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Abstract 

There is growing interest in using biomarkers to predict motor recovery and outcomes after 

stroke. This review summarises progress to date, including neurophysiological and 

neuroimaging biomarkers of upper limb motor recovery and outcomes. The PREP2 algorithm 

combines clinical assessment with biomarkers in an algorithm, to predict upper limb 

functional outcomes for individual patients. To date, PREP2 is the first algorithm to be tested 

in clinical practice, and other biomarker-based algorithms are likely to follow. It is therefore 

timely to consider how such algorithms might be implemented in clinical practice. There are 

two tasks: first the prediction information needs to be obtained, and then it needs to be used; 

and the barriers and facilitators of implementation are likely to differ for these tasks. We 

identify specific elements of the Consolidated Framework for Implementation Research that 

are relevant to each of these two tasks, using the PREP2 algorithm as an example. These 

include the characteristics of the predictors and algorithm, the clinical setting and its staff, 

and the healthcare environment. Active, theoretically underpinned implementation strategies 

are needed to ensure that biomarkers are successfully used in clinical practice for predicting 

motor outcomes after stroke, and should be considered in parallel with biomarker 

development. 
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1. Introduction 

Stroke remains a leading cause of adult disability, and the global burden of stroke 

continues to grow (Feigin et al., 2015). Patient outcomes are related to initial stroke severity 

and stroke lesion volume, as well as patient age and co-morbidities; however, these factors 

are related to global outcomes, such as death and disability (Heiss & Kidwell, 2014; van 

Almenkerk, Smalbrugge, Depla, Eefsting, & Hertogh, 2013; Veerbeek, Kwakkel, van Wegen, 

Ket, & Heymans, 2011).  There is growing interest in the use of biomarkers early after stroke 

to predict subsequent recovery and outcomes for individual patients (Boyd et al., 2017; Kim 

& Winstein, 2016; Stinear, 2017). The majority of work thus far has focused on predicting 

recovery from motor impairment and motor function outcomes. There are two broad 

categories of motor system biomarkers that have received the most research attention to date: 

transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI). This 

review will briefly describe the accumulating evidence for the use of these motor system 

biomarkers during the initial days and weeks after stroke, and then discuss the potential 

challenges and benefits of implementing these biomarkers in clinical practice. 

 

1.2 Motor system biomarkers 

Biomarkers of the functional and structural integrity of the corticomotor system can 

predict recovery from motor impairment and motor function outcomes, in individual patients. 

TMS is a safe, painless, and non-invasive technique that can be used to elicit motor evoked 

potentials (MEPs) in contralateral muscles. Patients in whom TMS can elicit MEPs (MEP+) 

in the affected upper limb within the first 7 days after stroke will experience proportional 

recovery from upper limb impairment (Byblow, Stinear, Barber, Petoe, & Ackerley, 2015; 

Stinear, Byblow, et al., 2017b) and better upper limb functional outcomes than MEP- patients 
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(Bembenek, Kurczych, Karli Nski, & Czlonkowska, 2012; Stinear, 2017). Importantly, 

patients with initially severe motor impairment can be MEP+ (Stinear, Barber, Petoe, Anwar, 

& Byblow, 2012; Stinear, Byblow, Ackerley, Barber, & Smith, 2017). Determining MEP 

status might therefore be particularly important for these patients, to distinguish between 

those with potential for good versus poor motor recovery and outcomes.  

The predictive value of lower limb MEP status has received less attention, and studies 

to date have produced conflicting results. An early study reported that MEP status predicts 

recovery from distal lower limb impairment but not independent walking (Hendricks, 

Pasman, van Limbeek, & Zwarts, 2003). Subsequent studies have reported that MEP status 

predicts the return of independent walking (Chang, Do, & Chun, 2015; Piron, Piccione, 

Tonin, & Dam, 2005), but is not superior to clinical predictors (Smith, Barber, & Stinear, 

2017), and does not predict proportional recovery from lower limb impairment (Smith, 

Byblow, Barber, & Stinear, 2017). These conflicting results may reflect that postural control 

is likely to be a greater contributor to achieving independent walking than the return of 

voluntary movement in the leg itself (Kollen et al., 2005)(Smith, Barber, & Stinear, 2017). 

Further work is needed to evaluate the usefulness of MEP status as a biomarker for lower 

limb motor recovery and outcomes after stroke. 

 Magnetic resonance imaging (MRI) can also be used to evaluate the structure and 

function of the corticomotor system. MRI has the advantage of being able to obtain measures 

from the entire sensorimotor network, in contrast to TMS which is largely confined to the 

primary motor cortex and corticospinal tract (CST). Despite this advantage, thus far the most 

robust imaging biomarkers for predicting motor recovery and outcomes after stroke are 

measures of CST integrity. The microstructural characteristics of white matter tracts, such as 

the CST, can be evaluated with diffusion-weighted imaging (Puig et al., 2017). This allows 

calculation of metrics such as fractional anisotropy within specific volumes of interest in the 
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brain and along white matter tracts such as the CST. Several studies have shown that upper 

limb recovery and outcomes are predicted by fractional anisotropy asymmetry between the 

hemispheres at key points along the CST, such as the posterior limbs of the internal capsules 

(Byblow et al., 2015; Puig et al., 2011) and the pons (Puig et al., 2013). The stroke lesion 

load calculated along the length of the CSTs can also predict subsequent upper limb motor 

recovery and outcomes (Doughty et al., 2016; Feng et al., 2015).  

Functional MRI can be used to assess the patterns and extent of cortical activity 

during passive and active upper limb movement after stroke. While there are clear 

relationships between fMRI measures and upper limb motor performance at the time of 

scanning (Buma, Lindeman, Ramsey, & Kwakkel, 2010; Favre et al., 2014; Grefkes & Ward, 

2014), few studies have identified fMRI measures that can predict motor performance at 

future time points. Two studies have identified fMRI measures that predict subsequent upper 

limb motor outcomes (Hannanu et al., 2017; Rehme et al., 2015), though these measures were 

not used to make predictions for individual patients.  While structural MRI measures of the 

CST and stroke lesion load show promise for making individualised predictions, there is 

currently no consensus regarding the use of functional MRI biomarker for predicting motor 

recovery or outcomes after stroke. 

 

1.3 Clinical usefulness of motor system biomarkers 

Motor impairment is a common symptom of stroke, and regaining motor function is 

important for the patient’s independence in daily activities (Langhorne, Coupar, & Pollock, 

2009). Being able to predict functional motor outcomes could help clinicians, patients, and 

families to set appropriate rehabilitation goals and make suitable plans for the level of support 

the patient is likely to need after discharge from hospital. However, making accurate 
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predictions for individual patients based on clinical experience or assessment alone can be 

difficult (Nijland, van Wegen, Harmeling-van der Wel, Kwakkel, 2013). This lack of 

accuracy is concerning, given that the subjective prediction of discharge destination has a 

major influence over what rehabilitation is provided and patient outcomes (Luker, Bernhardt, 

Grimmer, & Edwards, 2014). Combining clinical assessment with the biomarkers outlined 

above may enable more accurate predictions (Kim & Winstein, 2016). 

To date, only one approach has been explored for combining clinical assessment with 

biomarkers to make upper limb predictions for individual patients at the beginning of 

rehabilitation after stroke. The PREP algorithm sequentially combines assessment of paretic 

upper limb impairment with TMS and MRI within days of stroke to predict upper limb 

function at 3 months post-stroke. The PREP algorithm was developed in a group of 40 first-

ever ischaemic stroke patients (Stinear et al., 2012), and has since been refined and validated 

in an independent cohort of 192 patients, including those with haemorrhagic and previous 

stroke (Stinear, Byblow, Ackerley, Barber, et al., 2017). The PREP2 algorithm has recently 

been reported (Figure 1), which replaces the MRI biomarkers used in PREP with stroke 

severity measured with the NIHSS score (Stinear, Byblow, et al., 2017a). The PREP2 

algorithm is therefore likely to be more readily implemented in clinical practice, and is 

described below. 

Insert Figure 1 here 

The algorithm begins with an evaluation of paretic shoulder abduction and finger 

extension (SAFE), using the Medical Research Council grades. The scores for these 

movements, out of five, are summed to produce the SAFE score, out of ten. Patients who 

achieve a SAFE score of at least five within 72 hours of stroke symptom onset are most likely 

to have an excellent upper limb outcome within three months provided they are aged less 
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than 80 years (Table 1). If they are aged 80 years or more, they need to achieve a SAFE score 

of at least eight in order to have an excellent upper limb outcome; otherwise they are most 

likely to have a good upper limb outcome within three months. Patients with more severe 

initial upper limb impairment (SAFE score < 5) at 72 hours post-stroke, are assessed with 

TMS to determine the MEP status of their paretic wrist extensors. Patients who are MEP+ are 

also likely to have a good upper limb motor outcome. Patients who are MEP- are most likely 

to have a limited upper limb outcome if their NIHSS score at 72 hours post-stroke is less than 

seven; otherwise they are most likely to have a poor upper limb outcome.  

Insert Table 1 here 

Researchers who have the skills and resources to obtain MRI data from their 

participants can evaluate the stroke lesion load on the sensorimotor tracts of the ipsilesional 

hemisphere. Diffusion-weighted imaging obtained around 10 days post-stroke can be used to 

calculate the mean fractional anisotropy in volumes of interest in the posterior limbs of the 

internal capsules. Patients with a fractional anisotropy index < 0.15 are most likely to have a 

limited upper lib outcome, while those with an asymmetry index of 0.15 or more are most 

likely to have a poor upper limb outcome (Stinear, Byblow, Ackerley, Barber, et al., 2017). 

T1-weighted imaging can be combined with a template of the primary sensorimotor tracts to 

calculate the lesion load on these tracts. Patients with a lesion load less than 15% are most 

likely to have a limited upper limb outcome, while those with a lesion load of 15% or more 

are most likely to have a poor upper limb outcome (Stinear, Byblow, et al., 2017a). The 

overall accuracy of the algorithm is essentially the same when using either this MRI 

biomarker of stroke lesion load or NIHSS score for MEP- patients (Stinear, Byblow, et al., 

2017a). The sequential nature of the algorithm means that more sophisticated and expensive 

biomarkers are only obtained as required, with TMS needed for around one third of patients, 
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and the NIHSS score or MRI needed for around one sixth (Stinear, Byblow, Ackerley, 

Barber, et al., 2017; Stinear, Byblow, et al., 2017a).  

The effects on clinical practice of using biomarkers to make predictions for individual 

patients have been explored in one study thus far (Stinear, Byblow, Ackerley, Barber, et al., 

2017). This study found that using PREP algorithm predictions to guide upper limb 

rehabilitation increased therapist confidence, altered the content but not dose of upper limb 

therapy, and was associated with a reduction in length of stay by 6 days, with no detectable 

negative effects on patient outcomes (Stinear, Byblow, Ackerley, Barber, et al., 2017). These 

results indicate that using CST biomarkers to predict upper limb outcomes for individual 

patients might improve rehabilitation efficiency. However, implementation of the PREP 

algorithm, or biomarkers more generally, has not yet been attempted outside of a research 

context. Subjective predictions of discharge destination have a major influence on what 

rehabilitation is provided and patient outcomes (Luker et al., 2014), and patients and carers 

report wanting more information (Luker, Lynch, Bernhardsson, Bennett, & Bernhardt, 2015; 

Luker et al., 2017). It is therefore likely that implementation of motor system biomarkers will 

improve patient experience and outcome, but this needs to be formally evaluated.  

While there has been an exponential growth in research into biomarkers within 

medicine, little attention has been given to behaviour change of healthcare professionals in 

the development and implementation of biomarkers. There are several potential barriers and 

facilitators to implementation of biomarkers in stroke rehabilitation practice, and these are 

discussed below using the PREP2 algorithm as an example.  

 

2. Implementation of motor system biomarkers 
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There are two broad elements to consider in the implementation of biomarkers to 

predict motor outcomes for individual patients. A process for obtaining the prediction needs 

to be implemented, along with a process for communicating and using the prediction in the 

care of the patient. Here we use the Consolidated Framework for Implementation Research 

(Damschroder et al., 2009) as a guide for systematically considering potential barriers and 

facilitators for each of these processes. 

 

2.1 Obtaining the prediction 

2.1.1 Characteristics of the Predictors 

In general, prediction algorithms using biomarkers are more likely to be implemented 

if they are from a credible source, validated by high quality evidence, and clearly more 

accurate than clinical judgement. Complexity, adaptability, and cost are also important 

features. Biomarkers that require specialised technical expertise to obtain and analyse, such 

as sophisticated fMRI measures, may be too complex for widespread implementation in 

clinical practice. The complexity of the algorithm in which biomarkers are embedded may 

also create a barrier to implementation. Algorithms requiring several pieces of information 

from different sources, combined in multiple steps, are likely to be more difficult to 

implement than algorithms combining only a few pieces of information in a small number of 

steps. The PREP2 algorithm requires only the SAFE score for two-thirds of patients, and this 

simple score can be readily obtained as part of routine clinical practice.  

 Algorithms that require biomarkers to be obtained using strict protocols and on a rigid 

timeline have low adaptability, which is another potential barrier to implementation. Ideally, 

prediction algorithms will clearly identify components that require high fidelity, and those 

that can be adapted within specified parameters. For example, the PREP2 algorithm provides 
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time windows for obtaining the SAFE score and TMS measures, and the PREP algorithm 

provides a time window for obtaining MRI measures. Future research may determine if these 

time windows can be further expanded. Maximising flexibility will foster implementation 

while allowing for variations in patient availability due to factors such as their medical 

stability and time spent on other tests and treatments, as well as variations in staff availability 

due to factors such as case load, weekends and leave.  

 The cost of obtaining biomarkers is another important factor influencing their 

implementation. Biomarkers that can be obtained at low cost, using existing resources, are 

more likely to be implemented than those that require greater investment to set up and sustain 

in practice. The PREP2 algorithm begins with a low cost measure (SAFE score) and moves to 

more costly TMS only as required. The costs of purchasing the necessary equipment for TMS 

and ongoing training for staff tasked with obtaining MEP status are a potential barrier to 

implementation. Similarly, the cost of an MRI scan that might not be part of routine care, as 

well as the cost of ongoing training for staff tasked with obtaining MRI biomarkers, are 

barriers that are likely to confine these biomarkers to the realm of research rather than clinical 

care. Implementation costs might be offset by savings associated with increased rehabilitation 

efficiency and shorter length of stay. Any site considering implementing the PREP2 

algorithm would therefore need to carry out an economic analysis to determine whether 

implementation of the algorithm would be cost-effective, in addition to considering its other 

possible benefits such as helping to personalise rehabilitation for patients. 

 

2.1.2 Clinical setting 

Several features of the clinical setting’s inner environment will affect the 

implementation of motor system biomarkers. These include the available resources and 
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implementation climate. Time and money are known to be important factors in varied 

implementation theories and frameworks (Damschroder et al., 2009; Greenhalgh, Robert, 

Bate, Macfarlane, & Kyriakidou, 2005; Murray et al., 2010) and empirical studies (Huijg et 

al., 2015; Varsi, Ekstedt, Gammon, & Ruland, 2015).  

Having sufficient numbers of trained staff members who are responsible for obtaining 

algorithm information and making predictions is important for implementation. These staff 

also need ready access to the equipment and space needed to obtain biomarker information. 

The first step of the PREP2 algorithm is the SAFE score, which can be obtained in the 

patient’s bedspace with no special equipment, as part of routine clinical assessment. If 

needed, the TMS step in the algorithm requires specialised equipment that can be used in the 

patient’s bedspace. 

The implementation climate also has a powerful influence on implementation (Varsi 

et al., 2015). This includes leadership engagement, which is a key factor in successful 

implementation (Connell, McMahon, Harris, Watkins, & Eng, 2014; Damschroder & 

Lowery, 2013). Therefore to facilitate the use of prediction algorithms including biomarkers, 

it will be important to have the clinical service leaders on board, acting as opinion leaders to 

ensure the use of biomarkers is compatible with their service and seen as a relative priority. 

This includes ensuring staff have the necessary time, resources, information and feedback for 

successful implementation. For the PREP2 algorithm, this means helping staff to understand 

that using the algorithm is compatible with their values, and that those tasked with obtaining 

predictions are supported with the necessary time and resources to do so. 

 

2.1.3 Characteristics of the Health Care Professionals 
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Characteristics of the staff involved in obtaining algorithm information are also 

important.  The beliefs of healthcare staff about interventions are often more influential than 

other factors such as the strength of evidence for the intervention (Connell, McMahon, 

Tyson, Watkins, & Eng, 2016; Johanna M. Huijg et al., 2014). Biomarkers are more likely to 

be implemented in settings where staff recognise the value of accurate prediction 

information, and the limitations of predictions made on clinical assessment alone. The desire 

to improve prediction accuracy and rehabilitation efficiency is compatible with implementing 

biomarkers in clinical practice. Staff will also need to have the right skills to undertake the 

assessments required and feel confident in their abilities. Therefore some training is likely to 

be required. Implementation depends on identifying staff members who will be responsible 

for obtaining algorithm and biomarker information. It is not clear exactly whose role 

obtaining the measures should be, and it is likely to require a multi-disciplinary approach, 

with different members obtaining different measures, adding to the complexity. The SAFE 

score can be readily obtained by physical and occupational therapists, and could become part 

of current routine practice. Consistency in muscle testing technique and recording of the 

SAFE score on appropriate days by the whole team will need to be actively implemented in 

order to use PREP2 in clinical practice. In contrast, the TMS biomarker requires a different 

skillset, and will need to be obtained by specifically trained members of the team. Obtaining 

MRI biomarkers is likely to remain the responsibility of researchers who have the specialised 

skills required. 

 

2.2 Communicating and using the prediction 

Once a prediction has been obtained for an individual patient, this information needs 

to be communicated and used in order to be of value. Knowledge alone is unlikely to change 
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behaviour. Several factors are likely to affect the implementation of using prediction 

information. 

 

2.2.1 Characteristics of the Prediction 

Predictions that are relatively simple and easily understood by all parties will be more 

readily communicated and used in clinical practice. Some studies simply dichotomise the 

predicted outcome (Nijland, van Wegen, Harmeling-van der Wel, Kwakkel, 2010; Persson, 

Alt Murphy, Danielsson, Lundgren-Nilsson, & Sunnerhagen, 2015), which is easily 

understood but not very precise. Other studies have used multivariable linear regression 

analyses and produced mathematical equations combining several variables to predict the 

patient’s score on a clinical assessment scale. The patient’s numerical score might be 

predicted with reasonable precision, but not give a clear picture of the level of function the 

patient can expect to achieve in their daily activities. The PREP2 algorithm makes one of four 

predictions of upper limb functional outcome, which are easily understood in terms of what 

the patient will probably be able to do in their daily life (Table 1) (Stinear, Byblow, et al., 

2017a). These features of the predictions facilitate their implementation.  

The successful implementation of communicating and using prediction information 

also depends on how the information is presented. The written and verbal information 

provided to the clinical team, patient and their family need to be simple, clear, and consistent. 

Prediction information also needs to be integrated with the patient’s clinical records, which 

may be in paper-based or electronic systems, or a combination of both. The compatibility of 

the prediction information with existing systems will affect its accessibility and usefulness to 

the rehabilitation team. The PREP2 algorithm has several resources for communicating 
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prediction information, including written information for the patient’s rehabilitation team and 

for the patient and their family. 

The trialability of new processes also affects their implementation. A process that can 

be tested and then stopped if necessary is more likely to be implemented than one that 

requires ongoing use once initiated. Obtaining, communicating and using prediction 

information does not replace an existing process, and can therefore be stopped at any time 

without having to revert to previous practices. The relatively high trialability of 

communicating and using motor predictions therefore facilitates their implementation. 

 

2.2.2 Clinical setting 

 Characteristics of the clinical setting will also affect how readily predictions will be 

communicated and used. The clinical setting can support implementation by ensuring staff 

are provided with resources and training, as well as opportunities for practice and feedback. 

Training in the communication of predictions will need to be provided to all team members, 

including medical and nursing staff, in addition to allied health staff. Training will also need 

to be provided on an ongoing basis, as staff typically rotate through services, and new staff 

join the rehabilitation on a regular basis. A positive learning climate, where staff feel safe to 

try new things despite a risk of failure, will also support staff as they learn to communicate 

and use predictions. Clear lines of communication are needed to ensure that predictions are 

shared within the clinical team, and handed over to other clinical teams caring for the patient. 

A qualitative systematic review found that patients want information to help them understand 

stroke recovery, but highlighted the need for consistency of information across the multi-

disciplinary team (Luker et al., 2015). Therefore processes will need to be worked out in each 

clinical settings to ensure consistent communication of predictions. 
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2.2.3 Characteristics of the Health Care Professionals 

Identifying which staff members are responsible for communicating predictions to the 

rest of the clinical team, and to the patient and their family, is essential. These staff members 

need specific training and support so they are well-equipped to effectively, confidently and 

accurately convey predictions. Unfamiliarity with providing individualised prognostic 

information is a major barrier for therapists considering using this type of information. Other 

healthcare professionals, specifically physicians, have a great deal more training and 

experience, particularly in areas such as oncology. For allied health professionals working in 

rehabilitation, giving individualised predictions is new territory. Therapists involved in this 

process may find negative predictions particularly challenging. Therapists tend to see 

themselves as allies and advocates for their patients, and providing a negative prediction may 

seem incompatible with their role. Their fears that negative predictions might demotivate the 

patient and be used to ration therapy need to be addressed as part of the implementation 

process. Concerns about the accuracy of predictions also need to be addressed. Therapists’ 

confidence in their ability to have potentially difficult conversations with their patient is 

likely to affect whether and how they communicate and use prediction information. Hence 

implementation strategies will be needed to support therapists and overcome these barriers. 

 

2.3 Outer Setting 

Implementation of biomarkers will not occur in isolation, the wider context needs to 

be considered. As yet, there is no external policy or incentives that include biomarkers, as 

evidence is still preliminary. However, with stroke rehabilitation, clinical guidelines and 

registries have been key drivers in advancing care (Cadilhac et al., 2016; Royal College of 
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Physicians Intercollegiate Stroke Working Party, 2016). Therefore it will be interesting to see 

what the external drive for biomarkers in stroke rehabilitation will be. The patients’ needs 

and push for this type of information is also likely to evolve as predictor information 

becomes more commonplace. Their expectations and requirements, as well as their tolerance 

to the measures needed to obtain prediction information, will also influence implementation. 

 

3. Conclusion 

The potential benefit of applying implementation research is that it can reduce the 

often cited 17-year time lag between scientific evidence reporting and clinical 

implementation (Morris, Wooding, & Grant, 2011). The basic science of developing and 

combining robust biomarkers of motor recovery has now reached an exciting stage, where 

these biomarkers can start to be integrated into clinical practice and improve patient care. 

This review has used the CFIR to systematically explore the domains likely to influence 

implementation of biomarkers in stroke rehabilitation. Using the CFIR prior to 

implementation has allowed groups to identify potential barriers and utilise this information 

to refine and adapt both their implementation strategy and the innovation before 

implementation began (Kirk et al., 2016). In stroke rehabilitation, an effective clinical 

protocol was successfully up-scaled by developing an implementation strategy alongside the 

original clinical trial (Middleton et al., 2016).  The cluster-randomised controlled trial 

‘Quality in Acute Stroke Care’ (QASC)’ cluster-randomised controlled trial by Middleton et 

al (2011).and colleagues demonstrated an evidence-based protocol to improve management 

of fever, hyperglycaemia, and swallowing dysfunction in acute stroke units. The protocol 

reduced mortality and patient dependency. A prospective pre-test/post-test study of a 

corresponding implementation strategy resulted in successful upscale of the intervention 
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tobeing used inup-scaled across New South Wales (Middleton et al, 2016)., Given the 

complex nature of the processes required for biomarkers to become part of routine practice, 

implementation research to explore these factors is warranted. This should be considered in 

parallel with further biomarker development. The QASC study is an example in stroke 

rehabilitation care where an intervention was developed, evaluated, then implemented using a 

concurrently and theoretically underpinned implementation strategy (Dale et al., 2015; 

Middleton et al., 2016; Middleton et al., 2011). This is a modeln example that could be 

followed, and demonstrates a real-life example of the all the stages of the MRC framework 

for the development and evaluation of complex interventions through to the implementation 

stage (Craig et al., 2008). Given the complex nature of the processes required for biomarkers 

to become part of routine practice, further research into implementation research to explore 

these factors is warranted and . This should be considered in parallel with further biomarker 

development. 

The implementation processes for obtaining prediction information, and then 

communicating and using this information, will differ between sites depending on the 

characteristics of the clinical setting and people involved, as outlined above. In general, 

implementation is likely to involve an initial phase of adopting the new processes and then 

adapting them to suit the local setting. Engaged leadership at multiple levels of the 

organisation, appropriate resourcing, and active dissemination of information will be needed. 

While there are some prognostic tools (like the PREP algorithm) that have been validated, 

they don’t yet have an explicit implementation strategy alongside them that addresses these 

issues – and this is where the work needs to be done.  
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Table 1: Algorithm predictions 

 

Predicted 

outcome 

Description Rehabilitation focus 

Excellent Potential to make a complete, or near-

complete, recovery of hand and arm 

function within three months 

Promote normal use of the 

affected hand and arm with task-

specific practice, while 

minimising adaptation and 

compensation. 

Good Potential to be using the affected hand 

and arm for most activities of daily 

living within three months, though with 

some weakness, slowness, or 

clumsiness 

Promote normal function of the 

affected hand and arm by 

improving strength, 

coordination, and fine motor 

control with repetitive and task-

specific practice. Minimise 

compensation with the other 

hand and arm, and the trunk. 

Limited Potential to regain movement in the 

affected hand and arm within three 

months, but daily activities are likely to 

require significant modification 

Promote movement and reduce 

impairment by improving 

strength and active range of 

motion. Promote adaptation in 

daily activities, incorporating the 

affected upper limb wherever 

safely possible. 

Poor Unlikely to regain useful movement of 

the hand and arm within three months 

Prevent secondary complications 

such as pain, spasticity and 

shoulder instability. Reduce 

disability by learning to 

complete daily activities with the 

stronger hand and arm. 
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Figure caption 

Figure 1: The PREP2 algorithm predicts upper limb functional outcome at 3 months post-

stroke. The four possible upper limb outcomes are colour-coded. The coloured dots depict the 

proportion of patients expected to achieve each colour-coded outcome, depending on their 

pathway through the algorithm, based on the results of the CART analysis. Patients who 

achieve a SAFE score of five or more within 72 hours of stroke symptom onset, and are less 

than 80 years old, are most likely to have an Excellent upper limb outcome. Patients who 

achieve a SAFE score of five or more within 72 hours of stroke symptom onset and are 80 

years old or more, are most likely to have an Excellent upper limb outcome provided their 

SAFE score is at least 8; otherwise they are likely to have a Good upper limb outcome. 

Patients whose SAFE score is less than five at 72 hours after stroke symptom onset need 

TMS to determine MEP status in the paretic upper limb, a key biomarker of corticospinal 

tract integrity. If a MEP can be elicited (MEP+) approximately 5 days post-stroke then the 

patient is likely to have at least a Good upper limb outcome. If a MEP cannot be elicited, the 

NIHSS score obtained 3 days post-stroke can be used to predict either a Limited outcome if 

the score is less than seven, or a Poor outcome if the score is seven or more. 
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