x0) corresponds to the sausage mode, and the one containing coth(m0x0)

to the kink mode.

It has been shown by Allcock and Erdélyi (2017) that in a slab embedded in an asymmet-

ric environment, there still exist two classes of modes of oscillation analogous to Roberts

(1981). However, due to density asymmetry, the amplitudes of the perturbations on either

side of the slab will not be equal, meaning that the eigenfunctions are neither odd nor even.

This explains why Equation 11 cannot be factorised: both tanh(m0x0) and coth(m0x0) are

required to describe the asymmetric solutions. Allcock and Erdélyi (2017) labelled these

asymmetric modes as quasi-sausage, when the perturbations are in anti-phase, and quasi-

kink, if they are in phase.

3. Mode Classification and Analytical Solutions

Information about the nature of the wave solutions may be obtained from the parameters of

the dispersion relation. We have already established that in order for waves to be trapped,

the exterior parameters m2
1 and m2

2 must be positive. Modes that do not meet this condi-

tion are referred to as leaky and are excluded from the analysis in the present work. We

define the phase speed as cph = ω/k and deduce that for modes to be trapped, they must

satisfy max(−c1,−c2) < cph < min(c1, c2). It is also worth noting that the sign of the phase

speed, cph, determines whether modes are forward or backward propagating, a positive sign

corresponding to the former and a negative to the latter.

The parameter m2
0 offers a means of classifying the solutions obtained numerically. We

have already established that surface modes satisfy the condition m2
0 > 0, while body modes
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require m2
0 < 0. We may therefore categorise all solutions of Equation 11 with respect to the

signs of cph, m2
0, m2

1, and m2
2.

Solutions that satisfy max(c0, vA) < |cph − U0| < min(c1 − U0, c2 − U0) are fast sur-

face or body modes, depending on the sign of m2
0, which is determined by the ordering of

the characteristic speeds. Panels (c) and (d) in Figure 3 contain forward-propagating body

mode solutions in this interval. However, they are absent from panels (a) and (b) because

min(c1, c2) < min(c0 + U0, vA + U0). Slow body and surface modes have phase speeds

within the interval cT < |cph − U0| < min(c0, vA) and |cph − U0| < cT, respectively.

Equation 11 is, to the best of our knowledge, insoluble analytically without the use of

simplifying approximations. We thus employ the assumption that the wavelength of the

propagating wave solutions is much longer than the width of the slab, i.e. that kx0 ≪ 1. This

also implies that for surface modes, m0x0 → 0 as kx0 → 0, and that tanhm0x0 ≈ m0x0, and

cothm0x0 ≈ (m0x0)
−1. The dispersion relation, Equation 11, may then be written as

m2
0ω

4 +
ρ0

ρ1

m1

ρ0

ρ2

m2

(

k2v2
A − �2

)2

−
1

2
m0ω

2
(

k2v2
A − �2

)

(

ρ0

ρ1

m1 +
ρ0

ρ2

m2

)(

m0x0 +
1

m0x0

)

= 0.

(12)

Following Roberts (1981), we look for surface mode solutions of the form

ω = ω(0) + kx0ω(1) +O
(

k2x2
0

)

.

By taking the terms of order kx0 in Equation 12, we find the first-order terms in the pertur-

bation expansion, and hence obtain two solutions: one for the Doppler-shifted quasi-sausage

mode with �2 ≈ k2c2
T:

�2 ≈ k2c2
T

(

1 − 2kx0

(c2
0 − c2

T)(cT + U0)
2

(c2
0 + v2

A)c2
T[

ρ0

ρ1

(c2
1
−(cT+U0)2)1/2

c1
+

ρ0

ρ2

(c2
2
−(cT+U0)2)1/2

c2
]

)

, (13)

and one for its companion quasi-kink mode with ω2 → 0 as kx0 → 0:

ω2 ≈ kx0

2ρ0

ρ1 + ρ2

(

k2v2
A − k2U 2

0

)

. (14)

Roberts (1981) also found a surface sausage mode solution with ω2 ≈ k2c2
e , but this solution

no longer exists unless a single exterior sound speed c1 = c2 = ce exists.

In order to find body mode solutions, we must be aware that our previous assumption,

that m0x0 → 0 as kx0 → 0, no longer holds. Instead, we must find solutions for which m0x0

is non-zero and finite as kx0 tends to zero. We are interested in solutions with �2 ≈ k2c2
T

and m2
0 < 0. From Equation 11 we obtain two solutions, one describing the behaviour of the

Doppler-shifted quasi-sausage modes,

�2 ≈ k2c2
T

(

1 + k2x2
0

(v2
A − (cT − U0)

2)(c2
0 − (cT − U0)

2)

c2
0v

2
Aπ2j 2

)

, (15)

and one describing the set of Doppler-shifted quasi-kink modes,
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�2 ≈ k2c2
T

(

1 + k2x2
0

(v2
A − (cT − U0)

2)(c2
0 − (cT − U0)

2)

c2
0v

2
Aπ2(j − 1

2
)2

)

, (16)

where j is any integer.

In the case of a wide slab, i.e. when the slab width is much larger than the wavelength,

we demonstrate that the two interfaces that delimit the slab cease interacting. We begin

by taking kx0 ≫ 1, which implies that for surface modes, m0x0 ≫ 1 (Roberts, 1981). In

this approximation, tanh(m0x0) ≈ coth(m0x0) ≈ 1, which, when applied to Equation 10,

provides us with two individual dispersion relations for the two interfaces

ρ0

ρj

mj

(

k2v2
A − �2

)

− m0ω
2 = 0, (17)

for j = 1,2.

Equations 13 to 17 may be reduced to the analogous equations in Allcock and Erdélyi

(2017) by setting U0 = 0, and to those in Roberts (1981) by also assuming that ρ1 = ρ2 = ρe.

4. Numerical Results

We now find the general solutions to the dispersion relation, Equation 11. Since, to the best

of our knowledge, these cannot be obtained analytically, we employ a numerical scheme.

We first nondimensionalise all quantities with respect to the Alfvén speed, and introduce the

Alfvén Mach number MA = U0/vA, the nondimensionalised sound speeds c̄2
j = c2

j/v
2
A (for

j = 0,1,2), tube speed c̄2
T = c2

T/v2
A, and phase speed c̄ph = cph/vA = ω/kvA.

Dispersion diagrams displaying general solutions to Equation 11 may be found in Fig-

ures 3 to 5. They illustrate the behaviour of surface and body, quasi-sausage and quasi-kink

modes, under the effect of a number of different flow speeds. Four types of equilibrium

conditions are assumed for the slab, each of which is represented in a panel in Figures 3

to 5, respectively. Panels (a) and (b) represent the case where cT < c0 < vA and the density

inside the slab is greater than that of the exterior. Panels (c) and (d) represent the case where

vA < cT < c0 and the exterior densities are greater.

In order to better visualise the differences between the symmetric and asymmetric en-

vironments, we have included side-by-side phase diagrams that illustrate the change in

behaviour due to the break in symmetry. Thus, in every Figure, panels (a) and (c) depict

symmetric exterior profiles, while panels (b) and (d) represent asymmetric exterior profiles.

The imaginary part of the solutions to Equation 11 is displayed throughout Figures 3 to 6

in order to make a distinction between stable and unstable modes. Stable modes correspond

to purely real solutions, while unstable modes will have a non-zero imaginary component

that will act as a growth factor since we assumed that all perturbations are proportional to

e−i(ωt−kz).

Figure 3 illustrates how a background flow of MA = 0.4 affects the phase diagrams in all

four cases. We observe that this flow speed has broken the symmetry between forward- and

backward-propagating solutions in all cases. Moreover, new cut-off speeds at min(c1, c2)

have been introduced by the asymmetric exterior profiles (panels (b) and (d)).

Figure 4 displays the effects of a background flow of MA = 0.6 in panels (a) and (b)

and MA = 1.0 in panels (c) and (d). These flow strengths are strong enough to cause the

slow body modes, which would have been backward propagating for lesser speeds, to now

become forward propagating. Different flow strengths are required depending on how the

characteristic speeds are ordered. We note that the behaviour is identical throughout the four



Magnetoacoustic Waves and the Kelvin–Helmholtz Instability. . . Page 9 of 18 86

Figure 3 Dispersion diagrams considering an interior that is dense ((a) and (b)), and one that is evacuated

((c) and (d)), including a background flow of Alfvén Mach number MA = 0.4. Panels (a) and (c) illustrate the

solutions obtained for symmetric exterior density profiles, while (b) and (d) illustrate the effects of breaking

this symmetry. The asymmetric density profile introduces new cut-off frequencies at min(c1 , c2), while the

flow further breaks the symmetry by causing forward- (c̄ph > 0) and backward- (c̄ph < 0) propagating modes

to have different phase speeds. The shaded areas represent regions for which body modes propagate. The

hatched regions contain no stable trapped solutions (m2
1

< 0 or m2
2

< 0).
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Figure 4 Same as Figure 3, but including background flows of Alfvén Mach number MA = 0.6 ((a) and

(b)), and MA = 1.0 ((c) and (d)). The bulk flow is now strong enough to have caused the backward-propa-

gating slow body modes to become forward propagating. The asymmetric density profile does not affect the

threshold value at which this happens.
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Figure 5 Same as Figure 3, but including background flows of Alfvén Mach number MA = 0.9 ((a) and

(b)), and MA = 1.4 ((c) and (d)). In the symmetric case ((a) and (c)), the KHI occurs for a small interval of

kx0 . If the exterior density profile is sufficiently asymmetric, the sausage mode becomes KH unstable for any

value of kx0 greater than the threshold value.
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panels, meaning that the asymmetry in the equilibrium profiles does not affect the change in

direction with increasing MA.

Figure 5 illustrates the behaviour of the system subject to a flow of MA = 0.9 in panels

(a) and (b), and MA = 1.4 in panels (c) and (d), which is strong enough for instabilities to

occur. We see that in the case of symmetric equilibrium profiles, the instability is restricted

to a short range of values of kx0. However, if the exterior parameters are asymmetric, the

mode that was previously unstable in only that small interval is now unstable for any value

of kx0 greater than the instability onset value.

One important point to note here is that Figures 3 – 5 reinforce the results obtained in

Section 3. It is readily visible that for kx0 ≪ 1, there exist Doppler-shifted quasi-sausage

and quasi-kink surface modes with phase speeds approximately equal to c̄T + MA and 0,

respectively. Likewise, there exist body modes with c̄ph ≈ ±c̄T + MA. The quasi-sausage

mode is only present in Figure 3(c) because of the ordering of the characteristic speeds,

while the rest are present throughout.

In Figure 6, the phase speed has been plotted with respect to MA, for kx0 = 0.5 and

two different density ratios. The values of the density ratios and of kx0 were selected in

order to have a clear representation of the modes in the figures. However, the chosen value

of kx0 may also be relevant to modelling instabilities on CME flanks, for example. Using

the values of the wavelengths of the unstable perturbation and the width of shear layer as

measured by, e.g., Foullon et al. (2011), we obtain a possible range for kx0 between 0.131

and 0.656. Panel (a) represents a symmetric density profile, panel (b) an asymmetric one,

and both satisfy cT < c0 < vA. Comparing the two panels, it is immediately apparent that

by increasing ρ2, both the cut-off at c̄2 and the KHI threshold are lowered. It is also worth

noting that in panel (b), modes with cph > min(c1, c2) may exist as long as they are unstable

since they satisfy the condition that c2
ph > min(c2

1, c
2
2) and are thus trapped. There also exist

no fast modes because min(c̄1, c̄2) > min(c̄0 + MA,1 + MA).

Figure 7 showcases the effect of having an asymmetric density profile on the KHI thresh-

old value. Throughout the panels, the green and red curves (plotted for ρ1 = ρ2 = ρ0 and

ρ1 = ρ2 = 2ρ0, respectively) represent the symmetric density profiles. In the left panel, the

blue curve also represents a symmetric density profile, corresponding to a lower density ra-

tio of ρ1 = ρ2 = 0.5ρ0. This panel illustrates how, for symmetric density profiles, the KHI

threshold increases, both with increasing values of kx0, but also with decreasing values of

the density ratios. As suggested by Equation 17, the threshold value for a wide slab tends

to that of a single interface. The middle and right panels illustrate the effect of increasing

asymmetry in the density ratios. Owing to the lack of interaction between the interface when

kx0 ≫ 1, the greater density ratio will determine the threshold value. However, if kx0 � 1,

the densities on either side will play a role.

Figure 8 compares the effects of increasing density ratios in the case of symmetric (left)

and asymmetric slabs (centre). In both cases, three slab widths are considered: a thin slab

(red), with kx0 = 0.1, an “intermediate” value of kx0 = 1 (green), and a wide slab (blue),

with kx0 = 10. In the left panel, the exterior densities are assumed to be equal (ρ1 = ρ2 =

ρe), while in the centre, we only assumed that ρ2/ρ0 = 2. The effect of the asymmetry is

most intense for small kx0, when there is most interaction between the interfaces. The panel

on the right illustrates how the wide asymmetric slab becomes unstable when the interface

corresponding to the highest density ratio becomes unstable. For ρ1 < ρ2, the threshold

corresponds to the interface with the constant density ratio (represented by the horizontal

dotted line), while for ρ1 > ρ2, the threshold values tend to that of the interface with variable

density ratio (represented by the dot-dashed curve).
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Figure 6 Nondimensionalised phase speed c̄ph plotted with respect to the Alfvén Mach number MA for

kx0 = 0.5. The shaded areas represent regions where body modes propagate. The hatched regions contain

no stable trapped solutions (m2
1

< 0 or m2
2

< 0), but unstable solutions may still exist because they have both

real and imaginary components. Increasing the density on just one side of the slab decreases the KH threshold

and lowers cut-off speeds. Thus, there may exist ranges of MA where trapped modes, which would otherwise

be able to propagate, become leaky.
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Figure 7 KHI threshold values of MA , calculated for values of kx0 from 0.05 to 2, for symmetric and asym-

metric density profiles. The dashed lines represent the threshold values of a single interface and correspond

to the density ratios of their respective colour.

Figure 8 KHI threshold values of MA , calculated for symmetric (left) and asymmetric density profiles

(centre, ρ2/ρ0 = 2). The panel on the right compares the threshold values obtained for the wide asymmetric

slab to that of two non-interacting interfaces. The dotted horizontal line and the dot-dashed curve represent

the threshold values for the interfaces with constant and variable density ratios, respectively.

5. Applications

In the previous sections, we have derived the dispersion relation for a steady slab embedded

in an asymmetric environment and obtained approximate and general solutions. We now

wish to discuss possible applications of this model and how it compares to previous formu-

lations.

We primarily focus on the observations described in Foullon et al. (2011) of a KHI

at a CME flank. The event observed by the Atmospheric Imaging Assembly on board the

Solar Dynamics Observatory on November 3, 2010, was described as a series of Kelvin–

Helmholtz vortices propagating on the flank of a CME. The region including the flank may
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Figure 9 KHI detected on the flank of the CME is displayed on the left. The box on the right is a schematic

representation of the unstable region. For more details about the spatial and temporal evolution of this event,

see Foullon et al. (2011).

be interpreted as a three-layer waveguide, with the dense CME core on one side, the CME

flank in the middle, and the low-density solar corona on the other side, as in Figure 9. Since

the core ejecta is much slower than the flank on the timescale of the instability, it is reason-

able to approximate it as being static.

Using the parameters measured by Foullon et al. (2011) and Equation 11, we wish to

estimate the densities of the CME core and flank in relation to the coronal background

density. We begin by assuming a background Alfvén speed vA = 800 km s−1, and sound

speed c0 = 0.6vA. The speeds of the ejecta flow and of the perturbations at the interface

were measured to be U0 = 833 ± 5 km s−1 and cph = 417 ± 7 km s−1, respectively. Using

these values, we calculate the Alfvén Mach number of the flow, MA ≈ 1.05, and the non-

dimensionalised phase speed, c̄ph = 0.521 ± 0.009. The wavenumber is measured as k ≈

0.35 Mm, and the width of the shear layer is estimated to be 2x0 ≈ 2.25 ± 1.5 Mm, making

kx0 ≈ 0.394±0.263. Since kx0 < 1, there will be interactions between the boundaries of the

shear layer, meaning that the density asymmetry will play an important role in the formation

of the KHI.

Before we start our analysis, we must first note that when the density contrast between

the three regions is such that min{c̄1, c̄2} < min{c̄0 + MA,1 + MA}, there exist no trapped

fast modes (as is the case in Figure 6). Since we expect this to be the case, we immediately

discount the fast modes. We interpret the observation as that of a slow kink mode propagat-

ing along a highly asymmetric steady slab. It has been shown by Allcock and Erdélyi (2017)

that for both slow and fast modes, the transverse component of the displacement is highly

sensitive to the density asymmetry. The slow mode interpretation is therefore reasonable,

even though one would expect little transverse displacement in the low-beta coronal plasma.

The results of the numerical analysis are presented in Figure 10, where we assumed

density ratios of ρ1/ρ0 = 1.7, and ρ2/ρ0 = 10−6. For MA ≈ 1.05, we obtain c̄ph = 0.526,

which matches the observed phase speed estimate of c̄ph = 0.521 + ±0.009. The growth

rate of the instability, i.e. the imaginary part of ω, is calculated to be γ ≈ 0.023 s−1, which

compares reasonably well with the observed growth rate of γ = 0.05 ± 0.03 s−1.

We note that the choice of density ratios is significantly more sensitive on the interface

separating the core from the flank. We were able to obtain values of c̄ph and γ in close
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Figure 10 Slow kink mode plotted for c0 = 0.6vA , ρ1/ρ0 = 1.7, ρ2/ρ0 = 10−6, and kx0 = 0.5. The upper

and lower panels contain the real and imaginary parts of the non-dimensionalised phase speed, respectively.

agreement with the observations for values of ρ1/ρ0 in the range (1.6,1.8). On the other

hand, ρ2/ρ0 may be as high as 10−3, with values lower than 10−6 having very little further

effect. Our model is therefore in good agreement with the observations and estimates the

density of the CME ejecta to be at least six orders of magnitude higher than the background

coronal density of ≈10−12 kg m−3.

Our interpretation is significantly more accurate than one obtained by means of a single

interface model. In such a model, one would have to assume an unrealistically low Alfvén

speed in order to match the observed phase speed with a high-density contrast. Otherwise,

assuming a realistic Alfvén speed vA = 800 km s−1 would yield a density ratio of ρ2/ρ0 =

1/3 between the flank and the corona, which would significantly underestimate the density

of the CME. Similarly, the high-density contrast could also not be obtained from a model of

a slab in a symmetric environment.

One limitation of our model is that it does not adequately explain the absence of the KHI

on the inner interface, between the core and the flank. It is likely that the core is permeated

by a strong magnetic field that inhibits the formation of the instability. This effect would

have to be included in a more realistic interpretation.

6. Conclusion

The goals of the present work are twofold: to study the effects of a steady flow on the

propagation of magnetoacoustic waves in a magnetic slab in an asymmetric environment,

and to examine the effects of the asymmetry on the condition for occurrence of the KHI.
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In order to accomplish this, we solved the dispersion relation, Equation 11, using analytical

approximations and numerical schemes.

Since our analysis is only concerned with trapped mode solutions, we first obtained nec-

essary and sufficient conditions for their existence. We then classified them as surface or

body, quasi-sausage or quasi-kink modes, and obtained analytical solutions using the thin

slab (Equations 13 – 16), and wide slab approximations (Equation 17).

Numerical solutions of the dispersion relation Equation 11, plotted in terms of the nondi-

mensionalised wavenumber kx0 for specific values of the Alfvén Mach number, MA, are

presented in Figures 3 to 5. The flow causes the symmetry between forward-propagating

(ω/k > 0) and backward-propagating (ω/k < 0) modes to break, causing various modes to

no longer be trapped. Furthermore, it causes backward-propagating modes to become for-

ward propagating after some threshold value particular to the mode. Finally, flow speeds

past a critical value will cause the KHI to occur. In terms of the solutions to Equation 11,

this occurs when ω2 < 0. The imaginary part of the solution acts as the growth rate in the

time evolution of the wave, causing it to steepen (see panels (b) and (c) in Figure 1).

We wish to establish the qualitative effects of the asymmetry on the KHI in order to gen-

eralise the results of Allcock and Erdélyi (2017) on wave propagation. The authors found

that asymmetry in the density profile asymmetrically modifies the amplitudes of the quasi-

sausage and quasi-kink modes differently. In a symmetric slab, these modes would have anti-

symmetric and symmetric amplitudes about the z-axis, respectively. However, the asymmet-

ric density profile causes the quasi-sausage mode to increase in amplitude about the interface

separating the interior from the lower density region, and decrease in amplitude about the

other. The converse is true for the quasi-kink mode.

Considering the above, we hypothesise that for highly asymmetric density profiles and

for intermediate or high values of kx0, the slab may become asymmetrically unstable. If this

is true, a quasi-sausage wave should trigger the KHI at the boundary separating the sparser

region from the interior, while the converse should be true for the quasi-kink. However, a

more detailed analysis of the eigenfunctions is required in order to confirm this.

Highly asymmetric systems, such as the CME flank in Foullon et al. (2011), are likely

prone to KHIs as long as the boundaries of the slab interact. In that example, the low density

of the corona stabilises the CME flank, while the high-density core destabilises it, and we

observe the KHI. Because this configuration of CMEs is not uncommon, we suggest that the

limited number of observations are not indicative of the number of instances of the KHI in

these phenomena. Further study is needed in order to determine its prevalence. Applications

of this model are in no way limited to CME flanks, even though they received much atten-

tion in this study. Any analysis of a steady configuration, whether solar or magnetospheric,

that may be approximated by a slab geometry, would likely benefit from the inclusion of

asymmetry.
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