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Abstract   

Handedness effects with respect to regional corpus callosum (CC) anatomy remain open to 

question. Midsagittal CC tracings were obtained from structural MRIs in 21 female 

monozygotic twin pairs with discordant handedness (MZHd). The CC was divided into 99 

percentile widths which were grouped into seven regions based on Denenberg’s (1989, 

1991b) factor analysis.  Results showed that left handed (LH) twins had significantly larger 

regional widths in CC region W22-39 compared to right handed (RH) twins, an effect present 

in 19/21 MZHd pairs. Cross-study analyses revealed CC W22-39 to have the highest 

variation across female singletons (Cowell et al., 1992, Cowell et al., 1993). In the adjacent 

genu region (W3-18), CC size did not differ between RH and LH twins. However, when 

twins were reclassified according to handedness direction and consistency to form consistent 

RH, non-consistent RH, consistent LH and non-consistent LH groups, patterns of CC size in 

W3-18 closely matched those of singleton women (Cowell et al., 1993). Namely, CC W3-18 

was larger in consistent compared to non-consistent RHs. Results support a claim that CC 

region W22-39, interconnecting premotor cortex in females, provides for environmentally 

influenced components of handedness, given the difference within MZHd twin pairs. By 

contrast, CC W3-18, connecting prefrontal cortex, was sensitive to direction and consistency 

of handedness, both in twins and singletons, a result consistent with combined genetic and 

environmental effects.  Findings highlight the significance of MZHd twin studies in 

elucidating the developmental mechanisms underpinning structure-function asymmetry, 

cortical interconnectivity and neurodevelopmental bases of left hand preference. 

Key words: monozygotic twins, corpus callosum, cortical white matter, laterality, 

handedness. 
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Introduction  

“What does it mean to be left handed?” The answer to this enduring question requires 

consideration of diverse factors and multiple neurocognitive systems within developmental 

gradients. There is neither a unique behavioural phenotype (Levy and Reid, 1976), nor a 

single underlying causal agent. However, understanding the structure and function of neural 

systems that underpin fundamental differences between right and left handers is one way to 

address this key question about human asymmetry. Our study focuses on the regional 

anatomy of the corpus callosum (CC), a structure with an extensive history of research 

findings related to hand preference, typically in singleton samples. To improve the matching 

between handedness groups, we used a twin based model to help control for the multiple 

variables which could serve as confounding factors in such research.  Thus, the regional 

features of the CC are described and considered, within a naturally controlled paradigm to 

examine handedness effects. Specifically, we describe results from a sample of healthy adult 

monozygotic twins strongly discordant for writing hand (MZHd).   

Mapping structure-function relationships in the callosum is not straightforward. 

Challenges arise with respect to anatomical features of the structure, and its role in mediating 

a range of complex behavioural and cognitive systems. In anatomical terms, the CC 

interconnects left and right cerebral cortex via networks of fibres that transfer sensory-motor 

information, support interhemispheric cognitive function, and serve a range of excitatory and 

inhibitory functions in the mediation of lateralised behaviours (Aboitiz et al., 1992, Clarke 

and Zaidel, 1994, Fabri and Polonara, 2013).  Starting with research in the rhesus monkey 

(Pandya and Seltzer, 1986), followed by decades of fibre tracking studies (De Lacoste et al., 

1985), including in vivo neuroimaging reports in humans (Huang et al., 2005, Hofer and 

Frahm, 2006), the detailed topography of cortical connectivity in terms of anterior-posterior 

and overlapping dorso-ventral gradients has been documented.  Yet, efforts to subdivide the 
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gross anatomy of the structure in humans, as visualised in its midsagittal aspect, have only 

partially succeeded at mapping neurofunctionally relevant zones of interest. Callosal fibers 

can connect homotopic or homologous versus heteropic or non-homologous cortical regions 

(Di Virgilio and Clarke, 1997, Clarke, 2003, Ruddy et al., 2017).   This complicates the task 

of identifying functionally specific interhemispheric fibre bundles in studies using 

planimetric methods to measure gross morphometry. Thus, at a macroscopic level, structure-

function relationships may be obscured by the overlapping topographical gradients between 

antero-posterior and dorsal-ventral organisation of cortical fibre tracts.  There is also 

heterogeneity in the composition of anatomical fiber types (Aboitiz et al., 1992, Hofer and 

Frahm, 2006), and their functions at a microscopic level. 

Neuropsychological challenges exist in pinpointing the behavioural specificity 

required to measure discrete task-structure relationships. Despite this, correlates have 

successfully been demonstrated between regional CC anatomy and behaviouro-cognitive 

measures linked to lateralised verbal and manual systems such as hand preference (Witelson, 

1989, Denenberg et al., 1991b, Cowell et al., 1993), speech perception (Clarke et al., 1993, 

Clarke and Zaidel, 1994, Gadea et al., 2009), verbal fluency (Hines et al., 1992) and verbal 

expression (Moreno et al., 2014).  

In adult males, correlations between the CC isthmus and consistency of right 

handedness (Witelson, 1989, Denenberg et al., 1991b, Cowell et al., 1993) have been 

attributed to structure-function relationships emerging from key (plausibly hormonally 

related) developmental events which shape cortical laterality in temporo-parietal language 

regions (Habib, 1989). Additional evidence for handedness-based differences in the 

organisation of language systems was reported by  Moffatt et al. (1998), who found a larger 

CC in left handers with left hemisphere speech lateralisation, compared to left handers with 

right hemisphere speech, and right handers.  Neuroimaging evidence is consistent with a 
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pivotal role for the CC in establishing left hemisphere specialisation for language. This takes 

place prior to maturation into the adult pattern of intra-hemispheric connections (Tzourio-

Mazoyer, 2016). The impact of atypical CC structure and function is documented in the 

clinical literature on callosal agenesis (Sauerwein and Lassonde, 1994, Paul et al., 2003), 

surgical lesions (Pelletier et al., 2011), injury (Benavidez et al., 1999), and degeneration 

(Reinvang et al., 1994, Varley et al., 2005).  Thus, the CC has been studied in relation to its 

role in mediating behaviour, particularly in lateralised systems, and as an index of 

developmental and degenerative events which shape cerebral asymmetries in conjunction 

with changes in callosal connectivity.  

A within twin pair handedness discordance model can be pivotal to exploration of 

structure-function relationships in the callosum relevant to asymmetries in manual fine motor 

function and language for the following reasons (Gurd et al., 2013).  First, it permits 

simultaneous consideration of the contribution of genes, genes plus environment, and 

interactions between the two - as a function of experience within a developmental trajectory. 

Key developmental factors include potential in utero foetal positioning of twins, birth effects 

such as timing and sequence (i.e., potential exposure to anoxic events) (cf. Smith et al. (2007) 

and Vuoksimaa et al. (2017)), childhood hand usage, and development of laterality 

preference and practice within the socio-cultural context of dextrally oriented cultures and 

environments (cf. Gurd et al. (2006)).  Second, handedness discordance is a useful model 

since the environmental bias introduced by living in a right handers’ world is readily 

verifiable and consistent as an effect within twins reared together. In contrast to studies of 

singletons, the MZHd twin model confers sharper focus on evaluations of structure-function 

relationships between gross regional CC anatomy and hand preference with its capacity to 

enhance detection of effects whilst reducing statistical “noise” linked to variance swamping 

(Rosch et al., 2018).  



AUTHORS’ MANUSCRIPT, ACCEPTED 8 JUNE 2018, NEUROSCIENCE 

6 
 

We describe in-depth profiles of regional CC anatomy in female MZHd twins. We 

start with a detailed analysis of regional CC size effects to corroborate and expand upon 

previously published CC results (Gurd et al., 2013). Following this baseline analysis, a fine-

grained series of comparisons evaluates patterns of variation in regional CC anatomical size 

in relation to multifaceted features of handedness, regional neuranatomical correlations and 

associations with overall CC size. The intention is to shed light on how the callosum of right 

and left handers is formed structurally within a life course perspective, and to consider how it 

functions in relation to the asymmetrical lateralisation of motor and verbal behaviours (Gurd 

et al., 2013, Gurd and Cowell, 2015, Rosch et al., 2018).  

Methods 

Participants:  Twenty-one MZHd (monozygotic handedness discordant) adult female twin 

pairs were included (mean age=51.67±1.96; range 37-67 yrs).  The right-handed (RH) and 

left-handed (LH) twins were matched on years of further-plus-higher education (RH (n=21) 

mean = 3.29, median=3, range 1-11 years; LH (n=19) mean =2.53, median=3, range 1-5 

years; t(18)=1.69, n.s.) and IQ (RH mean=117.33, range 89-136; LH mean=118.29, range 98-

139 years; t(20)=0.73, n.s.). All volunteers were purportedly healthy adults, selected 

randomly from a larger group of 100 similar pairs recruited through the UK Adult Twin 

Registry (Spector and Williams, 2006) according to the criteria that they be strongly 

contrastive on laterality and strength of handedness preference for writing, i.e., scoring +/- 2 

on item 2 of a 5-point scale of strength of handedness preference for the Handedness 

Preference Inventory (HPI), be available to travel to Oxford, and suitable to undergo MRI 

brain scanning. In RH twins, HPI ranged from +70 to +100 (mean=95.71, median 100) and in 

LH twins, HPI ranged from +20 to -100 (mean=-72.24, median=-90). Zygosity had been 

established by questionnaire with 91% reliability (Jackson et al., 2001) and/or by zygosity 

testing through the UK Adult Twin Registry.  Moreover, all twins had been raised together 
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and by their biological parents, had English as a first language, had no indication of atypical 

or delayed language development (which is less common in females and in female twins 

(Hay et al., 1987, Thorpe, 2006)), and no indication that any twin had switched handedness in 

childhood. Testing was carried out between 2003 and 2004, as part of a larger study.  The 

study had local ethics committee approval (COREC), and all participants provided informed 

consent.  All studies were conducted in accordance with the ethical standards laid down in the 

1964 Declaration of Helsinki.   

Image acquisition:  High resolution structural MRIs were acquired at the John Radcliffe 

Hospital Oxford Centre for Magnetic Resonance, Oxford on a 1.5 T Siemens Magnetom 

SONATA (Erlangen, FRG) MRI scanner.  Anatomical whole brain images were obtained 

using a T1-weighted, 3D gradient-echo pulse sequence (FLASH, fast low-angle shot) with 

the following parameters: TR=1200 ms, TE=5.6 ms, TI 19º flip angle, matrix size = 160 x 

256 x 208, voxel size = 1mm isotropic, acquisition=coronal, averages=3.  

Image analysis:  Brain Voyager v1.9 software (www.brainvoyager.com) was used to obtain 

midline sagittal slices and standardize brain alignment.  Images were iso-voxeled to 1 x 1 x 1 

mm and spatially transformed to the sagittal plane. Image alignments were then corrected 

along the anterior commissure-posterior commissure axis such that the sagittal plane was 

perpendicular to the points at which both commissures crossed the midline.  Midline sagittal 

slices were then extracted and verified  through inspection of landmarks in sagittal, coronal 

and axial views of the three dimensional data set. Criteria for selecting the midline sagittal 

slice were: (1) In sagittal view, the callosal sulcus, peak of the fourth ventricle and cerebral 

aqueduct should be clearly visible; (2) in axial view, the slice should pass through the midline 

of the third ventricle, pineal gland and cerebellar vermis; (3) in coronal view, the slice should 

pass through the septum pellucidum.   Each CC outline was traced by a single rater (PEC) 

blind to the identity of participants using a computer program (Callosum).  Software 
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developed at the University of Sheffield was based on the principles of the original 

Denenberg et al. (1991a) software, and has been used in prior anatomical reports (Wignall et 

al., 2010, Gurd et al., 2013, Rosch et al., 2018). The software automatically bisected the 

traced outline into dorsal and ventral perimeters.  These were divided into percentiles, and the 

correspondingly numbered points along the dorsal and ventral surface were connected to 

provide 99 width measurements along the curved anterior-posterior CC axis. The software 

optimized the placement of the dorsal-ventral division such that the sum of the 99 widths was 

minimized (Figure 1, panel A). 

[Figure 1 here] 

Each CC was traced five times to average out variations in manual co-ordination and 

other forms of rater based error. Coefficients of variation (CV = SD/mean) were obtained for 

the five tracings of area, perimeter, axial length and 99 widths to confirm that CVs for all 

measures were lower than 10% across the five tracings. If area, perimeter, central length or 

more than ten individual widths had CVs greater than 10% then a new set of tracings was 

taken.  Measurements for area, perimeter, central length and 99 widths were computed for all 

cases using the mean of the five tracings. The 99 width measurements were then averaged 

into clusters following the factor analytic approach of Denenberg et al. (1991b): W3-18, 

W22-39, W49-62, W65-74, W77-85, W89-94, and W95-99 (Figure 1, panel B).  The original 

factor structure derivation is briefly summarised here. Analysis involved the 99 widths, CC 

area, length, perimeter and an estimate of total brain area for 104 healthy adults (male and 

female right and left handers). Data were standardised into z-scores within the four sex by 

handedness groups and entered into a principal components analysis for purposes of 

anatomical dimension extraction. The final factor structure was obtained through oblique 

rotation for a model that retained factors with eigen values greater than 1. Variable loadings 

of 0.600 and above determined inclusion of which measures were associated with each factor. 
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Brain area loaded on its own factor, CC widths loaded on seven factors as outlined above, 

with perimeter and length loading on W95-99. 

Ten cases were used for assessment of inter- and intra-rater reliability of area, 

perimeter, length and the seven regional factor widths.  Two raters (PEC, RR) produced 

measurements with ICCs in the good (W49-62: r = 0.614) to excellent range (all other 

measures: 0.763 <r< 0.946) (descriptors are from Fleiss (1986) page 7).  One rater (PEC) 

reproduced measurements for the same ten cases within 6 weeks, resulting in ICCs that were 

all in the excellent range (0.841< r <0.994). All measurements presented in the current results 

were from one rater’s tracings (PEC).  

Statistical analysis. Data analysis was conducted in several stages. First, a detailed profile of 

the 99 widths was conducted to compare CC form along the anterior-posterior gradient for 

RH and LH MZHd twins. Statistical analyses for global (area, length) and regional (seven 

factor widths) CC measures were conducted for the full sample 21 twin pairs available in the 

MRI database. This was done to corroborate results on CC anatomy with the previously 

published sample of 17 MZHd twin pairs from the same database (Gurd et al., 2013).  

Next, RH-LH MZHd twin pair correlations were examined in detail. The analysis of 

CC area paralleled the MZ component of a study by Scamvougeras et al. (2003) who 

examined CC area in MZ vs DZ twin pairs. Additional correlation patterns between RH and 

LH MZHd twins were examined for length and for the seven regional factor widths. 

Correlations among the global and regional CC measurements were also conducted 

separately within RH twins and LH twins. Due to the high correlations among CC widths 

(reported in the Results below), stepwise regression analysis was used to model the 

relationships between CC regions and area in RH and LH twins as a function of their 
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background demographics, overall HPI and the seven regional CC measures (Mendenhall and 

Sincich (2012), page 368).  

In two final sets of analysis, CC factor width means for MZHd twins were compared 

to published findings in singleton women. In the first comparison, the mean values for twins 

were examined as a function of hand preference direction (right handed = RH; left handed = 

LH) and hand preference consistency (consistent = c; non-consistent = nc) (Cowell et al, 

1993). This comparison of cRH, ncRH, ncLH and cLH women was conducted across all CC 

regions. In the second comparison, absolute range (in mm) and relative range values (a ratio 

of the range/median) were computed from the published means of: (a) four handedness 

groups of cRH, ncRH, ncLH, cLH singleton women mentioned above (Cowell et al, 1993); 

and (b) four comparably aged groups of singleton women at 31-40, 41-50, 51-60 and 61-79 

years (Cowell et al., 1992). This allowed characterisation of variability profiles across the 

seven CC factor width regions in healthy singleton women. Means for the seven CC regions 

in LH and RH MZHd twins were considered in relation to these healthy singleton profiles. 

Comparative analyses involving previously published data are presented in the Discussion. 

To support the use of parametric statistical analyses, preliminary tests were conducted 

for normality and to confirm equal variances. Data distributions for CC area, length and the 

CC factor width measures for LH and RH twins were normally distributed (as confirmed by 

non-significant Shapiro-Wilk tests), with the exception of W89-94 in LH (W(21)=0.88, 

p≤0.05). Variances for the paired groups of LH and RH twins were equal (as confirmed by 

non-significant Pitman’s t-tests), with the exception of W77-85 (t(19)=2.45, p≤0.05). 

Variances for the independent groups of consistent and non-consistent right and left handers 

examined for W3-18 were also equal (as confirmed by non-significant Levene’s tests). 

Therefore, parametric statistical tests have been applied throughout, and have been confirmed 
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with non-parametric comparisons for regions where normality and equality of variance 

assumptions were not fully met. 

Results. 

The ninety-nine percentile widths of the CC for RH and LH twins are plotted in Figure 2. The 

curves overlapped for the majority of widths except for those spanning CC widths 21 through 

43. In this zone, LH twins showed larger widths than RH twins. The span of widths which 

was larger in the LH twins, overlapped most closely with factor region W22-39.  

 

[Figure 2 here] 

 

Means and standard errors are presented in Table 1 for RH and LH twins for CC area, 

length and the seven CC factor widths.  

 

[Table 1 here] 

 

Paired t-tests were conducted for area, length and the seven regional factor width 

measurements. Bonferroni corrections (p≤0.007) were applied to the seven factor width 

comparisons. Only one region, W22-39, showed a significant difference with a larger mean 

width in the LH twins (t(20)=3.43, p≤0.01) comprising a large effect (ES=0.75, SD of the 

difference=0.738) (Cohen, 1992). This was consistent with the 99 width profile comparison 

above and with previous results published for a subsample of n=17 twin pairs (Gurd et al., 

2013).  The LH-greater-than-RH difference remained significant when W22-39 was 

examined as a percent of overall CC area (t(20)=2.910, p≤0.01; correlation between W22-39 

and CC area for RH r(19)=0.764; LH r(19)=0.732, p’s ≤0.01).  The statistical significance of 
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within-pair RH/LH contrasts relies in part on the consistency of effect direction. Results on 

this aspect of the data are reported below.  

 

[Table 2 here] 

 

Pearson’s correlations between RH and LH MZHd twins were significant for all measures 

(Table 2). For the two global measures, the highest correlations were for CC area. For this 

measure, an equivalent number of points above and below the identity line reflected the lack 

of significant overall CC size difference between RH and LH twins (Figure 3a). For regional 

factor width measures, correlations were highest in the anterior, mid and posterior CC body 

regions of W22-39, W49-62 and W65-74. A pattern of lower correlations was observed in the 

anterior most (W3-18) and the more posterior regions (W77-85, W89-94 and W95-99) (Table 

2). A Pearson’s correlation of r=0.849 in regional CC size between RH and LH twins was 

observed for W22-39. This relationship is depicted in Figure 3b. The magnitude of the 

correlation was similar to that seen in CC area. However, in W22-39, the majority of points 

fell below the identity line. This reflected the larger regional size of W22-39 in LH twins for 

19/21 cases. ICCs for absolute agreement were also significant for all measures, and 

generally paralleled the patterns observed with Pearson’s correlations. In W22-39, the 

absolute agreement ICC was lower than for the consistency based Pearson’s correlation. This 

pattern is attributable to the consistency of the size difference within MZHd twin pairs. 

Specifically, the vast majority of LH twins showed larger regional widths for W22-39 than 

their RH counterparts even when examined as a percent of CC area (Figure 3c). 

[Figure 3 here] 

Pearson’s correlations between adjacent CC regions were significant and ranged from 

r(19)=0.602 to r(19)=0.787 in RHs and from r(19)=0.613 to r(19)=0.781 in LHs (p-values 
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≤0.05). The exception to this was W3-18, which showed a low and non-significant 

correlation with W22-39 in both RH (r(19)=0.187) and LH twins (r(19)=0.185). W3-18 was 

most strongly correlated with the non-adjacent isthmus region W77-85 in both RH 

(r(19)=0.494) and LH (r(19)=0.525) twins (p-values ≤0.05). A comparably high correlation 

was observed between W3-18 and W89-94 (r(19)=0.525, p≤0.05) but only in LH twins.  

Stepwise regression was used to analyse the dependent measure CC area as a function 

of the predictor variables Age, IQ, HPI, and the seven regional CC factor widths. Separate 

regressions were conducted for LH and RH twins. CC area was predicted by the same three 

variables in both models, which accounted for 95% of the RH twins’ variance (F(3,17) 

117.55, p≤0.001), and 92% of the LH twins’ variance (F(3,17) 66.72, p≤0.001). The greatest 

contributors were CC W49-62 (RH: b=0.462, t(17)=6.19, p≤0.001; LH b=0.384, t(17)=3.85, 

p≤0.01), W95-99 (RH: b=0.397, t(17)=7.45, p≤0.001; LH b=0.472, t(17)=6.33, p≤0.001) and 

W65-74 (RH: b=0.421, t(17)=5.69, p≤0.001; LH b=0.332, t(17)=3.38, p≤0.01). This result, 

together with the correlations described above, indicates a similar RH to LH pattern of inter-

regional and region-to-whole CC relationships in these MZHd twins.  

 RH and LH twins were then grouped on the basis of HPI scores. When all responses were 

right handed or left handed, consistent RH (cRH, n=16) and consistent LH (cLH, n=10) 

groupings were assigned. When at least one item was not consistent with writing preference, 

nonconsistent RH (ncRH, n=5) and nonconsistent LH (ncLH, n=11) groupings were 

assigned. All cRHs scored +100 and all cLHs scored -100. For ncRHs, HPI scores ranged 

from +70 to +90 (mean=82). For ncLHs, HPI scores ranged from -90 to +20 (mean=-47). 

Means and standard errors of the seven CC regional factor widths for the four groups are 

plotted in Figure 4. In RH twins, cRHs were larger than ncRHs (t(19)=2.38, p≤0.05) in W3-

18 (Table 3). Within LH twins, there was no significant difference in regional CC size 

between cLH and ncLH groups.   
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[Figure 4 here] 

  

Discussion  

This paper links established findings on twins, handedness and the CC together with 

new and expanded analyses from our current research programme on MZHd twins to: (a) 

identify the most enduring trends from the past 25 years in relation to handedness and the CC 

in females; and (b) use these robust findings as a platform for examining the convergent 

evidence on CC organisation and the development of functional asymmetries. The approach 

also built on two important contributions to human CC research: (i) Sandra Witelson’s 

seminal work on regional effects of handedness on the CC (Witelson, 1986); and (ii) Victor 

Denenberg’s stereological measurement and factor analysis method of CC regional 

quantification in rodents (Denenberg et al., 1989) that was subsequently adapted for use with 

humans (Denenberg et al., 1991a, Denenberg et al., 1991b). Both employed a continuous 

reflective method in which biobehavioural paradigms were developed to examine structure-

function relationships within a life span development context. This approach underpins a 

body of work documenting wide ranging regional effects in CC anatomy using stereological 

and factor analytic approaches to conduct fine-grained analysis of consistent and non-

consistent right and left hand preference and to examine sex and age in relation to regional 

CC form and size (Denenberg et al., 1991b, Cowell et al., 1992, Cowell et al., 1993, Cowell 

et al., 1994). This furnished the conceptual background, methodology and comparison data 

for our analyses in our current study. 

In-depth anatomical profiles of the CC in MZHd twins used regional divisions based 

on Denenberg’s statistical approach. The method, based on stereological measurements of 99 

callosal widths (Denenberg et al., 1991a) and seven CC subregions derived via factor analysis 

(Denenberg et al., 1989, Denenberg et al., 1991b), has withstood the test of time. Its factor 
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analysis has been replicated (Cowell et al., 1994, Peters et al., 2002) and is reflected in results 

of more recent neuroimaging research. Hofer and Frahm (2006) used DTI-based tractography 

to identify seven distinct fibre tracts which they parcelled into 5 regions. From anterior to 

posterior, Hofer and Frahm’s regions were (I) prefrontal, (II) premotor and SMA, (III) motor, 

(IV) sensory and (V) comprised of 3 fibre bundles connecting parietal, temporal and occipital 

cortical regions1. The above seven fibre tracts identified by Hofer and Frahm (2006) 

correspond topographically with the seven regions derived through factor analysis of the 99 

percentile widths measured along the curved anterior-posterior CC axis, as originally 

described by Denenberg et al. (1991b). However, not all models partitioning the human CC 

have reached consensus as to the number and topography of regional subdivisions. As part of 

a detailed series of analyses including a callosal mapping of cortical regions defined by 

Brodmann’s areas, Chao et al. (2009) compared CC segmentation in 12 adults to DTI based 

mappings in 8 adults produced by Hofer and Frahm (2006). Both groups isolated three CC 

regions associated with (pre)frontal, premotor/SMA and primary motor cortices. Yet, the 

distribution of these regions along the anterior-posterior axis of the CC was not consistently 

aligned which may be due to the combined differences in methodological approach and 

human participants sampled (Chao et al., 2009).  In relation to our study, it is important to 

note the difference that handedness can confer on the organisation of interhemispheric fibre 

tracts of the frontal cortices as a function of right-left hand differences in men and women 

Hagmann et al. (2006).  

 The factor structure model was shown to be robust to both handedness and sex (Cowell et 

al., 1994) and as such remains a stable statistical method for characterizing regional CC 

structure. This is demonstrated further through a comparison of data from the current study of 

twins and comparable measures from previous publications in singletons. CC W3-18 means 

                                                           
1 Overlapping such that they could not be separated geometrically by vertical lines.  
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for the four handedness groups are presented in Table 3. The pattern of results across the four 

handedness groups for W3-18 was consistent with the values from the singleton samples 

(Cowell et al., 1993). In MZHd RH twins, and in singleton right-handed women, cRHs had 

larger widths than ncRHs. Trends in the opposite direction were observed for consistent left-

handers (cLH) versus non-consistent left-handers (ncLH), albeit smaller in magnitude.  

[Table 3 here] 

Absolute and relative ranges derived from eight groups of singleton women are 

presented in Table 4 for the seven CC factor widths. These data were from published reports 

of four groups of singleton women as a function of hand preference direction and consistency 

(cRH, cLH, ncRH, ncLH) (Cowell et al., 1993) and four groups of singleton women as a 

function of ages comparable to our twin database (31-40, 41-50, 51-60 and 61-79 years) 

(Cowell et al., 1992).  Data are summarised as a function of samples drawn from the two 

previous studies of handedness and age and their combined ranges (Table 4). The region with 

the highest degree of variability across the data from previously published singleton studies 

was W22-39. For each of the singleton datasets and their combination, W22-39 showed the 

largest absolute and relative ranges.  

[Table 4 here] 

 

In the results and further comparisons above, findings from particular regions were 

combined to shed light on the complex interplay of variables which contribute to 

development of neurofunctional relationships in manual and related cognitive asymmetries.  

Results are considered from the perspective of shared genetic and environmental 

backgrounds in MZHd twins, in contrast to the differences resulting from a range of 

environmental and developmental factors that contribute to handedness discordance.  
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CC area in RH and LH MZHd twins (Table 2) showed an intraclass correlation (ICC) 

of 0.876. This is consistent with Scamvougeras et al.’s (2003) ICC of 0.87 (young adult male 

and female MZ twins, unstated hand preference). It is also consistent with Haberling et al.’s 

(2012) ICCs for total CC size of 0.931 (MZ pairs characterized as ‘right-shift positive’) and 

0.932 (‘right-shift negative’) as related to measures of handedness and cerebral lateralisation 

for language. These results indicate a stable effect within the literature and provide a solid 

basis against which to consider regional analysis of the CC in our current sample of MZHd 

twins. They are consistent with a view that the strength of correlation is associated with 

monozygosity, and appears robust to gender and hand preference differences between the 

studies and samples. 

Against the backdrop of MZ related anatomical covariance, results from the current 

regional CC dataset confirm that only the anterior body region differed significantly within 

MZHd twins as a function of the direction of hand preference for writing (i.e., RH versus LH 

twins). This was observed within the profile of the 99 widths, falling between percentile 

widths 21 through 43, and in the mean width for factor W22-39, the region shown previously 

to correlate with lateralised covert verbal fluency activation in the inferior frontal cortex 

(Gurd et al., 2013).  This expands on our previous work demonstrating regional differences in 

CC size between MZHd twins (Gurd et al., 2013). Specifically, W22-39 which interconnects 

the premotor cortex (Hofer and Frahm, 2006) was larger in LH twins for over 90% of the 

MZHd pairs; a finding that holds for the raw measurement and regional width as a percentage 

of overall CC size. 

Given the common genetics and shared early environments within twin pairs, there is 

a strong argument for the combined role of distinct developmental, environmental and 

experiential factors in shaping the relationship between left handedness and larger callosal 

widths in region W22-39. There are several plausible explanations. In terms of directionality 
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of causation, it is possible that perinatal events in one twin formed the basis for a wider 

callosum, which in turn provided the neurofunctional basis for left handedness.  It is also 

possible that left hand use per se contributed to increases in connectivity between right and 

left premotor cortex. These combined effects on CC W22-39 may also reflect late 

development of manual use (Gurd et al., 2006), manual motor learning (Palmis et al., 2017)  

and changes in interconnectivity between fine motor systems and related language regions 

used in writing (Varley et al., 2005, Pelletier et al., 2011). Since the above premises are not 

mutually exclusive, it is possible that all are to some extent involved, either within or 

between pairs (cf. Gurd et al. (2013)).  

Hand preference is evident in early years (age 5 at least), and is well established prior 

to the maximum life span exposure of twins to shared environmental effects, reached by 

adolescence and beyond (Brun et al., 2009).  In MZHd twins, our view is that unique 

environmental factors contribute to the differential development of handedness in MZHd 

twins in early life. This is consistent with reports that genetic effects account for only 24% of 

sample variance related to hand preference (Medland et al., 2009). Once neurobehavioural 

differences in the twins’ developmental trajectory are in place, they are accentuated by the 

cumulative long term exposure of living in the context of either a right hander’s or a left 

hander’s experiences. Thus, contrasts in interhemispheric measures of premotor cortical 

white matter in MZHd twins are congruent with left handedness being both a result and a 

source of unique environmental variance. This sheds new light on the question of what it 

means to be left handed from a developmental perspective.  

Importantly, the wide range of values for CC W22-39, observed in data from female 

singletons and twins across three studies, is consistent with the interpretation that this region 

has a high degree of variability across subgroups of the adult female population. What sets 

the W22-39 region in the MZHd sample apart from samples of singletons is its high rate of 
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inter-individual variation combined with the high degree of RH-LH twin correlation. 

Conceptual mapping of the statistical pattern therefore, highlights W22-39 as a CC region 

with high between twin-pair variability (comparable to the between group variability 

observed in singletons), and a highly consistent direction of LH greater than RH callosal 

widths effect. The direction of this effect in MZHd twins (LH > RH), mirrors previous 

findings in healthy adult male singletons (Denenberg et al., 1991b, Cowell et al., 1993) which 

may be consistent with the presence of perinatal hormone effects (van Hemmen et al., 2017).   

Moreover, lateralised speech and language systems also appear to be sensitive to hormonally 

mediated effects in the perinatal development of female twins (Cohen-Bendahan et al., 2004) 

and singletons (Moreno et al., 2014). Although the source and timing of hormonal exposure 

cannot be verified in our MZHd twins, perinatal stress may also be involved (Smith et al., 

2007).  

Evidence from the constellation of characteristics observed for W22-39 in the current 

and previous reports on our MZHd twin sample (Gurd et al., 2013, Rosch et al., 2018) 

supports a more general view that handedness-related variation in cortical frontal systems 

connected via CC W22-39 is likely to be environmentally but also, potentially hormonally 

mediated. It is important to note that the cross study comparisons to Cowell et al. (1992, 

1993) indicate that W22-39 and the interconnected cortical regions of the frontal lobe (Hofer 

and Frahm, 2006) may be zones of cortical plasticity with particular sensitivity to factors that 

impact direction of hand preference (Hagmann et al., 2006). Left handed populations have 

tended to operate in cultural/technological environments better suited to (or biased in favour 

of), right handers.  And yet, left handers still retain a manual superiority for function in right 

body-centred hemispace (Banissy et al., 2012) and are more likely to have reversal or absence 

of the left hemisphere population asymmetry for language function (Pujol et al., 1999, 

Szaflarski et al., 2002, Pelletier et al., 2011), thus increasing the need for interhemispheric 



AUTHORS’ MANUSCRIPT, ACCEPTED 8 JUNE 2018, NEUROSCIENCE 

20 
 

connectivity of premotor regions. This is particularly true in left-handed writers with left 

hemisphere language lateralisation for tasks involving, e.g., written spelling (Varley et al., 

2005, Glickstein and Berlucchi, 2008). Left handers are also more likely to be mixed-handed 

for other tasks, and/or to use both their left and right hands when compared to right-handers 

(Annett, 2004, Gurd et al., 2006). Thus for left handers, task sequences which involve visual-

manual coordination, fine motor and verbal skills may require interhemispheric frontal 

network connections that are functionally distinct from those in right handers.  

In a study of right and left hand fist closures, Pool et al. (2014) observed a contrast 

between the neural coupling of regions for right and left handers when using their non-

preferred hands. In left handers, neural coupling during right hand use mirrored that seen in 

left hand use (Pool et al., 2014). However, in right handers, the left hand use invoked 

additional connections, reflecting more negative coupling across motor regions.  Thus, 

additional inhibitory neural coupling (some of which involves motor and premotor regions of 

the right and left hemispheres), was required for right handers to use their left hand, whereas 

left handers showed matching patterns of neural coupling (i.e., in mirror image) for left and 

right hand use. This fundamental distinction highlights a changing role for the CC vis-à-vis 

handedness:  the CC provides inhibitory capacity in right handers, but connective capacity in 

left handers despite similar behavioural contexts, and particularly when homotopic CC 

connections of primary motor cortex and heterotopic connections between motor, premotor 

and supplementary cortical areas are involved. The inference then, is that left handers (and 

their neural networks) appear well adapted to living in an environment shaped by the human 

population asymmetry for right hand preference, but use different interhemispheric structure-

function mechanisms to adapt when using their non-dominant hand, compared to right 

handers. In this respect, our current report maintains consistency with our recent findings 
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pertinent to cerebellar structure and function. This showed distinct patterns of correlations in 

LH twins between anterior cerebellar asymmetry and CC W49-62 (Rosch et al., 2018).  

A multifaceted array of components shapes the developmental trajectories giving rise 

to different structure-function relationships between the CC and hand preference in adults. 

These components can in part be disambiguated through comparison of effects observed in 

CC W3-18, the region anteriorly adjacent to W22-39. The form-function relationships 

observed for W3-18, the anterior-most callosal region, showed a number of characteristics 

distinct from those observed for W22-39.  With respect to brain structure, W3-18 did not 

show size differences between RH and LH twins.  Instead, differences in W3-18 paralleled 

effects observed in female singletons, specifically, consistent right handers had larger callosal 

widths than non-consistent right handers (Cowell et al., 1993). There were however, item-

based differences in the scales used to measure hand preference indices between the current 

study and Cowell et al. (1993). HPI scores in the current study of MZHd twins included the 

full (modified) Oldfield hand preference battery. In contrast, a 5-item subset of the full 

battery was used with participants studied by Cowell et al. (1993). Nonetheless, cRH and 

cLH participants from both had completely rightward or completely leftward scores, 

respectively, on all items.  These two groups are the most clearly matched in terms of fine 

motor asymmetry profiles, especially with respect to writing, for which they strongly 

preferred either the left or right hand. Indeed, the two groups of cRH women differed by less 

than two tenths of a millimetre in W3-18.  

Callosal W3-18 showed one of the lowest correlations within MZHd twin pairs (i.e., 

between RH and LH).  This indicates a set of developmental influences on regional callosal 

size for W3-18 (and related prefrontal cortical regions) distinguishable from those of W22-

39.  This dissociation is also consistent with Caille et al. (2005) who reported localised 

function mapping of interhemispheric manual motor function by studying people with 
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different lesions of the anterior callosum. For W3-18 in MZHd twins, values for the hand 

preference subgroups followed the same pattern as singletons, as indicated by the comparable 

means for consistent and non-consistent right and left handed women in both samples 

(Cowell et al., 1993). We interpret these combined effects as indicating that the callosal fibres 

connecting the prefrontal cortices in MZHd twins may be shaped by a similar set of 

environmental and neurodevelopmental effects to those of singletons (i.e., they are not 

artefacts of perinatal twinnedness or twin births). Another distinguishing feature of MZHd 

twins, is that W3-18 was the only factor width not correlating with its adjacent region. In both 

RH and LH twins, W3-18 was strongly correlated with W77-85. Moreover, W3-18 exhibited 

patterns of moderate RH-LH twin correlations similar in magnitude to those observed in the 

posterior regions (W77-85, W89-94 and W95-99). These four CC factor regions correspond 

to the four regions shown by Hofer et al. (2006) to have the lowest fractional anisotropy. This 

supports the view that distinct sets of developmental factors are involved in shaping the 

relationships between regional CC size in W3-18 versus W22-39 and the outlying cortical 

systems they interconnect.   

A unique feature of W22-39, as revealed here, is its global sensitivity to variation - as 

expressed in the high variability derived from cross study comparisons, and the significant, 

directionally consistent, size difference between LH and RH MZHd twins. From a theoretical 

point of view, it may be concluded that some cortical systems (e.g., W3-18 and prefrontal 

cortex) are sensitive to factors that differentiate consistent and non-consistent subgroups of 

right handed female singletons and twins. In contrast, other cortical regions (e.g., W22-39 

and premotor cortex), show an enormous range of variability across groups and individuals, 

yet, within genetically constrained systems such as MZ twin pairs, respond to common 

environmental influences in a unidirectional manner.  Notably, in the regression analysis, a 

similar structure emerged for both sets of twins, where W22-39 did not contribute 
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significantly to the variance of total CC area. This result was due in part to the high 

correlation of W22-39 with other factors selected earlier in the stepwise process. The salience 

of this finding in the context of the full set of results is that W22-39 behaved in a similar 

statistical fashion in RH and LH twins in terms of its pattern of association with overall CC 

area and the surrounding CC regions. Despite this evidence for close organisational parallels 

in RH and LH twins’ CC anatomy, the size of W22-39 differed significantly as a function of 

their handedness discordance.  Thus, future interest will be in unpacking the exact meaning 

of, and statistical contributors to, these cortically distinct elements of neurodevelopment, and 

their functional significance to explaining individual and twin neurobehavioural organisation 

in health and disease.  
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List of abbreviations: 

Corpus callosum (CC) 

Monozygotic twins discordant for handedness (MZHd) 

Monozygotic (MZ) 

Dizygotic (DZ) 

Right-handed (RH) 

Left-handed (LH) 

Consistent right-handers (cRH) and non-consistent right handers (ncRH) 

Consistent left-handers (cLH) and non-consistent left handers (ncLH) 

Hand preference inventory (HPI) 
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Figure captions. 

Figure 1. Panel A. Corpus callosum measurement at sagittal midline (anterior left; posterior 

right) using Callosum software. The perimeter is in blue, the central length in yellow, and the 

percentile widths in red. See text for details of the software and parameter measures (Figure 

previously published in Gurd et al (2013)). Panel B. Corpus callosum (anterior left; posterior 

right) with the seven regional factor width regions depicted. Factor widths were derived using 

similar measurement algorithms and factor analysis of 99 percentile widths as used by 

Denenberg et al. (1991b) (Figure previously published in Gurd et al (2013)). 

Figure 2.  Ninety-nine CC percentile widths presented as the mean values in mm (±SE) for 

right (RH, circles) and left handed (LH, triangles) twins. 

Figure 3. CC area (mm2; Panel A), CC W22-39 (mm; Panel B) and CC W22-39 as a percent 

of CC area (Panel C) for RH and LH MZHd twins. Data are plotted in relation to the 

regression line (solid) and the identity line (dashed) in order to depict the consistency of the 

direction of effects in W22-39 between LH and RH twins (as a raw measure and as a percent 

of CC area), in contrast to the CC area overall (for full explanation, see Results).  

Figure 4. Mean (±SE) regional CC widths (mm) for RH (Panel A) and LH (Panel B) twins 

plotted as a function of handedness consistency. Data for consistent right (cRH) and left 

handers (cLH) are plotted in solid lines. Data for nonconsistent right (ncRH) and left handers 

(ncLH) are plotted in dashed lines. 
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Table captions. 

Table 1. Means (±SE) for global and regional CC measures for right (RH) compared to left 

handed (LH) twins. Only the comparison of W22-39 was significantly different with LH 

greater than RH twins for this region. (All units are mm except area which is mm2; 

significance p≤0.01**).  

 

Table 2. Within twin pair correlations are presented for each CC measure, with Pearson’s r 

values for relative agreement (upper row) and intraclass correlations (ICC) for absolute 

agreement (lower row). All correlation values were significant (p-values≤0.01).  

 

Table 3. Means (±SEs) for W3-18 in consistent and nonconsistent right handed (cRH, ncRH) 

and left handed (cLH, ncLH) women. Singleton values are from Cowell et al. (1993) and 

MZHd values are from the present study. cRH MZHd twins had significantly larger W3-18 

than ncRH twins (p≤0.05). 

 

Table 4. Ranges for values (in mm) of each CC region as a function of four age groups in 

singletons and four hand preference groups in singletons. Relative range ratios 

[range/median] are in brackets. The singleton datasets were derived from previous reports of 

the CC as a function of age (Cowell et al., 1992) and handedness (Cowell et al., 1993). 
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Figure 1. 
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Figure 2. 
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Figure 3.  
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Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC Factors 

cRH 
ncRH 

cLH 
ncLH 



AUTHORS’ MANUSCRIPT, ACCEPTED 8 JUNE 2018, NEUROSCIENCE 

33 
 

Table 1. Means (±SE) for global and regional CC measures for right (RH) compared to left handed (LH) twins. Only the comparison of W22-39 

was significantly different with LH greater than RH twins for this region. (All units are mm except area which is mm2; significance p≤0.01**).  

 

 Area Length W3-18 W22-39** W49-62 W65-74 W77-85 W89-94 W95-99 

RH 812.05±26.86 99.45±1.81 10.98±0.38 8.29±0.27 7.18±0.24 7.19±0.26 11.42±0.36 11.48±0.29 4.01±0.08 

LH 820.86±28.36 99.97±1.77 11.03±0.43 8.84±0.31 7.08±0.23 7.19±0.28 11.56±0.52 11.65±0.36 4.04±0.08 

 

  



AUTHORS’ MANUSCRIPT, ACCEPTED 8 JUNE 2018, NEUROSCIENCE 

34 
 

Table 2. Within twin pair correlations are presented for each CC measure, with Pearson’s r 

values for relative agreement (upper row) and intraclass correlations (ICC) for absolute 

agreement (lower row). All correlation values were significant (p-values≤0.01).  

 Area Length W3-18 W22-39 W49-62 W65-74 W77-85 W89-94 W95-99 

r 0.874 0.739 0.626 0.849 0.834 0.880 0.765 0.615 0.719 

ICC 0.876 0.746 0.631 0.778 0.836 0.882 0.728 0.607 0.727 
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Table 3. Means (±SEs) for W3-18 in consistent and nonconsistent right handed (cRH, ncRH) 

and left handed (cLH, ncLH) women. Singleton values are from Cowell et al. (1993) and 

MZHd values are from the present study. cRH MZHd twins had significantly larger W3-18 

than ncRH twins (p≤0.05). 

Handedness Groups Singletons MZHd twins 

cRH 11.57±0.45 
(n=12) 

11.43±0.41 
(n=16) 

ncRH 10.00±0.50 
(n=15) 

9.54±0.49 
(n=5) 

cLH 10.49±1.36 
(n=6) 

10.90±0.54 
(n=10) 

ncLH 10.78±0.56 
(n=20) 

11.14±0.69 
(n=11) 
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Table 4. Ranges for values (in mm) of each CC region as a function of four age groups in 

singletons and four hand preference groups in singletons. Relative range ratios 

[range/median] are in brackets. The singleton datasets were derived from previous reports of 

the CC as a function of age (Cowell et al., 1992) and handedness (Cowell et al., 1993). 

 

 

 
Corpus callosum regional factor widths 

 
 
Dataset groups 
 

W3-18 
 

W22-39 
 

W49-62 
 

W65-74 
 

W77-85 
 

W89-94 
 

W95-99 
 

 
Singletons by Age  
 

 
2.12 

[0.19] 
 

 
2.17 

[0.23] 
 

 
0.70 

[0.11] 
 

 
0.71 

[0.10] 
 

 
1.47 

[0.12] 
 

 
1.13 

[0.10] 
 

 
0.28 

[0.06] 
 

Singletons by 
Handedness  

 
1.57 

[0.15] 
 

 
1.75 

[0.21] 
 

 
1.00 

[0.16] 
 

 
0.94 

[0.14] 
 

 
1.04 

[0.10] 
 

 
0.48 

[0.04] 
 

 
0.32 

[0.06] 
 

Singletons by Age and 
Handedness 

 
2.22 

[0.20] 
 

 
2.55 

[0.29] 
 

 
1.00 

[0.16] 
 

 
1.11 

[0.16] 
 

 
2.31 

[0.21] 
 

 
1.13 

[0.10] 
 

 
0.99 

[0.18] 
 

 

 

 

 

 


