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Abstract 21 

Floral chemistry mediates plant interactions with pollinators, pathogens, and herbivores, 22 

with major consequences for fitness of both plants and flower visitors.  The outcome of such 23 

interactions often depends on compound dose and chemical context. However, chemical 24 

diversity and intraspecific variation of nectar and pollen secondary chemistry are known for very 25 

few species, precluding general statements about their composition. We analyzed methanol 26 

extracts of flowers, nectar, and pollen from 31 cultivated and wild plant species, including 27 

multiple sites and cultivars, by liquid chromatography-mass spectrometry. To depict the 28 

chemical niche of each tissue type, we analyzed differences in nectar and pollen chemical 29 

richness, absolute and proportional concentrations, and intraspecific variability. We hypothesized 30 

that pollen would have higher concentrations and more compounds than nectar, consistent with 31 

Optimal Defense Theory and pollen’s importance as a male gamete. To investigate chemical 32 

correlations across and within tissues, which could reflect physiological constraints, we 33 

quantified chemical overlap between conspecific nectar and pollen, and phenotypic integration of 34 

individual compounds within tissue types.     35 

Nectar and pollen were chemically differentiated both across and within species. Of 102 36 

compounds identified, most occurred in only one species. Machine-learning algorithms assigned 37 

samples to the correct species and tissue type with 98.6% accuracy. Consistent with our 38 

hypothesis, pollen had 23.8- to 235-fold higher secondary chemical concentrations and 63% 39 

higher chemical richness than nectar. The most common secondary compound classes were 40 

flavonoids, alkaloids, terpenoids, and phenolics (primarily phenylpropanoids including 41 

chlorogenic acid). The most common specific compound types were quercetin and kaempferol 42 

glycosides, known to mediate biotic and abiotic effects. Pollens were distinguished from nectar 43 
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by high concentrations of hydroxycinnamoyl-spermidine conjugates, which affect plant 44 

development, abiotic stress tolerance, and herbivore resistance.  45 

Although chemistry was qualitatively consistent within species and tissue types, 46 

concentrations varied across cultivars and sites, which could influence pollination, herbivory, 47 

and disease in wild and agricultural plants. Analyses of multivariate trait space showed greater 48 

overlap across sites and cultivars in nectar than pollen chemistry; this overlap reflected greater 49 

within-site and within-cultivar variability of nectar. Our analyses suggest different ecological 50 

roles of nectar and pollen mediated by chemical concentration, composition, and variability. 51 

 52 

Key words 53 

Floral chemistry, plant secondary metabolites, plant-pollinator interactions, plant-microbe 54 

interactions, intraspecific variation, site variation, cultivar variation, floral rewards, n-55 

dimensional hypervolume, dynamic range boxes, phenotypic integration 56 

 57 

Introduction 58 

Floral reward chemistry is central to ecology, mediating interactions with pollinators, 59 

flower-visiting antagonists, and microbes (Strauss and Whittall 2006, Irwin et al. 2010, Huang et 60 

al. 2012, McArt et al. 2014, Good et al. 2014) that influence plant reproductive success. 61 

Alkaloids, phenolics, terpenoids, and proteins have been found in nectar (Baker 1977, Adler 62 

2000, Nicolson and Thornburg 2007, Heil 2011, Stevenson et al. 2017). Numerous secondary 63 

metabolites, including phenolic compounds (De-Melo and Almeida-Muradian 2017), alkaloids 64 

(Wink 1993, Dübecke et al. 2011), and terpenoids (Flamini et al. 2003) occur in pollen. Nectar 65 

chemicals can deter nectar robbers (Barlow et al. 2017), preserve nectar from spoilage (Herrera 66 
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et al. 2010), or act as floral filters that conserve food rewards for effective pollinators (Tiedeken 67 

et al. 2016), but could also occur as a pleiotropic consequence of plant defense against foliar 68 

herbivory (Adler 2000, Heil 2011). Pollen secondary chemistry is also central to plant 69 

reproduction, mediating interactions with pollinators, microbes and the abiotic environment 70 

(Dobson and Bergstrom 2000, Murphy 2000, Pacini and Hesse 2005, Arnold et al. 2014).  71 

Floral chemistry can have effects that are organism-, dose-, and context-dependent. First, 72 

many floral compounds attract pollinators, but repel ants and other non-pollinating insects 73 

(Stephenson 1982, Junker and Blüthgen 2010, Galen et al. 2011, Junker et al. 2011a) and inhibit 74 

microbes (Dobson and Bergstrom 2000, Huang et al. 2012, Junker and Tholl 2013). In some 75 

cases, however, nectar chemicals can deter consumption by pollinators (Hagler et al. 1990, 76 

Hagler and Buchmann 1993, Kessler et al. 2008, Barlow et al. 2017), with negative as well as 77 

positive effects on plant reproduction in different systems (Adler and Irwin 2005, 2012, Kessler 78 

et al. 2008, Thomson et al. 2015). Second, the same compound can have different consequences 79 

at different doses. For example, low concentrations of caffeine in nectar improved pollinator 80 

memory and increased pollination services to artificial flowers (Wright et al. 2013, Thomson et 81 

al. 2015), but high concentrations of caffeine and other compounds deterred pollinators 82 

(Singaravelan et al. 2005, Wright et al. 2013). Third, compounds may have different effects in 83 

the context of chemical mixtures. For example, individual floral volatiles may be attractive only 84 

as components of a blend (Hebets and Papaj 2005).  85 

Despite the importance of chemical concentration and context in floral ecology, 86 

challenges associated with chemical analysis of nectar and pollen have limited the number of 87 

species for which secondary chemistry has been fully and quantitatively described. Although 88 

qualitative assays of particular compound classes date back many decades (Baker 1977, Dobson 89 
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1988), quantitative assessments are still limited to a handful of plant species, and often target 90 

particular compounds. Within species, chemical composition of floral rewards can vary at the 91 

scale of individual plants, patches, and populations (Kessler et al. 2012, Egan et al. 2016), and 92 

this variation can influence plant-pollinator interactions (Kessler et al. 2012, Thomson et al. 2015, 93 

Barlow et al. 2017). However, even in well-studied species, little is known about the extent of— 94 

or contributors to— intraspecific variation in nectar and pollen chemistry. 95 

The relative costs and benefits of attraction and defense may be different for pollen than 96 

for nectar. Chemical defense of pollen makes intuitive sense because pollen is the male gamete, 97 

and therefore requires chemicals for development (Grienenberger et al. 2009) and for protection 98 

from insects, microbes, and abiotic stressors such as desiccation and UV light (Pacini and Hesse 99 

2005), whereas the sole purpose of nectar is to reward mutualists.  Optimal defense theory 100 

predicts that defensive chemicals are preferentially allocated to a plant’s most valuable tissues 101 

(Zangerl and Rutledge 1996). Therefore, we might expect  pollen to have higher concentrations 102 

of defensive compounds than nectar (Cook et al. 2013). Indeed, in two Delphinium species, 103 

anther alkaloid concentrations were 150- to 3,000-fold higher than nectar concentrations, and 104 

comparable to levels in leaves, flowers, and fruits (Cook et al. 2013). However, in Chelone 105 

glabra, iridoid glycoside concentrations were similar in nectar and pollen (Richardson et al. 106 

2016), and in Brugmansia aurea, alkaloid concentrations were higher in nectar than pollen 107 

(Detzel and Wink 1993). These examples emphasize the need to compare differences in chemical 108 

concentrations of pollen and nectar in a wider range of plant species to make general statements 109 

about relative amounts in nectar versus pollen. 110 

Within a single species, the chemistry of nectar and pollen may be interdependent. 111 

Studies on other plant parts reported chemical correlations between leaves and fruits (Wink 1988, 112 
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Agrawal et al. 2002), leaves and flowers (Kessler and Halitschke 2009, Kessler et al. 2011), 113 

leaves and nectar (Adler et al. 2012), and flowers and nectar (Barlow et al. 2017). These 114 

correlations suggest the hypothesis that secondary chemical concentrations in floral rewards may 115 

reflect pleiotropic consequences of natural selection for greater defense of leaves or flowers 116 

against herbivores (Adler 2000), or of artificial selection for lower secondary compound 117 

concentrations in the edible parts of cultivated plants (Wink 1988). On the other hand, many 118 

compounds are exclusive to either nectar, pollen, or leaves (Kessler and Baldwin 2007, Manson 119 

et al. 2012, Marlin et al. 2014, Stevenson et al. 2017), which suggests that plants can selectively 120 

allocate secondary compounds both quantitively and qualitatively. This selectivity could enable 121 

plants to transcend ecological costs through maintenance of tissue-specific chemical composition 122 

and consequent ecological function. For example, in Nicotiana africana, multiple insect-123 

deterrent alkaloids occur in leaves, but these compounds are absent from nectar; this selective 124 

distribution may facilitate defense against herbivores without repellence of pollinators (Marlin et 125 

al. 2014). A survey that assesses overlap between nectar and pollen chemical composition across 126 

a range of species would help to elucidate the extent of interdependence between nectar and 127 

pollen chemistry, and the degree to which chemistry of these two plant parts can evolve 128 

independently.  129 

Covariation among nectar and pollen compounds, termed “phenotypic integration” 130 

(Pigliucci 2003), may mediate attractiveness to and repellency of specific chemical combinations 131 

(Junker et al. 2017). In other words, covariation among compounds may modulate the effects of 132 

individual chemicals and concentrations. For example, in many host-seeking 133 

herbivore/pollinators, individual volatiles from host plants are less attractive than multi-134 

compound blends (Bruce and Pickett 2011). In pollinators, multiple integrated signals can help 135 
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floral visitors learn to associate food—or toxicity—with specific visual, olfactory, and gustatory 136 

stimuli (Dobson 1988, Cook et al. 2005, Junker and Parachnowitsch 2015). This learning of 137 

reward-associated signal patterns, which is facilitated by within-species consistency of multiple 138 

floral traits, promotes efficient resource collection by pollinators and effective pollination of 139 

plants (Heinrich 1975). In pollen specifically, integrated synthesis and degradation of different 140 

metabolites may be critical to development and maturation of the pollen grain and surrounding 141 

pollenkitt (Pacini and Hesse 2005, Blackmore et al. 2007), and therefore essential for plant 142 

fecundity. However, to our knowledge, phenotypic integration of nectar and pollen has not been 143 

investigated in any species (Dobson 1988, Cook et al. 2005, Junker and Parachnowitsch 2015).  144 

Thorough characterizations of floral reward secondary chemistry in a diverse array of 145 

species are needed to test ecological hypotheses related to tissue-specific differences in 146 

composition, constraints between nectar and pollen chemistry of the same species, and the extent 147 

of intraspecific variation across genotypes and environments.  Therefore, we conducted a 148 

comprehensive LC-MS-based characterization of nectar and pollen secondary chemistry from 31 149 

cultivated and wild plant species in 21 angiosperm families to address the following questions: 150 

1. What are the common classes of secondary compounds in nectar and pollen? 151 

2. How diverse are secondary metabolites in nectar and pollen across species?  152 

3. How do conspecific nectar and pollen differ quantitatively and qualitatively?  153 

4. Within species, how does chemistry vary across cultivars and across sites?  154 

5. Within a species and tissue type, what is the level of phenotypic integration, and is 155 

integration of nectar correlated with integration of pollen?  156 

 157 
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Materials and Methods 158 

Study sites and sampling design 159 

Nectar, pollen, and flower samples (hereafter referred to as “tissue types”) were collected 160 

from 31 phylogenetically diverse species of flowering plants from 21 families in Massachusetts, 161 

Vermont, and California, United States, in 2013 and 2014 (Appendix S1, Table S1). To 162 

characterize intraspecific variation in cultivated species, we collected up to 10 samples each of 3 163 

cultivars; for wild species, we collected up to 10 samples from each of 3 sites (see 164 

Supplementary Appendix S1: Table S1, Supplementary Data S1: file “Species_metadata.csv”, 165 

and Supplementary Data S1: data files “Sites.csv” and “Cultivars.csv” for all species names, 166 

sample sizes, site locations, and cultivar codes). Samples were obtained from local farms, natural 167 

areas or along roadsides (after obtaining permission where necessary), and in some cases plants 168 

were purchased from nurseries (Antirrhinum majus, two cultivars of Dicentra eximia, Digitalis 169 

purpurea, Eupatorium perfoliatum, Lobelia siphilitica, and Penstemon digitalis). We chose a 170 

mix of native and introduced species, with an emphasis on common species that are bee-171 

pollinated or for which we had prior knowledge of floral secondary chemistry to facilitate 172 

analyses. For crop plants, we focused on species whose yield is improved by pollination 173 

(Delaplane et al. 2000).  174 

Sample collection 175 

Nectar was collected with microcapillary tubes from flowers bagged in mesh for 24 h to 176 

allow nectar to accumulate. For most species, nectar was pooled across individual flowers and, 177 

when necessary, across plants to obtain a sufficient volume for analysis. Care was taken to avoid 178 

contamination of samples with pollen. Depending on the plant species, we collected nectar either 179 

from the top or bottom of the corolla after removing the flower from the plant. Each nectar 180 
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sample contained at least 5 µL but typically 20 µL nectar, added to 80 µL EtOH to prevent 181 

spoilage. Samples were kept on ice in the field, then stored at −20 °C until lyophilization. 182 

Alcohol from Thymus vulgaris nectar samples was evaporated at room temperature. For 183 

Antirrhinum majus and Rhododendron prinophyllum, nectar was initially too viscous to collect 184 

with microcapillary tubes. We added 20 µL deionized water to each flower’s nectary, and 185 

collected the resulting liquid several hours later. Concentrations and composition of these 186 

species' nectar should therefore be interpreted with caution. 187 

Pollen was collected from plants with mature, undehisced or newly dehiscing anthers. For 188 

17 species, we could only obtain sufficient quantities of pollen by collecting anthers, and, for 189 

Solidago canadensis, whole flower tops. Anther samples consisted of pollen, the pollen sac, and 190 

a small amount of filament. For simplicity, we refer to both anther and pollen samples as 191 

“pollen”. We aimed to collect at least 5 mg per sample. In most species, pollen was pooled 192 

across flowers within plants, but not across plants. Samples were lyophilized and stored at 193 

−20 °C until extraction. Flowers were also collected. These were mainly used to confirm 194 

identification of compounds found in nectar and pollen, but full chemical profiles were analyzed 195 

for 9 species. The flower sample consisted of the entire flower for 5 species, the flower without 196 

anthers for 2 species, the flower without carpel for 1 species, and the flower without calyx for 1 197 

species (see Table S1 in Appendix S1). 198 

Sample processing and chemical analyses 199 

Lyophilized nectar was redissolved in 50 µL methanol. Pollen samples were extracted in 200 

methanol as previously described (Arnold et al. 2014, Palmer-Young et al. 2016). Dried, 201 

unground pollen or flowers (5–50 mg) were sonicated for 10 min with 1 mL methanol in a 2 mL 202 
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microcentrifuge tube, then incubated without shaking for 24 h at room temperature. Samples 203 

were centrifuged for 5 min at 13,000 rpm, and the supernatant transferred to a glass vial. 204 

Extracts were analyzed by liquid chromatography (LC)-Electrospray Ionisation Mass 205 

Spectroscopy (ESIMS) and UV spectroscopy using a Micromass ZQ LC-MS (Waters, Elstree, 206 

Herts, United Kingdom).  Aliquots of nectar or pollen extract (10 µL) were injected directly onto 207 

a Phenomenex (Macclesfield, Cheshire, United Kingdom) Luna C18(2) column (150 × 3.0 mm 208 

inner diameter, 5 µm particle size).  Samples were eluted with solvents A = MeOH, B = H2O, C 209 

= 1% HCO2H in MeCN with the following program: A = 0%, B = 90% at t = 0 min; A = 90%, B 210 

= 0% at t = 20 min; A = 90%, B = 0% at t = 30 min; A = 0%, B = 90% at t = 31 min; solvent C 211 

was a constant 10% throughout the run. Column temperature was 30 °C and flow rate 0.5 mL 212 

min
−1

. To facilitate compound identification, High Resolution ESIMS data were recorded on a 213 

subset of samples using a Thermo LTQ-Orbitrap XL mass spectrometer (Waltham, MA, USA) 214 

coupled to a Thermo Accela LC system performing chromatographic separation of 5 µl 215 

injections on a Phenomenex Luna C18(2) column (150 mm × 3.0 mm i.d., 3 µm particle size). 216 

The Orbitrap used the same mobile phase gradient, column temperature, and flow rate as 217 

described for the ZQ-LCMS. Spectra were recorded in positive and negative modes at high 218 

resolution (30,000 FWHM (full width at half maximum)).  219 

Compounds were identified by comparison with mass spectra in the NIST spectral 220 

database version 2.0 (Kramida et al. 2013) and, when possible, spectral comparisons with 221 

authentic standards in the library at Royal Botanic Gardens, Kew, UK. Compound quantities 222 

were calculated from external standard curves based on mass spectra or UV absorbance of the 223 

same compound; if the compound was not available, a standard curve for a compound with the 224 

same chromophore was used instead. All concentrations are given in micromolar (µmol L
-1

 225 
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original volume for nectar, µmol kg
-1

 dry mass for flower and pollen). Nectar samples were 226 

typically too small to obtain accurate dry masses, which obligated the use of fresh volume-based 227 

concentrations, and pollen is generally partially dehydrated at maturity (Heslop-Harrison 1979, 228 

Pacini et al. 2006), suggesting that dry- and fresh mass-based concentrations are reasonably 229 

similar for pollen.  Most amino acids eluted in the solvent front and could not be quantified; 230 

therefore, we quantified only phenylalanine and tryptophan. “Alkaloids” as defined in the figures 231 

include all nitrogen-containing compounds except amino acids, including spermidine derivatives, 232 

and we note here that the boundaries of the alkaloid chemical class are not universally agreed 233 

upon (Hesse 2002). “Chlorogenic acids” refer to all phenylpropenoid derivatives of quinic acid. 234 

Statistical analyses 235 

All analyses were conducted in R version 3.3 for Windows (R Core Team 2014). 236 

Species accumulation curves 237 

To visualize chemical diversity across species, chemical species accumulation curves 238 

were computed with the vegan package v2.5, function “specaccum” (Oksanen et al. 2017), and 239 

graphed with ggplot2 v2.2 (Wickham 2009), cowplot v0.9 (Wilke 2016) and ggdendro v0.1 240 

(Vries and Ripley 2016). Color palettes used in figures were recommended by P. Tol (Tol 2012). 241 

Within- and cross-species accumulation curves were computed separately. We assessed 242 

accumulation of new compounds as more samples of a given species were analyzed within 243 

species, and as additional species were analyzed across species.  244 

Random forest 245 

Distinctiveness of species and tissue types were assessed by random forest machine-246 

learning algorithm (Breiman 2001). This technique determined whether samples could be 247 

reliably assigned to their correct species and tissue type based on proportional composition. and 248 
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has been used previously to distinguish between bacterial communities (Junker and Keller 2015), 249 

and different blends of floral volatiles (Junker et al. 2011b). To convert absolute concentrations 250 

to proportions, the absolute concentration of each compound (in µM) within each sample was 251 

divided by the sample's total concentration of quantifiable compounds. The analysis was 252 

implemented in R package "randomForest" v4.6 (Liaw and Wiener 2002) with 10,000 iterations 253 

and 10 randomly sampled compounds used for each split in the tree (“mtry = 10”). The out-of-254 

basket rate indicated the proportion of incorrectly assigned samples. 255 

Non-metric multidimensional scaling (NMDS) 256 

Clustering of sample chemical compositions by species and tissue type was visualized 257 

with non-metric multi-dimensional scaling (NMDS) based on Bray-Curtis distances between 258 

each sample's proportional concentrations with function "vegdist" (Oksanen et al. 2017). NMDS 259 

of the distance matrix was performed with function “isoMDS” (Venables and Ripley 2002).  260 

Within-species ordinations were produced with function "metaMDS", which applies a Wisconsin 261 

double standardization and square-root transformation to the original data matrix, then computes 262 

an ordination based on Bray-Curtis distances between samples (Oksanen et al. 2017). The 263 

metaMDS ordination method was not used for the full cross-species data set because it resulted 264 

in convergence errors, but was used for visualization of within-species variation because it 265 

allows creation of convex hulls for each within-species group. 266 

Differences in chemical composition across tissue types, cultivars, and sites 267 

Statistical differences between tissue types, sites, and cultivars were assessed with 268 

permutational MANOVA function “adonis” in R package vegan (Oksanen et al. 2017). This 269 

function conducts an analysis of variance based on distance matrices using a permutation test to 270 

compute F-statistics and R
2
 values. Model R

2
 values are calculated as the sum of squares for 271 
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each factor divided by the total sum of squares for the model; they indicate the proportion of 272 

variance explained by each factor in the model (Oksanen et al. 2017), and are henceforth referred 273 

to as “percent of variance explained”. Permutational MANOVA models were run separately 274 

from the NMDS ordinations, which were used for visualization. When comparing across tissue 275 

types, we used proportional chemical concentrations because nectar, pollen, and flower 276 

concentrations were measured on different scales (by fresh volume for nectar, but by dry mass 277 

for flower and pollen). However, we used absolute concentrations when comparing within a 278 

species and tissue type. We elected to use absolute concentrations because we felt that they were 279 

a more direct reflection of the collected data, possibly more ecologically meaningful for 280 

interactions with mutualists and antagonists (Tiedeken et al. 2016, Barlow et al. 2017), and more 281 

relevant to future bioassays that test activity of specific compounds. In addition, they are 282 

statistically more appropriate for many analyses (Morton et al. 2017), and robust to different 283 

levels of ability to quantify co-occurring compounds. 284 

Comparisons of absolute concentrations and chemical species richness by tissue type 285 

We used general linear mixed models, fit with the lme4 package v1.1 (Bates et al. 2015), 286 

to compare absolute chemical concentrations of each chemical class in nectar and pollen. Within 287 

each sample, we calculated total concentration of each compound class by summation of the 288 

micromolar concentrations of each constituent compound. Median species-level concentration 289 

was then computed for each chemical class and tissue type. To conform to distributional 290 

assumptions of the model, only non-zero (i.e., positive) values for median concentration were 291 

used. Although this approach obscures within-species variation in concentrations—which were 292 

pursued in detail in subsequent analyses—our aim in this analysis was to compare in general 293 

terms the concentrations found in nectar and pollen. Models used a Gaussian error distribution 294 
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with species-level median ln (1 + µM) concentration within each chemical class as the response 295 

variable, and tissue type (nectar or pollen) as the predictor variable. Plant species was used as a 296 

random effect to account for possible non-independence of nectar and pollen concentrations in 297 

samples from the same species. To compare chemical concentrations for species where we 298 

collected anthers rather than pure pollen, a t-test was used to compare species-level median log-299 

transformed concentrations for chemical classes that were represented in at least six species of 300 

each pollen type (alkaloids, amino acids, and flavonoids). To test for differences in chemical 301 

species richness between nectar and pollen, we used a generalized linear mixed model with a 302 

Poisson error distribution. Chemical richness (i.e., number of compounds found) was the 303 

response variable, tissue type the predictor variable, and plant species the random effect. For this 304 

and subsequent lme4 models, homogeneity of variance and distribution of residuals were 305 

inspected with quantile-quantile and residuals vs. fitted-value plots to check for conformation to 306 

model assumptions (Bolker et al. 2009). 307 

Trait space overlap between nectar and pollen, and across cultivars and sites 308 

We used the dynamic range boxes package v0.10 (Junker et al. 2016) to assess 309 

differences in volume and overlap of multivariate chemical trait spaces (niche hypervolumes) 310 

across tissue types, and across cultivars (for cultivated species) or sites (for wild species) within 311 

individual species. Independent analyses were performed for each species (for comparisons 312 

across tissue types), or for each species and tissue type (for comparisons across cultivars or sites). 313 

The "dynamic range box" is a multivariate measure of the chemical trait space occupied by a 314 

tissue type, with each compound considered as a separate dimension of the n-dimensional trait 315 

space. The size of the range box in each dimension corresponds to the variability in 316 

concentration of each compound. Hence, a voluminous range box indicates a high variability in 317 
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chemical concentration of the compounds. For comparisons of trait space volume between nectar 318 

and pollen, proportional (rather than absolute) concentrations were used to compute the sizes of 319 

range boxes. We used proportional concentrations because nectar and pollen concentrations were 320 

measured on different scales (fresh volume vs. dry mass), and because large differences in 321 

absolute concentrations were already obvious based on visual inspection of the data. By using 322 

proportional data, the composition of tissues with differences in absolute concentration can be 323 

compared. Differences in trait space volume between tissue types were tested with Gaussian 324 

family linear mixed-effects models using size of the n-dimensional hypervolume as the response 325 

variable, tissue type as the predictor variable, and plant species as a random effect.    326 

Proportional overlap between groups of samples was measured as the arithmetic mean of 327 

overlap in chemical concentrations for each compound, i.e., in each dimension of trait space 328 

(dynamic range boxes aggregation method “mean”). Proportional overlaps are, by construction, 329 

asymmetric. This is because each group of samples occupies a different total volume of trait 330 

space (Junker et al. 2016). Therefore, any shared trait space may represent a relatively small 331 

proportion of total trait space for a group that occupies a large trait space, but a relatively large 332 

proportion of total trait space for a group with that occupies a smaller trait space. In the case of 333 

chemical trait space, asymmetric overlap indicates that one type of sample encompasses a larger 334 

fraction of the number of compounds found in the other group, and/or spans a larger spectrum of 335 

concentrations for compounds shared between the two groups. For example, if nectar contains 1 336 

compound, and pollen contains the same compound, at the same concentrations, but also 3 337 

additional compounds, then pollen will occupy a larger proportion of nectar trait space than 338 

nectar does of pollen. As a result, we can expect pollen to perform many of the chemically 339 

mediated functions performed by nectar in terms of, e.g., the number of microbe, herbivore, or 340 

Page 15 of 72 Ecological Monographs



Palmer-Young et al. Secondary chemistry of nectar and pollen Page 16 

pollinator species that are attracted or repelled. Further examples can be found elsewhere 341 

(Kuppler et al. 2017, Junker and Larue-Kontić 2018). Asymmetry in trait space overlap was 342 

tested in Gaussian family general linear mixed models that used the proportional trait space 343 

overlap (i.e., shared trait space divided by total trait space) as the response variable, tissue type 344 

as the predictor variable, and plant species as a random effect.  345 

Coefficients of variation (CV) were calculated as the ratio of standard deviation to mean 346 

concentration for each compound within each species and tissue type. The coefficient of 347 

variation was calculated at two levels of resolution: the “species level” (i.e., a CV calculated for 348 

each compound within each species and tissue type, without consideration of sites and cultivars) 349 

and the “within-species” level (i.e., a CV calculated for each compound within each combination 350 

of species, tissue type, and site or cultivar). A Gaussian family linear mixed model was fit with 351 

coefficient of variation as the response variable; tissue type, level of resolution, and their 352 

interaction as predictors, and species as a random effect. Post hoc pairwise comparisons with 353 

Tukey adjustment for multiple tests were made using R package lsmeans v2.27 (Lenth 2016).  354 

We also tested for differences in CV for compounds from different chemical classes within each 355 

tissue type. Square root-transformed CV was the response variable, chemical class and tissue 356 

type were the predictor variables, and plant species was the random effect to account for non-357 

independence of CV for different compounds within the same species.  358 

Phenotypic integration 359 

We assessed the extent of covariation among different compounds within each species or 360 

tissue by calculating phenotypic integration (Pigliucci 2003). High phenotypic integration 361 

indicates that compounds have consistent relative concentrations; low phenotypic integration 362 

indicates variability in relative concentrations.  Phenotypic integration was determined for each 363 
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species and tissue type with at least 8 samples following previously described approaches for 364 

plant volatiles (Junker et al. 2017). Pearson's correlation coefficient r was computed for all 365 

concentrations (in µM) of all pairs of compounds. Eigenvalues were calculated for the resulting 366 

correlation matrix. Raw phenotypic integration index was measured as the variance of the 367 

eigenvalues with a correction for sample size (Wagner 1984, Herrera et al. 2002, Junker et al. 368 

2017). This index can be compared across species and tissue types with different numbers of 369 

compounds and samples. 370 

In addition to calculating the integration index using complete chemical profiles, we also 371 

calculated within-module phenotypic integration (Junker et al. 2017). "Modules" are groups of 372 

well-correlated compounds, defined by hierarchical cluster analysis of a dissimilarity matrix of 373 

chemical concentrations (R function "hclust"). The optimal number of modules was determined 374 

with the “silhouette” function (Maechler et al. 2005). The mixture was divided into the optimal 375 

number of modules with the “cutree” function, and phenotypic integration was computed 376 

separately for each module. 377 

Differences in phenotypic integration between nectar and pollen were assessed with a 378 

linear mixed-effects model that used integration index as the response variable (Gaussian 379 

distribution), tissue type (flower, nectar, or pollen) as the predictor variable, and species as a 380 

random effect. Post hoc pairwise comparisons with Tukey adjustment for multiple tests were 381 

made using R package lsmeans (Lenth 2016).Correlation between phenotypic integration of 382 

nectar and pollen was assessed with a Pearson correlation for all species with at least 8 samples 383 

each for both nectar and pollen.  384 

To assess the effects of shared biosynthetic pathways on correlation between 385 

concentrations of compound pairs, we computed all pairwise correlation coefficients for species 386 
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and tissue types represented by at least 8 samples. Correlations were grouped as “within-class” 387 

(i.e., both compounds belonged to the same chemical class) or “between-class” (i.e., the two 388 

compounds belonged to different classes). We compared correlation strength (Pearson’s r) for 389 

within- versus between-class correlations in a general linear mixed model. The model used 390 

Pearson’s r as the response variable (Gaussian distribution); tissue type, relationship between 391 

compounds (within- vs. between-class), and their interaction as predictor variables; and plant 392 

species as the random effect. Pairwise contrasts were computed with Tukey correction for 393 

differences between tissue types. Additional comparisons were made for the effect of chemical 394 

relationship within each tissue type. Whereas the phenotypic integration analysis treated each 395 

species and tissue type as one observation, this analysis used each pair of compounds within a 396 

species and tissue type as one observation. As a result, it had greater power to distinguish effects 397 

of tissue type and shared biosynthetic pathway on covariation among compounds.      398 

 Phylogenetic signal 399 

We tested for phylogenetic signal in total concentrations of flavonoids, alkaloids and 400 

spermidines, and terpenoids in nectar and pollen, and phenotypic integration index of nectar and 401 

pollen.  We used function “congeneric.merge” in the pez package v1.1 (Pearse et al. 2015) to 402 

obtain a time-scaled, rooted tree by extraction of our species from an unparalleled molecular 403 

phylogeny of flower plants (Zanne et al. 2014). Phylogenetic signal was assessed with the 404 

function "phylosig" in R package phytools v0.6 (Revell 2012), which uses a permutation test 405 

(10,000 iterations) to compute Bloomberg's K (Blomberg et al. 2003).  406 
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Data availability 407 

All raw data are available in the Supplementary Materials (Data_S1.zip). Please see 408 

Metadata_S1_v1.docx for a complete guide to these data files.  409 

 410 

Results 411 

Patterns of composition and diversity 412 

Our survey identified 102 compounds across samples of flowers (9 species), nectar (26 413 

species), and pollen (28 species). The most common secondary compound classes were 414 

flavonoids, alkaloids including spermidine derivatives, terpenoids, and chlorogenic acids (Fig. 1). 415 

Phenylpropanoids other than chlorogenic acids consisted of acylated sugars (feruloyl glucose in 416 

Fragaria pollen and Silene nectar), rosmarinic acid (Monarda pollen and Thymus nectar), and a 417 

lignin glycoside (Penstemon pollen). Also ubiquitous were the free amino acids phenylalanine 418 

and tryptophan, which were recorded in 92% of nectars and 100% of pollens. The most 419 

frequently recorded compounds were the flavonoids quercetin and kaempferol glycosides, which 420 

were among the five most common compounds for all three tissue types (Table 1). Many pollens 421 

(71% of species) contained hydroxycinnamoyl-spermidines, mainly triscoumaroyl and 422 

trisferuloyl spermidines. 423 

Aside from these common compounds, cross-species diversity of flower, nectar, and 424 

pollen samples was high. Most compounds were found in only a single species (Fig. 2a), and 425 

new compounds were discovered with each additional species sampled (Fig. 2b). Within species, 426 

however, the qualitative composition of compounds was consistent (Fig. 2c). Because 427 

lyophilization likely resulted in loss of the most volatile sample components, and we could not 428 
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simultaneously optimize our chromatographic methods for all possible compounds, the true 429 

diversity of compounds in the samples is even greater than what is depicted here. We would 430 

therefore encourage the analysis of fresh samples and the use of alternative methods of 431 

separation and detection, such as GC-MS, to identify additional chemical components.  432 

Differentiation across species and tissue types 433 

Each species and tissue type exhibited characteristically unique phytochemistry, visible 434 

using NMDS multivariate ordination based on proportional composition (Fig. 3). Species and 435 

tissue type explained R
2
 = 86.6% of the variation among samples. A random forest analysis 436 

assigned compounds to the correct plant species and tissue type with 98.6% accuracy.  437 

On an absolute scale, pollen had much higher concentrations of secondary metabolites 438 

than did nectar. Non-zero median pollen concentrations were 23.8- (terpenoids) to 235-fold 439 

(flavonoids) higher than those in nectar (Fig. 4; pairwise comparisons: alkaloids: t = 6.76, P < 440 

0.001; amino acids: t = 9.27, P < 0.001; flavonoids: t = 12.06, P < 0.001; terpenoids: t = 2.27, P = 441 

0.025). Pollen concentrations did not differ between species where we collected anthers rather 442 

than pollen (t-test P > 0.20 for alkaloids, amino acids, and flavonoids).  443 

Flowers, nectar, and pollen also had distinct proportional composition at the level of both 444 

individual compounds (perMANOVA: F2, 1482 = 65.9, P = 0.001, R
2
 = 0.081, Fig. 3) and 445 

compound classes (F2,58 = 4.18, P = 0.001, R
2
 = 0.125). Flowers had the highest proportion of 446 

flavonoids (53% of documented chemical composition) and the lowest proportion of alkaloids 447 

(9%) and free amino acids (4%, Fig. 5), nectar had the highest proportion of free amino acids 448 

(23%) and terpenoids (19%, Fig. 5), and pollen had the highest proportion of alkaloids and 449 

spermidines (42%) and the lowest proportion of terpenoids (1%, Fig. 5). Most samples not 450 

covered by these chemical classes were dominated by chlorogenic acids, which comprised 85% 451 
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of composition of Helianthus flowers, 33% of Dicentra nectar, 62% of Penstemon nectar, and 60% 452 

of Rhododendron nectar. Both nectar and pollen of Geranium were dominated by tannins.  453 

Of the nectars with a high (>15% documented chemistry) proportion of alkaloids and 454 

spermidines, Citrus contained only caffeine (42% of total concentration); Dicentra contained 455 

aporphine-, aconitine-, and isoquinoloid-type alkaloids (total 17%); Digitalis (41%) and 456 

Helianthus (71%) contained acylated spermidines; Echium contained several pyrrolizidine 457 

alkaloids as echimidine derivatives (total 81%); and Lobelia contained two piperidyl and one 458 

pyridyl alkaloid (total 51%). 459 

Pollen also differed qualitatively and quantitatively from nectar (Fig. 6). Across all 460 

species, nectar and pollen shared on average only 34% of compounds. Much of this overlap was 461 

due to phenylalanine and tryptophan, which were common in both nectar and pollen (Fig. 1). 462 

When amino acids were excluded, the qualitative contrast was even more stark (22% nectar only, 463 

57% pollen only, 22 % shared). Pollen contained, on average, 63% more compounds than did 464 

nectar (9.3 ± 0.67 compounds SE in pollen vs 5.7 ± 0.51 compounds per species in nectar, Z = 465 

4.41, P < 0.001).  466 

Chemical trait space overlap between conspecific nectar and pollen 467 

We used dynamic range boxes to obtain quantitative estimates of trait space overlap 468 

between nectar and pollen of the same species. Despite the higher number of compounds in 469 

pollen which allowed for variation in more chemical dimensions, nectar and pollen occupied 470 

similar amounts of chemical trait space based on proportional composition (nectar and pollen 471 

hypervolumes both had size 0.71 ± 0.03 SE). There was, accordingly, little asymmetry in trait 472 

space overlap between the two tissue types, with median trait space overlap of 0.14 (Fig. 7). This 473 

low overlap, which reflects both the proportion of shared compounds (Fig. 7) and their relative 474 
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concentrations (Fig. 5), adds further evidence of phytochemical differentiation between nectar 475 

and pollen within a single species. When the same analysis was run on absolute concentrations 476 

rather than proportional composition, trait space overlap was near zero (Appendix S1, Fig. S2), 477 

reflecting higher absolute concentrations found in pollen (Fig. 4). On the absolute scale (Fig. S2), 478 

trait space overlap between nectar and pollen was greatest in species that lacked unique 479 

compounds in nectar (Impatiens, Rhododendron, and Verbascum; Fig. 6). In these cases, pollen 480 

trait space overlapped more than half of nectar trait space (Fig. S2).  481 

Intraspecific differences across cultivars and sites 482 

Across cultivars of the same species, permutational MANOVA showed significant 483 

variation in chemical concentrations for 11 of 15 comparisons (2/2 species for flowers, 4/5 for 484 

nectar, 5/8 for pollen). These comparisons were chosen a priori to reflect species with high 485 

levels of replication. Cultivar explained 32.5% of intraspecific variation across samples on 486 

average (Table 2A). Across sites for wild species, we found significant variation in chemical 487 

concentrations for 8 of 14 comparisons (0/1 for flower, 3/5 for nectar, 5/7 for pollen), and site 488 

explained R
2
 = 21.1% of intraspecific variation across samples on average (Table 2B).   489 

We analyzed intraspecific trait space overlap across cultivars and sites with dynamic 490 

range boxes (Fig. 8). Linear mixed model post-hoc comparisons indicated that for both cultivar- 491 

and site-level comparisons, nectar trait spaces had significantly greater overlap across within-492 

species groups than did pollen trait spaces (Cultivars: t = 2.1, P = 0.039; Sites: t = 3.74, P < 493 

0.001).   494 

The greater overlap in nectar than pollen likely reflected higher intraspecific coefficients 495 

of variation (CV) in nectar chemical concentrations than in pollen or flowers (Fig. 9). Nectar 496 

concentrations had on average 90% higher CV than pollen; this difference was consistent 497 
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whether CV was calculated based on variation in concentrations at the species level (t = 10.50, P 498 

< 0.001) or the within-species level (i.e., variation within sites and cultivars, t = 12.77, P < 499 

0.001). Accounting for sites and cultivars significantly reduced CV by 14% relative to when 500 

variation was calculated at the species level (Species-level CV = 0.82 ± 0.04 SE; Within-species 501 

CV = 0.70 ± 0.04 SE, t = -4.17, P < 0.001). No significant effect of chemical class on CV was 502 

found for flowers, nectar, or pollen (Class effect, F4, 310 = 1.77, P = 0.13; P > 0.20 for all Tukey-503 

corrected pairwise contrasts between classes within tissue types). 504 

Domesticated apple (Malus domestica) exemplified chemical separation across tissue 505 

types and cultivars within a single species (Fig. 10). Flowers, nectar, and pollen were completely 506 

distinguished from one another, and tissue type explained R
2
 = 81% of variation across samples 507 

(MANOVA F2, 84 = 207.4, P = 0.001, Fig. 10A). Within nectar and within pollen, cultivars 508 

exhibited almost complete separation in chemical trait space (nectar: F2, 29 = 8.58, P = 0.001, R
2
 509 

= 0.39; pollen: F2, 29 = 13.93, P = 0.001, R
2
 = 0.51, Fig. 10B, C).   510 

Phenotypic integration 511 

Chemical mixtures were generally less integrated in flowers (least squares mean 9.91 ± 512 

4.59 SE) than in nectar (21.30 ± 2.96 SE) and pollen (21.53 ± 3.17 SE), but these differences 513 

were not statistically significant (F2, 39.6 = 2.37, P = 0.10, Fig. 11A). However, integration of 514 

chemical modules varied significantly across tissue types (F2,36.4 = 4.31, P = 0.021). Within-515 

module integration was significantly higher in nectar (46.1 ± 4.30 SE) than in flowers (26.2 ± 516 

6.26 SE, t = 2.76, P = 0.024, Fig. 11B). Within-module integration of pollen was intermediate 517 

(35.33 ± 4.01 SE) and not significantly different from either nectar (t = -1.98, P = 0.13) or 518 

flowers (t = 1.26, P = 0.42, Fig. 11B). Integration of nectar and pollen were not significantly 519 

correlated (t = -0.538, P = 0.60, Fig. 11C).  520 
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Consideration of individual species showed that compounds tended to cluster by 521 

biosynthetic relatedness. For example, in Malus domestica nectar (Fig. S3), there were seven 522 

pairwise correlations with r values above 0.80. All were between pairs of flavonoids or a 523 

flavonoid and chlorogenic acid (Fig. S3). Chlorogenic acid is an ester of quinic and caffeic acids. 524 

Caffeic acid, like other flavonoids, is synthesized via the phenylpropanoid pathway (Rice-Evans 525 

et al. 1996). These shared metabolic precursors may explain correlations between concentrations 526 

of chlorogenic acid and flavonoids. Likewise, in Digitalis purpurea pollen, nine of the 10 527 

strongest correlations (highest r-values) were between chemically similar spermidine derivatives 528 

(Fig.’s S4, S5).  529 

Analysis of all pairwise correlations between compounds indicated stronger positive 530 

correlations for within-class (i.e., both compounds belonged to the same chemical class) than 531 

between-class compound pairs (F2,1238 = 12.35, P < 0.001). Within each tissue type, the effect of 532 

chemical relatedness was significant for both nectar (t = 4.26, P < 0.001) and for pollen (t = 4.59, 533 

P < 0.001). The effect of chemical relatedness did not vary significantly across tissue types 534 

(Relationship x Type interaction: F2,1280 = 2.28, P = 0.10), although the estimate for the effect of 535 

chemical relatedness tended to be higher for nectar (0.21 ± 0.043 SE) than for pollen (0.13 ± 536 

0.028 SE, Fig. S6). Across all compound pairs, correlation coefficients were higher in nectar 537 

than in pollen (estimate of differences: 0.11 ± 0.030 SE, t = 3.82, P < 0.001), and marginally 538 

higher in pollen than in flowers (estimate 0.075 ± 0.032 SE, t = 2.36, P = 0.048, Fig. S6).  539 

 540 

Phylogenetic signal 541 

No significant phylogenetic signal was found for median total concentrations of alkaloids, 542 

amino acids, flavonoids, or terpenoids in nectar or pollen (Bloomberg's K randomization test, K 543 
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= 1.09, P = 0.07 for nectar terpenoids, P > 0.25 for all others), nor for number of compounds or 544 

phenotypic integration of nectar or pollen (Bloomberg's K randomization test, P > 0.45 for all). 545 

 546 

Discussion 547 

In the most comprehensive qualitative and quantitative cross-taxon description of nectar 548 

and pollen chemistry to date, we found marked differentiation of nectar and pollen across species, 549 

clear quantitative and qualitative distinction between nectar and pollen of the same species, and 550 

intraspecific variation in both nectar and pollen chemistry across cultivars and sites. Pollen had 551 

higher concentrations and more compounds than did nectar, consistent with Optimal Defense 552 

Theory. These data provide a new level of insight into the secondary chemistry of nectar and 553 

pollen, and provide a framework for future research on the heritability, ontogeny, and ecological 554 

consequences of chemical variation in floral rewards.  555 

Common compounds and potential functions 556 

Most secondary chemicals were from a few common classes—flavonoids, alkaloids, 557 

chlorogenic acids, and terpenoids. Flavonoids are widespread among plants and tissue types 558 

(Taylor and Grotewold 2005). Flavonoids in our samples—mainly quercetin and kaempferol 559 

glycosides—were among the most frequently recorded compounds in flowers, nectar, and pollen, 560 

where they may mediate both biotic and abiotic interactions. First, flavonoids can serve primary 561 

functions as plant growth regulators (Taylor and Grotewold 2005). For example, flavonoids can 562 

govern pollen fertility (Mo et al. 1992). These growth-regulating properties could also contribute 563 

to the allelopathic activity of flavonoids against microbes and insects (Taylor and Grotewold 564 

2005), and inhibit germination of competing, heterospecific pollen (Murphy 2000). Second, 565 
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flavonoids can act as antioxidants, which could improve tolerance of pollen grains to abiotic 566 

stressors that may reduce viability (Schoper et al. 1986). While hydroxycinnamic acids have 567 

superior absorption of UVB irradiation, flavonoids also absorb wavelengths in the UV spectrum, 568 

and accumulation is stimulated by both visible and UV light exposure, as well as by other abiotic 569 

stressors that generate reactive oxygen species (Agati and Tattini 2010). The high flavonoid 570 

concentrations in our pollen samples (median non-zero concentrations > 14,000 µM) are similar 571 

to those reported for leaves grown in full sunlight (Agati and Tattini 2010), which suggests that 572 

pollen has comparable abilities to withstand potentially damaging radiation. Third, flavonoids 573 

can regulate biotic interactions with mutualists and antagonists. Flavonoids generally reduce 574 

herbivory and infection (Karpinski et al. 2003, Cushnie and Lamb 2005). In multiple plant 575 

species, high constitutive and inducible leaf flavonoid content has been correlated with insect 576 

and pathogen resistance (Treutter 2005). Protection of nectar and pollen from microbial and 577 

insect antagonists may help to preserve these resources for plant reproduction.  Flavonoids may 578 

also be an honest signal for insects with vision in the UV spectra; nectar with flavonoids 579 

fluoresces under UV light (Thorp et al. 1975) and could visually guide pollinators to rewarding 580 

flowers. 581 

Alkaloids and spermidines in our samples were dominated by the spermidine conjugates 582 

in pollen. Spermidines were generally esterified to one or more cinnamic acids, e.g., 583 

triscoumaroyl and trisferuloyl spermidines. These compounds likely play both developmental 584 

and ecological roles. Found in all plants, hydroxycinnamoyl spermidines are thought to have 585 

phytohormone-like roles in plant development and abiotic stress tolerance; synthesis is induced 586 

by exposure to heat, UV, salinity, and dessication (Gill and Tuteja 2010) as well as by herbivory 587 

(Bassard et al. 2010). In N. attenuata, foliar concentrations of 520 µM reduced herbivore growth 588 
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rates by 50%; the median nonzero alkaloid concentration in our pollen samples (23,000 µM) was 589 

44-fold higher (Kaur et al. 2010). 590 

Both developmental and ecological functions of spermidines are likely important for 591 

pollen, which must endure abiotic stresses that can reduce viability (Schoper et al. 1986) before 592 

it germinates to fertilize ovules. In Arabidopsis, deficiency of spermidine conjugates caused  593 

pollen grains to become deformed, indicating the developmental role of these compounds 594 

(Grienenberger et al. 2009). Prior to germination, pollen may be exposed to insects and 595 

pathogens, which can be inhibited by spermidines (Walters et al. 2001), and UV irradiation, 596 

which can be absorbed by spermidines (Gill and Tuteja 2010). In Arabidopsis pollen, 597 

hydroxycinnamoyl spermidines are concentrated in the pollen coat, an ideal location to function 598 

in UV absorption and inhibition of insects and pathogens (Grienenberger et al. 2009). Despite 599 

their multi-functionality and developmental importance, nearly one-third of our tested pollens 600 

lacked spermidines, suggesting that these compounds are dispensable for some species.  601 

We recorded spermidine conjugates in nectar of Helianthus annuus and Digitalis 602 

purpurea. Spermidines have not been previously reported in nectar, although they have been 603 

found in xylem and phloem, and the enzymes that catalyze their synthesis have been found in 604 

nectar (Friedman et al. 1986, Shah et al. 2016). In H. annuus and D. purpurea, nectar and pollen 605 

contained the same spermidine conjugates, suggesting that spermidines in nectar could be a 606 

result of contact with pollen. Regardless of their origin, the occurrence of spermidines in nectar 607 

may still be ecologically relevant to organisms that interact with these species.  608 

Overall, alkaloids comprised >15% of recorded metabolite concentrations in the nectar of 609 

6 of 26 species. Nectar alkaloids included caffeine in Citrus; aconitine and isoquinoline alkaloids 610 

in Dicentra, pyrrolizidine alkaloids in Echium, and piperidine and pyridyl alkaloids in Lobelia. 611 
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Alkaloids have antimicrobial and insect-deterrent properties (Wink 1993), which may defend 612 

nectar against bacteria and non-pollinating insects that can deplete floral rewards (Good et al. 613 

2014, Barlow et al. 2017). Whether nectar alkaloids are beneficial for pollination per se remains 614 

a matter of debate. Effects may depend on ecological context. For example, alkaloids reduced 615 

plant reproduction in Gelsemium sempervirens through deterrence of pollinators (Adler and 616 

Irwin 2005), but increased outcrossing in Nicotiana attenuata by enforcement of modest 617 

drinking behavior (Kessler et al. 2008), and had dose-dependent benefits for pollination of 618 

artificial flowers (Thomson et al. 2015). Nectar alkaloids could benefit pollination when they are 619 

preferred over alkaloid-free solutions by honey and bumble bees (Singaravelan et al. 2005, 620 

Thomson et al. 2015); enhance pollinator memory and associative learning (Wright et al. 2013, 621 

Baracchi et al. 2017); or deter nectar robbers, which preserves rewards for pollinators (Barlow et 622 

al. 2017). For example, 10 µM caffeine in nectar of artificial flowers resulted in more pollination 623 

from bumble bees than 100 µM or no caffeine (Thomson et al. 2015), and 129 µM caffeine at 624 

artificial feeders increased recruitment of honey bees (Couvillon et al. 2015). The caffeine 625 

concentrations in our Citrus nectar samples (median 25.6 µM, interquartile range 14.7-50.4 µM) 626 

are within the concentration range that may benefit pollination by several of these mechanisms.  627 

Differentiation across species 628 

Across the species surveyed, each species and tissue type was chemically unique. Most 629 

compounds were recorded only once, and new compounds were recorded with each additional 630 

species sampled (Fig. 2). This is likely due, at least in part, to our phylogenetically diverse set of 631 

species, which came from 21 plant families. Despite quantitative variation within species, 632 

random forest (machine-learning) algorithms assigned samples to their correct taxon and tissue 633 

type with over 98% accuracy. Each tissue type within a species was characterized by a unique 634 
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combination of chemicals not found in any other species, or even in other floral tissues of the 635 

same plant. Nectar and pollen of the same species were chemically distinct in proportional 636 

composition, absolute concentrations, and chemical identity, all of which suggest chemical 637 

regulation to accomplish specific ecological functions. These results, which are consistent with 638 

prior surveys that revealed high floral phytochemical diversity (Junker et al. 2011a, Courtois et al. 639 

2016), suggest that nectar and pollen chemistry of the same plant can take independent 640 

evolutionary trajectories. Prior studies of floral volatiles and nectar have shown lower levels of 641 

insect-repellent compounds in species that benefit from animal pollination, which is thought to 642 

reflect the high costs of pollinator deterrence for obligate outcrossers (Abel et al. 2009, Adler et 643 

al. 2012). Future studies should test whether pollen exhibits the same chemical trends as these 644 

other tissue types, with reduced levels of defensive chemicals in pollinator-dependent species. 645 

 646 

Pollen and nectar of the same species had distinct phytochemistry 647 

Differences between nectar and pollen are exemplified by alkaloids and spermidines, 648 

where concentrations in nectar were orders of magnitude lower than those in pollen, consistent 649 

with the lower concentrations of alkaloids in Nicotiana spp. nectar relative to leaves and flowers 650 

(Adler et al. 2012). In our samples, caffeine concentrations in Citrus nectar were 2,900-fold 651 

lower than those in pollen. In a variety of Coffea and Citrus spp., nectar caffeine concentrations 652 

were always below the taste thresholds of honey bees, but were sufficient to enhance honey bee 653 

memory for floral cues associated with a reward (Wright et al. 2013). Many alkaloids and 654 

spermidines present in pollen were absent from nectar, which indicates that the presence of 655 

alkaloids in nectar is not necessarily constrained by their presence in other tissues, at least in 656 
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pollen. This finding is consistent with previously documented lack of nectar alkaloids in 657 

Nicotiana africana (Marlin et al. 2014), and nectar limonoids in Citrus sinensis (Stevenson et al. 658 

2017).  Generally, our results suggest selection for lower alkaloid levels in nectar to minimize 659 

pollination-related costs (Adler et al. 2012), and are consistent with the disposability of nectar—660 

a dedicated floral reward—relative to the male gametes in pollen (Hargreaves et al. 2009).  661 

We still have much to learn about mechanisms of nectar production, and the degree to 662 

which nectar chemistry reflects secondary metabolism in other parts of the plant (Heil 2011, 663 

Stevenson et al. 2017). Whereas pollen development, including the production of pollenkitt, have 664 

been described in detail (Heslop-Harrison 1979, Pacini and Hesse 2005, Blackmore et al. 2007), 665 

including at the molecular level (Grienenberger et al. 2009, Yonekura-Sakakibara et al. 2014), 666 

the molecular basis of sugar transport in nectar was only elucidated recently (Lin et al. 2014). 667 

Greater knowledge of nectar production would help to clarify physiological constraints on 668 

chemical composition. Correlations between nectar and corolla chemistry (Cook et al. 2013, 669 

Richardson et al. 2016, Barlow et al. 2017) may relate to the mode of nectar secretion. For 670 

example, in Ranunculaceae, some species secrete nectar through cuticular microchannels, 671 

whereas others release nectar by rupture of epidermal cells that line the nectary (Antoń and 672 

Kamińska 2015). The latter mechanism releases the entire cytoplasmic contents into the nectary, 673 

which could be a less selective process than secretion through microchannels (Antoń and 674 

Kamińska 2015). Constraints between nectar and phloem chemistry may reflect sites of 675 

secondary compound synthesis. For example, locally synthesized or adsorbed nectar chemicals 676 

(Raguso 2004) might be less constrained by phloem chemistry relative to compounds that are 677 

synthesized systemically and transported via xylem or phloem. For remotely synthesized 678 

compounds, pleiotropic costs of foliar defenses could impose a lower limit on nectar 679 
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concentrations (Adler et al. 2012), whereas autotoxicity could impose an upper limit (Baldwin 680 

and Callahan 1993). We also do not know to what extent nectar composition is environmentally 681 

versus genetically determined (Mitchell 2004). Future study on regulation of nectar synthesis and 682 

provisioning with phytochemicals in diverse species will indicate which phytochemicals are 683 

constrained by versus independent from chemistry of other plant parts. Overall, our data suggest 684 

strong independence of nectar and pollen secondary chemistry. They indicate that nectar 685 

chemistry can evolve separately from that of pollen, both in terms of composition and 686 

concentration.  687 

Intraspecific variation across cultivars and sites 688 

Across cultivars and sites, within-species nectar and pollen phytochemistry was 689 

qualitatively conserved but quantitatively heterogeneous. Intraspecific differences were not only 690 

statistically significant, but also of large magnitude. A median pair of cultivars or sites shared 691 

less than two-thirds of chemical trait space for nectar and less than half for pollen, with possible 692 

implications for disease resistance, herbivore resistance, and pollinator behavior, as discussed 693 

below. 694 

We found the clearest differentiation in chemistry across cultivars. This likely reflects 695 

consequences of strong artificial selection, as well as the homogeneous age and genetic 696 

background of cultivated plants relative to those in the wild, although we cannot exclude some 697 

effects of environmental factors or maternal environment. In other work, nectar traits such as 698 

volume and sugar composition had high heritability, but were generally measured in greenhouse 699 

rather than field settings (Mitchell 2004). Genetic control over non-sugar nectar constituents has 700 

not been explicitly addressed except with transformed plant lines (Kessler and Baldwin 2007), 701 

and no other study to our knowledge has examined intraspecific variation in pollen composition. 702 
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Inter-cultivar variation in chemistry suggests a need for future study on how cultivars vary in 703 

attractiveness to managed and wild pollinator communities, particularly in species where yields 704 

are pollen-limited (Garibaldi et al. 2013). In addition, cultivar differences illustrate how 705 

pleiotropic effects of selection on non-floral traits can alter nectar and pollen chemistry, which 706 

may complicate theories of floral phytochemical evolution in wild species.  707 

We found less consistent, but still statistically significant, variation across sites in 708 

chemistry of wild species. These differences may reflect genetic or environmental effects, or 709 

their interactions. Genetic differences across populations likely explain some differences 710 

(Mitchell 2004). For example, deterministic effects of genetics on floral traits are demonstrated 711 

by the within-species consistency of floral morphology (Heinrich 1975), the low inducibility of 712 

floral chemical defenses relative to those of other tissues (Zangerl and Rutledge 1996), and the 713 

qualitative consistency of conspecific nectar amino acid samples from widely separated sites 714 

(Baker and Baker 1977). However, the environment can also have profound effects on floral 715 

traits. These include scent emission (Dötterl et al. 2009, Kessler et al. 2011), floral color morph 716 

(Baker and Baker 1977), diurnal rhythm of flowering (Kessler et al. 2010), and pollinator 717 

attraction (Kessler et al. 2011). Nectar traits can also be influenced by the environment. For 718 

example, nectar grayanotoxin concentrations were correlated with heat load across 719 

Rhododendron populations (Egan et al. 2016), and nectar alkaloid levels were experimentally 720 

modified by herbivory and nutrient addition (Adler et al. 2006). Each of these studies 721 

demonstrates ways in which the environment can influence floral chemistry. Finally, genotype 722 

by environment interactions have been found for nectar production rates (Boose 1997), and could 723 

exist for nectar and pollen chemistry as well. Future experiments using plant genotypes grown 724 

under different conditions could clarify the relative importance of genetics and environment to 725 
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nectar and pollen chemistry. Additional experiments could test the inducibility of secondary 726 

chemical concentrations in response to environmental cues including fertilization, herbivory, and 727 

pathogen challenge.  728 

Chemical differences between sites have implications for both pollinator behavior and 729 

plant evolution. Site-specific chemistry could alter pollinator foraging preferences, potentially 730 

shaping inter- and intraspecific resource competition, nest site selection, and population 731 

dynamics. Individual bumble bees, in particular, have a broad foraging range but consistent site- 732 

and plant-specific preferences that are retained over multiple weeks (Heinrich 1976, Ohashi and 733 

Thomson 2009). For plants, optimal chemistry of floral rewards may differ in response to abiotic 734 

conditions; pollinator availability, effectiveness, and chemical sensitivity (Tiedeken et al. 2014); 735 

and presence of non-pollinating insects and pathogens. Local selective pressures that act on pre-736 

existing variation could create chemical divergence across populations, as found in 737 

Rhododendron ponticum (Egan et al. 2016), which could in turn shape flower-insect interaction 738 

networks (Tiedeken et al. 2016). A related question is the scale at which pollinators make 739 

foraging decisions. Nectar phytochemical concentrations can influence local interactions (Adler 740 

and Irwin 2005, Kessler and Baldwin 2007), but can also vary by orders of magnitude among 741 

flowers of a single inflorescence (Kessler et al. 2012). It is unknown whether pollinators can 742 

detect inter-site differences against this background of within- and between-individual variation. 743 

If they can, differences in chemical concentrations could be one driver of preferences for plant 744 

species and foraging sites.  745 

Phenotypic integration  746 

Our results indicate that nectar (mean integration index = 21.5) and pollen (mean 21.3) 747 

have levels of integration that are similar to those of leaf volatiles (mean 22.0) , which were 748 
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more integrated than flower volatiles (mean 10.8 (Junker et al. 2017)) and flower methanolic 749 

extracts (mean 9.9 (this study)). The generally low levels of integration in flowers may reflect 750 

several factors. First, flowers are physiologically complex, including include petals, corolla, 751 

stigma, and anthers that differ in chemical composition (Flamini et al. 2002). This heterogeneity 752 

may reduce the chemical integration of the pooled floral tissue. Second, flowers undergo rapid 753 

chemical changes during maturation, bloom, and senescence that result in different chemical 754 

ratios in samples that differ slightly in developmental stage (Schiestl et al. 1997). Third, flowers 755 

may accomplish ecological functions with single compounds, which may lessen the need for 756 

integration of the whole flower. For example, variation in the floral volatile 2-phenylethanol was 757 

sufficient to alter both pollinator attraction and ant repellence in Polemonium viscosum (Galen et 758 

al. 2011). Likewise, a single compound—the monoterpenoid linalool—was sufficient to alter 759 

growth of some bacteria from P. digitalis flowers (Burdon et al. 2018).  760 

In our study, correlations between different compounds were partly explained by 761 

biosynthetic similarity. Overall, concentrations of compound pairs that belonged to the same 762 

chemical class were more strongly correlated than were pairs that belonged to different chemical 763 

classes (Fig. S6). For example, in Malus domestica nectar, the seven strongest correlations were 764 

all between pairs of flavonoids or a flavonoid and chlorogenic acid (Fig. S3). All of these 765 

compounds are synthesized via the phenylpropanoid pathway (Rice-Evans et al. 1996). Similarly, 766 

in Digitalis purpurea pollen, 9 of the 10 strongest correlations were between spermidine 767 

derivatives (Fig.’s S4, S5). These findings are consistent with prior analyses of phenotypic 768 

integration in scent bouquets, where biosynthetic similarity between compounds was correlated 769 

with strength of covariation (Junker et al. 2017).   770 
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On the other hand, both Malus and Digitalis (Fig.’s S3-S5), as well as the entire dataset 771 

(Fig. S6), showed numerous strong correlations between compounds from different classes. 772 

These correlations could reflect similar solubilities or transport (in nectar), or selection for 773 

specific chemical ratios or combinations that function in pollinator attraction, defense, or 774 

development. Multimodal signals that combine scents with color can attract and condition 775 

pollinators to rewards (Junker and Parachnowitsch 2015). For example, carbon dioxide, floral 776 

volatiles, and leaf volatiles all functioned in concert with visual cues to attract adult Manduca 777 

sexta to artificial flowers; in females, carbon dioxide was only attractive against a background of 778 

host-plant leaf volatiles (Goyret et al. 2008). In nectar, which exhibited the highest within-779 

module integration (Fig. 11) and strongest average correlation between compound pairs (Fig. S6), 780 

consistent secondary chemical ratios could promote pollinator constancy by allowing pollinators 781 

to associate species-specific flavors with food rewards. This hypothesis has also been suggested 782 

to explain the consistency of amino acid composition of conspecific nectars (Baker and Baker 783 

1977) and the morphological similarity of conspecific flowers (Heinrich 1975). Further research 784 

is needed to determine the primary and secondary significance of correlations between secondary 785 

compounds in nectar and pollen, and how covariation is differentially regulated in the two tissue 786 

types. Manipulative studies are necessary to determine whether damage by herbivores reduces 787 

the level of integration in nectar and pollen, as found for leaf volatiles (Junker et al. 2017).    788 

There was no significant correlation between the integration of a species' nectar and the 789 

integration of its pollen. This is an important result, because it indicates that forces acting on 790 

phenotypic integration of nectar may be different from those acting on phenotypic integration of 791 

pollen, and that integration of these two tissues may be independently regulated. For example, 792 

Malus domestica had the second highest integration of all species for nectar (PI = 49.4), but the 793 
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ninth lowest integration for pollen (PI = 12.7). Likewise, Catalpa speciosa had second highest 794 

integration for pollen (47.3), but below average integration for nectar (10.0). Together with the 795 

low levels of chemical overlap between nectar and pollen, this finding emphasizes that secondary 796 

chemistry of conspecific nectar and pollen can chemically diverge from one another. This 797 

divergence may reflect the unique selective pressures exerted on their different ecological roles.  798 

This description of nectar and pollen secondary chemistry complements an expanding 799 

knowledge of scent- and morphology-mediated interactions between flowers, insects, and 800 

microbes (Junker and Blüthgen 2010, Junker et al. 2011a, Junker and Parachnowitsch 2015). 801 

Nectar and pollen secondary chemistry mediates interaction with pollinators, floral antagonists, 802 

and pathogens, and thereby influences the ecology and evolution of many plant communities. 803 

Our analyses summarize the variety of chemical strategies used in floral food rewards of diverse 804 

plant taxa. 805 
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Tables 1160 

Table 1. Most common compounds by tissue type.  1161 

Type Compound Presences 
Prevalence 

(%) 

A. Flower 

(9 spp)       

  Quercetin-O-glycoside 8 88.9 

  Chlorogenic acid 6 66.7 

  Kaempferol-O-glycoside 6 66.7 

  Tryptophan 5 55.6 

  Acylated sugar 4 44.4 

B. Nectar 

(26 spp)       

  Phenylalanine 24 92.3 

  Tryptophan 17 65.4 

  Quercetin-O-glycoside 9 34.6 

  Chlorogenic acid 6 23.1 

  Kaempferol-O-glycoside 5 19.2 

C. Pollen 

(28 spp)       

  Phenylalanine 27 100 

  Tryptophan 25 92.3 

  Kaempferol-O-glycoside 19 67.9 

  Quercetin-O-glycoside 14 50.0 

  Triscoumaroyl spermidine 11 39.3 

  1162 
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Table 2. Results of permutational MANOVA tests for intraspecific variation in chemistry across 1163 

cultivars and sites. Bold print indicates P < 0.05. N: number of samples. Df(n): numerator 1164 

degrees of freedom. Df(d): denominator degrees of freedom. 1165 

A. Cultivars                 

Species Type N Cultivars F Df(n) Df(d) P R
2
 

Helianthus annuus Flower 40 4 2.44 3 36 0.023 0.17 

Malus domestica Flower 29 3 11.29 2 26 0.001 0.46 

Citrus sinensis Nectar 23 2 13.09 1 21 0.001 0.38 

Cucurbita pepo Nectar 45 3 1.77 2 42 0.062 0.08 

Digitalis purpurea Nectar 30 3 1.96 2 27 0.02 0.13 

Helianthus annuus Nectar 20 4 5.99 3 16 0.001 0.53 

Malus domestica Nectar 30 3 8.58 2 27 0.001 0.39 

Citrus sinensis Pollen 23 2 19.84 1 21 0.001 0.49 

Cucurbita pepo Pollen 32 3 1.77 2 29 0.138 0.11 

Digitalis purpurea Pollen 17 3 0.57 2 14 0.913 0.08 

Fragaria ananassa Pollen 30 3 7.78 2 27 0.001 0.37 

Helianthus annuus Pollen 30 3 0.91 2 27 0.406 0.06 

Malus domestica Pollen 30 3 13.93 2 27 0.001 0.51 

Persea americana Pollen 30 3 86.00 2 27 0.001 0.86 

Prunus dulcis Pollen 30 3 4.88 2 27 0.007 0.27 

                  

B. Sites                 

Species Type N Sites F Df(n) Df(d) P R
2
 

Geranium maculatum Flower 21 3 2.03 2 18 0.1 0.18 

Geranium maculatum Nectar 19 2 0.72 1 17 0.508 0.04 

Impatiens capensis Nectar 31 3 2.55 2 28 0.036 0.15 

Kalmia latifolia Nectar 20 3 4.16 2 17 0.004 0.33 

Linaria vulgaris Nectar 31 4 1.85 3 27 0.031 0.17 

Lythrum salicaria Nectar 33 3 0.96 2 30 0.444 0.06 

Verbascum thapsus Nectar 27 2 2.14 1 25 0.101 0.08 

Geranium maculatum Pollen 30 4 4.70 3 26 0.001 0.35 

Impatiens capensis Pollen 24 3 12.14 2 21 0.001 0.54 

Kalmia latifolia Pollen 15 3 2.97 2 12 0.033 0.33 

Linaria vulgaris Pollen 32 5 2.24 4 27 0.046 0.25 

Solanum carolinense Pollen 28 3 2.18 2 25 0.07 0.15 

Solidago canadensis Pollen 25 3 3.41 2 22 0.014 0.24 

Verbascum thapsus Pollen 29 2 2.70 1 27 0.091 0.09 
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Figure captions 1166 

Fig. 1. Prevalence of major compound classes in flowers (9 species), nectar (26 species), and 1167 

pollen (28 species). Alkaloids include all nitrogen-containing compounds except the amino acids, 1168 

including spermidine derivatives. Chlorogenic acids refer to all phenylpropenoid derivatives of 1169 

quinic acid. 1170 

Fig. 2. Chemical diversity in nectar, pollen, and floral samples. (a) Most compounds were found 1171 

in only a single species. Flower samples: solid yellow line. Nectar samples: dotted red line. 1172 

Pollen samples: dashed blue line. (b) Chemical species accumulation curves indicated that new 1173 

compounds were found for each additional species sampled. Neither nectar nor pollen 1174 

accumulation curves approached saturation. Lines and shaded bands show mean ± standard 1175 

deviation. (c) Within-species chemical species accumulation curves. All compounds within each 1176 

species were found after analysis of the first few samples for both nectar (solid red lines) and 1177 

pollen (dashed blue lines). 1178 

Fig. 3. Non-metric multidimensional scaling-based ordination of Bray-Curtis distances between 1179 

flower (circles), nectar (triangles), and pollen (squares) samples. Samples clustered strongly by 1180 

species and tissue type, with significant differences between tissue types (F2, 1482 = 65.9, P = 1181 

0.001).  Random forest discriminant analysis showed that 98.6% of samples could be assigned to 1182 

the correct species- tissue type combination. Ellipses show 95% confidence bands for flower 1183 

(solid line), nectar (dotted line), and pollen (dashed line). Colors indicate different species. 1184 

Ordination is based on proportional chemical composition. 1185 
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Fig. 4. Absolute ln (µM + 1) concentrations of all compound classes were 23.8- to 235-fold 1186 

lower in nectar (red circles) than in pollen (blue triangles). Vertical lines show median non-zero 1187 

concentrations in nectar (solid red line) and pollen (dashed blue line). Points and error bars show 1188 

means and 95% confidence intervals. Where no error bars are visible, either all concentrations 1189 

are zero or error bars are smaller than symbols for points. Concentrations are in µmol L
-1

 for 1190 

nectar and µmol kg
-1

 dry mass for pollen. Alkaloids include all nitrogen-containing compounds 1191 

except the amino acids, including spermidine derivatives. 1192 

Fig. 5. Median proportional compositions of flower, nectar, and pollen samples by chemical 1193 

class. Bar chart in (a) shows median proportions across all species (b). Tissue types differed 1194 

significantly in class-wise proportional composition (permutational MANOVA on median 1195 

proportional composition for each species and tissue type, F2,58 = 4.18, P = 0.001). Tissue type 1196 

explained 12.5% of variance in proportional composition across species. Alkaloids include all 1197 

nitrogen-containing compounds except the amino acids, including spermidine derivatives. 1198 

Fig. 6. Number of quantifiable compounds detected in nectar, pollen and both nectar and pollen. 1199 

(a) Pie chart indicates totals aggregated across all species. (b) Individual species. Pollen 1200 

contained on average 63% more compounds than did nectar (9.3 ± 0.67 compounds SE vs 5.7 ± 1201 

0.51 compounds per species, χ
2
 = 19.5, Df = 1, P < 0.001).  1202 

Fig. 7. Nectar and pollen exhibited similar levels of variability in proportional composition, with 1203 

no significant asymmetry in trait space overlap of one tissue type by the other. Graphs show 1204 

dynamic range boxes-based trait space volume of nectar (red bars) and pollen (blue bars), and 1205 

overlap between the two types. (a) Median hypervolume size and (b) proportional hypervolume 1206 

overlap, aggregated across species. (c) Hypervolume size and (d) proportional overlap for each 1207 
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individual species. The hypervolume size indicates the variability of proportional concentrations. 1208 

Trait space overlap indicates how much the nectar trait space covers the pollen trait space 1209 

("Nectar over Pollen") and vice versa. Calculations are based on proportional composition. 1210 

Vaccinium corymbosum samples are separated into samples from cultivated ("cult") and wild 1211 

taxa. P-values in (a) and (b) are for generalized linear mixed model pairwise comparisons 1212 

between nectar and pollen volume size (a) and asymmetry in overlap between nectar and pollen 1213 

in (b). See Appendix S1, Fig. S2 for trait space volumes and proportional overlap based on 1214 

absolute concentrations. 1215 

Fig. 8. Intraspecific variation in nectar and pollen composition across cultivars (cultivated 1216 

species: a, c) and sites (wild species: b, d). Horizontal axis shows median proportional overlap of 1217 

trait space (n-dimensional hypervolume) for all pairs of sites and cultivars, as quantified by 1218 

dynamic range boxes. Median proportional hypervolume overlap in (a) and (b) are pooled across 1219 

species. The trait space overlap indicates how much trait space is shared between a typical pair 1220 

of cultivars or sites. Analyses are based on proportional composition. P-values in (a) and (b) are 1221 

for generalized linear mixed model pairwise comparisons between nectar and pollen site- or 1222 

cultivar-wise overlap. Nectar chemistry overlapped more across both sites and cultivars than did 1223 

pollen chemistry (cultivars: t = -2.1, P = 0.039; sites: t = -3.74, P = 0.0002). 1224 

Fig. 9. Nectar chemical concentrations were relatively more variable than either flower or pollen 1225 

concentrations, whether variation was calculated at the level of species (left panel) or the level of 1226 

cultivars (for cultivated species) and sites (for wild species, right panel). Coefficients of variation 1227 

were calculated as the ratio of the standard deviation to the mean for each compound within each 1228 

species and tissue type (“Species level”), or for each compound within species, tissue type, and 1229 
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site or cultivar (“Within species”). Different lower-case letters indicate significant differences (P 1230 

< 0.05) between tissue types within each level of resolution in linear mixed model post hoc 1231 

comparisons.  1232 

Fig. 10. Example of distinct chemical compositions of flower, nectar, and pollen (a) and 1233 

intraspecific variation in nectar and pollen composition across cultivars (b, c) in Malus domestica. 1234 

Graphs show ordinations based on Bray-Curtis distances after Wisconsin double standardization 1235 

of µM concentrations. Permutational MANOVA showed that tissue type (F2, 84 = 207, P = 0.001) 1236 

explained R
2
 = 81% of variation across samples in (a). Differences between cultivars were 1237 

significant for both nectar (F 2, 27 = 8.58, P = 0.001, panel b) and pollen (F 2, 27 = 13.93, P = 0.001, 1238 

panel c). Cultivar abbreviations: Fuji: Fuji-Autumn Red. Mac: Macintosh. See Table 2 for full 1239 

results of cultivar-wise permutational MANOVA.  1240 

Fig. 11. Median species-wise phenotypic integration of flower, nectar, and pollen samples. (a) 1241 

Integration of the full chemical mixture was generally higher in nectar and pollen, but did not 1242 

differ significantly across tissue types (linear mixed model F 2, 2.42 = 39.6, P = 0.11). (b) 1243 

Integration within modules of compounds within each mixture (defined by hierarchical 1244 

clustering) indicated significant differences across tissue types (F2,36.4 = 4.31, P = 0.021). Nectar 1245 

had higher within-module integration than did flowers (t = 2.76, P = 0.024). (c) No significant 1246 

correlation was found between species-level nectar integration and pollen integration.  1247 

 1248 

 1249 
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