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Highlights

• Second-order Discontinuous Galerkin (DG2) models on quadrilateral elements for modelling 2D hydrodynamics.

• Standard 2D-DG2 form simplified to a so-called “slope-decoupled” form for robustness and efficiency purposes.

• Well-balancedness of the slope-decoupled 2D-DG2 planar solutions is theoretically studied.

• Both the standard and the slope-decoupled 2D-DG2 schemes deliver comparable accuracy for analytical tests.

• The slope-decoupled 2D-DG2 scheme has attractive conservation properties for developing robust flood models.

Abstract

In the modelling of hydrodynamics, the Discontinuous Galerkin (DG) approach constitutes a more complex and modern

alternative to the well-established finite volume method. The latter retains some desired practical features for modelling

hydrodynamics, such as well-balancing between spatial flux and steep topography gradients, ability to incorporate wetting

and drying processes, and computational affordability. In this context, DG methods were originally devised to solve the two-

dimensional (2D) Shallow Water Equations (SWE) with irregular topographies and wetting and drying, albeit at reduction in

the formulation’s complexity to often being second-order accurate (DG2). The aims of this paper are: (a) to outline a so-called

“slope-decoupled” formulation of a standard 2D-DG2-SWE simulator in which theoretical complexity is deliberately reduced; (b)

to highlight the capabilities of the proposed slope-decoupled simulator in providing a setting where the simplifying assumptions are

verified within the formulation. Both the standard and the slope-decoupled 2D-DG2-SWE models adopt 2D modal basis functions

for shaping local planar DG2 solutions on quadrilateral elements, by using an average coefficient and two slope coefficients along

the Cartesian coordinates. Over a quadrilateral element, the stencil of the slope-decoupled 2D-DG2 formulation is simplified to

remove the interdependence of slope-coefficients for both flow and topography approximations. The fully well-balanced character

the slope-decoupled 2D-DG2-SWE planar solutions is theoretically studied. The performance of the latter is compared with the

standard 2D-DG2 formulation in classical simulation tests. Other tests are conducted to diagnostically verify the conservative

properties of the 2D-DG2-SWE method in scenarios involving sharp topography gradients and wet and/or dry zones. The analyses
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conducted offer strong evidence that the proposed slope-decoupled 2D-DG2-SWE simulator is very attractive for the development

of robust flood models.

Crown Copyright c⃝ 2018 Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

Keywords: Second-order formulations; Modal discontinuous Galerkin; Quadrilateral elements; Well-balancedness; Wetting and drying;
Comparison and verification

1. Introduction

Recent literature reviews [1–6] have highlighted that Discontinuous Galerkin (DG) methods have great potential

for the formulation of modern numerical models in engineering and physics disciplines. A DG approach elegantly

combines the locally-conservative finite volume principle, in the Godunov-type [7–11] sense, with the flexibility of

the finite element weak formulation to shape a solution of arbitrary order-of-accuracy over a mesh element [12].

These features allow to attain local high-order approximate solutions, while only needing to communicate with

adjacent neighbours for numerical flux calculation, e.g. when explicit Runge–Kutta (RK) time stepping schemes

are adopted. This makes the DG method ideal for parallel efficiency on both traditional parallel platforms [13–17]

and graphics-processing units (GPUs) [18–21], and fundamental for local h (mesh), p (polynomial order) and t

(time step) adaptation and enrichment methodologies [16,17,22–32]. The DG method is also characterised by a local

discrete (element-wise) translation of the conservative model equation(s), which is a desired property in multi-physics

applications, e.g. in coupling various model components involved in water resources systems [5,33–36]. Compared

to other popular alternatives, such as the continuous Galerkin and the finite volume methods, the DG method

entails significantly larger computational costs in terms of degrees of freedom (or coefficients) per mesh element.

Perhaps, a fairer comparison is to fix a prescribed level of accuracy and/or of conservativeness vs. runtime cost and

mesh-size required, where DG methods outrival [37–43]. With DG methods, the number of coefficients needed are

proportional to the desired order-of-accuracy, the spatial dimensionality involved and the number of equations forming

the physical model in question, all of which define the complexity, both theoretical and computational, involved in

a DG formulation. In real-world applications, however, compromises on the level of complexity in DG formulations

seem to be inevitable and context-specific in favour of model affordability and robustness.

In the modelling of hydrodynamics associated with solving the Shallow Water Equations (SWE) with topography

gradients, higher than second-order accurate DG formulations (DG2) are particularly hard to stabilise for ensuring

robustness in realistic simulations, owing to a number of persistent and intertwined issues. On one side, the

slope-limiting process, although crucial to bound the variation of high-order (slope) coefficients around sharp

solution gradients, remains unsettled per se (e.g. regarding its localisation, deparametrisation and/or hierarchisation

for higher than DG2 solution [44–53]), and may cause adverse effects in the modelling of hydrodynamic flow

and transport [43,54–61]. On another, the numerical integration of steep topography gradients is not entirely

resolved [62,63], in particular when it comes to ensuring well-balanced numerical predictions [64] for flow scenarios

involving terrain shapes that are non-differentiable and/or partially-wet, such as when a local 2D-DG2 planar solution

cuts through a dry building-like terrain (see 1D example in [63]). Previous work in this direction primarily considered

formulating DG2 schemes on triangular meshes based on nodal basis functions [64–68]. In these works, measures

(i.e. extending earlier developments in robust SWE finite volume solvers [69–71]) have often been incorporated to

ensuring mass-conservative schemes when modelling the 2D-SWE over uneven topographies with wetting and drying,

many of which hinted at the need of further improvements to better preserve second-order accuracy and momentum

conservation (e.g. [64,65]). This paper addresses, in part, such need based on reducing the complexity of a modal 2D

DG2 formulation on quadrilateral meshes, and supported by theoretical and numerical investigations on its overall

well-balanced and conservative properties.

Compared to the triangular mesh type, fewer developments considered quadrilateral meshes in the formulation

of robust 2D-DG2-SWE solvers [32,72,73], though comparative studies [74,75] particularly report benefits in both

accuracy and efficiency from adopting the quadrilateral mesh setting with DG2 models. It may also be worth noting

that this setting is extremely suitable for devising a multiscale 2D-DG solver, e.g. via multiwavelet enrichment

functions to the 2D modal bases in which the use of the same filters to transfer modelling data across length-scales is

crucial to preserve the conservative character of the reference DG scheme [30,31,63]. Existing modal 2D-DG2-SWE

http://creativecommons.org/licenses/by/4.0/
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solvers on quadrilateral meshes [30,41,73] have somehow explored the well-balancedness property with wetting and

drying, mainly considering the means (or average coefficients) involved in the local DG2 solutions. These solvers,

however, still lack a thorough diagnostic exploration of the full extent of well-balancedness beyond the means and/or

differentiable topography shapes. In addition, most previous investigations [30,41,73] employed the pre-balanced

SWE [76] in which the free-surface elevation constitutes the main variable, instead of the water height, on the basis

of adding extra topography components in flux terms. Compared to the conventional form of the SWE [76], the use

of the pre-balanced SWE equations seems to be unnecessary and add to operational costs [76].

To this end, this paper aims to devise a new 2D-DG2-SWE solver based on the conventional form of the SWE,

and with in-depth analyses of its well-balanced behaviour for all the coefficients defining local planar DG2 solutions

(i.e. both means and slopes). In Section 2.1, the proposed 2D-DG2 formulation is presented starting with a standard

formulation. In Section 2.2, such formulation is purposely simplified to produce the slope-decoupled formulation,

where it is further supported with the ability to fully (i.e. for all coefficients) preserve the well-balanced property for a

range of realistic scenarios. In Section 3, carefully designed test cases are employed to, first, compare the performance

of the slope-decoupled 2D-DG2-SWE solver vs. the standard version and, next, further verify its practical functioning

in terms of accuracy and conservation properties. Finally, in Section 4, key findings are summarised and conclusions

are drawn.

2. DG2 formulations on quadrilateral elements

This section explores DG2 numerical solutions for hyperbolic conservation laws over a 2D domain Ω . These can

be written in the following conservative form:

∂t U + ∂x F (U) + ∂yG (U) = S (U) (1)

where U(x, y, t) is the vector of the state variables at the generic location (x, y) and time t , F(U) and G(U) are the

spatial flux vectors relative to the two Cartesian directions, and S(U) is a vector including source terms. In (1), ∂t , ∂x

and ∂y represent partial derivatives with respect to t , x and y, respectively.

2.1. Standard form

The 2D domain Ω is discretised by means of M × N non-overlapping and uniform quadrilaterals Qc (c =
1, . . . , M × N ). By denoting (xc, yc) to be the centre of a quadrilateral Qc and ∆x × ∆y its dimensions, Qc can be

expressed as Qc = [xc − ∆x/2, xc + ∆x/2] × [yc − ∆y/2, yc + ∆y/2]. A quadrilateral Qc can be further mapped

into the reference element [−1, 1]2 = [−1, 1] × [−1, 1] by the transformation (x, y)ϵQc → (ξ, η)ϵ[−1, 1]2 where

ξ (x) = 2(x − xc)/∆x and η(y) = 2(y − yc)/∆y; therefore x (ξ) = xc + ξ (∆x/2) and y (η) = yc + η(∆y/2) can be

used to position Qc onto [−1, 1]2.

2.1.1. Finite element weak formulation

An approximate solution Uh of (1) is sought by multiplying both hand sides by a test function νh(x, y) that is

compactly supported on Qc and then integrating over Ω . This yields the following weak form:
∫∫

Qc

∂t Uh(x, y, t)νh (x, y) dxdy +
∫∫

Qc

∂x F(Uh)νh (x, y) dxdy +
∫∫

Qc

∂yG(Uh)νh (x, y) dxdy =
∫∫

Qc

S(Uh)νh (x, y) dxdy (2)

Integration by parts of the second and third terms at LHS of Eq. (2) gives:

∫∫

Qc

∂x F(Uh)νh (x, y) dxdy =
[∫ yc+∆y/2

yc−∆y/2

F(Uh)νh (x, y) dy

]xc+∆x/2

xc−∆x/2

−
∫∫

Qc

F(Uh)∂xνh (x, y) dxdy (3)

∫∫

Qc

∂yG(Uh)νh (x, y) dxdy =
[∫ xc+∆x/2

xc−∆x/2

G(Uh)νh (x, y) dy

]yc+∆y/2

yc−∆y/2

−
∫∫

Qc

G(Uh)∂yνh (x, y) dxdy (4)
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Note that in Eqs. (3)–(4) the spatial derivatives are now removed from the flux terms. By plugging (3) and (4) into (2),

and moving the spatial components to the RHS of the equation, the weak form can be expressed as:
∫∫

Qc

∂t Uh(x, y, t)νh (x, y) dxdy = Lh (5)

Lh = − [(Ih + Jh) − (Mh + Nh + Sh)] (6)

In the spatial operator Lh, Ih and Jh are local flux balance terms throughout the x- and y-direction, respectively:

Ih =
[∫ yc+∆y/2

yc−∆y/2

F(Uh)νh (x, y) dy

]xc+∆x/2

xc−∆x/2

(7)

Jh =
[∫ xc+∆x/2

xc−∆x/2

G(Uh)νh (x, y) dy

]yc+∆y/2

yc−∆y/2

(8)

and, Mh, Nh and Sh are local volume integral terms for the fluxes and the source terms, that is:

Mh =
∫∫

Qc

F(Uh)∂xνh (x, y) dxdy (9)

Nh =
∫∫

Qc

G(Uh)∂yνh (x, y) dxdy (10)

Sh =
∫∫

Qc

S(Uh)νh (x, y) dxdy (11)

2.1.2. Choice of 2D local basis functions

To construct a local planar DG2 solution on quadrilaterals, a suitable choice for the test function νh is via the 2D

tensor product of the Legendre basis truncated to first-order monomials. This yields an orthogonal basis over [-1, 1]2

which can be expressed as:

φ = {ϕ0, ϕ1x , ϕ1y} with ϕ0 (ξ, η) = 1, ϕ1x (ξ, η) = ξ, and ϕ1y (ξ, η) = η (12)

Over this basis, the stencil of a quadrilateral element Qc is described in Fig. 1, and on which the following planar

approximate solution Uh can be generated:

Uh (x (ξ) , y (η) , t) |Qc = U0
c (t) + ξU1x

c (t) + ηU1y
c (t) (13)

where U0
c (t), U1x

c (t) and U
1y
c (t) are the expansion coefficients that need to be initialised (Section 2.1.3), and updated

by spatial evolution operators (Section 2.1.4) obtained by substituting the basis in (12) and the expansion in (13) into

Eqs. (5) and (6).

2.1.3. Initialisation of the evolution coefficients

For a given initial value of the state variables U(x, y, 0) = U0(x, y), coefficients U0
c (0), U1x

c (0) and U
1y
c (0) over

Qc can be obtained by the following local projection on the planar basis (12):

U0
c (0) =

1

∆x

1

∆y

∫∫

Qc

U0(x (ξ) , y (η))dxdy =
1

4

∫∫

[−1,1]2
U0 (ξ, η) dξdη (14)

U1x
c (0) =

3

∆x

1

∆y

∫∫

Qc

U0(x (ξ) , y (η))ξdxdy =
3

4

∫∫

[−1,1]2
ξU0 (ξ, η) dξdη (15)

U1y
c (0) =

1

∆x

3

∆y

∫∫

Qc

U0(x (ξ) , y (η))ηdxdy =
3

4

∫∫

[−1,1]2
ηU0 (ξ, η) dξdη (16)

The integrals in Eqs. (14)–(16) can be calculated using the following 2D Gaussian quadrature rule:
∫∫

[−1,1]2
r (ξ, η) dξdη ≈ r

(

1
√

3
,

1
√

3

)

+ r

(

−
1

√
3
,

1
√

3

)

+ r

(

1
√

3
, −

1
√

3

)

+ r

(

−
1

√
3
, −

1
√

3

)

(17)
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Fig. 1. Stencil of a quadrilateral element Qc for the standard DG2 form based on 2D tensor product of Legendre basis functions. Gi (i = 1, 2, 3

and 4) indicate local Gaussian points by which the volume integral terms in (9)–(11) are approximated via Eq. (17). Ei , Wi , Ni and Si (i = 1,2)

are Gaussian points located at the eastern, western, northern and southern faces, respectively, for aggregating normal (Riemann) fluxes contribution

(see Eqs. (24)–(25)).

so that the following explicit formulae for initialising Uh (x, y, 0) |Qc (see Fig. 1) are derived:

U0
c (0) =

1

4
[U0 (G1) + U0 (G2) + U0 (G3) + U0 (G4)] (18)

U1x
c (0) =

√
3

4
[U0 (G3) − U0 (G4) + U0 (G2) − U0 (G1)] (19)

U1y
c (0) =

√
3

4
[U0 (G3) − U0 (G2) + U0 (G4) − U0 (G1)] (20)

where Gi (i = 1, . . . , 4) are 2D Gaussian points mapped from the reference element (Fig. 1), i.e.:

Gi =
(

x

(

±1
√

3

)

, y

(

±1
√

3

))

=
(

xc ±
√

3

6
∆x, yc ±

√
3

6
∆y

)

(21)

2.1.4. Discrete spatial operators

By exploiting the orthogonality property of the Legendre basis and employing the planar expansion (13), the system

can be rewritten in the following decoupled form:

∆x∆y

⎛

⎝

∂t U
0
c(t) 0 0

0 ∂t U
1x
c (t)/3 0

0 0 ∂t U
1y
c (t)/3

⎞

⎠ =

⎛

⎝

L0
c 0 0

0 L1x
c 0

0 0 L1y
c

⎞

⎠ (22)

where L0
c , L1x

c and L
1y
c denote local discrete spatial operators needed to update the coefficients U0

c , U1x
c and U

1y
c . Their

expression can be obtained by considering Eq. (6) alongside Eqs. (12) and (13):

LK
c = −

[

(IK
c + JK

c ) −
(

MK
c + NK

c + SK
c

)]

(K = 0, 1x, 1y) (23)

The physical fluxes involved in the discrete flux balance terms, IK
c and JK

c , are replaced by numerical flux functions

based on an approximate Riemann solver [10,11], i.e. F̃ and G̃, for resolving solution discontinuities at the faces

between adjacent elements. In this work, the Roe Riemann solver [77] is used to define F̃ and G̃. By further using

Eq. (17) to eliminate the integral terms in Eqs. (7)–(8), the following discrete forms for IK
c and JK

c , are obtained (see

also Fig. 1):

IK
c = ∆y

{

1

2

[

F̃
(

Uh

(

E−
1 , t

)

, Uh

(

E+
1 , t

))

ϕK (1, −1√
3
) + F̃

(

Uh

(

E−
2 , t

)

, Uh

(

E+
2 , t

))

ϕK (1, 1√
3
)
]
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−
1

2

[

F̃
(

Uh

(

W−
1 , t

)

, Uh

(

W+
1 , t

))

ϕK (−1, −1√
3
) + F̃

(

Uh

(

W−
2 , t

)

, Uh

(

W+
2 , t

))

ϕK (−1, 1√
3
)
]

}

(24)

JK
c = ∆x

{

1

2

[

G̃
(

Uh

(

N−
1 , t

)

, Uh

(

N+
1 , t

))

ϕK ( −1√
3
, 1) + G̃

(

Uh

(

N−
2 , t

)

, Uh

(

N+
2 , t

))

ϕK ( 1√
3
, 1)
]

−
1

2

[

G̃
(

Uh

(

S−
1 , t

)

, Uh

(

S+
1 , t

))

ϕK ( −1√
3
, −1) + G̃

(

Uh

(

S−
2 , t

)

, Uh

(

S+
2 , t

))

ϕK ( 1√
3
, −1)

]

}

(25)

where K = 0, 1x, 1y with ϕK being the associated component of the basis functions in Eq. (12). In Eq. (24), as can

also been seen in Fig. 1, E1,2 = (x (1) , y(±1/
√

3)) = (xc + ∆x
2

, yc ±
√

3
6
∆y) and W1,2 = (x (−1) , y(±1/

√
3)) =

(xc − ∆x
2

, yc ±
√

3
6
∆y) are Gaussian integration points located at the eastern and western faces, respectively, where the

x-directional and Riemann flux F̃ is evaluated for averaging across the face. In Eq. (25), N1,2 = (x(±1/
√

3), y (1)) =
(xc ±

√
3

6
∆x, yc + ∆y

2
) and S1,2 = (x(±1/

√
3), y (−1)) = (xc ±

√
3

6
∆x, yc − ∆y

2
) are the Gaussian integration

points located at the northern and southern faces, respectively, where the y-directional Riemann flux G̃ is evaluated

for averaging across the face.

The terms involving volume integrals of the fluxes MK
c and NK

c can be obtained by replacing Eqs. (12)–(13) into

Eqs. (9)–(10) and apply (17), yielding the following expressions (see also Fig. 1):

MK
c =

{

0 (K = 0, 1y)
∆y

2
[F (Uh (G1, t)) + F (Uh (G2, t)) + F (Uh (G3, t)) + F (Uh (G4, t))] (K = 1x)

(26)

NK
c =

{

0 (K = 0, 1x)
∆x

2
[G (Uh (G1, t)) + G (Uh (G2, t)) + G (Uh (G3, t)) + G (Uh (G4, t))] (K = 1y)

(27)

The volume integrals of the source terms SK
c , in Eq. (11) can be approximated via direct application of the 2D

quadrature rule in Eq. (17), as done in Section 2.1.3, to give (see also Fig. 1):

SK
c =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∆x∆y

4
[S (Uh (G1, t)) + S (Uh (G2, t)) + S (Uh (G3, t)) + S (Uh (G4, t))] (K = 0)

∆x∆y
√

3

12
[S (Uh (G2, t)) − S (Uh (G1, t)) + S (Uh (G3, t)) − S (Uh (G4, t))] (K = 1x)

∆x∆y
√

3

12
[S (Uh (G3, t)) − S (Uh (G2, t)) + S (Uh (G4, t)) − S (Uh (G1, t))] (K = 1y)

(28)

2.1.5. Some remarks

The spatial DG2 discretisation outlined through Eqs. (23)–(28) is applied within a two-stage Runge–Kutta (RK)

time stepping to form the so-called RKDG2 method. Each RK stage should be preceded by the application of a

slope limiter to ensure that local DG2 slope coefficients, i.e. U1x
c and U

1y
c , have limited variations relating to slopes

differentiated from the means at Qc and its adjacent neighbours. However, it is useful to make some notes about a

number of key points relevant to this DG2 structure.

Cross-dimensional slope dependency. The slope evolution operators L1x
c and L

1y
c , although aimed to update the

x- and y-directional slope coefficients U1x
c and U

1y
c still depends on both slope coefficients, mainly due to the location

of the evaluation points in the stencil (Fig. 1). In effect, at any of the relevant evaluation points – namely Ei , Wi , Ni

and Si (i = 1, 2) and G i (i = 1, 2, 3, 4) in Fig. 1 – the local planar solution Uh |Qc reads:

Uh (Ei , t) = U0
c (t) + U1x

c (t) ±
U

1y
c (t)√

3
(i = 1, 2) (29a)

Uh (Wi , t) = U0
c (t) − U1x

c (t) ±
U

1y
c (t)√

3
(i = 1, 2) (29b)

Uh (Ni , t) = U0
c (t) ±

U1x
c (t)√

3
+ U1y

c (t) (i = 1, 2) (30a)



716 G. Kesserwani et al. / Comput. Methods Appl. Mech. Engrg. 342 (2018) 710–741

Fig. 2. Stencil of a quadrilateral element Qc for the proposed slope-decoupled DG2 form. Here, two different sets of 1D Gaussian points {Gxi }i=1,2

and
{

Gyi

}

i=1,2
are involved in an entirely decoupled manner along the x-directional and y-directional centrelines, respectively. Also, one evaluation

for the normal (Riemann) flux at any of the four faces is sought in this setting, i.e. at the centres E and W of the eastern and western faces in alignment

with [Gx1 , Gx2] and N and S of the northern and southern faces in alignment with [Gy1 , Gy2]. EN, ES, WS and WN denote the corner points of Qc

named, respectively, according to the two faces they span (e.g., WS stands for the corner point at which the western and southern faces intersect).

Uh (Si , t) = U0
c (t) ±

U1x
c (t)√

3
− U1y

c (t) (i = 1, 2) (30b)

Uh (Gi , t) = U0
c (t) ±

U1x
c (t)√

3
±

U
1y
c (t)√

3
(i = 1, . . . , 4) (31)

for which, as clear in Eqs. (29)–(31), none of the slope coefficients vanishes in any of the evaluations.

Impact of the slope limiter. The slope limiter in DG methods comes in as a finite volume tool aimed to stabilise

the solution around sharp discontinuities (i.e. avoid the development of the Gibbs phenomenon). Nonetheless, it is

generally demonstrated that slope limiters may have adverse effects such as distorting the solution around smooth

areas [43,53–61]. To reduce such an impact on DG predictions, the slope limiting process may be localised based on

the so-called troubled-cell indicator [47], such as the shock detector in [53] that will be used in this work. However,

given the cross-dimensional slope dependency issue raised above, any potential impact due to slope limiting would be

omnipresent across all the evaluations.

Operational costs. Over each RK stage, the DG2 discretisation requires solving for 8 different Riemann problems

to calculate the flux balance terms, 8 Gaussian point evaluations to calculate the flux volume integrals, and 16 Gaussian

point evaluations to calculate approximations of the volume integrals of the source terms. Hence, at least 32 spatial

operations are needed to enable progressing the state of the solution over one element by half a time step, which is

computationally expensive.

2.2. Slope-decoupled form

In this section, a simplified DG2 formulation is presented using the same choice for the local basis functions as in

Section 2.1, but based upon a different local stencil, which is described in Fig. 2. As shown in the figure, now two

different sets of Gaussian points {Gxi }i=1,2 and
{

Gyi

}

i=1,2
are involved in an entirely 1D decoupled manner along

the x-directional and y-directional centrelines, respectively, via a standard 1D two-point Gauss–Legendre rule. In this

setting, the set {Gxi }i=1,2 is applied to approximate all the integral terms in the operator L1x
c , considering no variation
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occur along the y-direction. Similarity, the set
{

Gyi

}

i=1,2
is used to approximate all the integral terms in the operator

L
1y
c considering no variation occur along the x-direction. Also, only one evaluation for the flux at any of the four faces

is required, namely at the centres E and W of the eastern and western faces, and N and S of the northern and southern

faces, located on the centreline [Gx1 , Gx2], respectively [Gy1 , Gy2]. The main purpose from adopting this stencil is to

decouple the slope dependencies in Cartesian directions. That is, it can be easily shown that over the stencil depicted

in Fig. 2, as opposed to Eqs. (29)–(31), any local solution evaluation at the relevant points only involves one slope

coefficient, namely:

Uh (E, t) = U0
c (t) + U1x

c (t) (32a)

Uh (W, t) = U0
c (t) − U1x

c (t) (32b)

Uh (N, t) = U0
c (t) + U1y

c (t) (33a)

Uh (S, t) = U0
c (t) − U1y

c (t) (33b)

Uh (Gxi , t) = U0
c (t) ±

U1x
c (t)√

3
(i = 1, 2) (34a)

Uh

(

Gyi , t
)

= U0
c (t) ±

U
1y
c (t)√

3
(i = 1, 2) (34b)

Eqs. (32)–(34) result in the sole involvement of the x-directional (y-directional) slope coefficient in the evaluation of

the Riemann problem and integral terms involving the x-directional flux F (y-directional G) within the L0
c , L1x

c and L
1y
c

local spatial operators. Considering also that the x-directional and y-directional variations of the local planar solution

are zero along the y-direction and x-direction, the terms IK
c , JK

c , MK
c , NK

c and SK
c become:

IK
c = ∆y

{

F̃
(

Uh

(

E−, t
)

, Uh

(

E+, t
))

ϕK (1, 0) − F̃
(

Uh

(

W−, t
)

, Uh

(

W+, t
))

ϕK (−1, 0)

}

(35)

JK
c = ∆x

{

G̃
(

Uh

(

N−, t
)

, Uh

(

N+, t
))

ϕK (0, 1) − G̃
(

Uh

(

S−, t
)

, Uh

(

S+, t
))

ϕK (0, −1)

}

(36)

MK
c =

⎧

⎨

⎩

0 (K = 0, 1y)

∆y [F (Uh (Gx2, t)) + F (Uh (Gx1, t))] (K = 1x)
(37)

NK
c =

⎧

⎨

⎩

0 (K = 0, 1x)

∆x
[

G
(

Uh

(

Gy2, t
))

+ G
(

Uh

(

Gy1, t
))]

(K = 1y)
(38)

SK
c =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∆x∆y [S (Uh ((xc, yc), t))] (K = 0)

∆x∆y
√

3

6
[S (Uh (Gx2, t)) − S (Uh (Gx1, t))] (K = 1x)

∆x∆y
√

3

6

[

S
(

Uh

(

Gy2, t
))

− S
(

Uh

(

Gy1, t
))]

(K = 1y)

(39)

In Eq. (39), S0
c represents an approximation of source terms achieved by a mid-point rule. Considering further the

properties of the Legendre basis, i.e. ϕ0 (ξ, η) = 1, ϕ1x (±1, 0) = ϕ1y (0, ±1) = ±1, and the scaling factors in

Eq. (22), the following evolution operators can be obtained for updating the average and slope coefficients over Qc

over a RK time stage:

L0
c = −

1

∆x

(

F̃E − F̃W

)

−
1

∆y

(

F̃N − F̃S

)

+ S(Uh ((xc, yc), t)) (40)

L1x
c = −

3

∆x

{

(

F̃E + F̃W

)

− (F (Uh (Gx2, t)) + F (Uh (Gx1, t)))

−
∆x

√
3

6
[S (Uh (Gx2, t)) − S (Uh (Gx1, t))]

}

(41)
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L1y
c = −

3

∆y

{

(

F̃N + F̃S

)

−
(

G
(

Uh

(

Gy2, t
))

+ G
(

Uh

(

Gy1, t
)))

−
∆y

√
3

6

[

S
(

Uh

(

Gy2, t
))

− S
(

Uh

(

Gy1, t
))]

}

(42)

where F̃E = F̃
(

Uh

(

E−, t
)

, Uh

(

E+, t
))

, F̃W = F̃
(

Uh

(

W−, t
)

, Uh

(

W+, t
))

, F̃N = F̃
(

Uh

(

N−, t
)

, Uh

(

N+, t
))

and

F̃S = F̃
(

Uh

(

S−, t
)

, Uh

(

S+, t
))

represent the Riemann flux evaluations across the eastern, western, northern and

southern faces of the element Qc, considering the limited slope coefficients in (32)–(34) with the same localised

slope limiter as in the standard form (Section 2.1). When compared to the standard DG2 form, the simplified scheme

(40)–(42) reduces the total number of operations from 32 to 12 (4 Riemann problem solutions and 8 Gaussian point

evaluations), leading to a drastic reduction in operational cost. The simplified DG2 is therefore predicted to offer speed

up in runtime relative to the standard DG2 form by a factor of 2.6 (see also Section 3.1.1). It has also the advantage

of being well-balanced for all average and slope coefficients as shown in Section 2.2.1.

2.2.1. Shallow water equations with topography

The conventional form of the SWE [76] can be expressed by Eq. (1) by assuming:

U =

⎡

⎣

h

qx

qy

⎤

⎦ , F =

⎡

⎢

⎢

⎢

⎣

qx

q2
x

h
+

g

2
h2

qx qy

h

⎤

⎥

⎥

⎥

⎦

, G =

⎡

⎢

⎢

⎢

⎢

⎣

qy
qx qy

h
q2

y

h
+

g

2
h2

⎤

⎥

⎥

⎥

⎥

⎦

and S =

⎡

⎣

0

−gh∂x z

−gh∂yz

⎤

⎦ (43)

where h(x, y, t) represents the water depth (L), qx = hu and qy = hv are volumetric discharges per unit width (L2/T)

expressed in terms of the velocities u(x, y, t) and v(x, y, t) along the Cartesian directions (L/T), g represents the

acceleration due to gravity (L/T2), and ∂x z and ∂yz are the partial derivatives of a topography function z(x, y).

When z(x, y) ̸= 0, the system of Eqs. (1) and (43) may be referred to as non-homogeneous hyperbolic conservation

laws [2]. A known challenge [2] is to find a straightforward discretisation of the source terms that balances the flux

gradients when the flow admits steady state solutions, that is produces a well-balanced DG2 scheme. In principle,

such a scheme should preserve the still water stationary solution over an uneven topography [2], for which the initial

conditions are:

h + z = constant and
(

qx , qy

)

= (0, 0) (44)

In the context of practical hydraulic simulations, the design of a well-balanced DG2 scheme with the condition (44)

faces numerous challenges, including: (a) the DG2 scheme should verify the discrete balance between the gradients

of the fluxes and the topography for any wetting and drying scenarios in the computational domains such as when a

planar solution intersects with the topography; (b) the DG2 scheme should remain stable for a flow over a steep terrain,

e.g. a building-like block, where the topography function is not differentiable; (c) all DG2 operators (Eqs. (40)–(42))

should be well-balanced with respect to the average coefficient, U0
c , and the slope coefficients, U1x

c and U
1y
c , as well. In

Sections 2.2.2 and 2.2.3 we demonstrate that the slope-decoupled DG2 operators offer a simple approach to effectively

address these challenges.

2.2.2. Well-balancedness properties in a 1D case

As a background study, the system of Eqs. (1) with the variables (43) is first considered in the 1D case:

∂t U + ∂x F (U) = S (U) (45)

U =
[

h

qx

]

, F =

⎡

⎣

qx

q2
x

h
+

g

2
h2

⎤

⎦ , and S =
[

0

−gh∂x z

]

(46)

In such case, the simplified DG2 operators reduce to:

L0
c = −

1

∆x

(

F̃E − F̃W

)

+ S(Uh (xc, t)) (47)
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L1x
c = −

3

∆x

{

(

F̃E + F̃W

)

− (F (Uh (Gx2, t)) + F (Uh (Gx1, t)))

−
∆x

√
3

6
[S (Uh (Gx2, t)) − S (Uh (Gx1, t))]

}

(48)

The initialisation of the local solution coefficients, given the initial condition U0 (x) , can be obtained as in

Section 2.1.3, but with further manipulation so as to involve only interface evaluations (details can be found in [78]):

U0
c (0) =

1

2
[U0 (E) + U0 (W)] (49)

U1x
c (0) =

1

2
[U0 (E) − U0 (W)] (50)

This form of modal initialisation by nodal evaluations is important for achieving a local linear projection of the

topography function onto the DG2 space, denoted by zh (x) |Qc , that is globally continuous over the domain, i.e.:

z0
c =

1

2
[z (E) + z (W)] (51)

z1x
c =

1

2
[z (E) − z (W)] (52)

With this discretisation of the topography, the continuity property is easily verified, in particular across the interface

points E and W. For example, at the eastern interface, E, which is shared by elements Qc and Qc+1, Eqs. (51) and

(52) yield:

zh

(

E−) |Qc = z0
c + z1x

c = z (E) = z0
c+1 − z1x

c+1 = zh

(

E+) |Qc+1
(53)

It is also easy to treat the bed slope source term in S, via the slope coefficient in (52):

∂x z(x) ≈ ∂x zh (x) |Qc =
2

∆x
z1x

c (54)

By initialising the slope coefficient of the topography as in Eqs. (51) and (52), the DG2 operators (47)–(48) become

naturally well-balanced for cases involving a fully wet domain [78]. Nonetheless, such property can also be enforced

for more general cases with wetting and drying by, (locally and temporarily) reapplying the modal projection

Eqs. (49)–(52). By doing so, actions taken to ensure depth-positivity preserving reconstructions at the nodes are

transferred into the modes while keeping the DG2 operators well-balanced.

In this work, the finite volume depth-positivity preserving reconstructions in [71] are applied at the nodes, however

with the following simplifications:

• the conventional from of the SWE (45)–(46) are considered instead of the pre-balanced form;

• there is no intermediate involvement of the free-surface elevation variable;

• topography continuity (at the nodes), based on Eqs. (51)–(52), is ensured from the onset.

By denoting U±
E = Uh

(

E±) =
[

h±
E , (qx )

±
E

]T
, zE = zh(E±), U±

W = Uh

(

W ±) =
[

h±
W , (qx )

±
W

]T
and zW = zh(W ±) as

the nodal limits of the local linear solution at the interface E and W, respectively, and reconsidering the depth-positivity

preserving reconstructions (see [71]), well-balanced positivity preserving versions can be obtained at the nodes and

are denoted with the superscript “∗”:

h
±,∗
W = max(0, h±

W ) and (qx )
±,∗
W = h

±,∗
W u±

W (55)

h
±,∗
E = max(0, h±

E ) and (qx )
±,∗
E = h

±,∗
E u±

E (56)

where u+
W = (qx )

+
W /h+

W and u−
E = (qx )

−
E/h−

E when hh |Qc > tolhdry or equal to zero otherwise. The parameter tolhdry

is a threshold value for dry cells detection, which is here set equal to 10−4. Further to Eqs. (55) and (56), the following

(numerical) conditions for the nodal topography evaluations are necessary to also ensure stability at nodes where the

flow depth is potentially negative:

z∗
W = zW − max

(

0, −h+
W

)

and z∗
E = zE − max

(

0, −h−
E

)

(57)
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It is worth noting that Eqs. (55)–(57) only act on the nodal evaluations (when wetting and drying is involved) for

the states of the flow and/or topography variables, and also ensures continuity for the topography at the nodes. These

potential changes in the nodal evaluations must then be used to consistently re-define positivity-preserving modes,

which can be done by reapplying Eqs. (49)–(52) to re-initialise the modes as a subsequent step to Eqs. (55)–(57). This

leads to revised modes for use in the DG2 operators (47) and (48), which are denoted with the “−” symbol:

U
0

c (t) =
1

2

[

U
−,∗
E + U

+,∗
W

]

(58)

U
1x

c (t) =
1

2

[

U
−,∗
E − U

+,∗
W

]

(59)

z1x
c =

1

2

[

z∗
E − z∗

W

]

(60)

We set now to demonstrate the well-balancedness property of the 1D case under consideration.

Theorem 1. The proposed Eqs. (58)–(60) for the modes and Eqs. (55)–(57) for the nodes yield well-balanced DG2

spatial operators.

Proof. Under the conditions established by Eqs. (44), h + z = constant is particularly true at the local discrete level

(i.e. for all elements Qc given the continuity of zh as per Eq. (53)), that is:

(h + z)h = hh + zh = constant (61)

After application of Eqs. (55)–(57) followed by Eqs. (58)–(60), the discrete still water in Eq. (61) can be expressed as:

h
1x

c + z1x
c = 0 (62)

h
0

c =
h

−,∗
E + h

+,∗
W

2
and h

1x

c =
h

−,∗
E − h

+,∗
W

2
(63)

z1x
c =

z∗
E − z∗

W

2
(64)

Now, the local (i.e. over Qc) approximate solution Uh is mainly the water depth variable hh expressed by means of the

positivity-preserving coefficients (63) alongside the bed slope coefficient (64). Terms from the flux and source vectors

remain due to the hydrostatic balance equation remaining within the momentum equation (mass equation vanishes

with the flow conditions in Eqs. (44)); they express as f (hh) = g

2
h2

h and s (hh) = −ghh∂x zh |Qc considering the

coefficients in Eqs. (62)–(64) and (53).

Under conditions (62)–(64), with f̃
(

h
−,∗
E

)

= g

2

(

h
−,∗
E

)2
and f̃

(

h
+,∗
W

)

= g

2

(

h
+,∗
W

)2
, the difference and sum of the

Riemann flux evaluations can be manipulated to:

f̃
(

h
−,∗
E

)

− f̃
(

h
+,∗
W

)

=
g

2

[(

2h
0

c

) (

2h
1x

c

)]

(65)

f̃
(

h
−,∗
E

)

+ f̃
(

h
+,∗
W

)

=
g

2

[

2
(

h
0

c

)2

+ 2
(

h
1x

c

)2
]

(66)

The local volume integral of the flux term (involved in the slope evolution operator (48)) becomes:

f (hh (Gx2)) + f (hh (Gx1)) = f

(

h
0

c +
h

1x

c√
3

)

+ f

(

h
0

c −
h

1x

c√
3

)

=
g

2

[

2
(

h
0

c

)2

+
2

3

(

h
1x

c

)2
]

(67)

The source term evaluations (involved in both evolution operators (47) and (48)) becomes:

s (hh(xc)) = s
(

h
0

c

)

= −gh
0

c

(

2z1x
c

∆x

)

(68)

s (hh (Gx2)) − s (hh (Gx1)) = s

(

h
0

c +
h

1x

c√
3

)

− s

(

h
0

c −
h

1x

c√
3

)

= −g

(

2z1x
c

∆x

)(

h
1x

c√
3

)

(69)
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Fig. 3. Simulation (using 50 cells and up to 20 s) of a still water state for assessing the well-balancedness of operators (47)–(48) without considering

condition (57); “blue lines” = local linear DG2 flow solutions, “black lines” = local DG2 linear topography projections, “red markers” = nodal

evaluations of the topography at interfaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Now the replacement of Eqs. (65)–(69) in operators (47)–(48) (for the remaining momentum terms), clearly produces

discrete operators that become zero given the slope coefficients relationship in Eq. (62), (−z1x
c = h

1x

c ):

L0
c = −

2g

∆x

[

h
0

c

(

h
1x

c + z1x
c

)]

(70)

L1x
c = −

3g

∆x

{

2

3

(

h
1x

c

)2

−
2

3

[

(

−z1x
c

)

(

h
1x

c

)]

}

(71)

Remark 1. In a fully wet domain, all variables denoted with the “ ” and the “*” scripts become the actual variables,

which also leads to zero DG2 operators in Eqs. (70) and (71). However, for completeness, the proof of Theorem 1

has been provided under the positivity-preserving reconstructions for the nodes, Eqs. (55)–(57), and their associated

re-definition, Eqs. (58)–(60). It is worth mentioning that Eq. (57), needed for modifying the topography evaluations

at the nodes, and Eqs. (58)–(60), needed for the definition of well-balanced modes under wetting and drying, are all

necessary conditions for the scheme to overcome the challenges listed in Section 2.2.1.

To diagnostically explore the relevance of Eqs. (57)–(60), a highly irregular topography under a still water state

is considered with wet–dry zones such that the following scenarios occur: (i) the wet–dry front is not located on a

node where the topography is discretised (i.e. the local solution intersects a dry topography), (ii) the wet–dry front is

exactly located on a node where the topography is discretised and (iii) the wet–dry front is associated with a water

height equal to zero.

Therefore, a 1D test case is generated considering discontinuous terrain data over a 1D domain [0 m, 1500 m] [79],

however with a smooth (hump-like) profile added to it and a still water condition of h + z = 4 m and qx = 0 m2/s, in

order to simultaneously explore all three scenarios (i)-(iii). Figs. 3–5 illustrate simulated local DG2 linear solutions

over a mesh of 50 computational cells and up t = 50 s. The results in Fig. 3 did not consider Eq. (57), whereas those in

Fig. 4 did not consider Eqs. (58)–(61). Clearly, from these results the DG2 operators seem to only be (by t = 20 s and

for certain portions) well-balanced under scenarios (ii) and (iii), though their full well-balancedness fall short under

scenario (i). However, with Eqs. (57)–(60) active, as can be seen in Fig. 5, the DG2 operators remain well balanced

for the full solution throughout the whole domain, i.e. under all scenarios (i)-(iii), and for a long time evolution.

2.2.3. Further considerations on well-balancedness in the 2D case

The 2D-DG2 operators in Eqs. (40)–(41) are reconsidered to study the well-balancedness for the planar solution

(13) in light of the hypotheses made in Section 2.2.2. As in the 1D case, an appropriate initial projection, considering
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Fig. 4. Simulation (using 50 cells and up to 20 s) of a still water state for assessing the well-balancedness of operators (47)–(48) without considering

conditions (58)–(61); “blue lines” = local linear DG2 flow solutions, “black lines” = local DG2 linear topography projections, “red markers” =
nodal evaluations of the topography at interfaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

Fig. 5. Simulation (using 50 cells and up to 100 s) of a still water state for assessing the well-balancedness of operators (47)–(48) with condition

(57)–(61) activated; “blue lines” = local linear DG2 flow solutions, “black lines” = local DG2 linear topography projections, “red markers” =
nodal evaluations of the topography at interfaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

the stencil in Fig. 2, is central for achieving the well-balancedness property. The initial conditions for the local

coefficients in Eqs. (18)–(20) can be made valid on this stencil by involving the evaluations at the corner points

EN, ES, WS, WN, as they are present in both stencils:

U0
c (0) =

1

4
[U0 (EN) + U0 (ES) + U0 (WS) + U0 (WN)] (72)
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Fig. 6. 2D-DG2 planar projections (zh (x, y) |Qc )Qc of a 2D topography function commonly reported in literature [68,72] — obtained via element-

wise application of Eqs. (82) on a uniform mesh with square elements of size 3 m2. As opposed to the 1D case, (zh (x, y) |Qc )Qc cannot be globally

continuous. However, via (79)–(81), they ensure continuity at the nodes E, W, N and S (see Fig. 2) where key treatments are performed.

U1x
c (0) =

1

4
[U0 (EN) − U0 (WN) + U0 (ES) − U0 (WS)] (73)

U1y
c (0) =

1

4
[U0 (EN) − U0 (ES) + U0 (WN) − U0 (WS)] (74)

In turn, given the slope-decoupled hypothesis, integrating over a coordinate direction the information at the faces

considering the other direction are averaged, which leads to the following relationships:

1

2
(U0 (EN) + U0 (ES)) = U0 (E) (75)

1

2
(U0 (WN) + U0 (WS)) = U0 (W) (76)

1

2
(U0 (EN) + U0 (WN)) = U0 (N) (77)

1

2
(U0 (WS) + U0 (ES)) = U0 (S) (78)

By substituting Eqs. (75)–(78) into Eqs. (72)–(74), the initial conditions for the coefficients can be rewritten so that

to involve the nodes E, W, N and S (see Fig. 2) where key treatments are performed:

U0
c (0) =

1

2
[U0 (E) + U0 (W)] =

1

2
[U0 (N) + U0 (S)] (79)

U1x
c (0) =

1

2
[U0 (E) − U0 (W)] (80)

U1y
c (0) =

1

2
[U0 (N) − U0 (S)] (81)

Eqs. (79)–(81) provide an alternative option for initialising the average and slope coefficients of the local planar

solution. However, their relevance becomes important when linking the modes to the inter-elemental nodes where flux

exchange occurs, hence making them suited for altering the modes based on any change occurring at the nodes due to

wetting and drying treatments, as seen in the 1D case. Also, Eqs. (79)–(81) reveal even more clearly that the planar

topography projections, denoted by zh (x, y) |Qc over Qc with coefficients z0
c , z1x

c and z
1y
c defined as in Eqs. (72)–(74),

are continuous at all four main nodes, E, W, N and S, considering the stencil in Fig. 2, however without being

necessarily continuous as in the 1D case. An illustrative example is given in Fig. 6, which shows the spatial 2D-DG2

planar projections,
(

zh (x, y) |Qc

)

Qc
, of 2D hump profiles based on Eqs. (72)–(74) where the continuity property only

holds at all four central nodes located at an element’s faces. Such property can be demonstrated by following a similar

reasoning as in the 1D case (Eq. (51)–(53)).

Another key issue is how to evaluate the derivative of the local topography projections ∂x zh |Qc and ∂yzh |Qc while

remaining consistent with the stencil in Fig. 2. A straightforward method would be to derive them from the following

local planar solution, zh |Qc :

zh |Qc = zh (x(ξ ), y(η)) |Qc = z0
c + ξz1x

c + ηz1y
c (82)
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which has constant slope coefficients over Qc and thus leads to the following local bed slope terms:

∂x zh |Qc =
(

2

∆x

)

z1x
c (83)

∂yzh |Qc =
(

2

∆y

)

z1y
c (84)

Although counter-intuitive, the use of Eqs. (83)–(84) to discretise the local bed slope terms suffices to ensure well-

balancedness for the average coefficients. However, this introduces irrelevant cross-dimensional slope dependencies

(e.g. z1x
c within L

1y
c ) across the DG2 operators responsible for the update of slope coefficients (see proof of

Theorem 2), leading to mild unbalancedness in the slope coefficients of the discharges, which might eventually

impact the well-balancedness of all the coefficients (as shown later in Section 3.2.1). Therefore, an alternative slope-

decoupled discretisation for the local bed gradients is here proposed:

∂x [zh (0, y) |x=0] = 0 and ∂x zh |y=0 = ∂x

[

zh (x, 0) |Qc

]

=
(

2

∆x

)

z1x
c (85)

∂y

[

zh (x, 0) |y=0

]

= 0 and ∂yzh |x=0 = ∂y

[

zh (0, y) |Qc

]

=
(

2

∆y

)

z1y
c (86)

In addition, to retain the well-balanced property in the presence of wetting and drying, the positivity-preserving

amendments are applied at the nodes, as in the 1D case through Eqs. (55)–(57). By denoting with U±
E , U±

W, U±
N , and

U±
S the limits of the DG2 solutions at nodes E, W, N and S, that is:

U±
E = Uh

(

E±) =
[

h±
E , (qx )

±
E ,
(

qy

)±
E

]T

and zE = zh(E±) (87)

U±
W = Uh

(

W±) =
[

h±
W, (qx )

±
W,
(

qy

)±
W

]T

and zW = zh(W±) (88)

U±
N = Uh

(

N±) =
[

h±
N, (qx )

±
N,
(

qy

)±
N

]T

and zN = zh(N±) (89)

U±
S = Uh

(

S±) =
[

h±
S , (qx )

±
S ,
(

qy

)±
S

]T

and zS = zh(S±) (90)

their positivity-preserving reconstructions (following similar procedures as in Eqs. (55)–(57)) will be denoted by [64],

{U±,∗
E , z∗

E }, {U±,∗
W , z∗

W }, {U±,∗
N , z∗

N } and {U±,∗
S , z∗

S}. Eqs. (79)–(81) are then applied to re-define positivity-preserving

modes based on the latter reconstructions, as follows:

U
0x

c (t) =
1

2

[

U
−,∗
E + U

+,∗
W

]

(91)

U
0y

c (t) =
1

2

[

U
−,∗
N + U

+,∗
S

]

(92)

U
1x

c (t) =
1

2

[

U
−,∗
E − U

+,∗
W

]

(93)

U
1y

c (t) =
1

2

[

U
−,∗
N − U

+,∗
S

]

(94)

It is worth noting that Eqs. (91) and (92) are identical so long as no change occur at any node due to wetting and

drying. This decoupled form for the average coefficients is consistent with slope decoupling, and yet necessary to

preserve well-balancedness for the slope coefficients when wetting and drying occur at any of the nodes E, W, N or

S (Fig. 2). In addition to Eqs. (91)–(94), the bed gradient terms need to be re-defined in relation to potential change

made by the wetting and drying at any of the nodes, as follows:

z1x
c =

1

2

[

z∗
E − z∗

W

]

(95)

z1y
c =

1

2

[

z∗
N − z∗

S

]

(96)

In the following, we demonstrate the well-balancedness property in the 2D case under consideration.
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Theorem 2. The proposed Eqs. (91)–(96) for the modes preceded by positivity-preserving reconstructions at the

nodes, i.e. {U±,∗
E , z∗

E }, {U±,∗
W , z∗

W }, {U±,∗
N , z∗

N } and {U±,∗
S , z∗

S}, yield well-balanced DG2 spatial operators in 2D

provided that Eqs. (85) and (86) are used to incorporate the slopes coefficients of the topography in Eqs. (95) and

(96).

Proof. Under discrete still water conditions and after Eqs. (91)–(96), Eqs. (44) can be expressed as:

h
1x

c + z1x
c = 0 and h

1y

c + z1y
c = 0 (97)

h
0x

c =
h

−,∗
E + h

+,∗
W

2
and h

1x

c =
h

−,∗
E − h

+,∗
W

2
(98)

h
0y

c =
h

−,∗
N + h

+,∗
S

2
and h

1y

c =
h

−,∗
N − h

+,∗
S

2
(99)

Now, the main variable is hh , the mass conservation equation vanishes, and only hydrostatic balance equations remain

within the momentum equations relative to both x- and y-directions.

Within these conditions, the fluxes and source terms involved in the momentum equations are:

F (hh) =
[g

2
h2

h

0

]

, G (hh) =
[

0
g

2
h2

h

]

, S (hh) =
[

−ghh∂x zh

−ghh∂yzh

]

(100)

The difference and the sum of the Riemann fluxes become:

F̃
(

h
−,∗
E

)

− F̃
(

h
+,∗
W

)

=
g

2

[(

2h
0x

c

) (

2h
1x

c

)

0

]

(101)

G̃
(

h
−,∗
N

)

− G̃
(

h
+,∗
S

)

=
g

2

[

0
(

2h
0y

c

) (

2h
1y

c

)

]

(102)

F̃
(

h
−,∗
E

)

+ F̃
(

h
+,∗
W

)

=
g

2

[

2
(

h
0x

c

)2

+ 2
(

h
1x

c

)2

0

]

(103)

G̃
(

h
−,∗
N

)

+ G̃
(

h
+,∗
S

)

=
g

2

[

0

2
(

h
0y

c

)2

+ 2
(

h
1y

c

)2

]

(104)

The volume integral of the flux term (involved in the slope evolution operators (41) and (42)) become:

F (hh (Gx2)) + F (hh (Gx1)) =

⎡

⎣

g

2

[

2
(

h
0x

c

)2

+
2

3

(

h
1x

c

)2
]

0

⎤

⎦ (105)

G (hh (Gx2)) + G (hh (Gx1)) =

⎡

⎣

0
g

2

[

2
(

h
0y

c

)2

+
2

3

(

h
1y

c

)2
]

⎤

⎦ (106)

The source term evaluations involved in the evolution operators (40)–(42) become, if considering a standard planar

discretisation as per (83) and (84):

S (hh(xc)) =

⎡

⎢

⎢

⎢

⎢

⎣

−gh
0x

c

(

2z1x
c

∆x

)

−gh
0y

c

(

2z1y
c

∆y

)

⎤

⎥

⎥

⎥

⎥

⎦

(107)

S (hh (Gx2)) − S (hh (Gx1)) =

⎡

⎢

⎢

⎢

⎢

⎣

−g

(

2z1x
c

∆x

)(

h
1x

c√
3

)

−g

(

2z1y
c

∆y

)(

h
1x

c√
3

)

⎤

⎥

⎥

⎥

⎥

⎦

(108)
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S
(

hh

(

G y2

))

− S
(

hh

(

G y1

))

=

⎡

⎢

⎢

⎢

⎢

⎣

−g

(

2z1x
c

∆x

)(

h
1y

c√
3

)

−g

(

2z1y
c

∆y

)(

h
1y

c√
3

)

⎤

⎥

⎥

⎥

⎥

⎦

(109)

Replacing Eqs. (101)–(109) in Eqs. (40)–(42), considering only the remaining terms in the momentum conservation

equation, the DG2 operators can be rearranged as follows:

L0
c =

⎡

⎢

⎢

⎣

−
2g

∆x

[

h
0x

c

(

h
1x

c + z1x
c

)]

−
2g

∆y

[

h
0y

c

(

h
1y

c + z1y
c

)]

⎤

⎥

⎥

⎦

(110)

L1x
c =

⎡

⎢

⎣

−
3g

∆x

{

2

3

(

h
1x

c

)2

−
2

3

[

(

−z1x
c

)

(

h
1x

c

)]

}

−
g

∆y

(

z1y
c h

1x

c

)

⎤

⎥

⎦
(111)

L1y
c =

⎡

⎢

⎣

−
g

∆x

(

z1x
c h

1y

c

)

−
3g

∆y

{

2

3

(

h
1y

c

)2

−
2

3

[

(

−z1y
c

)

(

h
1y

c

)]

}

⎤

⎥

⎦
(112)

By also applying the slope conditions in Eqs. (97), i.e. −z1x
c = h

1x

c and −z1y
c = h

1y

c , Eqs. (110)–(112) are simplified

to:

L0
c =

[

0

0

]

(113)

L1x
c =

[

0
g

∆y

(

z1y
c z1x

c

)

]

(114)

L1y
c =

[ g

∆x

(

z1x
c z1y

c

)

0

]

(115)

Clearly, Eqs. (113)–(115) show that only operator L0
c vanishes, meaning that the scheme is well-balanced only for

the average (discharge) coefficients. As for the (discharge) slope coefficients, well-balancedness is partially met given

the remaining cross-dimensional slope dependency introduced in L1x
c and L

1y
c by using (83) and (84) to discretise the

local bed slope terms.

Therefore, to have the slope-decoupled DG2 operators well-balanced in full, the discretisation in Eqs. (85) and

(86) must be considered instead prior to evaluating Eqs. (108) and (109), leading to the following slope-decoupled

versions of them:

S (hh (Gx2)) − S (hh (Gx1)) =

⎡

⎢

⎣

−g

(

2z1x
c

∆x

)(

h
1x

c√
3

)

0

⎤

⎥

⎦
(116)

S
(

hh

(

G y2

))

− S
(

hh

(

G y1

))

=

⎡

⎢

⎣

0

−g

(

2z1y
c

∆y

)(

h
1y

c√
3

)

⎤

⎥

⎦
(117)

In turn, Eqs. (116) and (117) – together with (101)–(107) in (40)–(42) – lead to full zeroing of the DG2 slope operators

L1x
c and L

1y
c , as needed to ensure fully well-balanced DG2 planar solutions and slope-decoupled 2D-DG2 scheme.

3. Numerical tests

In this section, numerical results for selected 2D test cases are presented to compare the slope-decoupled DG2 form

with the standard DG2 form, and verify its conservation properties for practical shallow water modelling. Section 3.1
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Fig. 7. Numerical results of the exact (black line), the standard DG2 scheme (red-dotted line) and the slope-decoupled DG2 scheme (green-dotted

line) along the diagonal (using 40 × 40 cells). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

contains a comparative investigation on the accuracy of the slope-decoupled DG2 scheme against the standard version

based on classical benchmark tests (the linear advection and the radial dam-break tests). Section 3.2 explores the

conservative properties of the slope-decoupled DG2 scheme (well-balancedness, total energy and accuracy) with

test cases involving uneven topographies and wetting and drying processes. For both schemes, explicit adaptive

time stepping is used based on a Courant–Friedrichs–Lewy (CFL) number equal to 0.25, and limiting of the slope-

coefficients is restricted to when the shock detector in [53] exceeds the threshold 100.

3.1. Standard DG2 scheme vs. slope-decoupled DG2 scheme

The standard and slope-decoupled 2D-DG2 schemes are here benchmarked and compared against analytical or

reference data. Two numerical 2D tests are considered involving bi-directional flows in order to entirely investigate

the 2D character of the schemes. Quantitative analyses are conducted to investigate the mesh convergence rate of the

DG2 schemes for the case of the 2D inviscid linear advection equation. A qualitative assessment of the schemes’

ability in reproducing wave nonlinearities and discontinuities relevant to a classical radial dam-break flow is also

provided.

3.1.1. Quantitative assessment

To generally compare the performance of the standard and slope-decoupled DG2 schemes, a 2D linear advection

equation [10] is considered, which is usually the model equation on which numerical methods solving hyperbolic

conservation laws were initially developed [10]:

∂t u + a∂x u + b∂yu = 0 (118)

Eq. (118) is solved over a 2D domain [0, 2]2 with characteristic speed coefficient a = b = 1. The initial condition is

u (x, y, 0) = sin (π (x + y)) and boundary conditions are set to be periodic. Simulations are run up to t = 1 s on a

series of quadrilateral meshes of M × N = 10 ×10, 20 × 20, 40 × 40, 80× 80 and 160 × 160 cells, respectively.

Fig. 7 illustrates the average coefficients produced by the standard and slope-decoupled DG2 schemes extracted

diagonally from the mesh inclosing 40 × 40 cells and at t = 1 s. Both schemes appear to consistently predict

the undulant characteristics observed in the analytical solution. Fig. 8 displays the local 2D planar solutions (i.e. via

Eq. (13)) associated with both scheme predictions, showing a similar qualitative behaviour despite the difference in the

stencils involved. To compare the schemes based on quantitative metrics, an accuracy-order and runtime cost analyses

are performed. Table 1 contains the relative errors between the analytical and numerical solutions taken along the

diagonal centreline, namely Error = (1/M N )∥uexact − uDG2∥/∥uexact∥, which are evaluated considering the standard

L1-norm, L2-norm and L∞-norm. These errors are calculated for both the standard and the slope-decoupled DG2

schemes based on the aforementioned series of meshes, together with their respective rate of convergence and CPU

runtimes, which are also included in Table 1. It can be observed in the table that the L1-, L2- and L∞-errors of the
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Fig. 8. The 2D full planar solutions (uh (x, y, t = 1s)|Qc )Qc for the (a) standard DG2 scheme and (b) slope-decoupled scheme for the 20 × 20

cells domain.

Table 1

L1-norm, L2-norm and L∞-norm errors and orders of accuracy of the standard and slope-decoupled DG2 schemes and their CPU times (relevant

to the test in Section 3.1.1).

DG2 form Mesh L1-error L1-order L2-error L2-order L∞-error L∞-order Runtime

Standard

10 × 10 3.86E−02 – 4.11E−02 – 5.98E−02 – 4.0 s

20 × 20 8.70E−03 2.148 1.03E−02 1.993 1.53E−02 1.963 15.9 s

40 × 40 2.00E−03 2.153 2.50E−03 2.020 3.60E−03 2.071 62.5 s

80 × 80 4.68E−04 2.067 6.02E−04 2.081 8.57E−04 2.090 243.6 s

160 × 160 1.17E−04 2.001 1.34E−04 2.167 1.93E−04 2.153 960.0 s

Slope-decoupled

10 × 10 4.97E−02 – 5.22E−02 – 7.41E−02 – 1.8 s

20 × 20 1.00E−02 2.311 1.20E−02 2.116 1.74E−02 2.089 6.5 s

40 × 40 2.10E−03 2.268 2.70E−03 2.130 3.90E−03 2.151 24.5 s

80 × 80 4.87E−04 2.095 6.22E−04 2.145 8.92E−04 2.136 97.0 s

160 × 160 1.21E−04 2.003 1.38E−04 2.170 1.97E−04 2.176 381.8 s

slope-decoupled DG2 scheme are consistently slightly larger than those of the standard DG2 scheme. This clearly

indicates that the slope-decoupled DG2 version is, as expected, slightly less accurate than the standard DG2 scheme.

Nonetheless, looking at rate of convergence in Table 1 in terms of L1-, L2- and L∞-orders, the slope-decoupled DG2

scheme can deliver second-order accurate predictions, which are practically as good as the standard DG2 scheme and,

in this respect, constitutes a formally second-order accurate alternative. It is worth stating that consistent error and
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accuracy-order results are obtainable by considering the full 2D profiles of the analytical and numerical solutions,

instead of the 1D diagonal centreline, but were not illustrated here to save space. In terms of speed up ratio between

the two DG2 schemes, the CPU runtimes in Table 1 indicate a range between 2.25 and 2.55, which is pretty close to

the predicted operational cost ratio of 2.6 (Section 2.2).

3.1.2. Qualitative assessment

To further quantitatively compare the performances of the DG2 schemes in shallow water applications, a circular

dam-break test [11] is here considered. Such test is appropriate for testing the schemes’ ability to simulate shock

propagating and rarefaction waves as it considers the instantaneous collapse of a circular dam on a flat bed. Water in

the dam is contained by a thin 2.5 m radius circular wall centred at xc = 0 m, yc = 0 m. The water depth is 2.5 m

inside the dam and 0.5 m outside. The model is a 40 m × 40 m square domain made up of 201 × 201 quadrilateral

cells. Initial velocities u (along x) and v (along y) are set equal to zero and slip numerical boundary conditions are

used. The reference solution [11] is obtained using a 1D second-order MUSCL finite volume solver [40] of the 1D

radial-symmetric version of the 2D SWE on a mesh with 1001 cells. Fig. 9 shows the free surface elevation and

velocity plots in the radial direction for the reference solution, the standard DG2 scheme and the slope-decoupled

DG2 scheme. Immediately after the initial collapse of the dam, a primary shock wave began to propagate away from

the centre, while a rarefaction wave moves inwardly and reaches the centre at t = 0.4 s (Fig. 9a) with a well-defined

depth gradient developed behind the shock wave. At t = 0.7 s (Fig. 9b), the rarefaction wave has fully imploded at

the centre and reflects radially outward, creating a small dip in the free surface where the velocity is nearing zero.

At t = 1.4 s (Fig. 9c), the primary shock wave continues to move away from the centre and the free surface has

dropped below the initial water depth outside of the dam. A secondary shock wave has also formed at this time, as

clearly shown by the velocity profile, which exhibits two small and yet sharp fronts behind the primary shocks. At

t = 3.5 s (Fig. 9d), the primary shock is approaching the boundary while the secondary shock is travelling in the

opposite direction with the free surface falling very close to the bed. Finally, at t = 4.7 s (Fig. 9e), the primary shock

is about to reach the boundary while the secondary shock has imploded in the centre and reflects outwardly, resulting

in another dip in the free surface at the centre.

As seen in Fig. 9a, at t = 0.4 s, the standard DG2 scheme satisfactorily corresponds with the reference solution,

except at the peak free surface elevation associated with local zero velocities. There, it shows a slight overestimation

as compared to the slope-decoupled DG2 version. This seems to indicate that the standard DG2 scheme is much more

sensitive to slope variations around points of critical flow. The discrepancy between the two DG2 schemes is also

due to the convoluted involvement of both directional slope-coefficients combined with the over-allowing character

of the shock detector adopted for local limiting. In other words, its overlooking effects (to reduce the applicability

of the minmod slope limiter) are expected to double when applied with the standard DG2 scheme. However, such

discrepancy does not affect the overall performance of the scheme, as one may observe in the predictions at t = 0.7

s and t = 1.4 s (Fig. 9b and c). At these times, the flow only entails primary waves and both DG2 schemes provide

predictions very similar to the reference solutions. When the secondary waves emerge at t = 3.5 s and t = 4.7

s (Fig. 9d and e), the predictive capability of the standard DG2 and the slope-decoupled DG2 schemes becomes

more distinct in the results, especially around the flow features defined by the secondary shock fronts and associated

pattern where the standard version clearly outperforms. However, the slope-decoupled DG2 scheme still delivers 2D

predictions that are close to those achieved by the standard DG2 scheme, and can satisfactory trail the sequence and

form of the shock and rarefaction waves produced by the reference solutions.

3.2. Verification of scheme properties

The previous tests have shown that the slope-decoupled DG2 scheme is formally second-order accurate and able

to capture complex wave propagations with predictive accuracy quite similar to the standard DG2 scheme. Here, the

ability of the slope-decoupled DG2 scheme in preserving numerical conservation properties is further assessed. This

involves 2D numerical tests aimed to assess the well-balancedness ability of the scheme for various scenarios involving

smooth and sharp-edged terrain shapes with presence of wet–dry zones in the domain, and to conserve total energy

and accuracy-order when the flow is subjected to constantly moving of wet–dry fronts over non-flat topography.

3.2.1. Well-balancedness

The first numerical test intends to diagnostically investigate the effects of the different DG2 based bed slope terms

discretisation, i.e. Eqs. (83) and (84) vs. Eqs. (85) and (86), on the reliability of the slope-decoupled DG2 scheme in
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Fig. 9. The free surface elevation and velocity plots for the reference (black line), standard DG2 scheme (red line) and slope-decoupled DG2

scheme (green line) for (a) t = 0.4 s, (b) t = 0.7 s, (c) t = 1.4 s, (d) t = 3.5 s, and (e) t = 4.7 s. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

numerically preserving the well-balanced property over uneven terrain with wetting and/or drying. The test assumes

a motionless flow in a 75 m × 30 m domain. Two cases are investigated to distinguish between differential and

non-differential topography shapes, which resemble real-world natural and artificial terrain features. The differential

topography represents a hilly terrain and consists of three mounds with different peak heights. In such case, the

topography function is:

z (x, y) = max

[

0, 1 −
1

5

√

(x − 20)2 + (y − 15)2, 2 −
1

2

√

(x − 40)2 + (y − 15)2,

3 −
3

10

√

(x − 60)2 + (y − 15)2

]

(119)
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Fig. 9. (continued)

Alternatively, the non-differential topography resembles buildings of varying heights and consists of three rectangular

blocks. In this other case, the topography function is:

z (x, y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.86 i f 16 ≤ x ≤ 24, 11 ≤ y ≤ 19

1.78 i f 36 ≤ x ≤ 44, 11 ≤ y ≤ 19

2.30 i f 56 ≤ x ≤ 64, 11 ≤ y ≤ 19

0 otherwise

(120)

Fig. 10(a) and (b) provide a view on the 2D local planar DG2 projections, via Eq. (82), for the topography functions

(119) and (120), respectively. In both cases, the choice for the initial free-surface elevation is taken according to three

scenarios: fully submerged (h > 0 m at one peak), critically wet (h = 0 m at another peak) and partially wet involving

wet–dry fronts (h < 0 m, in the sense where the local planar DG2 solutions cut through the highest peak). This leads

to set a free-surface elevation value of 1.78 m and 1.95 m for the first and second cases, respectively (see also Fig. 10)

together with zero discharge values for qx and qy . These initial states should be maintained as there is no external

force exerted on the flow at any of the boundaries. To study the numerical well-balancedness of the slope-decoupled

DG2 scheme, the domain is discretised using quadrilateral 1 m2 cells, and simulations are run for relatively long time

evolution (t = 100 s) considering transmissive numerical boundary conditions. To conduct a thorough analysis of

well-balancedness, the time histories of the maximum errors are calculated (for each simulation) for all the discharge

coefficients spanning the local DG2 solutions (namely the average coefficients q0
x and q0

y , the x-directional slope

coefficients q1x
x and q1x

y , and the y-directional slope coefficients q
1y
x and q

1y
y ). These errors are plotted and analysed

to explore the well-balancedness at the level of both the average- and the slope-coefficients.

Simulation results relative to the first case are summarised in Fig. 11, which shows time series of the errors for

the average and slope (discharge) coefficients up to t = 100 s. In particular, Fig. 11(a) shows the results considering

the bed slope discretisation in Eqs. (83) and (84). At the start of the simulation (t < 7 s), the average coefficients q0
x
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Fig. 10. The initial water surface and full planar DG2 topography projections (zh (x, y) |Qc )Qc , via (82), of: (a) differential topography (119) and

(b) non-differential topography (120).

and q0
y are within the round-off error even in the presence of wet–dry fronts. This finding reinforces the statement

within Theorem 2, according to which the scheme should be well-balanced for the means with both bed slope

term discretisations Eqs. (83) and (84) and (85) and (86). In Fig. 11a, similar behaviour can also be observed for

the discharge slope coefficients relative to the mainstream directions, q1x
x and q

1y
y . However, the discharge slope

coefficients across the opposite direction, q
1y
x and q1x

y , display a different behaviour, showing a drastic rise in error

magnitudes from the very start of the simulation. Although this rise seems to settle quite soon (t > 17 s), it appears

to produce numerical artefacts, which gradually (for t > 7 s) affect the other discharge coefficients, initially well-

balanced (for t < 7 s). From t = 17 s onward, relatively mild perturbations are observed for all discharge coefficients,

which seems to suggest that Eqs. (83) and (84) do not provide a fully well-balanced slope-decoupled DG2 scheme.

In contrast, by re-running the simulation using the proposed alternative topography discretisation, via Eqs. (85) and

(86), more consistent error magnitudes are obtained as shown in Fig. 11(b). In this setting, it can be noticed that the

variation of all discharge coefficient errors remains substantially bounded within the range of the round-off throughout

the simulation.

In the second case, where the topography function is not differentiable, the adverse effects of the choice of the

bed slope discretisation of Eqs. (83) and (84) are observed to augment as seen in Fig. 12(a). The resulting time series

for the discharge coefficient (maximum) errors again imply a partially well-balanced behaviour up to certain time

around t = 13 s, i.e. for the average coefficients, q0
x and q0

y , and the slope coefficients relative to the mainstream

directions, q1x
x and q

1y
y . However, the errors produced for the cross-directional slope coefficients, q

1y
x and q1x

y , are

now seen to exhibit a much higher increase up to eight times larger than those observed in the first case (compare

Figs. 11(a) to 12(a)). These errors continue to rise until t = 13 s when they reduce and become relatively stable.

They also show a behaviour similar to the first case, in that they eventually (13 s < t < 100 s) affect the errors of

the other discharge coefficients, which were initially well-balanced (0 s < t < 13 s). These findings seem to suggest
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Fig. 11. Time series of the resulting maximum errors for the average and slope discharge coefficients over a differential topography (case 1) using

the (a) original discretisation Eqs. (83) and (84)and (b) alternative discretisation Eqs. (85) and (86).

that any unbalance in a slope coefficient, if overlooked, can gradually affect the well-balancedness property for all

other coefficients, and hence eventually that of the full DG2 planar solutions. In contrast, by using the proposed

choice for the bed slope term discretisation, via Eqs. (85) and (86), in combination with the slope-decoupled DG2

scheme all error magnitudes remain bounded near the range of machine precision, as shown in Fig. 12(b), irrespective

of the discontinuous character of the topographies involved in this case. These results imply that all average and

slope coefficients for the discharge remain numerically well-balanced in this setting. Hence, one can conclude that

the slope-decoupled DG2 scheme complemented with Eqs. (85) and (86) for the bed slope discretisations is fully

well-balanced for both mean- and slope-coefficients in all three scenarios.

3.2.2. Total energy and accuracy-order

Having verified that the slope-decoupled DG2 scheme with Eqs. (85) and (86) is well-balanced, further assessments

are made to test the conservative features of this scheme. In particular, we verify numerical accuracy and total

energy for a transient flow case involving moving 2D wet–dry fronts over a non-flat topography. This numerical

test relies upon the well-known 2D oscillatory flow in a parabolic bowl problem [65], in which a set of parametric

values are used following [64]. The model is set in a 2D domain of square length [−4000, +4000 m]2. The

topography is defined as z (x, y) = αr2, where α is a constant equal to 1.6 × 10−7 m−1 and r is the radial distance

r2 =
√

x2 + y2. The initial velocities, u(x, y, 0) and v(x, y, 0), are set to zero, and the initial free surface elevation

is h(r, 0) = (1 + a(Y − X )r2)/(X + Y ), where X and Y are equal to 1 m−1 and −0.41884 m−1, respectively. The

wet domain is such that h (r, t) > 0 for r <

√

(X + Y cosωt) /α
(

X2 − Y 2
)

, which can be used to identify the

interface between the wet and dry regions. This numerical test assumes a period of τ = 2π/ω equivalent to 1756.2 s
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Fig. 12. Time series of the resulting maximum errors for the average and slope discharge coefficients over a non-differential topography (case 2)

using the (a) original discretisation Eqs. (83) and (84) and (b) alternative discretisation Eqs. (85) and (86).

with ω2 = 8gα. There is no specific boundary condition to be specified, as the free surface does not reach the domain

boundary. The analytical solution is given in [80]:

h (r, t) =
1

X + Y cosωt
+ α

(

Y 2 − X2
) r2

(X + Y cosωt)2
(121)

(u (x, y, t) , v (x, y, t)) = −
Yωsinωt

X + Y cosωt

( x

2
,

y

2

)

(122)

Figs. 13 and 14 contain the plots of the computed free surface elevation and discharges, respectively, using similar

mesh sizes and display patterns as in [65]. These figures allow to compare the average coefficients (or mean values)

calculated by the selected DG2 scheme (across the centreline x = 0) with the exact solution for two meshes

(i.e. ∆x = 100 and 200) at the six output times t = 0, τ /6, 2τ /6, 3τ /6, 4τ /6, 5τ /6 and τ . In the prediction of

the free surface elevation, as shown in Fig. 13, the current DG2 scheme is observed to perform very well, yielding

calculations that are in good agreement with the exact solutions for all the output times considered, and irrespective

of the meshes spacing. Fig. 14 shows that, in terms of discharge predictability the scheme is also observed to closely

trail the exact profiles for both meshes and at almost all output times, except at t = τ when the numerical solutions

do not fully capture the zero discharge, which is a common deficiency for this test [41,64,65]. Generally, these results

reveal that the present slope-decoupled DG2 scheme can capture flow features with curvature and persistent wetting

and drying.
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Fig. 13. Free surface elevation sliced along x = 0 at six output times considering two mesh resolutions with cell size ∆x = 100 and 200.
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Fig. 14. Discharges sliced along x = 0 at six output times considering two mesh resolutions with cell size ∆x = 100 and 200.
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Table 2a

L1-norm, L2-norm and L∞-norm errors and orders of accuracy for the 2D parabolic bowl test: analysis for the water depth variable, h, at t = τ /2.

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 4.60E−03 – 4.70E−03 – 5.80E−03 –

200.0 1.10E−03 2.031 1.20E−03 2.000 1.40E−03 2.014

100.0 2.77E−04 2.021 2.92E−04 2.011 4.33E−04 1.740

50.0 6.70E−05 2.048 7.08E−05 2.044 1.02E−04 2.085

25.0 1.56E−05 2.100 1.67E−05 2.085 3.80E−05 1.426

12.5 3.39E−06 2.207 3.82E−06 2.129 1.32E−05 1.522

Table 2b

L1-norm, L2-norm and L∞-norm errors and orders of accuracy for the 2D parabolic bowl test: analysis for y-direction discharge, qy , at t = τ /2.

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 3.76E−02 – 4.58E−02 – 7.42E−02 –

200.0 7.30E−03 2.372 8.20E−03 2.484 1.36E−02 2.447

100.0 1.60E−03 2.215 1.70E−03 2.266 3.10E−03 2.138

50.0 1.89E−04 3.052 2.25E−04 2.919 4.70E−04 2.718

25.0 7.47E−05 1.338 8.97E−05 1.326 2.37E−04 0.986

12.5 4.18E−05 0.837 5.06E−05 0.827 1.11E−04 1.096

Table 3a

L1-norm, L2-norm and L∞-norm errors and orders of accuracy for the 2D parabolic bowl test: analysis for the water depth variable, h, at t = τ .

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 7.30E−03 – 7.03E−03 – 9.40E−03 –

200.0 1.80E−03 2.022 1.80E−03 2.009 2.30E−03 2.009

100.0 4.39E−04 2.029 4.59E−04 1.982 5.93E−04 1.978

50.0 1.07E−04 2.035 1.12E−04 2.039 1.50E−04 1.988

25.0 2.69E−05 1.995 2.70E−05 2.048 3.68E−05 2.024

12.5 7.69E−06 1.806 7.00E−06 1.947 9.51E−06 1.951

Table 3b

L1-norm, L2-norm and L∞-norm errors and orders of accuracy for the 2D parabolic bowl test: analysis for y-direction discharge, qy , at t = τ .

∆x L1-error L1-order L2-error L2-order L∞-error L∞-order

400.0 3.44E−02 3.60E−02 – 4.58E−02 –

200.0 8.90E−03 1.951 9.40E−03 1.929 1.27E−02 1.855

100.0 2.40E−03 1.901 2.60E−03 1.860 3.80E−03 1.717

50.0 6.90E−04 1.787 8.00E−04 1.702 1.30E−03 1.621

25.0 2.65E−04 1.382 3.24E−04 1.302 4.67E−04 1.424

12.5 1.03E−04 1.366 1.34E−04 1.276 2.04E−04 1.191

Furthermore, a mesh convergence analysis (as in Section 3.1.1) is achieved, considering L1-, L2- and L∞-errors

and their relative orders for the sliced profiles of the depth and discharge (in Figs. 13 and 14) on six meshes (i.e. with

grid spacing ∆x = ∆y = 12.5, 25, 50, 100, 200 and 400, respectively). The analysis is done at the times t = τ /2 and

τ , which represent a wetting stage and a drying stage, respectively. Results of this analysis are presented in Tables 2

and 3.

For the water depth variable, as shown in Tables 2a and 3a, the acquired orders-of-accuracy are consistently very

close to second-order for all the meshes considering L1- and L2-orders. Though a drop in the L∞-orders (to around

1.5) is noticed at t = τ /2 (Table 2a) on the finest meshes, L∞-orders at t = τ (Table 3a) remain consistently second-

order. For the y-direction discharge variable, the results in Tables 2b and 3b show alternating orders-of-accuracy in

the range of 0.8–3.0 at t = τ /2 (Table 2b), and of 1.2–2.0 at t = τ (Table 2b). Excluding the results associated with

two finest meshes in Tables 2b and 3b, all L1-, L2- and L∞-orders indicate second-order accurate predictions for

the discharge variable. Arguably, the drop in L1-, L2- and L∞-orders for the two finest meshes, together with their

alternating character on the coarser meshes, are most likely caused by the aforementioned deficiency in capturing the

zero discharges occurring at t = τ /2 and t = τ (see Fig. 14). Nonetheless, these results reveal that the proposed slope-

decoupled DG2 solver has a good tendency to deliver second-order accurate simulations of fully 2D nonlinear shallow
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Fig. 15. Time evolution of the domain-integrated total energy (up to t = 15τ ).

water flows over uneven topography with constant wetting and drying, in addition to being formally a second-order

accurate scheme as shown in the previous analysis in Table 1 (Section 3.1.1).

Finally, we assess the ability of the current scheme to conserve the energy property, as quantified by the following

domain-integrated total energy over time, via Eq. (123):

E (t) =
∫ +4000

−4000

(

1

2
hu2 +

1

2
g(h + z)2

)

dx (123)

The equation is evaluated up to t = 15τ , which represents a long time evolution. Simulations are run considering two

meshes with cell spacing ∆x = ∆y = 100 m and 200 m, consistent with the results in Figs. 13 and 14. Over each

mesh, the total energy E (t) is calculated over time and then normalised by the initial energy E0 = E(0). Fig. 15

displays the time evolution of the normalised energy for each of the two meshes. Generally, a consistent (alternating)

variation in the normalised energy evolution is observed, which is expected as the kinetic energy drops to zero every

time the velocity vanishes due to the switch between wetting and drying. With the coarser mesh, the amplitudes of the

energy appear to reduce faster with time, especially at the highest peaks than with the finer mesh. Since the attenuation

effect on the energy is clearly affected by the mesh size, refining the mesh is likely to improve the results. Regardless,

there is no significant energy loss throughout the simulation, which confirms that the entirely slope-decoupled DG2

scheme is satisfactorily energy conservative.

4. Summary and conclusions

In this work, we have presented the conceptual formulation of a second-order Discontinuous Galerkin (DG2)

numerical solver of the 2D depth-averaged Shallow Water Equations (SWE) on quadrilateral elements. The derivation

of the proposed DG2-SWE solver considered the standard form (i.e. based on the stencil in Fig. 1) as a starting point,

which was then simplified to produce the so-called slope-decoupled form (i.e. based on the stencil in Fig. 2). In the

slope-decoupled DG2 form, theoretical complexity was deliberately compromised to acquire a setting whereby key

challenges relevant to the practical modelling of hydrodynamics are conveniently addressable (i.e. well-balancing

between spatial flux and steep topography gradients, robust incorporation of wetting and drying processes, and

reduction of operational costs). The well-balanced property of the slope-decoupled DG2 scheme was thoroughly

studied for two possible approaches to discretise the bed slope terms, i.e. in a consistent manner based on the

local DG2 discrete planar projection to the topography. The first approach, via Eqs. (83) and (84), involves both

x- and y-directional bed slope coefficients, i.e. as full contribution for the planar topography projections. In the

second approach, via Eqs. (85) and (86), any possible cross-dimensional bed slope dependency was zeroed to keep

consistent with the slope-decoupled hypothesis adopted for the simplified 2D-DG2-SWE solver. It was theoretically

demonstrated that this solver can only be partially well-balanced (i.e. for the means and some slope coefficients)

with the first approach for integrating DG2 topography projections. In contrast, when complemented with the second

approach, the slope-decoupled 2D-DG2-SWE solver is fully well-balanced (i.e. for all the coefficients spanning DG2
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solutions). Selected numerical tests were employed to verify the applicability of the slope-decoupled DG2 scheme,

considering performance comparisons with the standard DG2 scheme, and verifications of its conservative abilities

relating to 2D modelling of hydrodynamics.

The performance comparisons indicated that the slope-decoupled DG2 scheme is able to achieve second-order

mesh convergence and similar predictive capability as the standard DG2 scheme. Further numerical verifications

revealed a fully well-balanced behaviour of the aforementioned slope-decoupled DG2 scheme (i.e. combined with

the second approach for the DG2 integration of bed slope coefficients), even when the topography admits non-

differentiable shapes (e.g. building like) and/or when the domain is partially dry (e.g. when the local planar DG2 flow

solution cut through the local planar topography projection). Moreover, the scheme could acheive second-order mesh

convergence when the flow involved moving wet–dry fronts over an uneven topography, and shows a remarkable

capability in simulating realistic features associated with 2D modelling of hydrodynamics (i.e. wetting and drying

processes, flow over irregular terrain, flow curvatures, energy conservation). It can therefore be concluded that the

slope-decoupled DG2 scheme is a valid option to formulate a flood model with desirable robustness properties of

relevance to simulate real-world applications.
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