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12 Abstract

13 Distinguishing the tectonic origin of anticlinal structures is problematic in regions with a 

14 complex history of rifting and inversion. We present the results of seismic mapping, in the 

15 form of time-depth (isochron) and time-thickness maps to characterize how sedimentary 

16 thickness differentials evolved in response to normal faulting and to inversion events on faults 

17 within the Abu Gharadig and Gindi Basins in the Western Desert of Egypt.  Late Cretaceous 

18 rift-related faults in the Abu Gharadig Basin strike NW-SE, W-E and SW-NE. In the eastern 

19 part of the basin, a prominent SW-NE trending interbasinal saddle formed in response to 

20 preferential subsidence forming half-grabens to its north-west and southeast, during the Mid-

21 Turonian to Santonian interval. Santonian to Palaeogene inversion in the Abu Gharadig Basin 

22 developed on its northern basin margin, the absence of SW-NE striking faults in the eastern 

23 central basin resulting in any inversion effects being minor. In the central Gindi Basin, Upper 

24 Cenomanian to Lower Turonian SW-NE striking rift faults underwent inversion as early as 

25 the Mid-Turonian. The orientation of existing rift faults and modification of the local stress 

26 fields control the extent to which inversion was taken up in each basin trough time. The Abu 

27 Gharadig and Gindi Basins are two of the rift basins developed in West and Central Africa 

28 that underwent rifting, inversion and dextral shearing during the Late Cretaceous. We 

29 emphasize the value of high-resolution stratigraphic mapping to characterize short-lived and 

30 subtle pop-up events that may have gone unnoticed.

31

32 Keywords: Anticlines - Rifting � Inversion tectonics - Abu Gharadig Basin - Gindi Basin.

33
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34 1. Introduction

35 A common problem in the structural interpretation of rift basins with long and complex 

36 tectonic histories is the distinction of structural and stratigraphic geometries that are the 

37 product of extensional rifting from those that result from compression and structural 

38 inversion. A range of fold types may form in response to normal fault growth, either a) as a 

39 response to growing fault hanging wall and footwall displacement fields  (e.g. Ellis and 

40 McClay, 1988; Schlische 1995; Contreras et al. 2000) or b) at a shorter wavelength, to the 

41 propagation of fault-tip monoclines (Wilson et al., 2009), or c) due to the interaction of 

42 displacement fields associated with adjacent normal faults (Morley et al., 1990; Cartwright et 

43 al., 1995; Dawers and Underhill 2000; Rotevatn and Jackson, 2014). Inversion of pre-existing 

44 normal faults and concurrent folding or tightening of rift-related folds may be a record of a 

45 change in the far-field stress regime from extension to compression (Cooper and Williams 

46 1989; Coward 1991; Tavernelli 1996; Turner and Williams 2004; Scisciani 2009; Withjack et 

47 al., 2010; Bonini et al., 2012), or to the rotation of principal stress directions (e.g. Paton and 

48 Underhill 2004).  The latter authors showed that subtle shifts in the orientation of the 

49 maximum deviatoric stress direction during rifting can create structures that in many cross-

50 sections appear to be inversion features. There is a possibility that rift-related structures may 

51 be misinterpreted as due to structural inversion resulting from a switch to a regional 

52 compressive regime. Examples of inverted rift basins worldwide are many and include the 

53 Australian Dampier Sub-Basin (Cathro and Karner, 2006); the Cameros Basin in Spain (Salè 

54 et al., 2014) and the Brazilian Rio do Peixe Basin (Nogueira et al., 2015). Detection and 

55 interpretation of inversion features within rift basins, and their distinction from rift-related 

56 structures, is important for accurate deductions of orientations of principal stress axes and 

57 appreciation of the region�s plate tectonic history through time.

58

59 Several hypotheses regarding the tectonic history of the Western Desert province in Egypt 

60 arose due to uncertainties in the origin and timing of anticlinal growth in various rift basins in 

61 the region. For example, Bayoumi and Lofty (1989) invoked a broad phase of Late 

62 Cretaceous to Early Cainozoic compression and inversion in the Western Desert. Whereas, 

63 Moustafa (2008) referred to continuous normal fault activity in the Late Cretaceous to Early 

64 Cainozoic along WNW-ESE striking faults, which are thought to be parallel to the 

65 contemporaneous shortening direction related to convergence of Afro-Arabia and Eurasia. 

66 Moustafa (2008) proposed that multiple pulses of inversion took place across the Western 

67 Desert in the Late Cretaceous to Oligocene, inverting early rift faults of NE-SW, ENE-WSW 
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68 and NNE-SSW orientation and developing similarly oriented structural traps. Bosworth et al. 

69 (2008) noted that arc collisions on the north-east African margin from the Santonian onwards 

70 yielded varied structural expressions across the Western Desert, depending on whether the 

71 affected structure lay within the stress shadow of the Cyrenaican inversion belt.  Shortening 

72 was most severe in a belt reaching from northern Libya across to the Levant and diminished 

73 to the south and east of this deformation belt. In this context, it is the northern margin of the 

74 Abu Gharadig Basin (Fig. 1) which has accommodated the major part of the shortening of this 

75 basin, across the Mubarak Inversion Complex (as illustrated in Bosworth et al. 2008). 

76 Moustafa (2013) proposed that the NE-SW orientation of the Abu Gharadig Field anticlinal 

77 trap was due to rift-related subsidence to both the NW and SE of the fold axis. 

78

79 This study focuses on the Abu Gharadig and Gindi Basins in the Western Desert, Egypt 

80 (Figure 1), and illustrates the use of stratigraphic thickness changes in time-thickness maps as 

81 the primary tool to distinguish rift-related from inversion-related structural geometries. As 

82 outlined above, the different anticline geometries and orientations present across the adjacent 

83 basins have been explained by differing tectonic interpretations in the recent past. In this 

84 study, we aim to show that with detailed mapping, even where only a really restricted 2D 

85 seismic surveys are available, coherent tectonic interpretations can be derived from these data. 

86 We present time-depth maps of key stratigraphic surfaces within each basin, and then produce 

87 time-thickness maps for key intervals. These time thickness maps together with cross-sections 

88 are critical for distinguishing the timing of extensional activity on normal faults of varied 

89 orientations, and for isolating which fault orientations may have undergone any 

90 compressional inversion effects and when this occurred.

91

92 2. Geologic setting

93 The Triassic-Early Cretaceous rift basins in the northern Western Desert of Egypt resulted 

94 from the opening of the Tethys Ocean (e.g. Ziegler, 1987; Frizon de Lemotte et al., 2011) and 

95 subsequent inversion (Bayoumi and Lofty, 1989; Guiraud, 1998; Bosworth, 1994; Bosworth 

96 et al., 2008; Wescott et al., 2011). The Abu Gharadig Basin and the Gindi Basin are 

97 productive hydrocarbon basins in the northern part of the Egyptian Western Desert. Both 

98 basins originated as N- and NE-tilted half-grabens in the Jurassic-Early Cretaceous concurrent 

99 with the opening of the Neo-Tethys and Atlantic oceans (Moustafa, 2008).

100
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101 The stratigraphy of the northern Western Desert, including both the Abu Gharadig and Gindi 

102 Basins is summarized in Figure 2. This study is focused on the Upper Cretaceous to 

103 Oligocene strata. The Late Cretaceous rock units are divided into three formations from base 

104 to top, the Bahariya, Abu Roash and Khoman Formations.  The Bahariya Formation 

105 (Cenomanian age) conformably overlies the Early Cretaceous Kharita Formation (EGPC, 

106 1992). It consists of fine to medium-grained sandstone with thin shale and carbonate interbeds 

107 (Soliman and El Badry, 1980; Schlumberger, 1984). The Bahariya Formation is thought to 

108 have been deposited by fluvial systems passing into inner shelf, shallow marine environments 

109 (Abd El Kireem et al., 1996).  

110

111 The Abu Roash Formation (Turonian-Coniacian age) conformably overlies the Bahariya 

112 Formation and unconformably underlies the Khoman Formation. It is composed of 

113 alternations of carbonate and clastic rocks and is subdivided into seven members named A to 

114 G from top to base. It was deposited under shallow marine shelf conditions (Schlumberger, 

115 1984; EGPC, 1992; Abd El Kireem et al., 1996) as successive oscillating transgressive-

116 regressive marine cycles (Sarhan, 2017a).  The Khoman Formation (Santonian-Maastrichtian 

117 age) overlies the Abu Roash Formation unconformably (Hantar, 1990; Abd El Kireem and 

118 Ibrahim, 1987; Schrank and Ibrahim, 1995) and comprises a thick chalky limestone section 

119 deposited under outer shelf conditions (Sultan and Halim, 1988; EGPC, 1992; Abd El Kireem 

120 et al. 1996; Tantawy et al., 2001; Mahsoub et al., 2012) during widespread sea-level rise 

121 covered most of the northern parts of Egyptian lands associated with basin subsidence 

122 (Sarhan, 2017a). It is subdivided into two members by an unconformity surface; the lower 

123 member B is composed of shale and argillaceous limestone whilst the upper A member is 

124 composed of chalky limestone (Fawzy and Dahi, 1992). These unconformities tend not to be 

125 obvious within depocentres, where continuous sedimentation resulted in their correlative 

126 conformities.

127

128 At the end of Cretaceous time, a marked depositional gap and erosional truncations developed 

129 over much of the Western Desert, during the Palaeocene (Schlumberger, 1984; EGPC, 1992). 

130 The Eocene Apollonia Formation unconformably overlies the Late Cretaceous Khoman 

131 Formation and consists of hard limestone and rare chalky limestones, with some shale 

132 intercalations deposited in an open marine environment (Fawzy and Dahi, 1992; EGPC, 1992; 

133 Bakry, 1993). The Oligocene Dabaa Formation is composed of a thick shale succession and 

134 overlies the Apollonia Formation unconformably (Fawzy and Dahi, 1992). It was deposited 
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135 under inner-shelf to littoral environments, shallower than the depositional environment of the 

136 underlying Apolonia Formation (EGPC, 1992).  

137

138 Most of the hydrocarbons in the Western Desert, including in the Abu Gharadig and Gindi 

139 Basins were discovered by targeting structural prospects in sandstone and carbonate 

140 reservoirs (e.g. Sarhan et al., 2017a & b). These structural traps appear as three-way fault-

141 bounded or elongate, dome-like four-way closures, within the Cretaceous sedimentary 

142 package (e.g. Sarhan, 2017b; Sarhan et al., 2017b). These traps formed when Upper 

143 Cretaceous tectonic inversion affected the northern part of the Western Desert (Sultan and 

144 Abd El Halim 1988; EGPC, 1992, and David et al., 2003). Structural geometries in the 

145 inverted basins display great variation from one basin to another, depending on the pre-

146 inversion structure of each basin. 

147

148 The present work aims to characterize the orientation of inversion structures in the Abu 

149 Gharadig Basin and the Gindi Basin, to understand how Upper Cretaceous tectonic inversion 

150 affected the two sedimentary basins in the northern Western Desert of Egypt.

151

152 3. Data and methodology

153 The first study area is the central part of the Abu Gharadig Basin in the northern Western 

154 Desert that lies between latitudes 29.5o and 30o N and between longitudes 28.3o and 28.8o E 

155 (Figure 1). The seismic data available for this study were 30 (thirty) 2D migrated seismic 

156 reflection profiles at 2 km spacing extracted from a 3D seismic cube. Eleven (11) seismic 

157 lines-oriented ENE-WSW are up to 55.5 km long, and nineteen lines are oriented NNW-SSE 

158 trend and 25.5 km (Figure 3a). These seismic sections are tied to five wells (AG-2, AG-5, 

159 AG-6, AG-15 and SAWAG-1). 

160

161 The second study area lies between latitudes 29.7o and 29.8o N and longitudes 30.4o and 30.5o 

162 E within the central part of the Gindi Basin (Figure 1). The available data comprised 20 

163 (twenty) 2D migrated seismic reflection sections, comprising eleven of N-S orientation and 

164 nine trending E-W (Figure 3b). These seismic data sets are tied to three wells, SWQ-4, SWQ-

165 21 and SWQ-25. 

166

167 The procedures used in the present work to achieve the aim of the paper are a) the picking of 

168 faults in each basin, and b) the picking of distinct and laterally extensive seismic horizons, 
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169 which are tied to the stratigraphic data from the wells in the basins.  The interpreted faults and 

170 key horizons were mapped over the grid of 2D seismic lines to construct time-depth 

171 (isochron) maps, which allow the preparation of time-thickness (time-isochore) maps for each 

172 stratigraphic interval.

173

174 4. Results

175 4.1.  Abu Gharadig Basin

176 Within this dataset, five seismic reflectors represent the clearest surfaces along all the 

177 examined seismic profiles. These surfaces display strong, relatively continuous and high 

178 amplitude reflectors across the seismic profiles (Figures 4a and b). According to the well-

179 seismic ties, these horizons represent: (a) the top of the Bahariya Formation (green), varying 

180 in time-depth from 1400 to 2900 ms (Figure 2); (b) the top of the Abu Roash D Member (pale 

181 blue) that ranges from  1300 to 2500 ms in time-depth; (c) a high amplitude reflector  

182 designated near the top of Khoman B Member (yellow), picked higher than the real top of 

183 Khoman B surface by about 50 ms  and varying in time-depth between 800 and 1800 ms; (d) 

184 near the top of Khoman A Member (pink), picked about 150 ms higher than the real top of 

185 Khoman A surface, ranging in time-depth from 500 to1300 ms; and (e) the uppermost  

186 horizon being a near-top Dabaa Formation surface (dark blue) at about 100 ms below the true 

187 top Dabaa Formation, and which varies in time-depth between 300 and 625 ms. 

188

189 Fault picks reveal that all the interpreted faults in this study area have net normal 

190 (extensional) offsets. The time-depth maps for the interpreted surfaces show that the faults 

191 form two groups, faults of NW-SE trend with lengths between 5 km and at least 16 km, and 

192 faults of approximately E-W trend, which range in length from 5km to at least 20 km (Figure 

193 5). These intrabasinal fault trends compare with the Abu Gharadig Basin border faults, which 

194 have NE-SW to E-W to ESE-WNW strikes (Figure 1). Note that the map areas presented in 

195 Figure 5 and other figures have been trimmed to avoid edge effects in the contouring.

196

197 The largest fault in this area forms one of the Abu Gharadig basin-bounding faults with throw 

198 ranging from 900 ms up to about 1100 ms at top-Bahariya level (F1, coloured red in Figure 4b 

199 and in Figure 5). Sedimentary strata in the hanging wall of this main fault have a component 

200 of dip toward its plane and form a significant dip-fan into the fault across all Upper 

201 Cretaceous to Oligocene mapped intervals, suggesting persistent reactivation and progressive 

202 rotation of the fault block during basin infilling episodes on its hanging wall side. 
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203

204 Mapped surfaces (Figure 5) are tilted to the north and north-west, towards the basin-bounding 

205 fault set that lies outside this study area, but which controls the northern margin of the Abu 

206 Gharadig Basin (Figure 1). The northern basin margin is delimited by E-W trending faults 

207 (Bosworth et al., 2008). An anticline in the central part of the study area trends NE-SW and 

208 includes the structural closure of the Abu Gharadig Field (Moustafa, 2008). This anticline is 

209 prominent at Top Bahariya and Top Abu Roash D levels (Figures 5a and 5b).

210

211 Line 5240 (Figure 4b) shows a major E-W fault (F2, coloured green) which downthrows to 

212 the north with significant offsets at Top Bahariya Formation and Top Abu Roash D levels. In 

213 other lines, it is clear that this fault cuts through all the interpreted horizons from the Top 

214 Bahariya horizon up to the Near-top Dabaa Formation horizon (Figure 5). Growth on this 

215 fault (and associated secondary faults of similar orientation) during the Top Abu Roash D 

216 Member to near the top of Khoman B Member interval contributed to the formation of the 

217 anticlinal closure, as did growth in the hanging wall to the F1 fault of opposite dip. The 

218 anticline may be considered to lie in the hanging wall of F1, the more major fault of the two, 

219 because all picked stratigraphic surfaces of the anticline are at a lower structural level than the 

220 equivalent surfaces in the footwall to F1, as seen in the WSW-ENE oriented line of section in 

221 Figure 4b.  

222

223 The time-thickness maps for the four intervals bounded by the five interpreted horizons are 

224 presented in Figure 6. The Top Bahariya Formation to Top Abu Roash D interval (Figure 6a) 

225 displays thickening over the area of study to the north-west, into the northern basin margin 

226 fault set, and thickening to the north-east into the F1 NW-SE trending normal fault. Extension 

227 was thus being taken up on these faults and secondary faults of E-W to NW-SE strike during 

228 this period.

229

230 The second time-thickness map displays the interval between Top Abu Roash D and near the 

231 top of Khoman B Member (Fig. 6b) and shows a significant thickening to the NE again, 

232 towards fault F1 of NW-SE strike, with time-thickness values reaching 750 ms on the 

233 downthrown side of the fault. Also prominent within this time interval is thickening on either 

234 side of the Abu Gharadig central antiform. Within our study area, thicknesses can be seen to 

235 increase northwestwards to the north-west of this structure and to increase to the east 

236 southeast to the southeast of this antiform. Faults active within the study area are oriented E-
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237 W to NW-SE, but the thickening to the NW and ESE of the antiform implies that faults at the 

238 basin margins to the north (dipping S or SE) and to the south-east (dipping NW) were 

239 controlling sedimentary thickening, such that the antiform formed as a saddle between two 

240 half-grabens of opposing dip during this period of active rifting. This saddle thus formed an 

241 interbasinal high between two fault-controlled depocentres of opposing polarity.

242

243 The time-thickness map of the stratigraphic interval between the near the top of Khoman B 

244 and near the top of Khoman A surfaces (Fig. 6c) displays less dramatic thickness differentials 

245 of up to 200 ms TWT in the study area. This suggests either less variable sedimentation rates 

246 with lesser tectonic activity during this period of deposition or a period of basin under filling. 

247 In the south and east of the study area, thicknesses increase toward the basin margin that lay 

248 to the southeast. In the north of the study area, thicknesses increase on the south-west, 

249 downthrown side of F1, indicating continued normal displacement on this structure. 

250 Thicknesses also increase to the north-west of the central antiform axis. Within the limited 

251 area mapped in this study, it is not clear whether the thickness differentials toward the 

252 northern and southeastern basin margins were due to continued extensional growth on basin 

253 margin faults or due to thickening into inversion-related growth synclines to NW and SE. The 

254 marker horizons remain below their regional levels, in net extension. Either way, the central 

255 antiform saddle is accentuated by differential subsidence to the north or north-west and to the 

256 south of its axis during this interval.

257

258 The time-thickness map of Figure 6d represents the interval from near the top of Khoman A 

259 to near the top of Dabaa Formation, which post-dates the Cretaceous-Palaeogene 

260 unconformity. This interval again shows a significant increase in thickness on the 

261 downthrown side of the F1 NW-SE trending normal fault. However, across the study area, 

262 thicknesses increase toward the NNW to a maximum time-thickness of 680 ms and higher 

263 values toward the northern basin margin faults. There is no expression of the central high or 

264 saddle. The south-dipping half-graben to the south of the Abu Gharadig anticline was 

265 therefore inactive. Reactivation of rifting therefore appears to have been focused onto F1 and 

266 the northern basin margin during this episode, with only minor faulting on secondary faults 

267 within the study area. It is worth noting that compared to the frequency of syn-depositionally 

268 active NW-SE faults during the Top Abu Roash D to near the top of Khoman B interval 

269 (Figure 6b), in the southern part of the study area, the near the top of Khoman A to near the 
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270 top of Dabaa Formation interval (Figure 6d) is characterised by activity across E-W to WNW-

271 ESE faults in the study area, except for reactivation of F1. 

272

273 4.2.  El-Gindi Basin

274 Seismic horizons within the grid of 2D lines from the central Gindi Basin (Figures 1 and 3) 

275 have been picked corresponding to the Top Bahariya Formation (yellow in Figure 7), Top 

276 Abu Roash F Member (blue), Top Abu Roash D Member (dark green) and Top Abu Roash B 

277 Member (light green), as constrained by ties to the wells SWQ-4, SWQ-21 and SWQ-25. 

278

279 All picked horizons on the seismic sections display a clear anticline bounded by two faults, 

280 which show modest net reverse fault offsets of about 10-100 ms TWT at all the picked 

281 stratigraphic levels (Figure 7a, b and c). There is, however, some along-strike variation with 

282 the fault to the southeast of the anticline retaining a net extensional offset (e.g. Figure 7c). 

283 The time-depth maps for the picked horizons reveal a distinctive anticline, the axis of which 

284 plunges toward the NE and which is bounded by the two, 4-5 km long, NE�SW striking 

285 reverse faults (Figure 8).

286

287 The first time-thickness map for the Top Bahariya to Top Abu Roash F interval (Figure 9a) 

288 displays thinning to the south-west and south of the mapped faults. The interval shows slight 

289 thickening within the area bounded by the two faults, in the northeast of the mapped area. 

290 This suggests that these faults were active normal faults during this episode, the upper 

291 Cenomanian to lower Turonian, and controlled the formation of a minor graben in the central 

292 Gindi Basin. 

293

294 The second time-thickness map (Figure 9b), of the interval between Top Abu Roash F and 

295 Top Abu Roash D (middle Turonian), shows a clear thinning in the area between the two 

296 interpreted NE-SW faults and thickening to the north-west and south-east of these (see also 

297 Figure 7). This suggests that these faults were active in the middle Turonian time interval as 

298 reverse faults. The time-thickness differential is up to ca. 40 ms TWT, from 190 ms TWT 

299 within the faults to 230 ms TWT outside the faults.     

300

301 The third time-thickness map (Figure 9c) represents the interval between the Top Abu Roash 

302 D Member and the Top Abu Roash B Member (middle to upper Turonian). There is subtle 

303 thinning in the area between the two interpreted NE-SW faults and thickening to the north-
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304 west and southeast of the faults. This suggests that the faults continued to behave as reverse 

305 faults into the middle to upper Turonian, although with a thickness differential of only ca. 10 

306 ms TWT.  

307

308 5. Discussion and Conclusions

309 In many petroleum provinces, positive basin inversion structures represent important 

310 structural hydrocarbons traps (e.g. Bally, 1983; Fraser and Gawthorpe, 1990). The timing of 

311 hydrocarbon migration relative to the development of inversion structures is also critical in 

312 establishing a viable petroleum play, i.e. whether the migration may have occurred before or 

313 during or after the tectonic inversion (Sibson, 1995). In this study, we have constrained the 

314 structural timing element regarding Late Cretaceous rifting and tectonic inversion events in 

315 hydrocarbon-bearing sedimentary basins in the northern Western Desert, in the Abu Gharadig 

316 and Gindi Basins.

317

318 In lower Turonian times, both the Abu Gharadig Basin and the Gindi Basin show evidence of 

319 extensional faulting on faults with strikes ranging from NE-SW to E-W to NW-SE, implying 

320 a maximum deviatoric stress (extension) direction of approximately N-S. Through the mid-

321 Turonian to Santonian history of the eastern Abu Gharadig Basin, a prominent saddle 

322 developed as a high between two opposing half-graben depocentres that were controlled by 

323 basin margin faults. This forms the prominent NE-SW striking faulted antiform of the Abu 

324 Gharadig Field (Moustafa, 2008). In contrast, detailed mapping has shown that after 

325 Cenomanian-lower Turonian rift faulting a subtle inversion event took place in the central 

326 Gindi Basin during the mid-Turonian, continuing into the upper Turonian. This was 

327 accommodated by the reverse offset of NE-SW striking faults. This event may be an early 

328 expression of the dextral shear environment across the West and Central African rift system 

329 and the rifts of the Western Desert and Sudan that existed throughout the Santonian to 

330 Maastrichtian (Fairhead et al., 2013). Pulses of rifting and inversion occurred as responses to 

331 changes in the intraplate stress regime that were driven by changes in spreading rates and 

332 azimuthal directions in the Central and South Atlantic oceans. In this context, minor mid-

333 Turonian inversion of NE-SW faults in the Gindi Basin could be considered as a �pop-up� in 

334 a local dextral shear phase, with NE-SW maximum extension and NW-SE compression 

335 directions. The clear absence of this mid-Turonian inversion in the nearby Abu Gharadig 

336 Basin could be explained as due to either a) it not being resolved seismically and 

337 stratigraphically, or b) the absence of NE-SW striking faults within the mapped area, i.e. 
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338 faults of an orientation suitable for pop-up development, or c) the local stress field in the Abu 

339 Gharadig Basin not having a significant deviatoric compressional component. 

340

341 The Top Abu Roash D Member to near the top of Khoman B interval, mid-Turonian to 

342 Santonian, in the Abu Gharadig Basin shows net extensional displacements on faults within 

343 the basin and on the NW-SE oriented basin margin fault (F1 in Figure 4b). This does not 

344 contradict the initiation of inversion on the northern margin of the basin during the Santonian, 

345 as described and illustrated by Moustafa (2008) and Bosworth et al. (2008). Nevertheless, any 

346 reverse reactivation of faults within the eastern Abu Gharadig Basin study area within this 

347 time interval was minor, such that faults retain net extensional offsets. Structural shortening 

348 thus appears to have been focused onto faults of appropriate strike on the main northern basin 

349 margin (the Mubarak Inversion trend of Bosworth et al., 2008).

350

351 The near the top of Khoman B to near the top of Khoman A interval in the Abu Gharadig 

352 Basin study area shows further thickness differentials associated with the central saddle, 

353 implying extensional faulting continued into this stratigraphic phase. However, across the 

354 basin more dramatic unconformities are clear at the top of the Khoman B Member and within 

355 the Khoman A Member (Figure 10, after Moustafa, 2008), and these converge toward the 

356 northern basin margin (Moustafa, 2008; Bosworth et al., 2008). It is therefore difficult to be 

357 precise with respect to when preferential subsidence and sediment accumulation to the north-

358 west and southeast of the central saddle switched from being due to normal faulting to due to 

359 inversion of basin margin structures. Compressive strain was localised onto the northern basin 

360 margin (see Figure 2D of Bosworth et al., 2008), but extension may have continued on 

361 structures of suitable orientation, such as the NW-SE trending basin margin fault (F1 in 

362 Figure 4b). It is not clear whether the central saddle antiform underwent any tightening 

363 associated with these inversion events, but net normal offsets remain on all the intrabasinal 

364 faults in the study area.

365

366 Above the Maastrichtian-Palaeogene unconformity, the interval from near the top of Khoman 

367 A to near the top of Dabaa Formation thickens to the NNW, consistent with extensional 

368 reactivation of the northern basin-bounding fault set and to the northeast, on the downthrown 

369 side of the F1 basin-bounding fault. There is no sign of thickening southeastwards. E-W to 

370 WNW-ESE oriented intrabasinal faults show normal fault reactivation (Figure 6d). So a pulse 

371 of rifting involving tilting down to the north can be invoked. The lack of expression of the 
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372 central saddle suggests that any normal fault-related growth or inversion-related tightening of 

373 this structure had ceased by Apollonia Formation times. This however, does not preclude 

374 further inversion on the northern basin margin continuing after burial of the base-Palaeogene 

375 unconformity in the eastern Abu Gharadig Basin.

376

377 This study highlights the value of mapping at a high stratigraphic resolution to identify subtle 

378 changes in the local stress regime of sedimentary basins, which have undergone pulses of 

379 rifting and inversion. Basins across the West and Central African rift system and the rifts of 

380 North-East Africa were deforming in response to Late Cretaceous rifting, collision-related 

381 inversion, and regional dextral shear (Fairhead et al., 2013). In such shear-influenced settings, 

382 the Gindi Basin provides an example of how certain basins may show short-lived inversion or 

383 �pop-up� events in response to local changes in principal stress directions or their relative 

384 magnitudes. However, these events may only be characterized when isochron and isochore 

385 mapping is carried out at the scale of age (e.g. Turonian) or shorter time intervals. The 

386 recognition of a Mid- to Upper Turonian inversion event in the Gindi Basin suggests that 

387 other subtle pop-up phases on structures of suitable orientation might have occurred and 

388 should be searched for in other West, Central and Northeast African rift basins earlier than the 

389 main Santonian-Palaeogene inversions described.

390

391 In conclusion, how Late Cretaceous tectonic inversion processes affected the northern 

392 Western Desert varies from one sedimentary basin to another.  The Abu Gharadig Basin and 

393 the Gindi Basin are two examples, which display different styles and timing of inversion 

394 events. The inversion in the Abu Gharadig Basin was focused on its northern basin margin. In 

395 contrast, in the Gindi Basin, the NE-SW striking, intrabasinal rift faults allow a Mid- to Upper 

396 Turonian inversion to be identified.
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604 Figures Captions

605 Fig. (1) Regional map highlighting the study areas within the Abu Gharadig Basin and the 

606 Gindi Basin in the northern Western Desert (after Bosworth et al, 2008). See Figure 

607 3 for data distributions in the boxed study areas.

608 . 

609 Fig. (2) Regional stratigraphic column of the northern part of the Egyptian Western Desert 

610 including the Abu Gharadig and Gindi Basins (stratigraphic nomenclature after 

611 Moustafa, 2008). Lithostratigraphic column is based on the well data used in this 

612 study.

613

614 Fig. (3) Available seismic lines and well locations of the study areas. (A) Abu Gharadig 

615 Basin and (B) Gindi Basin.

616

617 Fig. (4) Interpreted seismic lines within the Abu Gharadig Basin. (A) Dip seismic line no. 

618 1390 and (B) strike line no. 5240 (see Fig. 3 for relative locations), which shows 

619 long-lived growth into fault F1, coloured red, and an oblique section through the 

620 central Abu Gharadig anticline prominent at Top Abu Roash D level (pale blue).

621

622 Fig. (5) Time-depth contour maps (ms TWT) of the picked seismic horizons within the Abu 

623 Gharadig Basin. (A) Top Bahariya Formation, (B) Top Abu Roash D Member, (C) 

624 Near the top of Khoman B Member, (D) Near the top of Khoman A Member, (E) 

625 Near the top of Dabaa Formation. Note the NE-SW trending, NE-plunging central 

626 anticline in (A) and (B).

627

628 Fig. (6) Time-thickness contour maps (ms TWT) of the picked seismic intervals within the 

629 Abu Gharadig Basin. (A) From Top Bahariya Formation to Top Abu Roash D 

630 Member, (B) from Top Abu Roash D Member to near the top of Khoman B 

631 Member, (C) from near the top of Khoman B Member to near the top of Khoman A 

632 Member, (D) from near the top of Khoman A Member to near the top of Dabaa 

633 Formation. Note the thickening to the NW and to the ESE of the central NE-SW 

634 trending anticline or saddle, most prominent during the (B) Top Abu Roash D to 

635 near the top of Khoman B interval.

636
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637 Fig. (7) Interpreted seismic lines within the Gindi Basin, showing its central anticline. (A) 

638 Dip line no. 4766 and (B) strike line no. 10476 (see Fig. 3 for relative locations).

639

640 Fig. (8) Time-depth contour maps (ms TWT) of the picked seismic horizons within the Gindi 

641 Basin, characterizing the prominent NE-SW anticline. (A) Top Bahariya Formation, 

642 (B) Top Abu Roash F Member, (C) Top Abu Roash D Member, (D) Top Abu Roash 

643 B Member.

644

645 Fig. (9) Time-thickness contour maps (ms TWT) of the picked seismic intervals within the 

646 Gindi Basin. (A) From Top Bahariya Formation to Top Abu Roash F Member, (B) 

647 from Top Abu Roash F Member to Top Abu Roash D Member, (C) from Top Abu 

648 Roash D Member to Top Abu Roash B Member. Note the switch from minor graben 

649 development (interval A) to thinning onto the crest of the structure and inferred 

650 inversion during intervals B and C.

651

652 Fig. (10) Sketch modified from an interpreted E-W seismic profile in Moustafa (2008) across 

653 the Abu Gharadig Basin showing the positive structural inversion of a NE-SW 

654 oriented basin margin fault during the Santonian to Palaeogene. Orange arrows 

655 denote directions of reflector (strata) terminations.

656

657
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Highlights

1- Rift-related and inversion-related anticlines.

2- Tectonic inversion in the Abu Gharadig and Gindi Basins.

3- Value of mapping at high stratigraphic resolution.


