

Radboud Repository

Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/23560

Please be advised that this information was generated on 2017-12-05 and may be subject to change.

Comparison of the Antileukemic Activity In Vitro of Dexamethasone and Prednisolone in Childhood Acute Lymphoblastic Leukemia

G.J.L. Kaspers, MD, PhD, A.J.P. Veerman, MD, PhD, C. Popp-Snijders, PhD, M. Lomecky, BSc, C.H. Van Zantwijk, L.M.J.W. Swinkels, PhD, E.R. Van Wering, MD, PhD, and R. Pieters, MD, PhD, MSc

It is generally assumed that prednisolone (PRD) and dexamethasone (DXM) have equal glucocorticoid activity if PRD is given at sevenfold higher doses. Results of clinical studies of childhood acute lymphoblastic leukemia (ALL) suggested that DXM is more potent relative to PRD than assumed. The purpose of this study was to determine the relative antileukemic activity of PRD phosphate and DXM phosphate in 133 untreated childhood ALL samples in vitro, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. There was a marked variation in antileukemic activity of both agents among the patient samples. The median LC50 (drug concentration lethal to 50%) of the ALL cells) for PRD phosphate was 3.50 μ M, for DXM phosphate 0.20 μ M. The individually calculated ratios of the LC50 values for PRD

and DXM phosphate showed a large range from 0.7 to >500, with a median of 16.2. This 16-fold difference could not be explained by differences between these glucocorticoids in stability, hydrolysis into unesterified drug, adhesion to the wall of the microculture plates, or protein binding. ALL cells were cross-resistant to PRD and DXM phosphate (correlation coefficient = 0.85, P < 0.000001). We conclude that the in vitro antileukemic activity of DXM phosphate is median 16-fold higher than that of PRD phosphate, which contrasts to the generally assumed factor of 7. Based on the higher potency of DXM, and its more favorable pharmacokinetics as reported in the literature, DXM may be preferred to PRD as the glucocorticoid in the treatment of ALL. © 1996 Wiley-Liss, Inc.

Key words: leukemia, childhood, antileukemic activity, glucocorticoids, prednisolone, dexamethasone

INTRODUCTION

in vitro antileukemic activity of PRD and DXM phosphate in childhood ALL, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. We also studied several aspects of their in vitro behaviorstability, hydrolysis, adhesion to plastic, and protein binding-to minimize the possibility of differences in the relative antileukemic activities of these glucocorticoids caused by artefacts. The MTT assay is an objective and reliable cell culture drug resistance assay suited for largescale testing of leukemia and lymphoma samples [8,9]. Using this assay, we previously reported significant corre-

Glucocorticoids are effective drugs in the treatment of acute lymphoblastic leukemia (ALL). Response rates to single-agent glucocorticoid treatment range from 75–90% in newly diagnosed childhood ALL [1]. Prednisolone (PRD) is the most frequently used glucocorticoid, but few studies addressed the question whether other glucocorticoids, such as dexamethasone (DXM), might be of more value. It is assumed that DXM is seven times more potent than PRD, or in other words, PRD and DXM would have equal antileukemic activity if PRD is given at sevenfold higher doses. However, this assumption is not based on a comparison of the antileukemic activity of both agents, but rather on their antiinflammatory and thymolytic activities [2]. Results of two clinical studies showed that treatment results with DXM as part of a combination chemotherapy for leukemias were better than those with PRD, although "equivalent" doses were used erlands. [3,4]. The pharmacokinetics of DXM seem to be more favorable than those of PRD [5-7]. It may also be that DXM is more potent than is assumed. The purpose of the present study was to compare the Amsterdam, The Netherlands.

Received January 2, 1995; accepted October 3, 1995.

Address reprint requests to Gertjan J.L. Kaspers, MD, PhD, Department of Pediatrics, Free University Hospital, De Boelelaan 1117, 1081 HV

© 1996 Wiley-Liss, Inc.

From the Departments of Pediatrics (G.J.L.K., A.J.P.V., C.H.V.Z., R.P.) and Endocrinology (C.P.-S., M.L.), Amsterdam, Dutch Childhood Leukemia Study Group (DCLSG) (A.J.P.V., E.R.V.W.), The Hague, and the Department of Experimental and Chemical Endocrinology (L.M.J.W.S.), St. Radboud University Hospital, Nijmegen, The Neth-

lations between the in vitro antileukemic activity of PRD with the clinical response to a prednisone monotherapy [10], and with the clinical outcome after combination chemotherapy in childhood ALL [11].

MATERIALS AND METHODS

Samples and Patients

Bone marrow (BM) and peripheral blood (PB) samples as well as smears from children with newly diagnosed non-B ALL were sent by local institutions to the laboratory of the Dutch Childhood Leukemia Study group (DCLSG) for confirmation of diagnosis, classification according to the FAB criteria [12], and immunophenotyping [13]. Mononuclear cells were isolated by Ficoll density gradient centrifugation (Ficol Paque; density 1.077 g/ml; Pharmacia, Sweden). Until October 1, 1991, immunofluorescence was used for terminal deoxynucleotidyltransferase (TdT) and surface immunoglobulin heavy chain, while an indirect immunoperoxidase staining technique on cytocentrifuge preparations was used for all other antibodies. From October 1, 1991 onwards, immunoperoxidase staining was replaced by flow cytometry after calibrating these techniques. Samples from 159 patients were sent by the DCLSG laboratory to the research laboratory for pediatric hematoonco-immunology of the Free University Hospital in Amsterdam for drug resistance testing, with informed consent. Samples from 133 (84%) of the 159 children with non-B ALL were successfully tested. A minority (n = 60)of these samples was included in a preliminary meeting report [14]. Twenty-six assays could not be evaluated because of infection (n = 1), laboratory error (n = 1), insufficient cells in the sample submitted (n = 3), percentage of leukemic cells below 70% after 4 days of culture (n = 9), and failure of ALL cells to reduce MTT into formazan in the drug-free control wells (n = 12). The median age of the 74 male and 59 female patients was 5 years (range 0-15 years). The white blood cell count at diagnosis ranged from 2.5 to 900×10^{9} /l (median) 25.8×10^{9} /l). Three cases could not be classified morphologically, while 103 cases were diagnosed as FAB type L1 and 27 as FAB L2. Of 132 immunophenotyped ALL cases, 6 were pro-B ALL (positive for TdT, CD19, and HLA-DR), 97 were common- or pre-B ALL (positive for TdT, CD19, and HLA-DR, and positive for CD10 or cytoplasmic μ), and 29 T-ALL (positive for TdT, CD3, and CD7).

TABLE I. Antileukemic Activity of PRD and DXM Phosphate In Vitro in Untreated ALL Samples.

	LC50 values (μ M) and individual ratios		
	Median	Range	n ^a
PRD phosphate	3.50	<0.13 to >4167	130
DXM phosphate	0.20	<0.0005 to >15.3	114
Individual ratios of LC50 PRD/DXM	16.2	0.7 to >500	74

^aBoth drugs were tested successfully in 111 samples, but individual ratios of the LC50 for PRD phosphate divided by the LC50 for DXM phosphate could not be calculated in 37 cases, because one (n = 21)or both (n = 16) LC50 values were outside the concentration ranges tested (if both, always at the same end of the ranges).

Fig. 1. Ratio of LC50 values for PRD and DXM phosphate in 74 untreated childhood ALL samples.

whereas DXM phosphate was obtained in solution in ampules as used in patients. Solvents for DXM phosphate were sodium pyrosulfate (1 mg/ml), sodium edetate (0.5 mg/ml), glycerol 85% (0.15 ml/ml), and sodium hydroxide 2N (2 μ l/ml). These solvents were not cytotoxic nor did they influence the background of the culture medium in these concentrations. Cells were cultured in RPMI 1640 (Dutch modification, Gibco, Uxbridge, UK) containing 20% heat-inactivated fetal calf serum, 2 mM L-glutamine, 100 IU/ml penicillin, 100 µg/ml streptomycin, 0.125 µg/ml fungizone, 200 µg/ml gentamycin, all obtained from Flow Laboratories (Irvine, UK), and 5 μ g/ml insulin, 5 μ g/ml transferrin, and 5 ng/ml sodium selenite, obtained from Sigma. MTT was also obtained from Sigma.

MTT Assay

This cell culture drug resistance assay was started within 36 hours after collection of the sample. BM and PB samples were evaluated together, because they do not differ in drug resistance [15]. All samples tested **Reagents and Drugs** with the MTT assay contained $\geq 80\%$ leukemic cells PRD and DXM sodium phosphate and acidified isopro-(as percentage of all viable cells) at the start of the panol were obtained from the hospital pharmacy, which assay, and results were considered evaluable in case of $\geq 70\%$ leukemic cells after culture. In addition, the purchased the glucocorticoids from Hyocint (Oss, The Netherlands). PRD phosphate was dissolved in saline, minimum mean optical density (OD) of the six control

prednisolone (uM) LC50

Rho=0.85 p<0.000001 in humidified air containing 5% CO_2 for 4 days at 37°C. Then 10 μ l MTT solution (5 mg/ml) was added and after shaking the plates until the cell pellet was resuspended, they were incubated for 6 hours. The formazan crystals formed were dissolved with $100 \ \mu l$ acidified isopropanol. The OD of the wells, which is linearly related to the cell number [17], was measured with an EL-312 microplate spectrophotometer (Bio-tek Instruments Inc., Winooski, USA) at 562 nm. After correction for the background color of the medium, leukemic cell survival (LCS) was calculated by the equation: LCS = (OD treated)well/mean OD control wells) \times 100%, followed by averaging the two measurements at each concentration. The LC50, the drug concentration lethal to 50% of the cells, was used as the measure of resistance, and was calculated using the two concentrations from the doseresponse curve which gave an LCS just above and below 50%.

Fig. 2. Correlation between LC50 values for PRD and DXM phosphate in untreated childhood ALL samples.

TABLE II. Some Aspects of the In Vitro Behavior of PRD and DXM in Our Assay System

	PRD	DXM
Phosphates		
Functionally stable after storage of at least 6 months	Yes	Yes
Hydrolysis into unesterified glucocorticoid	10–15%	10-15%
Unesterified		
Adhesion to polystyrene	No	No
Protein binding	22.2%	21.6%

In Vitro Behavior of PRD and DXM Phosphate

Functional stability of PRD and DXM phosphate was studied by repeated testing of cryopreserved cells from the same patients, using stock solutions which had been stored at -20° C between 2 months and 3 years, and in separate experiments using plates with these drugs in the wells stored at -20° C for 1-6 months.

Hydrolysis of PRD and DXM phosphate into unesterified glucocorticoid in culture medium as described above was studied at the laboratory of the Department of Endocrinology of the Free University Hospital in Amsterdam. wells (see later) was 0.050. These criteria ascertain The concentrations of PRD and DXM phosphate, and reliable assay results [8,16]. unesterified PRD and DXM, were determined without The MTT assay was performed at the research laboraprior extraction by high-performance liquid chromatogratory for pediatric hemato-onco-immunology of the Free phy (HPLC) and ultraviolet (UV) detection (254 nm), University Hospital. An 80 μ l cell suspension (2 \times 10⁶ both before and after the 4 days of culture. The four cells/ml) was added to 20 μ l of the drug solutions in 96compounds were separated completely, using an injection well (12 columns, 8 rows) microculture plates. These volume of 100 µl; column C18 reversed phase microsphplates had been prepared before use and were stored at ere 3 μ m, 50 × 4.6 mm (Chrompack, The Netherlands); -20°C for not longer than 6 months. Each drug was mobile phase methanol:water:acetic acid (40:58:2), 0.01 tested in duplicate in six concentrations, which ranged M tetrabutylammoniumsulphate, pH = 4. from 0.13 μ M to 4.2 mM for PRD (eightfold dilutions) Protein binding and adhesion to polystyrene—the maand from 0.5 nM to 15.3 μ M for DXM (also eightfold) terial from which the microculture plates are made—were dilutions). These concentrations include clinically achievstudied at the laboratory of the Department of Experimenable peak and steady state plasma levels. Because evapotal and Chemical Endocrinology of the St. Radboud Uniration had been observed from the outer wells, these were versity Hospital in Nijmegen, using an equilibrium dialfilled with RPMI only. Thus, columns 1 and 12 and rows ysis method as previously described [18]. For these 1 and 8 were not used. Columns 2 and 3, 6 and 7, 8 and experiments, tritiated unesterified PRD (Amersham TRK-9, and 10 and 11 contained four different drugs, with 691, 2.44 Ci/mmol) and DXM (Amersham TRK-417, duplicates of all concentrations on the same row, and 1.70 TBq/mmol) were used, and measurements were done with the higher concentrations in the upper rows, and the in duplicate. Protein binding was measured after an inculower concentrations in the lower rows. Columns 4 and bation of 30 minutes, and adhesion to polystyrene after 5 contained in the upper six wells culture medium only an incubation of up to 6 hours (times at which a plateau to assess the background color of the medium, and in the had been reached). These experiments were performed lower six wells cells in medium without drugs to deterin culture medium as described above. mine the control cell survival. The plates were incubated

117 **Dexamethasone and Prednisolone in Childhood Leukemia**

Reference	Model	Effect	Activity o DXM/PRI
22	Fibroblasts	Growth inhibition	4
23	Human	Antirheumatic	8
24	Rat	Antiinflammatory	48
		Thymolysis	48
25	Thymus cells	Induction of pyknosis in vitro	11
26	Lymphocytes	Inhibition of PHA-induced stimulation	10
27	Rat	Depletion of glucocorticoid receptor	10
28	Lymphocytes	Immunosuppression in vitro	4
29	Rat	Antiinflammatory	39
		Thymolysis	12
		Glycogenesis	18
30	Human	Pituitary-adrenal function suppression	16
31	Mice	Inhibition of tumor induction and promotion	67

TABLE III. A Summary of Studies About the Relative Activities of PRD and DXM

32	Rat	Glycogenesis	36
		Antiinflammatory	68
33	Human	Pituitary-adrenal function suppression	40
34	Rat	Antiinflammatory	240
		Thymolysis	69
		Adrenal suppression	218
		Glycogenesis	90
35	Rheumatoid synovial tissue	Prostaglandin production	3
36	Rat	Glycogenesis	6
		Antiinflammatory	60
37	Mouse thymocytes	DNA fragmentation	100
38	Mice	Antiinflammatory	5
	Mice	Thymolysis	26
	Mice	Eosinipenia	3
	Dogs	Eosinipenia	5
	Rat	Diuretic	10
39	Rat	Antiinflammatory	12
	Rat	Thymolysis	20
40	Rat	Dermal atrophy	4
	Rat	Antiinflammatory	10

Statistics

The Mann-Whitney U test for paired and unpaired data and the Spearman's rank correlation test (parameter, Rho)

For 133 successful assays, the percentage leukemic cells in the control wells was median 94% at the start of the culture, and 89% at the end of the 4-day incubation period (percentages of the total number of viable cells). The coefficient of variation of the six control wells after 4 days of culture was median 5.2% (range 0.9-15.3%). The intra-assay (duplicates) and interassay (repeated testing of same frozen sample) variation in LC50 values was less than a factor of 5 for both PRD and DXM phosphate, which is well within one dilution factor of 8.

Relative Antileukemic Activity of PRD and DXM Phosphate

For both drugs, the LCS was generally dose related, were used for two-tailed testing at a level of significance but a wide concentration range (4-log) was necessary to of P = 0.05. obtain dose-response curves. The dose-response curves tended to be more steep with DXM, and plateaus in the antileukemic activity were more often seen with PRD. However, because of a very strong cross-resistance RESULTS (Rho > 0.95) between LC50 values and area under the MTT Assay dose-response curves for both drugs, the LC50 was used as the well-known parameter. Table I shows the median and ranges of LC50 values, which were known for both drugs in 111 cases. For each drug, the LC50 values differed more than 1,000-fold between patients. Based on the group median LC50 values, DXM phosphate had a 17-fold higher antileukemic activity than PRD phosphate. Table I also shows the median and range of the individual ratios of the LC50 values for these glucocorticoids, which could be calculated for 74 individual samples (shown in Fig. 1). DXM phosphate was 16.2-fold more potent than

After 4 days of culture at 37°C, the glucocorticoid phosphates had been hydrolyzed into their corresponding unesterified forms to an extent of 15% at most. No difference in this percentage was found between PRD and DXM phosphate or between incubation with and without cells.

There was no significant adhesion of unesterified PRD or DXM to polystyrene after incubation up to 6 hours, as was demonstrated by the unchanged radioactivity of the tritiated glucocorticoids detected in the culture medium. Protein binding of unesterified PRD and DXM, at concentrations in the nanomolar or lower range, in culture medium as described above was mean 22.3% for PRD (duplicates 22.0 and 22.5%) and 21.6% for DXM (duplicates 21.2 and 22.0%). In the same medium, but without fetal calf serum, this binding was only 8.0% for PRD and 10.1% for DXM. Table II summarizes the results with respect to the in vitro behavior of PRD and DXM.

PREDNISOLONE

Fig. 3. Chemical structures of cortisol and of the synthetic glucocorticity coids PRD and DXM.

PRD phosphate based on these individual numbers. In 16 (22%) of 74 patients this ratio was even more than 50. An absolute ratio could not be calculated in 16 cases because both LC50 values were outside the concentration ranges used (always at the same end of these ranges), and not in 21 cases because one LC50 value was outside the concentration range used. Including the latter group in the analysis (a ratio of >190 was included as 190) did not influence the results: median ratio 15.8, range 0.7 -> 500. Clinical and cell biological features were not significantly related to the ratio of LC50 values for PRD and DXM (not shown). ALL cells were highly significantly cross-resistant to PRD and DXM phosphate (Fig. 2). The correlation coefficient for the LC50 values for both agents was 0.85 (P < 0.000001). This pattern was also found within several subgroups distinguished by FAB- or immunophenotype (not shown).

DISCUSSION AND CONCLUSIONS

Single-agent glucocorticoid treatment in newly diagnosed ALL results in a response rate of approximately 80%. At present, PRD is the most frequently used glucocorticoid in the first-line treatment of ALL, but few studies have compared the antileukemic activity of PRD with that of other glucocorticoids, such as DXM. Recently, results of two studies which addressed this question have been reported. PRD and DXM were used at what is generally considered equivalent doses, 40 mg/m² and 6 mg/m² daily, respectively. In a randomized study, Jones et al. [3] reported a significant reduction in central nervous system (CNS) relapses, but not in BM relapses, when DXM was substituted for PRD in the treatment of childhood ALL. Veerman et al. [4] reported the results of the Dutch ALL-VI protocol in which DXM was used, but which was preceded by a pilot study in which the only difference was the use of PRD instead of DXM. With DXM, the complete remission rate was higher and less relapses were observed both in the BM and in the CNS. The toxicity of DXM seemed to be more pronounced than that of PRD. One explanation for the better CNS results with DXM has been provided by Balis et al. [5], who reported that in monkeys DXM had more favorable cerebrospinal fluid (CSF) pharmacokinetics than PRD. The half-life of DXM in the CSF was 1.5-fold longer, and the CSF:plasma ratio for DXM was 2-fold higher than for PRD. In addition, the plasma half-life of DXM is longer than that of PRD [19–22]. In summary, the pharmacokinetics of DXM are more favorable than those of PRD [5-7].

In Vitro Behavior of PRD and DXM Phosphate

PRD and DXM phosphate were functionally stable over the time period of 3 years studied. Thus, the antileukemic activity of both drugs did not decrease in time when stored in stock solutions or in microculture plates. An additional explanation for the better results with DXM, investigated in the present study, may be that DXM has a higher cellular antileukemic activity compared to that of PRD than is generally assumed. Indeed, we found that the antileukemic activity of DXM phosphate in vitro was 16-fold higher than that of PRD phosphate, which contrasts to the generally assumed factor of 7. We studied several aspects of the in vitro behavior of glucocorticoids, in order to minimize the possibility of the contribution of in vitro artefacts to this ratio of 16 (Table II). No differences between the two glucocorticoids were observed.

An extensive literature study did not reveal the source of the assumption that equivalent doses of PRD are seven times higher than those of DXM in the treatment of ALL. Apparently, the factor of 7 has been extrapolated from studies in which PRD and DXM were compared regarding other effects, such as their antiinflammatory or thymolytic potential. However, even these studies, summarized in Table III, do not support this factor of 7 [23–41]. Ratios from 3 up to 240 were found in various systems, mostly studying animals rather than human subjects. DXM was often more than sevenfold more potent than PRD. It is unknown why DXM is more potent than PRD. These glucocorticoids are synthetic analogs of cortisol, and their molecules differ in only a few, although important, aspects (Fig. 3). Several authors reported that the glucocorticoid receptor of leukemic cells has a higher affinity for DXM than for PRD [42–45], but this affinity has also been reported to be similar [46] or even higher for PRD [47]. Icchii et al. [48] reported that the DXMreceptor complex was more stable than the PRD-receptor complex. The difference in potency between DXM and PRD might also be partly explained by a direct relation between the specific steroid nested in the steroid-receptor complex and events occurring at the postreceptor level [49].

ALL, because of its higher potency, and because of its more favorable pharmacokinetics. However, a greater antileukemic activity of DXM could be associated with increased toxicity and increased drug interactions. Clinical studies are warranted to address the important question: Which glucocorticoid should be preferred in the treatment of ALL?

ACKNOWLEDGMENTS

This work was financially supported by the Dutch Cancer Society (IKA 89-06) and by the project VONK (VU Onderzoek Naar Kinderkanker). Computer equipment was provided by Olivetti Nederland BV. The DCLSG provided most of the patient samples. Board members of the DCLSG are H. Van Den Berg, M.V.A. Bruin, J.P.M. Bökkerink, P.J. Van Dijken, K. Hählen, W.A. Kamps, E.A.E. Nabben, A. Postma, J.A. Rammeloo, I.M. Risseeuw-Appel, A.Y.N. Schouten-Van Meeteren, G.A.M. De Vaan, E. Th. Van't Veer-Korthof, A.J.P. Veerman, M. Van Weel-Sipman, and R.S. Weening.

REFERENCES

- Kaspers GJL, Pieters R, Klumper E, De Waal FC, Veerman AJP: Glucocorticoid resistance in childhood leukemia—A review. Leukemia Lymphoma 13:187–201, 1994.
- Haynes Jr RD: Adrenocorticotrophic hormone; adrenocortical steroids and their synthetic analogs. In Goodman Gilman A, Rall TW, Nies AS, Taylor P (eds): "The Pharmacological Basis of Therapeutics." New York: Pergamon Press, 1990, pp. 1431–1464.
- 3. Jones B, Freeman AI, Shuster J, Jacquillat C, Weil M, Pochedly C, Sinks L, Chevalier L, Maurer HM, Koch K, Falkson G, Patterson R, Seligman B, Sartorius J, Kung F, Haurani F, Stuart M, Burgert O, Ruymann F, Sawitsky A, Forman E, Pluess H, Truman J, Hakami N, Glidewell O, Glicksman A, Holland JF: Lower incidence of meningeal leukemia when prednisone is replaced by dexamethasone in the treatment of acute lymphocytic leukemia. Med Pediatr Oncol 19:269–275, 1991. 4. Veerman AJP, Hählen K, Kamps WA, Van Leeuwen EF, De Vaan GAM, Van Wering ER, Van Der Does-Van Den Berg A, Solbu G, Suciu S: Dutch Childhood Leukemia Study Group: Early results of study ALL VI (1984–1988). Haematol Blood Transf 33:473– 477, 1990. 5. Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG: Differences in cerebrospinal fluid penetration of corticosteroids: Possible relationship to the prevention of meningeal leukemia. J Clin Oncol 5:202–207, 1987. 6. Begg EJ, Atkinson HC, Gianarakis N: The pharamacokinetics of corticosteroid agents. Med J Aust 146:37-41, 1987. 7. Reinhardt D, Griese M: Glucocorticoids in childhood. Ergeb Inn Med Kinderheilkd 58:23–54, 1989.

We found that untreated ALL cells were significantly cross-resistant to PRD and DXM. This pattern was also found in our studies in childhood relapsed ALL and in childhood acute nonlymphoblastic leukemia [50,51]. Therefore, DXM should probably not be considered as a glucocorticoid which might circumvent PRD resistance. A more promising drug in this respect is cortivazol, a glucocorticoid which binds the glucocorticoid receptor at two sites, while PRD and DXM bind at only one site. A human leukemic cell line has been described which was resistant to DXM, but not to cortivazol [52].

In conclusion, the in vitro antileukemic activity of DXM phosphate was 16-fold higher than that of PRD phosphate in childhood ALL, with marked interindividual differences. Of course, our in vitro study does not consider several clinically important pharmacokinetic aspects of these drugs and therefore cannot give the final answer to the question whether DXM is more potent than assumed. However, two clinical studies in childhood ALL showed that DXM, at so-called equivalent doses, gave better treatment results than PRD. We suggest that DXM is to be preferred to PRD as a glucocorticoid in the treatment of

8. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Dirven MWJ, Heyenbrok MW, Hählen K, Veerman AJP: In vitro sensitivity of cells from children with leukemia using the MTT assay with

improved culture conditions. Blood 76:2327–2336, 1990.

9. Veerman AJP, Pieters R: Drug sensitivity assays in leukaemia and

lymphoma. Br J Haematol 74:381–384, 1990.

10. Kaspers GJL, Pieters R, Van Zantwijk CH, Van Wering ER, Van Der Does-Van Den Berg A, Veerman AJP: Resistance to predniso-

120 Kaspers et al.

lone (PRD) in vitro: A new prognostic factor in childhood acute lymphoblastic leukemia (ALL) at initial diagnosis. Proc Am Soc Clin Oncol 12:320, 1993 (Abstr 1061).

- 11. Pieters R, Huismans DR, Loonen AH, Hählen K, Van Der Does-Van Den Berg A, Van Wering ER, Veerman AJP: Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet 338:399–403, 1991.
- 12. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C: The morphological classification of acute lymphoblastic leukaemia: Concordance among observers and clinical correlations. Br J Haematol 47:553–561, 1981.
- 13. Van Wering ER, Brederoo P, Van Staalduinen GJ, Van Der Meulen J, Van Der Linden-Schrever BEM, Van Dongen JJM: Contribution of electron microscopy to the classification of minimally differentiated acute leukemias in children. Recent Results Cancer Res 131:77-87, 1993.
- 14. Kaspers GJL, Pieters R, Van Zantwijk CH, De Waal FC, Van Wering ER, Veerman AJP: Sensitivity of childhood acute lymphoblastic leukemia cells to prednisolone and dexamethasone assessed by the MTT assay. Haematol Blood Transf 34:327-331, 1992.

- 28. Ichii S: Depletion and replenishment of glucocorticoid receptor in cytosols of rat tissues after administration of various glucocorticoids. Endocrinol Jpn 28:293-304, 1981.
- 29. Langhoff E, Olgaard K, Ladefoged J: The immunosuppressive potency in vitro of physiological and synthetic steroids on lymphocyte cultures. Int J Immunopharmacol 9:469-473, 1987.
- 30. Lerner LJ, Bianchi A, Turkheimer AR, Singer FM, Borman A: Anti-inflammatory steroids: Potency, duration and modification of activities. Ann N Y Acad Sci 116:1071–1077, 1964.
- 31. Meikle AW, Tyler FH: Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med 63:200–207, 1977.
- 32. Nakai T: Influences of small doses of various corticosteroids on the incidence of chemically induced subcutaneous sarcomas in mice. Cancer Res 21:221-227, 1961.
- 33. Nathansohn G, Pasqualucci CR, Radaelli P, Schiatti P, Selva D, Winters G: Steroids possessing nitrogen atoms. V. (1) Some pharmacological and chemico-physical aspects of a new class of active corticoids: $[17\alpha, 16\alpha-d]$ -oxazolino-steroids. Steroids 13:365-381, 1969. 34. Ortega E: Effects of clopenrednol and other corticosteroids on hypothalamaic-pituitary-adrenal axis function. J Int Med Res 4:326-337, 1976. 35. Popper TL, Watnick AS: Antiinflammatory steroids. In Scherrer RA, Whitehouse MW (eds): "Antiinflammatory Agents." New York: Academic Press, 1974, pp. 245–294. 36. Robinson DR, McGuire MB, Bastian D, Kantrowitz F, Levine L: The effects of anti-inflammatory drugs on prostaglandin production by rheumatoid synovial tissue. Prostaglandins Med 1:461-477, 1978. 37. Silber RH: The biology of anti-inflammatory steroids. Ann N Y Acad Sci 82:821-828, 1959. 38. Telford WG, King LE, Fraker PJ: Evaluation of glucocorticoidinduced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif 24:447–459, 1991. 39. Tolksdorf S: Laboratory evaluation of anti-inflammatory steroids. Ann N Y Acad Sci 82:829-835, 1959.
- 15. Kaspers GJL, Pieters R, Van Zantwijk CH, De Laat PAJM, De Waal FC, Van Wering ER, Veerman AJP: In vitro drug sensitivity of normal peripheral blood lymphocytes and childhood leukaemic cells from bone marrow and peripheral blood. Br J Cancer 64:469– 474, 1991.
- 16. Kaspers GJL, Veerman AJP, Pieters R, Broekema GJ, Huismans DR, Kazemier KM, Loonen AH, Rottier MMA, Van Zantwijk CH, Hählen K, Van Wering ER: Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl thiazol-tetrazolium assay. Br J Cancer 70:1047– 1052, 1994.
- 17. Pieters R, Huismans DR, Leyva A, Veerman AJP: Adaptation of the rapid automated tetrazolium dye based (MTT) assay for chemosensitivity testing in childhood leukemia. Cancer Lett 41:323-332, 1988.
- Swinkels LMJW, Ross HA, Smals AGH, Benraad ThJ: Concentrations of total and free dehydroepiandrosterone in plasma and dehydro-epiandrosterone in saliva of normal and hirsute women under basal conditions and during administration of dexamethasone/synthetic corticotropin. Clin Chem 36:2042–2046, 1990.
 Brady ME, Sartiano GP, Rosenblum SL, Zaglama NE, Baguess CT: The pharmacokinetics of single high doses of dexamethasone in cancer patients. Eur J Clin Pharmacol 32:593–596, 1987.
 Choonara I, Wheeldon J, Rayner P, Blackburn M, Lewis I: Pharmacokinetics of prednisolone in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 23:392–394, 1989.
 Green OC, Winter RJ, Kawahara FS, Phillips LS, Lewy PR, Hart RL, Pachman LM: Pharmacokinetic studies of prednisolone in children. J Pediatr 93:299–303, 1978.
- 40. Tonelli G, Thibault L, Ringler I: A bio-assay for the concomitant assessment of the antiphlogistic and thymolytic activities of topically applied corticoids. Endocrinology 77:625-634, 1965.

- 22. Richter O, Ern B, Reinhardt D, Becker B: Pharmacokinetics of dexamethasone in children. Pediatr Pharmacol 3:329-337, 1983.
- 23. Berliner DL, Ruhmann AG: Influence of steroids on fibroblasts.
 I. An in vitro fibroblast assay for corticosteroids. J Invest Dermatol 49:117–122, 1967.
- 24. Boland EW: 16-a-Methyl corticosteroids. A new series of antiinflammatory compounds; clinical appraisal of their antirheumatic potencies. Calif Med 88:417-422, 1958.
- 25. Branceni D, Rousseau G, Jequier R: Biological effects of new corticosterone derivatives. Steroids 6:451-461, 1965.

- 41. Young JM, Yoxall BE, Wagner BM: Corticosteroid-induced dermal atrophy in the rat. J Invest Dermatol 69:458-462, 1977.
- 42. Ballard PL, Carter JP, Graham BS, Baxter JD: A radioreceptor assay for evaluation of the plasma glucocorticoid activity of natural and synthetic steroids in man. J Clin Endocrinol Metab 41:290– 304, 1975.
- 43. Iacobelli S, Natoli V, Longo P, Ranelletti FO, De Rossi G, Pasq D, Mandelli F, Mastrangelo R: Glucocorticoid receptor determination in leukemia patients using cytosol and whole-cell assays. Cancer Res 41:3979–3984, 1981.
- 44. Kontula K, Andersson LC, Paavonen T, Myllyia G, Teerenhovi L, Vuopio P: Glucocorticoid receptors and glucocorticoid sensitivity of human leukemic cells. Int J Cancer 26:177–183, 1980.
- 45. Lippman ME, Halterman RH, Leventhal BG, Perry S, Thompson EB: Glucocorticoid-binding proteins in human acute lymphoblastic leukemic blast cells. J Clin Invest 52:1715–1725, 1973.
- 46. Ponec M, Kempenaar J, Shroot B, Caron J-C: Glucocorticoids: Binding affinity and lipophilicity. J Pharm Sci 75:973–975, 1986.
- 47. Barrett ID, Panesar NS, Burrow HM, Bird CC, Cawley JC, Child JA, Roberts BE: Glucocorticoid binding and cytolethal respon-

 Burton AF, Storr JM, Dunn WL: Cytolytic action of corticosteroids on thymus and lymphoma cells in vitro. Can J Biochem 45:289– 297, 1967.

27. Cantrill HL, Waltman SR, Palmberg PF, Zink HA, Becker B: In vitro determination of relative corticosteroid potency. J Clin Endocrinol Metab 40:1073-1077, 1975. siveness of hairy-cell and chronic lymphocytic leukemia. Clin Lab Haematol 4:285–297, 1982.

Ichii S, Satoh Y, Izawa M, Iwasaki K: Stability of receptor complexes in the rat liver bound to glucocorticoids of different biopotencies. Endocrinol Jpn 5:583-594, 1984.

49. Zeelen FJ: Determination of the affinity of a steroid for its receptor

is not sufficient to measure its intrinsic hormonal activity. Steroids 55:325–326, 1990.

- 50. Klumper E, Pieters R, Kaspers GJL, Loonen AH, Huismans DR, Van Zantwijk CH, Hählen K, Van Wering ER, Henze G, Veerman AJP: In vitro cellular drug resistance in children with relapsed and refractory acute lymphoblastic leukemia. Blood 86:3861–3868, 1995.
- 51. Kaspers GJL, Kardos G, Pieters R, Van Zantwijk CH, Klumper

E, Hählen K, De Waal FC, Van Wering ER, Veerman AJP: Different cellular drug resistance profiles in childhood acute lymphoblastic and non-lymphoblastic leukemia: A preliminary report. Leukemia 8:1224–1229, 1994.

52. Srivastava D, Thompson EB: Two glucocorticoid binding sites on the human glucocorticoid receptor. Endocrinology 127:1770– 1778, 1990.