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Abstract

Asymmetry in forelimb dorsal hoof wall angles, termed unevenness, is associated with fore-

limb gait asymmetries, but compensatory mechanisms and out of plane ground reaction

forces (GRFs) due to unevenness have yet to be documented. The aim of this study was

therefore to investigate the effects of fore hoof unevenness on contralateral fore and hind

limb force vectors patterns, in both sagittal and frontal planes. A group of n = 34 riding

horses were classified into four groups: hoof angle difference of more than 1.5 degrees

(UNEVEN; n = 27), including higher left fore (HIGH-LF; n = 12), higher right fore (HIGH-RF;

n = 15), and hoof angle difference of less than 1.5 degrees (EVEN; n = 7). Three dimen-

sional ground reaction forces GRFs were collected during trotting. GRF summary vectors

representing the magnitude (VecMag) and angular direction (VecAng) of the entire stance

phase in the sagittal and the frontal plane were calculated. The effects of unevenness on

GRF production were explored using linear regression, repeated measures ANOVA and

statistical parametric mapping (SPM) with significance at (P<0.05). In all uneven groups,

increasing unevenness affected sagittal VecAng values in the forelimbs, with more propul-

sive GRF in the high hoof. In the HIGH-RF group, medial GRFs were also found in the high

RF hoof compared to lateral GRFs in the low LF hoof (RF VecAng: 0.97±1.64 (deg); LF

VecAng: -0.64±1.19 (deg); P<0.05). In both HIGH groups, compensatory associations to

increasing unevenness were only found in the RH, but also a significantly greater lateral

VecAng was found in the LH (P<0.05) compared to the RH limb. No significant differences

(P>0.05) were found between hindlimb pairs in the EVEN group. Unbalanced sagittal and

increased frontal plane GRFs in uneven horses suggest that they have greater locomotory

challenges, as the equine musculoskeletal system is not constructed to withstand move-

ment and loading in the frontal plane as effectively as it is in the sagittal plane.
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Introduction

Structural and functional asymmetries between the left and right sides of the body are a part of

the normal biological variation. In horses, morphological differences between the left and

right limbs have been reported in bone size [1,2], muscular development [3] and hoof dimen-

sions [4,5]. Asymmetries include unevenness, best defined by a difference in dorsal hoof wall

angle of the fore hooves [6], and have been found in 5.3% of Dutch Warmblood horses [7] and

can result in earlier retirement of elite sport horses [8]. The development of unevenness may

be a consequence of sidedness [4,9], as has been associated with lateralized grazing posture in

Warmblood horses with long limbs and short heads [9]. Asymmetrical gait patterns [9] and

inter-limb differences in ground reaction force (GRF) distribution [6] are also found in these

horses.

The functional consequences of unevenness are reported to be similar to sub-clinical lame-

ness results, as asymmetrical peak vertical forces are evident between forelimbs [6]. In the

lame horse, asymmetric GRFs are generally assumed to reflect a lame horse’s efforts to redis-

tribute the weight from the lame limb to the other limbs whilst maintaining forward speed

over a stride [10,11]. As such, in forelimb lameness the vertical impulse decreases in the lame

forelimb and ipsilateral hindlimb, while increasing in the contralateral forelimb and diagonal

hindlimb during trotting [12]. Asymmetric forelimb loading in uneven horses may induce

compensatory hindlimb loading similar to that of a lame horse. Alternatively, hindlimb load-

ing patterns may be more indicative of morphological or preferential differences that influence

hindlimb function. Maintaining dynamic equilibrium through a stride must also be a factor in

determining the load distribution patterns between limbs [13]. This involves balancing the

forces between the limbs and may include forces outside of the sagittal plane that play a role in

general locomotor stability of the complete musculoskeletal system (i.e. limbs, neck and back),

as is described in hexapedal runners [14]. If hindlimb force patterns produced by uneven

footed horses do vary due to preferential or morphological differences, then compensation

must still allow equilibrium to be achieved in order to maintain a symmetrical and regular gait

pattern.

Grouping populations of horses based on directional asymmetric biases (such as grouping

by higher compared to lower peak forelimb GRFs) has recently been found to obscure differ-

ences in longitudinal GRF patterns between left and right sides [15]. Additionally, analysis of

discrete variables can miss important differences in the force-time curve that occur at other

time points during the stance phase. This was addressed by [16] studying the centre of pressure

(COP) path under individual hooves throughout stance, described as a holistic measure of

individual limb mechanics. In that study, asymmetries in dorsal hoof wall angle did not neces-

sarily result in asymmetries in COP path, but each hoof consistently maintained its own ‘loco-

motor -kinematic and kinetic- fingerprint’. As such, studying the COP path was considered

more suited to tracking changes over time within the individual horse.

In order to study the full extent of the force-time curve in asymmetrically oriented horses

two alternative methods were recently recommended, (1) vector analysis and (2) statistical

parametric mapping (SPM) [15]. The vector technique combines an easily interpretable force

vector diagram with calculation of two summary variables; the vector magnitude (VecMag)

represents the force magnitude over the entire stance phase and is influenced primarily by the

vertical GRF, while the vector angle (VecAng) represents the direction of the GRF and is influ-

enced by the horizontal force components. To complement the vector technique which pro-

vides visual comparisons and summary variables, SPM can be used to objectively identify

significantly different regions between multi-dimensional, time-continuous GRF profiles

[17,18].

Fore hoof unevenness is associated with asymmetrical force vectors
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As the presentation of unevenness may be important to orthopaedic health and the com-

pensatory mechanisms used by uneven footed horses are currently unknown, the aim of this

study was to investigate the effects of limb specific (left vs right) and directionally-biased (high

vs low) fore hoof unevenness on contralateral fore and hind limb force vectors patterns, in

both sagittal and frontal planes. This study applies vector analysis and SPM to explore the

extent of the GRF patterns in uneven footed horses with known functional asymmetries in the

forelimbs.

The objectives were 1) to seek associations between direct (known) and compensatory

(unknown) functional GRF asymmetries and asymmetries in dorsal hoof wall angles in uneven

horses grouped using directional-bias (UNEVEN; high vs low) and additionally by limb spe-

cific morphology (a higher dorsal hoof wall angle in the left (HIGH-LF) or right (HIGH-RF)

forelimbs), and 2) to compare the GRF vector patterns produced by contralateral fore and

hind limbs in uneven footed horses grouped by directional bias (UNEVEN), uneven footed

horses grouped laterally (HIGH-LF and HIGH-RF) and even (EVEN) footed horses, using the

techniques of force vector analysis and SPM.

For this study, we developed the following hypotheses: Sagittal plane force vector pat-

terns in the forelimbs would be influenced by the degree of asymmetry of the fore hooves,

based on the findings of a difference in vertical and longitudinal forelimb GRFs in uneven

footed horses [6]. Grouping the horses by directional bias would reduce the significance of

any horizontal GRF asymmetries, based on the findings of [15]. Patterns of HIGH-LF and

HIGH-RF diagonal pairs patterns would be mirror images, as morphological asymmetry

results in similar locomotor asymmetry in the forelimbs independent of side [6,9]. Finally,

that compensatory GRF patterns in the hindlimbs would subtly follow those described by

[12] in lame horses, as forelimb GRF patterns in uneven footed horses are similar to sub-

clinical lameness patterns [6].

Materials and methodology

This study was performed in accordance with Dutch law. A formal waiver of ethics approval

was granted by the Animal Welfare Body Utrecht in 2011. The waiver was granted as the study

was non-invasive and all horses were either client-owned, in which case the owners consented

to the study, or they were school horses belonging to the university. UCLan Animal Welfare

and Ethics Review Board (AWERB) did not prospectively review the project in 2011, as there

was no formal requirement for UCLan staff involved in overseas projects to apply for formal

approval at that time. In 2014, approval was granted by UCLan AWERB for a generic non-

invasive procedure (Ref: REPROC/14/01/SH) and can confirm that techniques used in the

Dutch 2011 project fall within that procedure.

This study followed the protocol for multi-dimensional time GRF vector analysis dx.doi.

org/10.17504/protocols.io.r3dd8i6 [PROTOCOL DOI].

The subjects were n = 27 uneven footed (dorsal hoof wall angle difference > 1.5 degrees, as

classified by [6]) and n = 7 even footed riding horses of different breeds (mean±SD, body-

weight: 557±77 kg; age: 12 ± 5 years). The horses were evaluated by an experienced, board cer-

tified clinician on straight lines at walk and trot, which constitutes part of a lameness

examination. The horses were graded on a scale of 0–5 according to the American Association

of Equine Practitioners lameness scale [19] for each gait separately. As such, some of the horses

were 0–0: sound at walk and trot, while some in the uneven groups were 1–0: 1/5 lame at walk

(asymmetrical head nod) and sound at trot (symmetrical head nod) [6], see Table 1. In addi-

tion, the absolute difference in peak vertical GRF (%) between left and right limbs for the fore-

limbs and hindlimbs was determined at the trot retrospectively (Table 1).

Fore hoof unevenness is associated with asymmetrical force vectors
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Data collection

Six retroreflective markers were attached to each hoof at the level of the coronet and distal

hoof wall mid-dorsally, and laterally and medially at the widest part of the hoof. These markers

were used to locate the position of the hoof on the force plate and to determine the position of

the COP relative to hoof position. The hoof markers were tracked by 8 Oqus 3+ cameras oper-

ating at 250 Hz and processed using Qualisys Track Manager (QTM version 2.1). Ground

reaction forces (GRF) were measured using a force platform (Kistler Z4852C, 60 × 90 cm),

which captured data at 1000 Hz.

A trial captured with the horse standing square was used to determine the dorsal hoof wall

angles of each fore hoof by measuring the angle between the line joining the proximal and dis-

tal markers on the dorsal hoof wall to the horizontal. The difference between LF and RF dorsal

wall angles was determined and the horses were firstly categorized into EVEN and UNEVEN

groups. The UNEVEN horses were further categorized into two asymmetry groups: left fore

higher: HIGH-LF; right fore higher: HIGH-RF. High and low hoof angles were compared

between the HIGH-LF and HIGH-RF groups using an independent samples t-test prior to fur-

ther analysis to establish whether unevenness was similar between groups.

The horses were trotted in hand along a rubberized runway with an embedded pressure

and force plate until a minimum of 3 clean hits had been recorded for each of the four limbs at

a consistent velocity.

Data processing

Kinematic data was tracked in QTM and then exported into Visual 3D (version 5.02). Thresh-

olds of above and below 50 N of vertical GRF were used to define the start and end of the

stance phase respectively. The velocity of each trial was calculated as stride length divided by

stride duration using the kinematic markers on the hooves post processing. For sagittal plane

data, the cranio-caudal (C-C) direction was positive in the direction of movement. For frontal

plane data, the medio-lateral (M-L) direction was positive medially, i.e. when viewing from the

rear, to the right for the left limbs and to the left for the right limbs. GRF trials of LF and RF

were matched based on a velocity difference of less than 0.1 m�s-1, which yielded a total of 1

(n = 6), 2 (n = 16) or 3 (n = 12) trials of matched data per horse.

The GRF data were normalized to horse mass, down-sampled to 250 Hz and plotted as vec-

tor diagrams in all three planes of motion [15]. The summary variables VecMag and VecAng

were determined in the sagittal and frontal planes. VecMag was calculated by vector summa-

tion of the individual vectors divided by the number of samples contributing to the value, and

Table 1. Assignment of horses according to subjective lameness evaluation and % difference in absolute peak vertical GRF between left and right limbs during

trotting.

Lameness grade (walk-trot) % difference in peak GRF during trotting

0–0 1–0 Forelimbs Hindlimbs

HIGH-LF n 7 5 4.1 (2.5) 4.2 (2.3)

Hoof angle difference (deg) 4.8 (2.0) 4.8 (3.0)

HIGH-RF n 11 4 4.4 (4.0) 3.2 (4.0)

Hoof angle difference (deg) 4.8 (3.8) 4.9 (2.3)

EVEN n 7 0 2.7 (1.3) 6.4 (7.9)

Hoof angle difference (deg) 0.73 (0.51)

Number of horses and mean (SD) hoof angles of hooves classified according to the fore hoof (LF,RF) with the higher dorsal hoof wall angle (HIGH-LF, HIGH-RF,

EVEN) and according to lameness grade evaluated on a scale of 0 to 5 at walk and trot (American Association of Equine Practitioners, 2017).

https://doi.org/10.1371/journal.pone.0203134.t001
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VecAng was determined trigonometrically from the components of the vector magnitude and

expressed relative to the vertical with positive values being directed cranially in the sagittal

plane and medially in the frontal plane. Between-limb differences in hoof angle, VecMag and

VecAng were calculated separately for the sagittal and frontal plane data by subtracting the val-

ues for the hoof with the lower dorsal wall angle from those of the hoof with the higher angle.

Mean values of the vector variables were calculated for each horse with more than 1 matched

trial. For horses with a single matched trial, the values for that trial were used in the analysis.

Differences in hoof angles and vector variables, together with absolute values of the vector vari-

ables for each limb, were tabulated in Excel (version 2007/2016) and then imported into SPSS

(version 24).

Relationship between vector variables and dorsal hoof wall angle. Forward stepwise

multiple linear regression was performed for the UNEVEN, HIGH-LF and HIGH-RF groups

separately to 1) determine the strongest association between dorsal hoof wall angle asymmetry

and vector variables (direct relationship to unevenness); and 2) from these results, determine

the strength of the relationship to other vector variables that may indicate compensatory

effects (relationship with the key functional consequences of unevenness). Tolerance and vari-

ance inflation factor (VIF) were extracted to assess co-linearity between predictor variables in

the model.

Differences in GRF patterns between contralateral limb pairs. For the vector summary

variables, contralateral limb pairs were compared using repeated measures ANOVA separately

for the UNEVEN, HIGH-LF, HIGH-RF and EVEN groups, with significance indicated at

p<0.05.

Where significant differences (p<0.05) were found in ANOVA results, SPM analysis was

conducted post-hoc to explore the temporal patterns further. For SPM analysis, the stance

phase GRF data in all three dimensions (vertical, longitudinal and mediolateral axes) from the

horses in each group with significant findings were normalized to total mass (N/kg) and the

duration of the stance phase was similarly normalized to 101 data points. These variables were

assembled into vector fields of # horses, 101 data points per stance phase and three dimensions

per data point for each limb (UNEVEN, 27�101�3; HIGH-LF, 12�101�3; HIGH-RF, 15�101�3).

Differences between contralateral fore and hind limb pairs, were examined for each group sep-

arately via a statistical parametric mapping approach using MATLAB 2017a (MATLAB, Math-

Works, Natick, USA), with the source code available at [20]. Statistical parametric mapping

was implemented with planned comparisons in a hierarchical manner. Specifically, Hotelling’s

T2 tests were used to compare the vertical, longitudinal and mediolateral continuous data

together, followed by individual paired t-tests on each GRF dimension.

Results

In the uneven horses, the differences between dorsal hoof wall angles in the forelimbs ranged

from�1.5 to 12.3 degrees. In the even horses the difference ranged from 0.2 to<1.5 degrees.

The profiles of each lateral asymmetry group (HIGH-LF, HIGH-RF), and symmetrical group

(EVEN) together with details of the lameness scores are shown in Table 1. There was no signif-

icant difference in the unevenness of the HIGH groups (Low dorsal wall angle: HIGH-LF = 48

±3, HIGH-RF = 50±5 deg, P = 0.135; High dorsal wall angle: HIGH-LF = 53±4, HIGH-RF = 55

±5 deg, P = 0.150).

Relationship between vector variables and dorsal hoof wall angle

Linear regression analysis was used to seek associations between the difference in forelimb

dorsal hoof wall angles with the vector summary variables in the sagittal and frontal planes

Fore hoof unevenness is associated with asymmetrical force vectors
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(Table 2, Fig 1). In the UNEVEN group, hoof angle difference was positively related to the

high hoof sagittal VecAng (R = 0.531; P = 0.004). In the HIGH-LF group, hoof angle difference

was positively related to forelimb sagittal VecAng difference (R = 0.645; P = 0.024). In the

HIGH-RF group, hoof angle difference was positively related to RF sagittal VecAng

(R = 0.601; P = 0.018). No other variables were included in these models.

The outcome variables from the previous linear regression results were then compared to

all other vector variables (Table 3, Fig 1). In the UNEVEN group, all of the variables were

included in the model, consequently a clear relationship between high hoof sagittal VecAng

Table 2. Results of linear regression analysis of difference in dorsal hoof wall angles tested against vector summary variables in the sagittal and frontal planes using

forward stepwise linear regression.

R R2 B S.E.B β p

UNEVEN

Model 1 0.531 0.282

Constant 2.626 0.849

High Forelimb

Sagittal VecAng

1.471 0.469 0.531 0.004

HIGH-LF

Model 1 0.645 0.416

Constant 3.685 0.689

Forelimb Sagittal VecAng Difference 1.400 0.525 0.645 0.024

HIGH-RF

Model 1 0.601 0.361

Constant 2.068 1.245

Right Forelimb

Sagittal VecAng

1.805 0.666 0.601 0.018

UNEVEN (n = 27, categorized as high and low hoof angles), HIGH-LF (n = 12, higher left fore hoof) and HIGH-RF (n = 15, higher right fore hoof). Multiple correlation

coefficient (R), coefficient of determination (R2), unstandardized regression coefficient, (B), standard error of B (S.E.B.), standardized regression coefficient (β),

probability (p).

https://doi.org/10.1371/journal.pone.0203134.t002

Fig 1. Plots of regression analysis results for UNEVEN, HIGH-LF and HIGH-RF groups. A-C Results of initial analysis of dorsal hoof

wall angle difference against summary vector variables. D-E Results of secondary analysis of initial outcome variables against remaining

summary vector variables.

https://doi.org/10.1371/journal.pone.0203134.g001
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and the remaining vector variables was not found. For the HIGH-LF group, the difference in

forelimb sagittal VecAng between limbs was positively related to RH sagittal VecAng in the

model (R = 0.935, P<0.001). For the HIGH-RF group, RF sagittal VecAng was positively

related to RH frontal VecAng (R = 0.620, P = 0.014). No other variables were included in these

models.

Differences in GRF patterns between contralateral limb pairs

Force vector diagrams for the three planes of motion are illustrated for each limb of a typical

uneven horse within each HIGH group in Fig 2. Summary vector variables separated by symme-

try-asymmetry group are shown in Table 4. Paired comparisons between contralateral limb pairs

for the UNEVEN group were significantly different for forelimb sagittal VecAng (P = 0.034) and

forelimb sagittal VecMag was close to significance (P = 0.058). For the HIGH-LF group signifi-

cant differences were identified for forelimb sagittal VecAng (P = 0.027) and hindlimb frontal

VecAng (P = 0.044). For the HIGH-RF group, significant differences for frontal VecAng were

identified in both the forelimbs (P = 0.034) and hindlimbs (P = 0.005). No significant differences

(P>0.05) were found for the EVEN group.

Post hoc results of the vector SPM analysis for the forelimbs in the UNEVEN group are

shown in Fig 3. Vector field SPM analysis (vertical, longitudinal and mediolateral continuous

data combined) are shown in Fig 3A. The horizontal dashed line indicates the critical threshold

above which left and right T2 values are significantly different. T2 is closer to the significance

threshold in the first half of the stance phase, but does not reach significance. Component GRF

traces for left and right limbs together with the corresponding SPM analysis for each compo-

nent separated by group are shown in Fig 3B–3G. One data point in the longitudinal direction

exceeded the critical threshold during the impact phase (P = 0.048).

For the HIGH groups, vector field SPM analysis (vertical, longitudinal and mediolateral

continuous data combined) are shown in Fig 4. In the HIGH_RF group T2 is closer to the sig-

nificance threshold for both fore and hindlimbs in the first half of the stance phase, but as no

threshold crossings were found there were no significant differences (P>0.05) in the fore or

hind limbs for either the HIGH-LF or HIGH-RF groups.

Component GRF traces for left and right limbs together with the corresponding SPM analy-

sis for each component separated by group are shown in Fig 5 for the forelimbs and Fig 6 for

the hindlimbs. Comparing the traces between groups in the forelimbs it is evident that the t

value is closer to the threshold in the longitudinal direction for HIGH-LF, although none of

Table 3. Results of linear regression analysis from outcome variables in initial regression analysis (HIGH-LF = Forelimb Sagittal VecAng Difference;

HIGH-RF = RF Sagittal VecAng) tested against remaining vector summary variables.

R R2 B S.E. B β Sig

HIGH-LF

Model 1 0.935 0.875

Constant -1.461 0.294

Right Hindlimb Sagittal VecAng 0.804 0.096 0.935 < .001

HIGH-RF

Model 1 0.620 0.384

Constant 1.397 0.239

Right Hindlimb Frontal VecAng 0.466 0.164 0.620 .014

The UNEVEN group is not included, as all variables were included in the model. Multiple correlation coefficient (R), coefficient of determination (R2), unstandardized

regression coefficient, (B), standard error of B (S.E.B.), standardized regression coefficient (β), probability (p).

https://doi.org/10.1371/journal.pone.0203134.t003
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the values reached significance (P>0.05). For the hindlimbs, in the HIGH-RF group SPM

analysis identified a significant difference between mediolateral GRF vectors for the LH and

RH (P<0.05). Two clusters of data points exceeded the critical threshold during breakover

(P = 0.05; P = 0.046) and the t value was close to the threshold for the majority of the stance

phase.

Discussion

Comparison of sagittal plane force vectors displayed at intervals throughout stance has been

used for several years in people under the names of Pedotti diagrams or butterfly diagrams

[21–24]. This technique has recently been applied in horses using sagittal plane force vectors

to calculate summary vector variables (VecMag, VecAng) to facilitate numerical analysis and

by applying SPM to provide continuous statistical analysis of interlimb differences in sagittal

plane GRFs throughout the stance phase [15]. The present study advances the application of

quadrupedal force vector analysis by evaluating 3D force vectors in all four limbs of horses

with hoof asymmetries. A previous study [6] has shown differences in forelimb peak vertical

and longitudinal GRF values in horses with asymmetrical fore hooves. In this study we have

Fig 2. Vector diagrams of sagittal, frontal and dorsal views for one asymmetric horse in each HIGH group. HIGH-LF group (A,B,C), HIGH-RF

group (D,E,F).

https://doi.org/10.1371/journal.pone.0203134.g002
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Table 4. Paired comparisons of summary vector variables according to left-right and high-low differences in fore hoof angles of uneven and even footed horses.

HIGH-LF HIGH-RF EVEN UNEVEN

n 12 15 7 27

Forelimbs

Sagittal VecMag L 6.21 (0.46) 6.60 (0.68) 6.31 (0.64) Lo 6.44 (0.63)

R 6.25 (0.53) 6.33 (0.53) 6.45 (0.53) Hi 6.28 (0.49)

Frontal VecMag L 6.21 (0.46) 6.60 (0.68) 6.31 (0.64) Lo 6.44 (0.63)

R 6.25 (0.53) 6.33 (0.52) 6.45 (0.53) Hi 6.28 (0.49)

Sagittal VecAng L 1.44 (1.00)� 1.27 (1.17) 1.38 (1.46) Lo 0.99 (1.05)�

R 0.64 (0.80)� 1.52 (1.12) 0.97 (0.53) Hi 1.49 (1.05)�

Frontal VecAng L -0.60 (1.43) -0.64 (1.19)� -0.65 (1.71) Lo -0.05 (1.32)

R 0.70 (1.10) 0.97 (1.64)� 0.42 (1.11) Hi 0.27 (1.71)

Hindlimbs

Sagittal VecMag L 5.35 (0.57) 5.56 (0.54) 5.33 (0.73) Lo 5.41 (0.54)

R 5.44 (0.61) 5.46 (0.52) 5.60 (0.40) Hi 5.51 (0.56)

Frontal VecMag L 5.35 (0.57) 5.55 (0.53) 5.32 (0.73) Lo 5.41 (0.53)

R 5.44 (0.61) 5.45 (0.52) 5.59 (0.40) Hi 5.50 (0.56)

Sagittal VecAng L 2.84 (1.29) 3.55 (1.74) 3.62 (1.35) Lo 3.04 (1.42)

R 2.81 (1.26) 3.21 (1.53) 3.36 (1.61) Hi 3.22 (1.56)

Frontal VecAng L -1.59 (0.84)� -1.63 (1.30)� -1.23 (1.77) Lo -0.56 (1.54)

R -0.46 (1.51)� 0.27 (1.49)� -0.07 (1.12) Hi -1.11 (1.49)

Summary vector magnitudes (VecMag, N/kg) and vector angles (VecAng, degrees) in the sagittal and frontal planes separated according to asymmetry group (left fore

higher: HIGH-LF; right fore higher: HIGH-RF; dorsal wall angle difference <1.5 degrees: EVEN; and dorsal wall angle difference >1.5 degrees: UNEVEN).

� indicate pairs of values that differ significantly in each column (P<0.05).

L: left; R: right; Lo: low dorsal wall angle; Hi: high dorsal wall angle.

https://doi.org/10.1371/journal.pone.0203134.t004

Fig 3. Vector analysis of the high and low forelimb GRFs in the UNEVEN group. 3D vector field results of SPM analysis (A), and 1D SPM

results for individual GRF component fields (C = longitudinal, E = medio-lateral, G = vertical) and the corresponding GRF plots (N/kg)

(B = longitudinal, D = medio-lateral, F = vertical) for high (red) and low (black) dorsal hoof wall angles (DHWA) for the UNEVEN group.

https://doi.org/10.1371/journal.pone.0203134.g003
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used the same population of horses, grouped by dorsal hoof wall angle differences, and have

applied vector analysis and SPM to explore multi-dimensional compensatory effects this time

in all four limbs, to provide a method of studying direct and compensatory effects due to

uneven fore hooves.

We hypothesized that sagittal plane force vector patterns in the forelimbs would be influ-

enced by the degree of asymmetry of the fore hooves. Indeed, for the UNEVEN and the

HIGH-LF group, there was a significant difference in sagittal VecAng between forelimbs and

this difference had a strong relationship to the difference in dorsal hoof wall angle (Tables 2

and 4, Fig 1). Additionally, significant differences between longitudinal GRFs were found for

the UNEVEN group during impact. For the HIGH-RF group, sagittal VecAng in the right

forelimb was increasingly more cranially directed as the hoof wall angle asymmetry increased

between forelimbs (Fig 1), but mean differences between limbs were found in the frontal and

not the sagittal plane (Table 4). This hypothesis could largely be accepted and concurs with [6]

who found reduced braking and an earlier transition from braking to propulsion in the higher

foot, although the difference between limbs was more strongly evidenced in the UNEVEN and

HIGH-LF groups. Linked to this is the second hypothesis, that grouping the horses by direc-

tional bias would reduce the significance of any horizontal GRF asymmetries. Clearly, this was

not the case for the forelimbs, as sagittal VecAng and longitudinal GRFs were significantly dif-

ferent between high and low dorsal wall angles in the UNEVEN group. The strength of this

finding supports previous literature indicating that dorsal hoof wall angles influence sagittal

plane mechanics. In the hindlimbs, however, grouping in low and high diagonal pairs negates

the influence of left-right differences and as such, no compensatory effects were detected in

the hindlimbs in the UNEVEN group (Table 4).

Fig 4. 3D vector field results of SPM analysis for fore and hindlimbs for the HIGH groups. HIGH-LF (A = forelimbs,

C = hindlimbs) and HIGH-RF (B = forelimbs, D = hindlimbs).

https://doi.org/10.1371/journal.pone.0203134.g004

Fore hoof unevenness is associated with asymmetrical force vectors

PLOS ONE | https://doi.org/10.1371/journal.pone.0203134 August 29, 2018 10 / 17

https://doi.org/10.1371/journal.pone.0203134.g004
https://doi.org/10.1371/journal.pone.0203134


The third hypothesis, that HIGH-LF diagonal pair patterns would mirror HIGH-RF diago-

nal pair patterns was rejected. This was evidenced by VecAng results throughout the analysis,

which were not mirrored, but perhaps most strikingly by the significantly greater lateral

VecAng in the left hindlimb in both groups. This may be an important finding in terms of con-

sidering orthopaedic health, as the horses’ locomotor system is not ideally designed to with-

stand concomitant out of sagittal plane movements. For the last hypothesis, although none of

the VecMag results were significantly different between contralateral limbs, the magnitudes in

all four limbs of all four groups subtly followed the peak vertical GRF patterns described for

subclinical lameness [12]. As a consequence this hypothesis was neither accepted nor rejected.

Although the VecMag patterns were not significantly different, they are expected to be a neces-

sary requirement in maintaining steady state gait for a horse with an asymmetrical hoof con-

formation and possibly reflect preferential central locomotor steering.

The differences in VecAng patterns for each limb between HIGH groups suggest that meth-

ods of managing COM moments to achieve stability over a stride are related to the degree of

Fig 5. 1D vector analysis of the left and right forelimb GRFs for the HIGH groups. 1D SPM results for individual GRF component fields and

the corresponding GRF plots (N/kg) for left (red) and right (black) forelimbs for HIGH-LF (A) and HIGH-RF (B).

https://doi.org/10.1371/journal.pone.0203134.g005
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unevenness and also to a limb bias. VecAng in the sagittal plane is principally indicative of lon-

gitudinal GRF production [15] and managing hindlimb propulsive GRFs is an important

motor control strategy for horses performing extremely collected gaits (e.g. passage; [25]). For

the HIGH-LF group, as dorsal wall angle disparity increased, an increase in propulsive VecAng

was found in the high LF hoof and the diagonal RH hoof. Sagittal VecAng was also larger in

the LF in the group as a whole. This indicates that as the horses in this group became more

uneven, they accelerated more during the left fore-right hind diagonal step. This may be a

compensatory mechanism used to maintain speed. An increase in propulsive effort was

reported in horses trotting on soft beach sand to maintain speed where the overall vertical

GRF was reduced [26]. However, the compensation patterns in VecMag between limbs are

similar to the vertical GRF redistribution as reported in lame horses [12], so a subtle redistri-

bution vertical GRF may also be used to maintain a steady state trot. Other locomotor deficits

that would require an acceleratory step could include a limited ability to store and release elas-

tic energy in the HIGH limb, as [6] reported an increase in stiffness of the upright HIGH limb.

Fig 6. 1D vector analysis of the left and right hindlimb GRFs for the HIGH groups. 1D SPM results for individual GRF component fields

and the corresponding GRF plots (N/kg) for left (red) and right (black) hindlimbs for HIGH-LF (A) and HIGH-RF (B).

https://doi.org/10.1371/journal.pone.0203134.g006
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Out of balance, forces during a step will also influence COM moments [13], which may cause

unwanted rotations in either the sagittal or frontal plane.

For the HIGH-RF group, an increase in dorsal hoof wall disparity led to an increase in pro-

pulsive VecAng in the HIGH RF hoof, together with an increase in medial VecAng the ipsilat-

eral RH. For the RF-LH, diagonal pair there was also a mean medial VecAng in RF and a mean

lateral VecAng in LH. Similarly, but at the walk, a slightly, but not significantly, more medially

positioned GRF vector was found in right forelimbs compared to left forelimbs in horses walk-

ing in a straight line [27]. This was, in part, to medio-lateral hoof balance, although it was rec-

ognized that adjustments in limb placement would alter the orientation of the medio-lateral

GRF vector. In the HIGH-RF group, it is also quite striking that the medio-lateral forces were

mainly directed to the left side of the horse, which could increase the difficulty of turning in a

clockwise direction. As such, HIGH-RF horses may derail more readily when moving on

clockwise circle [28].

Based on the findings of [12] and the patterns for VecMag, the HIGH limb in both groups

could be considered as the ‘affected’ limb, and postural changes in uneven footed horses, in

theory, may follow the same trends as induced lameness. In a previous study [29], induction of

a mild LF lameness was associated with increased thoracic range of motion (ROM) in flexion-

extension, reduced thoracic and sacral ROM in lateral bending and the cranial thoracic verte-

bral column was bent (concave) towards the lame limb at midstance. The reduced ROM in lat-

eral bending was expected to be due to ‘spinal stiffening’, that is increased contraction of the

paraspinal muscles, and it was proposed as one of the mechanisms used to unload the lame

limb [30]. In sound trotting horses m. longissimus dorsi activity occurs from mid swing of the

ipsilateral hindlimb until early stance and in the propulsive phase of stance [31,32]. In order to

facilitate lateral bending towards the lame limb a larger, earlier contraction on the contralat-

eral, lame side, would be expected (i.e. for left fore lameness, earlier and larger contraction on

the left side during swing of the left hindlimb). Both sides would then be active during the

lame propulsive phase, which would reduce the ROM in lateral bending. If spinal stiffening

occurs in uneven horses on the HIGH diagonal, then the out of balance longitudinal and

medio-lateral forces together with a stiffer spine may cause a yaw rotation of the body. This is

perhaps illustrated better in the HIGH-RF group, as a larger lateral GRF is produced by the left

hind in late stance, which with increased spinal stiffness could push the hindquarters to the

left. A correction (possibly altered limb placement) would then be required by the opposite

diagonal to continue moving straight. Further work is needed to explore functional adapta-

tions in these horses, both from a kinematic and electromyographical perspective.

The difference in forelimb vector patterns between the HIGH groups indicates that motor

control is subtly influenced by which side is the HIGH side, but left hindlimb medio-lateral

GRF patterns are side-independent. Lateralized grazing behavior, commonly found in uneven

footed horses, has been linked to sidedness [4,9], but a relationship between jumping tasks and

unevenness has not yet been found [4]. This may be because the LH dictates aspects of locomo-

tor function, which confound the functional consequences of unevenness during specific

tasks. In the largest study of handedness in horses to date, 90% of Thoroughbreds, Arabians,

and American Quarter horses preferred a right lead stride pattern [33]. A population bias has

not been found in relation to fore hoof unevenness to date in Warmbloods [9], but in Thor-

oughbred horses with unilateral club foot one study reported a prevalence of 75% in the right

foot [34]. It is possible that the RF-LH diagonal is more commonly dominant in the horse pop-

ulation, although this is currently a speculative suggestion. Certainly, the HIGH and EVEN

groups in our study all produced a laterally directed VecAng in the left hindlimb, although

unevenness exacerbated the production of laterally directed GRFs. In humans that are right

pelvic limb dominant, higher laterally and lower medially, directed forces and impulses have

Fore hoof unevenness is associated with asymmetrical force vectors
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been found in the right limb during walking [35]. Larger net joint moments at the right hip,

tarsal, and metatarsophalangeal joints have been found in dogs with a directional hindlimb

bias [36], which was indicated as a measure of limb dominance. Such increases should be

reflected in our hindlimb VecMag results if LH was a dominant hindlimb, which were not evi-

dent. A RF-LH dominance also contradicts the work of [37], who found no correlation

between lateralized grazing behavior and hindlimb flexing.

As motor lateralization in horses is reported to be more prevalent with age [28,37], the GRF

patterns we observed in the LH may be a training effect. Handler position may also have been

a factor, although care was taken not to influence the horses during data collection and previ-

ous studies have reported no significant effects of side handling on head and pelvic movement

symmetry [38]. As only one force platform was available, an effect of trial may also be present

in these data. Recording concurrent forces from multiple force platforms would negate any

effect of trial, but to date there are few labs with this capability. Recording GRF when the

horses perform other gaits or tasks would also assist in separating out confounding factors

from compensatory mechanisms. In hindsight, collecting data at walk would have benefitted

this study.

The implications of medio-lateral concomitant GRF production in the hindlimbs of uneven

fore footed horses are yet to be established, but are expected to be a risk factor for both hin-

dlimb and sacroiliac / vertebral column orthopedic health. In order to produce a laterally

directed GRF the horse must either position the limb more medially during stance, so that the

COM provides a lateral directed GRF, and/or medial-lateral hoof wall height may alter the

COP origin under the hoof, which would influence the GRF vector direction [27]. Medial hin-

dlimb foot placement could be achieved by adducting the limb further under the body [39], or

by the hindquarters rotating in yaw medially prior to stance, due to unbalanced dorsal plane

moments. In humans narrower step width is associated with increased medio-lateral force pro-

duction, increased pronation, greater hip adduction, greater knee internal rotation and

increased tibial stress [39,40]. In an equine model of the spine, increasing stiffness along two

thirds of the spine increased lateral and dorsoventral peak torques at the next joint to the stiff-

ened spine [41]. Secondary health problems due to unevenness have yet to be fully evidenced,

but are expected to be associated with increases in tissue and joint stress, and may include sim-

ilar anatomical locations to those described here.

To assess the influence of hoof wall medio-lateral height on GRF vector direction in the

hindlimbs a post-hoc correlation was performed between hoof wall height difference, based on

medio-lateral markers and frontal plane VecAng results (S1 File). No relationship in either

hindlimb was found in the UNEVEN group of horses. A more complex analysis of hindlimb

hoof asymmetry and functional asymmetry was not possible with these data, as detailed rec-

ords of hoof shape were not recorded at the time of data collection. Further analysis was per-

formed for the forelimbs using the COP data from [16]. For 11/14 (79%) of the HIGH-RF

horses, a lateral COP position was maintained throughout stance in the right forelimb. The

frontal plane VecAng was significantly more medial in this limb (Table 4). Only one horse in

the HIGH-LF group that was used in their analysis (n = 11) consistently maintained a lateral

COP position and in our results, no significant differences were found in frontal plane VecAng

in the HIGH-LF group. Although quite convincing in relation to the forelimbs, the effects of

COP origin on GRF vector magnitudes should be considered with caution, as in the human lit-

erature, pronation, which does influence the position of the COP under the foot, is not

strongly linked with medio-lateral GRF production [42]. The influence of foot placement com-

pared to hoof asymmetry on COP location and GRFs in the medio-lateral direction, particu-

larly in the hindlimbs requires further examination.
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Conclusions

This study highlights the three dimensional GRF vector patterns that are produced by uneven

footed horses. These include out of sagittal plane GRFs, which were not significantly evident in

even footed horses. These results build upon current knowledge of compensatory mechanisms

in asymmetric horses, which previously only included kinematics and vertical GRFs. It is evi-

dent from increased propulsive and frontal plane GRF production that COM balance is chal-

lenged more readily in uneven footed horses and this may impact general orthopaedic health

(limbs and vertebral column).
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