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Abstract

We study the coarse geometry of curve graphs and related graphs for con-

nected, compact, orientable surfaces.

We prove that the separating curve graph of a surface is a hierarchically

hyperbolic space, as defined by Behrstock, Hagen and Sisto, whenever it is con-

nected. It also automatically has the coarse median property defined by Bowditch.

Consequences for the separating curve graph include a distance formula analogous

to Masur and Minsky’s distance formula for the mapping class group, an upper

bound on the maximal dimension of quasiflats, and the existence of a quadratic

isoperimetric inequality.

We also describe surgery arguments for studying the coarse geometry of curve

graphs and similar graphs. Specifically, we give a new proof of the uniform hyper-

bolicity of the curve graphs, extending methods of Przytycki and Sisto. We also give

an elementary proof of Masur and Minsky’s result that the disc graphs are quasi-

convex in the curve graphs. Moreover, we show that the constant of quasiconvexity

is independent of the surface, as also shown in work of Hamenstädt.
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Conventions We make the following assumptions and abbreviations (see the

pages given).

1. Metric spaces will be geodesic metric spaces. 6

2. Surfaces will be connected, oriented and compact. 9

3. Curves will be essential, non-peripheral simple closed curves. 9

4. Curves will often be considered up to isotopy. 10

5. We abbreviate dCpSq to dS . 13

6. Subsurfaces will be isotopy classes of essential subsurfaces. 14

7. When considering maps between curve graphs, these will really be maps be-

tween their vertex sets, and not, in general, graph morphisms. 14

8. We define the distance between finite sets of vertices in a graph to be the

diameter of their union. 15

9. When considering the distance between subsurface projections, we often do

not write the projection maps. 15

10. For a subsurface X of a surface S, we write S zX for the closure of S zX. 25

11. For a multicurve a in a surface S, we write S za to refer to removing a regular

open neighbourhood of a from S. 25
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Chapter 1

Introduction

In recent years, certain combinatorial objects associated to surfaces have become

invaluable in studying mapping class groups and Teichmüller spaces of surfaces, with

wider applications to the geometry of 3-manifolds. The curve complex of a surface,

introduced by Harvey [32] as an analogue of Tits buildings for mapping class groups

and Teichmüller spaces, has a vertex for each isotopy class of curves in the surface

and a k-simplex for each set of k � 1 disjoint curves. It was early on applied by

Harer to study homological properties of the mapping class groups [30, 31]. Two

substantial works by Masur and Minsky [41, 42] used the curve complex to study

the large scale geometry of Teichmüller space and the mapping class group, and

led on to much other work on this theme. The curve complex also played a crucial

part in the proof of Thurston’s Ending Lamination Conjecture by Minsky [46] and

Brock, Canary and Minsky [19]. This is a rigidity result stating that a complete

hyperbolic 3-manifold with finitely generated fundamental group is determined by

its topology and certain end invariants. Since the curve complex is a flag complex,

all combinatorial information is encoded in its 1-skeleton, the curve graph, and that

is what we shall always consider here.

Many variations on the curve graph have also been defined, each giving

slightly different information. For example, the marking graph used in [42] is quasi-

isometric to the mapping class group, and the pants graph was shown by Brock to

be quasi-isometric to the Weil–Petersson metric on Teichmüller space, with appli-

cations to the geometry of quasifuchsian 3-manifolds [18].

Masur and Minsky showed in [41] that the curve graph of any surface is

hyperbolic in the sense of Gromov (and has infinite diameter, except for a few trivial

examples). Neither the mapping class group nor the Teichmüller space is hyperbolic,

but it had been observed that both have some hyperbolic-like behaviour. This was
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made more precise by Masur and Minsky in [41] and [42], and later axiomatised by

Behrstock, Hagen and Sisto in the theory of hierarchically hyperbolic spaces [6, 7].

One of the objectives of this thesis is to make progress towards bringing a large class

of objects associated to surfaces into a general framework by showing that they are

hierarchically hyperbolic spaces. Our current contribution to this is to show that the

separating curve graph is a hierarchically hyperbolic space (Chapter 4). However,

we suggest that the methods of this chapter may be more generally applicable.

Another topic of this thesis is the use of surgery arguments to investigate

the large scale geometry of curve graphs and other such graphs. One benefit of

such methods is that often the argument is very explicit and does not depend on

the specific surface we are working with. The proof of the hyperbolicity of the

curve graph by Masur and Minsky in [41] does not give an estimate for the constant

of hyperbolicity, and, in particular, this constant a priori depends on the surface.

However, it was proved independently by Aougab [1], Bowditch [12], Clay, Rafi

and Schleimer [20] and Hensel, Przytycki and Webb [35] that the curve graphs are

uniformly hyperbolic, that is, there is a single constant of hyperbolicity which applies

for all surfaces. Surgery methods are central to [20] and [35], and [35] obtained a

particularly small constant.

Inspired by the unicorn arcs introduced by Hensel, Przytycki and Webb in

[35], Przytycki and Sisto gave a new proof of the uniform hyperbolicity of the curve

graphs of closed surfaces using bicorn curves [48]. In this thesis (Section 5.1), we

extend the methods of [48] to also apply to surfaces with boundary. Bicorn curves

have also been applied by A. Rasmussen to give a proof of the uniform hyperbolic-

ity of the non-separating curve graphs (including for surfaces with boundary) [50].

Also making use of the results of [48], we give an elementary proof of the uniform

quasiconvexity of the disc graphs in the curve graphs. The quasiconvexity of the

disc graphs in the curve graphs was proved by Masur and Minsky [43], with con-

stants there depending on the surface. Masur and Minsky’s proof uses a study of

train tracks on surfaces. A result of Hamenstädt on train track splitting sequences

(Section 3 of [29]) implies that the constant of quasiconvexity can be taken to be

independent of the surface. Our proof uses disc surgeries described in [43] but by-

passes the use of train tracks by using results on bicorn curves. The way in which the

disc graph sits inside the curve graph is of interest in part because of its applications

to Heegaard splittings of 3-manifolds. A Heegaard splitting where two handlebodies

are glued along a surface S can be specified by curves in S which bound discs in one

or other of the handlebodies. The disc graphs of the two handlebodies sit inside the

curve graph of S, and the Hempel distance for a Heegaard splitting [34] is defined
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to be the minimal distance between a vertex in one disc graph and a vertex in the

other. Hempel studied how this distance affects the topology of the 3-manifold.

The quasiconvexity of the disc graph in the curve graph was used by Masur and

Schleimer in giving a method of coarsely computing the Hempel distance [45]. An-

other application of the disc graphs is to the study of handlebody groups (that is,

mapping class groups of handlebodies).

1.1 Overview of content

Chapters 2 and 3 are expository. Chapter 2 introduces concepts in coarse geometry,

including definitions and standard results that we shall use later. Chapter 3 gives

background on curves in surfaces and introduces many of the objects we shall be

considering in this thesis, such as the mapping class group, Teichmüller space, the

curve graph and variations. We also give definitions of the coarse median property

and hierarchical hyperbolicity, together with some consequences.

In Chapter 4 we prove that the separating curve graph is a hierarchically

hyperbolic space whenever it is connected. In Section 4.1.3, we give a proof of con-

nectedness of the separating curve graph whenever this holds. This is a well known

result for which we were unable to find a proof in the literature. In Section 4.2, we

introduce a new graph, KpSq, which we prove in Section 4.3 to be quasi-isometric

to the separating curve graph. We prove in Sections 4.2.2 and 4.2.3 that KpSq satis-

fies the definition of hierarchical hyperbolicity, and the quasi-isometry invariance of

hierarchical hyperbolicity [6] then implies that the separating curve graph is hierar-

chically hyperbolic. Proving that KpSq is hierarchically hyperbolic involves verifying

the nine axioms for hierarchical hyperbolicity set out by Behrstock, Hagen and Sisto

in [7]. The most substantial part of the proof is the verification of Axiom 9, which

we give as Proposition 4.2.4.

Chapter 5 investigates surgery arguments. In Section 5.1, we give a new

proof of the uniform hyperbolicity of the curve graphs, based on methods of Przyty-

cki and Sisto [48], but applying to surfaces with boundary as well as closed surfaces.

The method is to define a subgraph of the curve graph associated to each pair of

curves, α, β, by including precisely those curves which can be formed from α and β

by certain surgeries. We show that these subgraphs satisfy a criterion for hyperbol-

icity (Proposition 5.1.2 here) due to Masur–Schleimer [45] and Bowditch [12], and

related to previous work of Gilman [27]. In particular we show that for any triple

of curves, the triangle given by these subgraphs is “slim”. The constants involved

are independent of the surface.
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In Section 5.2, we give an elementary proof that the disc graph associated to

a boundary component S of a 3-manifold M is K-quasiconvex in the curve graph

of S, with constant K independent of S and M . We again use Proposition 5.1.2,

this time observing that the disc surgeries described by Masur and Minsky in their

proof of quasiconvexity [43] give vertices of the curve graph which lie inside a set

satisfying the hypotheses of the proposition. For the purposes of this section, the

important consequence of Proposition 5.1.2 is that for a subgraph Lpα, βq associated

to curves α, β and satisfying the hypotheses, any geodesic between α and β in the

curve graph stays at a bounded Hausdorff distance from Lpα, βq. We use some

standard arguments to show that this implies that any geodesic in CpSq joining two

curves which bound discs stays at a uniformly bounded distance from the disc graph.

Again, any constants are independent of the surface.

4



Chapter 2

Coarse geometry

In this chapter, we give some definitions and state some known results in coarse

geometry. References for the material of this chapter include [10, 17, 21].

2.1 Gromov hyperbolicity and other definitions

Many of the ideas in coarse geometry stem from work of Gromov [28]. A key

application is to the study of the geometry of groups (see Section 2.3). The informal

idea of coarse, or large scale, geometry is that we can suppose that we look at each

space from far away, so that small changes of distance become negligible. This is

made precise by the notion of quasi-isometry.

Definition 2.1.1. Let pX, dXq and pY, dY q be metric spaces, and A,B P R.

1. LetK1 ¥ 1 andK2 ¥ 0. We write A �K1,K2 B if 1
K1
pA�K2q ¤ B ¤ K1A�K2.

2. A (not necessarily continuous) function φ : X Ñ Y is a pK1,K2q-quasi-iso-

metric embedding if there exist constants K1 ¥ 1 and K2 ¥ 0 such that, for

any x1, x2 P X, we have dXpx1, x2q �K1,K2 dY pφpx1q, φpx2qq.

3. The map φ is a quasi-isometry if, in addition, there exists k3 ¥ 0 such that,

for any y P Y , there is some x P X satisfying dY py, φpxqq ¤ k3.

4. If there exists a quasi-isometry φ : X Ñ Y then X and Y are quasi-isometric.

If a function satisfies the upper bound for a quasi-isometric embedding with-

out necessarily satisfying the lower bound, then it is pK1,K2q-coarsely Lipschitz. If

K2 � 0, then the function is K1-Lipschitz.

The property of δ-hyperbolicity, Gromov hyperbolicity, or simply hyperbolic-

ity, is a concept of negative curvature which can be applied to general metric spaces,
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unlike more traditional notions of curvature in differential geometry. There are a

number of equivalent definitions. We will use one of the most common, phrased in

terms of “δ-slim triangles”.

Firstly, recall that a geodesic between two points in a metric space pX, dXq

is a path γ : I Ñ X, for some interval I, such that for any t, u P I, we have

dXpγptq, γpuqq � |t � u|. The metric space X is a geodesic metric space if for any

two points a, b P X, there exists some geodesic in X joining a and b. From now on,

all metric spaces will be geodesic spaces unless stated otherwise. It is possible to

formulate a definition of hyperbolicity without assuming this property, but that will

not be necessary here.

Definition 2.1.2. Suppose δ ¥ 0. A geodesic metric space X is δ-hyperbolic if

every triangle in X whose three edges are geodesics has the property that the closed

δ-neighbourhood of any two of the sides contains the third side.

The constant δ is the constant of hyperbolicity. It is not unique; in particular,

any larger constant will also work.

Proposition 2.1.3. If X and Y are quasi-isometric, then Y is hyperbolic if and

only if X is. Moreover, the constant of hyperbolicity of Y depends only on that of

X and on the quasi-isometry constants.

See, for example, Theorem III.H.1.9 of [17] for a proof. Properties such as

hyperbolicity which are invariant under quasi-isometries are sometimes called large

scale properties.

Definition 2.1.4. A subset Y of a metric space X is K-quasiconvex in X if for any

two points, y and y1, in Y , any geodesic in X joining y and y1 is contained within

the closed K-neighbourhood of Y in X.

This generalises the notion of convex subsets. We will denote the closed

K-neighbourhood of Y in X by NXpY,Kq.

2.2 Properties of hyperbolic spaces

As mentioned above, there are a number of characterisations of hyperbolicity equiv-

alent to Definition 2.1.2; see, for example, Chapter 1 of [21] for a discussion. One

common definition is that a space X is hyperbolic if there exists k such that any

geodesic triangle in X has a k-centre, that is, a point that is at most distance k

from some point on each edge of the triangle. For a space X that is δ-hyperbolic

6



as in Definition 2.1.2, such a constant k is bounded in terms of δ. Moreover, given

three points in X, the set of points which are k-centres for geodesic triangles with

these three points as vertices has diameter bounded above in terms of k. Hence,

we can think of choosing a k-centre of a triangle as a coarsely well defined ternary

operation on X, a concept to which we shall return in Section 3.6.

Definition 2.2.1. A pλ, hq-quasigeodesic in a metric space X is a pλ, hq-quasi-

isometric embedding γ : I Ñ X (or γ : I X ZÑ X), where I is an interval of R.

In non-hyperbolic metric spaces, such as Euclidean space, a quasigeodesic

need not be close to any actual geodesic. However, in a hyperbolic space, quasi-

geodesics do stay close to geodesics. We state this result, sometimes referred to

as the Morse Lemma, more precisely below in Proposition 2.2.3, after recalling the

definition of Hausdorff distance. See, for example, Proposition 6.17 of [10] for a

proof (or, for infinite quasigeodesics, Theorem 3.3.1 of [21]).

Definition 2.2.2. The Hausdorff distance between two subsets A and B of a metric

space X is

dHpA,Bq � inftr P r0,8s | A � NXpB, rq, B � NXpA, rqu.

Proposition 2.2.3. Let X be a δ-hyperbolic space. Let α be a geodesic in X and β

a pλ, hq-quasigeodesic with the same endpoints. Then the Hausdorff distance between

α and β is bounded above by a constant depending on δ, λ and h.

Another feature of hyperbolic spaces is their “tree-like” nature (see, for ex-

ample, Proposition 6.7 of [10]).

Proposition 2.2.4. Let X be a δ-hyperbolic space. For all K, there exists K 1 �

K 1pK, δq such that if A is a set of at most K points in X, then the following holds.

There is a (piecewise geodesic) tree τ in X, containing A, with induced path metric

dτ on τ , such that for all a, b P A, we have dτ pa, bq ¤ dXpa, bq �K 1.

2.3 Geometry of groups

An important motivation for concepts in large scale geometry is the study of the

geometry of groups. Let G be a group with a finite generating set S. We can

consider G as a metric space as follows.

Definition 2.3.1. The Cayley graph, ∆pG,Sq, has a vertex for each element of G

and an edge joining g and h if g�1h P S Y S�1.
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We give ∆pG,Sq a metric by setting each edge to have length 1. Although

this is dependent on the choice of generating set S, we have the following (see, for

example, Theorem 3.3 of [10]).

Theorem 2.3.2. Let S, S 1 be two finite generating sets for a group G. Then

∆pG,Sq and ∆pG,S 1q are quasi-isometric.

Hence large scale properties of ∆pG,Sq can be considered as properties of G.

For example, we have a notion of a hyperbolic group. We say that a group G is

quasi-isometric to a space X if some Cayley graph for G is quasi-isometric to X.

The group G acts isometrically by left multiplication on any Cayley graph

for G. More generally, we can consider isometric actions of a group G on other

metric spaces. A geodesic metric space X is proper if every closed ball in X is

compact.

Definition 2.3.3. Suppose a group G acts isometrically on a metric space X.

1. The action is properly discontinuous if, for all x P X and all r ¥ 0, the set

tg P G | dXpx, gxq ¤ ru is finite.

2. The action is cocompact if the quotient X{G is compact.

The following is sometimes referred to as the Švarc–Milnor lemma (see Propo-

sition I.8.19 of [17]).

Theorem 2.3.4. Let a group G act by isometries on a proper geodesic space X,

and suppose that the action is properly discontinuous and cocompact. Then G is

quasi-isometric to X.
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Chapter 3

Surfaces, curves and mapping

class groups

In this chapter, we introduce mapping class groups, Teichmüller spaces, curve graphs

and related graphs, and quote some results and methods which we shall use later. We

will also describe a little of the history of the geometry of curve graphs (Section 3.5),

and define the coarse median property (Section 3.6) and hierarchical hyperbolicity

(Section 3.7).

3.1 Surfaces and curves

The surfaces we consider will be oriented, compact and connected, and hence homeo-

morphic to Sg,b for some g and b, where this notation refers to the genus g surface

with b boundary components. We will abbreviate Sg,0 � Sg. Note that we could

alternatively allow a surface S to have a finite number of punctures instead of (or

as well as) boundary components. Replacing boundary components by punctures

would affect various definitions in this thesis, but the results of Chapters 4 and 5

would go through unchanged. A reference for the definitions and results of this

section and Section 3.2 is [26].

A simple closed curve in a surface S is an embedding α : S1 ãÑ S, or its

image αpS1q, which we shall also denote by α. A curve is essential if it does not

bound a disc in the surface S and non-peripheral if it does not cobound an annulus

with a component of the boundary. From now on, any curve will be an essential,

non-peripheral simple closed curve unless otherwise stated. A curve α is separating

if S z α is disconnected, and non-separating otherwise.

Recall that an embedding f : X ãÑ Y is proper if fpBXq � fpXq X BY . An
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arc in S is a proper embedding a : r0, 1s ãÑ S, or its image apr0, 1sq in S. An arc a

is essential if no component of S z a is a disc whose boundary is the union of a and

a subarc of the boundary of S.

Recall that an isotopy between two curves α and β is a homotopy between

the maps α : S1 ãÑ S and β : S1 ãÑ S where every intermediate map in the homotopy

is also an embedding. In [24], Epstein proved that two curves are isotopic if and

only if they are homotopic, a result due to Baer in the case of closed surfaces. For

arcs, we will require an isotopy to be proper, that is, for every intermediate map,

the endpoints of the arc are in BS.

We will typically consider curves only up to isotopy (although sometimes, in

particular in Chapter 5, it will be convenient to work with fixed representatives of

isotopy classes). Abusing notation, we will usually use α to denote the isotopy class

of α as well as a specific representative.

The intersection number ipα, βq of two isotopy classes of curves α and β is the

minimal number of intersections between representative curves from the respective

isotopy classes. Two curves α and β are said to be in minimal position if they

intersect transversely and the number of intersections between α and β is ipα, βq.

A bigon between α and β is a disc in S whose boundary is made up of an

arc a of α and an arc b of β intersecting only at their endpoints. Moreover, any

arcs of intersection of α or β with the interior of the bigon do not meet the points

of a X b, that is, the two corners point “outwards”. We have the following useful

characterisation of minimal position (see, for example, Proposition 1.7 of [26]).

Proposition 3.1.1. Let α and β be curves in a surface S, intersecting transversely.

Then α and β are in minimal position if and only if they do not form a bigon.

Whenever S has negative Euler characteristic, we can equip S with a hy-

perbolic metric. It is useful to observe that for any pair of curves in S and any

hyperbolic metric on S, the (unique) geodesic representatives of the two curves in-

tersect minimally. Hence we may realise all curves in S simultaneously in minimal

position by fixing a hyperbolic metric on S and taking the geodesic representative

of each curve. For S1, we can similarly fix a Euclidean metric on S and choose

geodesic representatives of curves.

We say that a collection of curves A in S fills S if every other curve in S has

non-trivial intersection with some curve of A. Equivalently, S z A is a collection of

topological discs and peripheral annuli.

A multicurve in S is a set of pairwise disjoint, pairwise non-isotopic curves in

S. Once again, we will typically consider multicurves up to isotopy. The definitions
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of intersection number and minimal position for multicurves are analogous to those

for curves.

A multicurve in a surface S will have a maximal number of curves precisely

when its complement in S is a collection of copies of S0,3 (“pairs of pants”). Such

a multicurve is called a pants decomposition of S. The complexity, ξpSq, of S is

the number of curves in a pants decomposition of S. When S � Sg,b, we have

ξpSq � 3g � 3� b.

3.2 The mapping class group and Teichmüller space

3.2.1 Mapping class groups

The mapping class group MCGpSq of a surface S is the group of isotopy classes of

orientation-preserving homeomorphisms of S which fix the boundary pointwise. An

element of this group is called a mapping class.

A Dehn twist about a curve α is defined by identifying a regular annular

neighbourhood N of α with an annulus S1 � r0, 1s and applying the twist map

px, tq ÞÑ pxe2πit, tq (recall that we identify S1 with the unit circle in C). The isotopy

class of this homeomorphism is determined by the isotopy class of the curve α.

Moreover, a Dehn twist about an essential curve has infinite order in MCGpSq.

See Chapter 3 of [26] for background on Dehn twists. The mapping class group is

generated by a finite number of Dehn twists about curves in S and components of

BS. For closed surfaces, this is the Dehn–Lickorish Theorem. See Chapter 4 of [26]

for a proof, including a discussion of the non-closed case.

If we choose to consider surfaces with a finite number of punctures instead

of boundary components, then the mapping class group is slightly different as it

may now permute punctures. Moreover any twist about a puncture is trivial in the

mapping class group, whereas a twist about a boundary component is non-trivial.

Note that it is consistent to think about mapping classes along with isotopy

classes of curves. Specifically, if φ and ψ are two isotopic self-homeomorphisms of

S and α and β are two isotopic curves in S then φpαq is isotopic to ψpβq. In fact,

the mapping class group has an action on the set of isotopy classes of curves in S,

and we shall return to this in Section 3.3.

One very useful fact about the action of the mapping class group on the

curves in a surface is described in [26] (Section 1.3) as the change of coordinates

principle. As an example, for any two non-separating curves α and β in S, there

is a mapping class taking α to β. The idea of proving statements of this kind is

to apply the classification of surfaces to the surfaces formed by cutting along α or
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β to see that they are homeomorphic. Two separating curves α and β in S will

be related by a mapping class if the components of S z α are homeomorphic to the

components of S z β, preserving boundary components of S. More generally, we

can apply this to multicurves, where the homeomorphisms should respect which

boundary components of the complement of the multicurve in S are identified by

gluing along the multicurve. Even more generally, we can say that two sets of

curves in S with “the same intersection pattern” are related by a mapping class.

An important consequence of the change of coordinates principle is that up to the

action of the mapping class group there are only finitely many (multi)curves on S,

and, for any N , only finitely many pairs of curves intersecting at most N times.

Another important result is the Alexander method (see Proposition 2.8 of

[26]). This states that if A is a collection of curves and arcs which cut S into

topological discs, and f is a mapping class which fixes the isotopy class of every

curve and arc in A , then f is the identity. Hence any two mapping classes can be

distinguished by their action on the set of curves and arcs in S (indeed, on a finite

subset of this set). When there are sufficiently many curves, arcs are needed only

to detect twists about a boundary component.

3.2.2 Teichmüller space

The Teichmüller space, TeichpSq, of a surface S can be thought of as parametris-

ing hyperbolic structures on S. A marked hyperbolic surface pX, fq is a complete,

finite-volume, hyperbolic surface X with totally geodesic boundary, together with a

diffeomorphism f : S Ñ X. Two such marked hyperbolic surfaces pX, fq, pY, gq are

equivalent if there exists an isometry I : X Ñ Y such that I � f is homotopic to g.

A point of TeichpSq is an equivalence class of marked hyperbolic surfaces. There

is a natural topology on this set of points, and, in fact, TeichpSq is homeomorphic

to an open ball. There are a number of different metrics which have been defined

for Teichmüller space, though we shall not give definitions here. Two metrics which

have been studied extensively are the Teichmüller metric and the Weil–Petersson

metric.

3.3 Complexes associated to surfaces

3.3.1 The curve graph

Central to the study of mapping class groups and Teichmüller spaces in recent years

have been various simplicial complexes that can be associated to a surface, often
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equipped with a natural simplicial action of the mapping class group. The curve

complex for a surface S was introduced by Harvey in 1981 [32], and has a vertex for

every isotopy class of essential, non-peripheral simple closed curves in S. A set of

k � 1 distinct vertices spans a k-simplex if the corresponding isotopy classes have

representatives on S which are pairwise disjoint. This complex is a flag complex (that

is, every complete graph on n vertices in the 1-skeleton bounds an pn� 1q-simplex),

and so all combinatorial information is encoded in the 1-skeleton, the curve graph.

Here, we will always consider the curve graph rather than the curve complex. We

denote the curve graph by CpSq, observing that this notation is also commonly used

for the curve complex. The curve graph is equipped with the combinatorial metric dS

given by setting each edge to have length 1. Since we shall only really be interested

here in the distance between vertices, and not between other points in the graph, for

notational convenience we will sometimes think of CpSq as a discrete set of vertices

with the induced metric. A path in CpSq can then be thought of as a sequence of

vertices where consecutive vertices in the sequence are at distance 1. Since MCGpSq

acts on CpSq by simplicial automorphisms, it has an isometric action on CpSq with

this metric. Note, however, that this action is not properly discontinuous, since the

infinite cyclic subgroup of MCGpSq generated by the Dehn twist about a curve α

fixes the vertex α. Moreover, CpSq is not a proper metric space since each vertex

has infinite degree.

Whenever ξpSq ¥ 2, the curve graph, CpSq, is connected (see, for example,

Lemma 2.1 of [41]). When S is S1,0, S1,1 or S0,4, we modify the definition so that

two distinct curves are adjacent if they intersect minimally on S (once for the first

two cases and twice for the third). In each case, this modified graph is connected,

and, in fact, the resulting graphs are isomorphic. This graph is the Farey graph.

The curve graph of S0,3 is empty since there are no essential, non-peripheral curves

on S0,3. However, we do define a curve graph for the annulus, S0,2, which is more

accurately a graph of arcs. We will not give a formal definition here as we shall

not be using this graph for any of our results, but, loosely speaking, CpS0,2q records

twisting about the core curve of the annulus.

3.3.2 Other graphs

There are many variations on the curve graph which give different information about

the mapping class group and Teichmüller space. In particular, different graphs can

tell us about different subgroups of MCGpSq (see, for example, Section 6 of [16]).

We give just a few examples here.

The separating curve graph, SeppSq, is the full subgraph of CpSq which
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is spanned by separating curves. It is not quasi-isometrically embedded in CpSq
(see Claim 2.41 of [54]). The separating curve graph has been applied by Brendle

and Margalit to study properties of the Johnson kernel, a subgroup of the mapping

class group [15]. Chapter 4 of this thesis concerns properties of the separating curve

graph.

The pants graph, PpSq, has a vertex for each pants decomposition of S, with

edges corresponding to elementary moves. An elementary move involves choosing

a curve α of the pants decomposition P , selecting the unique component Xα of

S z pP z αq such that ξpXαq � 1, and replacing α with a curve which is adjacent to

α in CpXαq. Brock proved that PpSq is quasi-isometric to the Teichmüller space of

S with the Weil–Petersson metric [18].

If S is a boundary component of a compact, orientable 3-manifold M , then

the disc graph, DpM,Sq, is the full subgraph of CpSq spanned by curves which

bound embedded discs in M . Since the action of the mapping class group on the set

of curves in S does not preserve the property of bounding a disc in M , the graph

DpM,Sq does not have a natural action of MCGpSq as for the other examples above.

However, it does have an action of the mapping class group of M . In particular,

if M is a handlebody, then the handlebody subgroup of MCGpSq acts on DpM,Sq.

Section 5.2 of this thesis gives a new proof of the quasiconvexity of DpM,Sq in CpSq.

3.4 Subsurface projections

An essential subsurface of a surface S is a connected subsurface X so that every

boundary component of X is either a boundary component of S or an essential,

non-peripheral curve of S. From now on, the word “subsurface” will always refer

to an isotopy class of essential subsurfaces. Note that the complexity ξpSq strictly

decreases when taking proper subsurfaces. Given a subsurface X of S, we define

BSX to be BX z pBX X BSq, that is, the multicurve of S made up of the boundary

components of X which are not in BS.

Given a surface S and a subsurface X of S, we have a subsurface projection

map πX from CpSq to the power set 2CpXq of CpXq. As mentioned in Section 3.3.1,

we here think of curve graphs and similar graphs as discrete sets of vertices. In

particular, when we consider maps between curve graphs these will not necessarily

be graph morphisms. The image of a vertex under the subsurface projection map

may be empty, and always has uniformly bounded diameter (see Proposition 3.4.1

below). We define this subsurface projection for subsurfaces with positive complexity

following [42]. A subsurface projection to the curve graph of an annulus can also be
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defined but we will not need it here. For a subsurface X homeomorphic to S0,3, we

do not have a subsurface projection since the curve graph of X is empty.

Now, let X be a subsurface of S with ξpSq ¥ 1, and let α be a curve of S

intersecting X minimally. That is, α and BSX are in minimal position, and if α is

isotopic to a boundary component of X then it is isotoped to be disjoint from X.

If α is contained in X then πXpαq � α. If α is disjoint from X then πXpαq � ∅.

Otherwise, the intersection of α and X is a collection A of properly embedded

arcs in X. Then πXpαq is the set containing each essential, non-peripheral curve

in X which arises as a boundary component of a regular closed neighbourhood of

the union of some a in A and the components of BSX it meets (see Figure 3.1 for

examples). We may similarly consider a subsurface projection GpSq Ñ CpXq for any

complex GpSq whose vertices are curves or multicurves in S, and any subsurface X

of S. If B is a collection of curves, then πXpBq �
�
αPB πXpαq.

Figure 3.1: Examples of subsurface projection.

We define the distance between two sets C, D of curves in X by dXpC,Dq �

diamCpXqpC Y Dq. We usually abbreviate dXpπXpAq, πXpBqq by dXpA,Bq. The

following result is included in Lemma 2.3 of [42].

Proposition 3.4.1. Let X be a subsurface of S of positive complexity and let a be

a multicurve in S. Then either πXpaq � ∅ or diamCpXqpπXpaqq ¤ 2.

This implies that if α0, α1, . . . , αn is a path in CpSq such that every αi inter-

sects X, then dXpα0, αnq ¤ 2n.

Given a complex GpSq, the subsurfaces of S which every vertex of GpSq must

intersect are of particular interest. These are called holes in [45], and witnesses in

some more recent papers (see, for example, [3, 22]).

3.5 Properties of curve complexes and applications

Harvey introduced the curve complex in [32] in order to study a bordification of

TeichpSq and the action of MCGpSq on this space. Another early use of the curve

complex was by Harer, to study homological properties of the mapping class groups
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(see, for example, [30, 31]). Again, the full complex (and not just the 1-skeleton)

was used, and Harer proved that it is homotopy equivalent to a wedge of spheres,

all of the same dimension. Another major contributor to early work on the curve

complex was Ivanov. For example, in [36], Ivanov proved that the automorphism

group of the curve complex is the extended mapping class group (given by allowing

orientation-reversing homeomorphisms as well as orientation-preserving ones). He

used this to give a new proof of a result of Royden [52] and of Earle and Kra [23]

that every isometry of the Teichmüller metric is induced by an element of this group,

as well as to investigate some algebraic properties of MCGpSq.

In two papers [41, 42], Masur and Minsky linked the large scale geometry

of the curve graph to the geometry of the mapping class group and Teichmüller

space (note that the surfaces in these papers have punctures rather than boundary).

In [41], they proved (Theorem 1.1) that for each surface S, there exists δ such that

CpSq is δ-hyperbolic, with infinite diameter whenever ξpSq ¥ 1. Moreover, they

draw conclusions about the geometry of TeichpSq and MCGpSq. Teichmüller space,

with the Teichmüller metric, is not δ-hyperbolic. Specifically, we can define regions

Hα in TeichpSq which correspond to metrics where a curve α is short, and these

regions look like products. As a consequence of the Collar Lemma (see [38]), two

intersecting curves cannot both be short in the same hyperbolic metric on S, but

two disjoint curves can both be short. Hence, CpSq encodes the intersections of the

regions Hα. We can say that CpSq is the nerve of this family of regions. We can

cone off a region by adding a point at distance 1
2 from every point in this region.

Theorem 1.2 of [41] states that if the regionsHα are coned off then the space obtained

is quasi-isometric to CpSq, and hence δ-hyperbolic. These regions can be thought

of as the obstructions to the hyperbolicity of the Teichmüller metric. Theorem 1.3

of [41] gives a similar result for MCGpSq. In this case, subgroups which fix curves

in S give products within MCGpSq. Coning off certain such subgroups with their

cosets again gives a space quasi-isometric to CpSq.
In [42], Masur and Minsky use subsurface projections to study the geometry

of MCGpSq. They define a graphMpSq called the marking graph which is quasi-iso-

metric to MCGpSq and define hierarchies of geodesics in curve graphs of subsurfaces

of S to study paths in this graph. Using this machinery, they prove thatMpSq (and

hence MCGpSq) has a distance formula in terms of a sum of subsurface projections

to all subsurfaces of S (including annuli). More precisely, in Theorem 6.12 of [42]

they show the following, where rxsC is equal to x when x ¥ C and 0 otherwise.

Theorem 3.5.1. There exists C0 such that, for all C ¥ C0, there exist K1 and K2
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such that, for any two markings µ and ν we have:

dMpSqpµ, νq �K1,K2

¸

X�S

rdXpπXpµq, πXpνqqsC .

3.6 The coarse median property

In [11], Bowditch introduced the concept of a coarse median space. Mapping class

groups of surfaces are motivating examples of such spaces, along with all δ-hyperbolic

spaces and CATp0q cube complexes (see below for a definition).

The definition of a coarse median space uses the concept of a median algebra.

See, for example, [4] for a survey.

Definition 3.6.1. A median algebra pM,µq is a set M with a ternary operation

µ : M3 ÑM such that, for all a, b, c, d, e PM :

(M1) µpa, b, cq � µpb, c, aq � µpb, a, cq,

(M2) µpa, a, bq � a,

(M3) µpa, b, µpc, d, eqq � µpµpa, b, cq, µpa, b, dq, eq.

A finite median algebra can equivalently be viewed as the vertex set of a

finite CATp0q cube complex. We give an overview below; see [51] for details. The

term CATp0q refers to a non-positive curvature condition for a metric space, which is

defined in terms of measurements of triangles in the space. However, in the specific

case of cube complexes there is a more combinatorial characterisation. We now give

a brief definition of CATp0q cube complexes; see, for example, [53] for more details.

We build a cube complex from unit Euclidean cubes r0, 1sn for various n,

glued by isometries between faces. Recall that a flag complex K is a simplicial

complex such that every complete graph with n edges in the 1-skeleton of K bounds

an pn � 1q-simplex in K. The following can be taken as a definition of a CATp0q

cube complex, though it also coincides with the metric definition of CATp0q for cube

complexes.

Definition 3.6.2. A connected cube complex X is CATp0q if it is simply-connected

and the link of every vertex in X is a flag complex.

We can define a median operation on the vertices of a CATp0q cube complex

X in the following way. For two vertices x, y of X, define rx, ys to be the set of

all vertices of X which lie in some geodesic between x and y in the 1-skeleton Xp1q

of X. Given three vertices x, y and z, the sets rx, ys, rx, zs and ry, zs intersect in a
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unique point which we call µpx, y, zq. This point is the closest point projection of

x to ry, zs in Xp1q. One can check that the ternary operation µ on the vertices of

X satisfies the conditions of Definition 3.6.1. Specifically, (M1) states that it does

not matter in which order we take the points, (M2) holds because ra, as is simply

a itself, and (M3) can be interpreted as saying that certain projections commute.

Hence, this gives the vertex set of X the structure of a median algebra. In fact,

every finite median algebra can be canonically identified as the vertex set of a finite

CATp0q cube complex (Theorem 10.3 of [51]). We can take the following to be a

definition of the rank of a median algebra.

Definition 3.6.3. Let Π be a finite median algebra andX the CATp0q cube complex

identified with Π. The rank of Π is the dimension of X.

A coarse median space is equipped with a ternary operation called a coarse

median which approximates to the median operation on a finite median algebra

for any finite set of points in the space. In particular, any triple of points in the

space has a coarsely well defined centre. The two following motivating examples are

described in [11]. For a hyperbolic space the coarse median of three points can be

defined to be a centre for a geodesic triangle (see Section 2.2). For the mapping

class group of a surface, the coarse median operation can be taken to be the centroid

defined by Behrstock and Minsky in [9].

Definition 3.6.4. A ternary operation µ : Λ3 Ñ Λ on a geodesic space pΛ, dq is a

coarse median if:

(C1) there exist k, h such that for all a, b, c, a1, b1, c1 in Λ,

dpµpa, b, cq, µpa1, b1, c1qq ¤ kpdpa, a1q � dpb, b1q � dpc, c1qq � h,

(C2) for every p P N there exists q such that if A is a subset of Λ with at most p

elements then there exist a finite median algebra pΠ, µΠq and maps π : AÑ Π,

λ : Π Ñ Λ such that for all x, y, z in Π,

dpλpµΠpx, y, zqq, µpλpxq, λpyq, λpzqqq ¤ q,

and for all a in A, we have dpa, λpπpaqqq ¤ q.

The coarse median property is a quasi-isometry invariant. A useful property

of a coarse median space is its associated rank, which is also invariant under quasi-

isometries.
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Definition 3.6.5. A coarse median space Λ has rank ν if for any finite set A of

points in X, the median algebra Π as in Definition 3.6.4 can be chosen to have rank

at most ν, and if this is not possible for ν � 1.

We will quote some results on properties of coarse median spaces in Sec-

tion 3.7.2.

3.7 Hierarchical hyperbolicity

3.7.1 Definition

Hierarchically hyperbolic spaces were defined by Behrstock, Hagen and Sisto in [6].

The same authors give an equivalent definition of hierarchically hyperbolic spaces

in [7], and that is the definition we shall state below. For an exposition of the topic

of hierarchically hyperbolic spaces, see [55]. Every hierarchically hyperbolic space is

also a coarse median space [13, 7] (see Theorem 3.7.4 below). Mapping class groups

of surfaces are motivating examples, and the construction is inspired by the work

of Masur and Minsky in [42]. Hierarchical hyperbolicity of a space Λ is always with

respect to some family of uniformly hyperbolic spaces with projections from Λ to

these spaces. The space Λ is assumed to be a quasigeodesic space, that is, any two

points in the space can be connected by a quasigeodesic with uniform constants.

We say that pΛ, dΛq is a hierarchically hyperbolic space if there exist a con-

stant δ ¥ 0, an indexing set S and, for each X P S, a δ-hyperbolic space pCpXq, dXq
such that the following axioms are satisfied (see Definition 1.1 of [7]).

1. Projections. There exist constants c and K such that for each X P S,

there is a pK,Kq-coarsely Lipschitz projection πX : Λ Ñ 2CpXq such that the image

of each point of Λ has diameter at most c in CpXq.

2. Nesting. The set S has a partial order �, and if S is non-empty then

it contains a unique �-maximal element. If X � Y then we say that X is nested

in Y . For all X P S, we have X � X. For all X,Y P S such that X � Y (that is,

X � Y and X � Y ), there is an associated subset πY pXq � CpY q with diameter at

most c, and a projection map πYX : CpY q Ñ 2CpXq.

3. Orthogonality. There is a symmetric and anti-reflexive relation K on S

called orthogonality, satisfying the following.

• Whenever Y � X and X K Z, we have Y K Z.

• For every X P S and Y � X, either there is no U � X such that U K Y , or

there exists Z � X such that whenever U � X and U K Y , we have U � Z.
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• If X K Y then X and Y are not �-comparable, that is, neither is nested in

the other.

4. Transversality and consistency. If X and Y are not orthogonal

and neither is nested in the other, then we say X and Y are transverse, X & Y .

There exists κ ¥ 0 such that whenever X & Y there are sets πXpY q � CpXq and

πY pXq � CpY q, each of diameter at most c, satisfying, for all a P Λ:

mintdXpπXpaq, πXpY qq, dY pπY paq, πY pXqqu ¤ κ.

If X � Y and a P Λ then:

mintdY pπY paq, πY pXqq,diamCpXqpπXpaq Y πYXpπY paqqqu ¤ κ.

These are called the consistency inequalities.

Moreover, if Y � X, and if Z is such that each of X and Y is either strictly

nested in Z or transverse to Z, then dZpπZpXq, πZpY qq ¤ κ.

5. Finite complexity. There exists n ¥ 0, called the complexity of Λ with

respect to S, such that any set of pairwise �-comparable elements of S contains at

most n elements.

6. Large links. There exist λ ¥ 1 and E ¥ maxtc, κu such that the

following holds. Let X P S, a, b P Λ and R � λdXpπXpaq, πXpbqq � λ. Then either

dY pπY paq, πY pbqq ¤ E for every Y � X, or there exist Y1, . . . , YtRu in S such that

for each 1 ¤ i ¤ tRu, Yi � X, and such that for all Y � X, either Y � Yi for some i,

or dY pπY paq, πY pbqq ¤ E. Moreover, dXpπXpaq, πXpYiqq ¤ R for each i.

7. Bounded geodesic image. For all X,Y P S, with Y � X, and for all

geodesics g of CpXq, either diamCpY qpπ
X
Y pgqq ¤ E or g XNCpXqpπXpY q, Eq � ∅.

8. Partial realisation. There exists a constant r with the following prop-

erty. Let tXju be a set of pairwise orthogonal elements of S and let γj P πXj pΛq �

CpXjq for each j. Then there exists a P Λ such that:

• dXj pπXj paq, γjq ¤ r for all j,

• for each j and each X P S such that Xj � X, dXpπXpaq, πXpXjqq ¤ r,

• if Y &Xj for some j, then dY pπY paq, πY pXjqq ¤ r.

9. Uniqueness. For all K ¥ 0, there exists K 1 such that if a, b P Λ satisfy

dXpπXpaq, πXpbqq ¤ K for all X P S, then dΛpa, bq ¤ K 1.
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3.7.2 Properties

An important basic property is that hierarchical hyperbolicity is a quasi-isometry

invariant (Proposition 1.7 of [7]). This can be verified by composing the projections

with the quasi-isometry.

Proposition 3.7.1. If Λ is hierarchically hyperbolic with respect to S and Λ1 is a

quasigeodesic space quasi-isometric to Λ, then Λ1 is hierarchically hyperbolic with

respect to S.

It is shown in [7] (Theorem 5.5) that hierarchically hyperbolic spaces satisfy

the following distance estimate, which generalises the result for mapping class groups

given by Masur and Minsky in [42] (see Theorem 3.5.1 here). This was one of

the axioms for the original definition of hierarchical hyperbolicity in [6] but is a

consequence of the modified axioms in [7].

Theorem 3.7.2. Let Λ be hierarchically hyperbolic with respect to a set S. Then

there exists a constant C0 such that for all C ¥ C0 there exist K1 and K2 such that

the following holds. For every a, b P Λ, we have:

dΛpa, bq �K1,K2

¸

XPS

rdXpπXpaq, πXpbqqsC .

Theorem J of [6] gives an upper bound on the dimension of a Euclidean space

which can be quasi-isometrically embedded in a hierarchically hyperbolic space Λ

in terms of the maximal cardinality of a set of pairwise orthogonal elements of S.

We obtain a stronger result by combining the following two results.

Theorem 3.7.3. Let Λ be a coarse median space of rank d, and fix some quasi-

isometry constants. Then there exists r, depending only on Λ and the quasi-isometry

constants, such that there is no quasi-isometric embedding of the pd�1q-dimensional

Euclidean ball of radius r into Λ.

Theorem 3.7.4. Let Λ be hierarchically hyperbolic with respect to S and let d be

the maximal cardinality of a set of pairwise orthogonal elements of S. Then Λ is a

coarse median space of rank at most d.

Theorem 3.7.3 is Lemma 6.10 of [13]. Theorem 3.7.4 is observed in [13],

without the specific bound on rank. A proof, again without this bound on rank, is

given in [7] (Theorem 7.3). However, one may verify that under the assumptions of

Theorem 3.7.4, properties (P1)–(P4) of Section 10 of [11] are satisfied, with ν � d,

and hence, by Proposition 10.2 of that paper, Λ is coarse median of rank at most d.
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Another result on rank for coarse median spaces is the following, Theorem 2.1

of [11] (see also Corollary 4.3 of [47]).

Theorem 3.7.5. Let Λ be a coarse median space of rank 1. Then Λ is Gromov

hyperbolic.

Any coarse median space satisfies a quadratic isoperimetric inequality, in

the sense we shall describe below (Proposition 8.2 of [11]). See, for example, Sec-

tion III.H.2 of [17] for more background on isoperimetric inequalities.

Definition 3.7.6. Let Λ be a metric space, and l, L ¡ 0.

• An l-cycle in Λ of length p is a set of points a0, a1, . . . , ap � a0 in Λ such that

dΛpai, ai�1q ¤ l for all i.

• An L-disc is a triangulation T of the disc D2, with a map b : T p0q Ñ Λ from

its vertex set to Λ, such that if x and y in T p0q are connected by an edge of T ,

then dΛpbpxq, bpyqq ¤ L.

• An l-cycle paiqi bounds an L-disc pT, bq if the vertices in T p0q X BD2 can be

labelled by xi so that xi and xi�1 are joined by an edge for all i, and so that

ai � bpxiq for all i.

Theorem 3.7.7. Let Λ be a coarse median space. For any l ¡ 0 there exists L ¡ 0

such that the following holds. For any p P N, any l-cycle in Λ of length at most p

bounds an L-disc with at most p2 2-simplices in the triangulation.

22



Chapter 4

Hierarchical hyperbolicity of the

separating curve graph

In this chapter, we prove that the separating curve graph associated to a surface

S is a hierarchically hyperbolic space whenever it is connected. For background on

hierarchically hyperbolic spaces, see Section 3.7. The work of this section appears

in [58].

4.1 Preliminaries

4.1.1 Statement of results

The separating curve graph, SeppSq, of a surface S is the full subgraph of CpSq
spanned by all separating curves, with the combinatorial metric. Unlike the curve

graph, the separating curve graph of a surface is not in general Gromov hyperbolic.

We shall show that it is, however, a hierarchically hyperbolic space. The specific

result we shall prove is the following theorem and immediate corollary (see The-

orem 3.7.2), where X is the set of subsurfaces X of S such that every separating

curve intersects X non-trivially. The excluded cases are those for which SeppSq

is not connected with the usual definition. For completeness, we give a proof of

connectedness of SeppSq, for S as in Theorem 4.1.1, in Section 4.1.3.

Theorem 4.1.1. Let S be a connected, compact, orientable surface. Suppose S is

not S2,b for b ¤ 1, S1,b for b ¤ 2 or S0,b for b ¤ 4. Then the separating curve graph

of S is a hierarchically hyperbolic space with respect to subsurface projections to the

curve graphs of subsurfaces in X.
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Corollary 4.1.2. Let S be as in Theorem 4.1.1. Then there exists a constant C0

such that for every C ¥ C0 there exist K1 and K2 such that the following holds. For

every pair of separating curves α, β, we have:

dSeppSqpα, βq �K1,K2

¸

XPX

rdXpα, βqsC .

The key step in proving Theorem 4.1.1 is to show that if the distance between

the subsurface projections of two separating curves to CpXq is bounded by some K

for all X P X, then there is a bound on their distance in SeppSq depending only

on K and ξpSq. We shall in fact verify this, along with the other conditions for

hierarchical hyperbolicity, for a different graph, KpSq, in Section 4.2. We will then

show that KpSq is quasi-isometric to SeppSq (Proposition 4.3.1). We remark that a

complex similar to KpSq (the “complex of separating multicurves”) is introduced by

Sultan in [56], though, unlike KpSq and SeppSq, this complex is Gromov hyperbolic

for every surface of sufficient complexity (Remark 3.1.9 of [56]). Sultan uses this

complex to study the Weil–Petersson metric on Teichmüller space.

Using results quoted in Section 3.7.2, we obtain the corollaries below.

Corollary 4.1.3. Let S be as in Theorem 4.1.1. Then SeppSq satisfies a quadratic

isoperimetric inequality in the sense of Theorem 3.7.7.

Corollary 4.1.4. Let S � Sg,b be as in Theorem 4.1.1. Then there is no quasi-

isometric embedding of the n-dimensional Euclidean space or half-space into SeppSq,

where n � 3 if b ¤ 2 and n � 2 otherwise. In fact, for the same n, the radius of an

n-dimensional Euclidean ball which can be quasi-isometrically embedded into SeppSq

is bounded above in terms of ξpSq and the quasi-isometry constants.

In other words, when b ¤ 2, SeppSq can have quasiflats of dimension 2

but not of any higher dimension. Such quasiflats correspond to pairs of disjoint

subsurfaces in X; see Section 4.1.2 for a description of these. When b ¡ 2, SeppSq

has no quasiflats of any dimension greater than 1. More detail on how quasiflats

can behave in a hierarchically hyperbolic space is given by Behrstock, Hagen and

Sisto in [8]. The fact that when b ¡ 2 there are no pairs of disjoint subsurfaces in X

moreover implies the following.

Corollary 4.1.5. Let S � Sg,b be as in Theorem 4.1.1, with b ¡ 2. Then SeppSq is

Gromov hyperbolic.
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4.1.2 Subsurfaces in X

Recall that we defined X to be the set of subsurfaces of S which every separating

curve intersects non-trivially. We will show that SeppSq has a hierarchically hyper-

bolic structure with respect to X, where the associated hyperbolic spaces are the

curve graphs of the subsurfaces in X. We briefly describe here what the subsurfaces

in X look like. To obtain compact surfaces, when we take the complement of a

subsurface X in S, we will then take the closure of this. However, for brevity, we

will write simply S z X. Similarly, when we remove a multicurve a we will really

want to remove a regular open neighbourhood, but again we will simply write S z a.

Let X P X. Then every component of BSX is non-separating in S and no

component of S z X contains a separating curve of S. Hence, each component of

S z X is a planar subsurface containing at most one boundary component of S.

Conversely, if X is a subsurface such that every component of S zX is planar and

contains at most one component of BS, then X is in X. See Figure 4.1 for examples

and Figure 4.2 for non-examples.

(a) (b)

Figure 4.1: Examples of subsurfaces which every separating curve must intersect.

(a) (b)

Figure 4.2: Examples of subsurfaces where there is a disjoint separating curve.

The relation of orthogonality for elements of X will correspond to disjointness,

so to obtain Corollary 4.1.4 from Theorem 3.7.3 and Theorem 3.7.4, we need to

consider when a collection of subsurfaces in X can be pairwise disjoint. First suppose

that S has at least three boundary components. Suppose that X and Y are disjoint

subsurfaces, both contained in X. Since Y is in X, so is any subsurface containing Y ,

so we can assume Y is a component of S z X. From the above discussion, every
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component of S zX is planar and contains at most one boundary component of S.

Now, SzY is connected and contains at least two boundary components of S, since Y

contains at most one. However, this contradicts that Y is in X. Hence, if S has at

least three boundary components, then the maximal cardinality of a set of pairwise

disjoint subsurfaces in X is 1.

Now suppose that S has at most two boundary components, and suppose

that X and Y are disjoint subsurfaces in X. Again we can assume that Y is a

component of S z X. Since Y P X, the subsurface S z Y is planar and contains at

most one component of BS. Suppose first that S zX is disconnected, and let Z be a

component of S zX other than Y . If Z meets X in more than one curve then S z Y

has genus, which contradicts Y P X. However, since Z must be planar and must

contain at most one component of BS, we have that Z must be a disc or a peripheral

annulus, contradicting that X is an essential subsurface. Hence, S zX � Y . Each

of X and Y must be planar and must contain at most one component of BS. Now,

suppose that Y can be divided into two disjoint subsurfaces V and W in X. From

above, the complement of each of these in S must be connected. Moreover, since

each of X, V and W has planar complement in S, we have that each of these

subsurfaces is planar and that they pairwise meet in a single curve. Since S has at

most two boundary components, one of X, V and W must contain no component

of BS. However, then the only possibility is that this subsurface is an annulus, which

cannot be in X for the surfaces we are considering.

Hence, if S has at most two boundary components then a set of pairwise

disjoint elements of X can have cardinality 2, but not 3. Moreover, a pair of disjoint

subsurfaces X1, X2 in X must be arranged as follows (see Figure 4.3 for pictures

for g � 3). If S � Sg, then each of X1, X2 is a copy of S0,g�1, and they meet along

all their boundary components (Figure 4.3a). If S � Sg,1, either X1 and X2 are

both copies of S0,g�1 (Figure 4.3b) or one is S0,g�1 and one is S0,g�2 (Figure 4.3c),

and if S � Sg,2, then X1 and X2 are both copies of S0,g�2 (Figure 4.3d). Notice

that in most cases, if X1 is a subsurface in X such that there exists X2 P X disjoint

from X1, then X2 must be equal to S z X1 and hence is completely determined

by X1. The exception is when S � Sg,1 and X1 is a copy of S0,g�1. Then we may

choose a curve γ in Y � S zX1 such that one component of Y z γ is a copy of S0,3

containing BS and the other component is in X.

4.1.3 Connectedness of the separating curve graph

Here we give a proof of the connectedness of SeppSq when S � Sg,b is not S0,b, b ¤ 4,

S1,b, b ¤ 2 or S2,b, b ¤ 1. This is a well known result (see Exercise 2.44 of [54]) but
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(a) (b) (c) (d)

Figure 4.3: The possibilities for pairs of disjoint subsurfaces in X, up to MCGpSq,
for S3, S3,1 and S3,2.

we have been unable to find a proof in the literature which covers all cases. In the

case that S is a closed surface of genus at least 3, the result appears in [25] and [39];

see also [44] and [49]. When S has genus 0, every curve is separating, so SeppSq

is the usual curve graph (when S has at least five boundary components). See, for

example, [41] for a proof of connectedness of CpSq whenever it holds. Furthermore,

stronger connectivity results which imply connectedness of SeppSq when the genus

of S is at least 2, and S is not S2,0 or S2,1, are given in [37].

We shall use the well known fact that a simple closed curve in S is separating

(including possibly inessential or peripheral) if and only if it is trivial in H1pS, BS;Zq.
Let α and β be two (essential, non-peripheral) separating curves in S. We

shall assume for induction that for any separating curve γ such that ipγ, βq   ipα, βq,

there is a path in SeppSq from γ to β. The base case is when ipα, βq � 0, in which

case α and β are connected by an edge.

Now suppose ipα, βq ¥ 2 (the intersection number must always be even since

the curves are separating). Assume that α and β are in minimal position, so there

is no bigon between α and β. Suppose first that one of the components Y of S z α

either has genus at least 2, or has genus 1 and contains at least two boundary

components of S, or is planar and contains at least three boundary components

of S. We shall find a separating curve γ such that γ is disjoint from α (so adjacent

to α in SeppSq) and such that ipγ, βq   ipα, βq. Then γ is connected to β by the

induction hypothesis, and so there is a path in SeppSq from α to β.

Case 1. Suppose there are arcs b and b1 of βXY such that the endpoints of b

separate the endpoints of b1 in α (see Figure 4.4a). This can happen only when Y has

positive genus. Let γ be the boundary component in Y of a regular neighbourhood

of αY bY b1. By the assumptions on Y , the curve γ is essential and non-peripheral.

Moreover, γ is in the same class as α in H1pS, BS;Zq (with appropriate orientation),

so is separating.

Case 2. Suppose there are no arcs of β X Y arranged as in Case 1. Choose

an arc b of βXY . Let γ1 and γ2 be the two components of a regular neighbourhood
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of αY b in Y (Figure 4.4b). With appropriate orientations, 0 � rαs � rγ1s � rγ2s in

H1pS, BS;Zq, so either both γ1 and γ2 are separating or neither is.

2a. Suppose that both curves are separating. It is possible that one of

γ1 or γ2 could be peripheral (neither can be inessential by the assumption that

α and β are in minimal position). However, they cannot both be peripheral as

otherwise Y would be a planar subsurface containing only two components of BS,

which contradicts the assumptions. Choose one of the two curves which is non-

peripheral to be γ.

2b. Suppose that γ1 and γ2 are non-separating. Then there exists an essen-

tial arc c in Y with endpoints in α such that c is disjoint from b and the endpoints

of c separate the endpoints of b in α (Figure 4.4c). Moreover, if c intersects any

other arc of β then we can perform a surgery along the arc of β to remove the

intersection. Let γ be the boundary component in Y of a regular neighbourhood

of αY bY c. This is separating as in Case 1.

In each case, γ satisfies the required conditions so we are done.

(a) Case 1. (b) Case 2a. (c) Case 2b.

Figure 4.4: The surgeries to produce the curve γ in the different cases.

Now suppose that neither component of Szα satisfies the conditions given for

Y . That is, each component either has genus 1 and at most one component of BS or

genus 0 and at most two components of BS. By the assumptions on S, the only two

possibilities are: S is S2,2 and both components are copies of S1,2, or S is S1,3 with

one component a copy of S1,2 and the other a copy of S0,3. Let T be a component of

S zα which is homeomorphic to S1,2. Every component of T z pβXT q contains some

arc of α, and one of the components contains the component of BS. Hence we can

find an arc c in T joining the two boundary components (α and the component of

BS) such that c does not intersect β. Let α1 be the boundary component of a regular

neighbourhood of cYBT which is essential and non-peripheral in T (see Figure 4.5).

The curve α1 satisfies ipα1, αq � 0 and ipα1, βq ¤ ipα, βq. Moreover, S z α1 has a

component which satisfies the conditions above for Y , so we can construct γ such
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that ipγ, α1q � 0 and ipγ, βq   ipα1, βq ¤ ipα, βq. Hence γ is connected to α by

construction and β by the induction hypothesis, completing the proof.

Figure 4.5: Finding a new curve α1 when α does not have a complementary compo-
nent satisfying the conditions for Y .

4.2 A graph of multicurves

In this section, we introduce a graph associated to a surface S whose vertices are

certain multicurves, and prove that it is hierarchically hyperbolic. We shall show in

Section 4.3 that this graph is quasi-isometric to SeppSq.

4.2.1 Definition of KpSq

Let S be a surface as in Theorem 4.1.1. Below, we will define a graph KpSq whose

vertices are multicurves which cut S into subsurfaces which are not in the set X. In

particular, every separating curve is a vertex of KpSq. Also note that, since for any

X P X, any subsurface containing X is also in X, the addition of a disjoint curve to

any vertex of KpSq gives another vertex of KpSq.

Definition 4.2.1. The graph KpSq has:

• a vertex for each multicurve a in S such that for every component of S z a,

there is a separating curve of S disjoint from this component,

• an edge between vertices a and b if one of the following holds:

1. b is obtained either by adding a single curve to a or by removing a single

curve from a,

2. b is obtained by replacing a curve α in a with a curve β, where the

component of S z pa z αq containing α is in X and is a copy of S0,4, and

α and β intersect exactly twice.

The second type of edge can arise only when S is S3, S3,1, S2,2 or S1,3, since

these are the only cases where there are subsurfaces in X which are copies of S0,4. In
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principle, we could define a similar move in S1,1 subsurfaces, but, since we assume

that S satisfies the hypotheses of Theorem 4.1.1, there is no subsurface in X which

is a copy of S1,1. Note that we could more generally allow replacing a curve α in a

with a curve β, where the component X of S z pa z αq containing α is in X, and α

and β are adjacent in the curve graph of X. When X is a copy of S0,4, then this

gives the second type of edge. When ξpXq ¥ 2, this corresponds to two moves of

the first type: adding a curve β disjoint to all curves in a, then removing a curve α.

Hence including this move does not change the large scale geometry of the graph.

Figure 4.6: An example of a path in KpS3q.

Figure 4.7: Another example of a path in KpS3q.

Note that connectedness of KpSq is implied by connectedness of the pants

graph as follows. Every pants decomposition of S is a vertex of KpSq and a pants

move corresponds to either one or two moves in KpSq. Moreover, each vertex of

KpSq is connected to a pants decomposition by adding curves one by one. For a

proof of connectedness of the pants graph, see [33]. From now on, for notational

convenience, we shall treat KpSq as a discrete set of vertices equipped with the

combinatorial metric induced from the graph.

Proposition 4.2.2. Let Z be the set of subsurfaces which every vertex of KpSq must

intersect. Then Z � X.

Proof. Firstly Z is contained in X since each separating curve is a vertex of KpSq.
Suppose X is in X and a is a vertex of KpSq. If a does not cut X then X is contained

in a single component of S za. But then X has a separating curve in its complement,

which contradicts that it is in X.

In Sections 4.2.2 and 4.2.3, we shall prove the following theorem.

Theorem 4.2.3. Let S be as in Theorem 4.1.1. The graph KpSq is a hierarchically

hyperbolic space with respect to the set X.
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4.2.2 Verification of Axioms 1–8

As above, let X be the set of subsurfaces which every vertex of KpSq (or equiva-

lently of SeppSq) must intersect. We will verify that KpSq satisfies the axioms for

hierarchical hyperbolicity (see Section 3.7.1) for S � X. For each X P X, the δ-

hyperbolic space CpXq is the curve graph of X. The constant δ need not depend

on the surface S, since curve graphs are uniformly hyperbolic [1, 12, 20, 35]. Most

of the axioms follow easily from known results on subsurface projections. The only

significant new work needed is the verification of Axiom 9. We reserve this for a

separate section, and verify Axioms 1 to 8 below.

1. Projections Let πX : KpSq Ñ 2CpXq be the usual subsurface projection

(see Section 3.4). The image of a vertex is never empty since every vertex of KpSq
intersects each X in X. Let a and b be at distance 1 in KpSq. Unless they are

connected by a move in an S0,4 subsurface, aY b is a multicurve so its projection to

any CpXq for X P X has diameter at most 2 by Proposition 3.4.1. Suppose a and b

are connected by a move in a subsurface Xα � S0,4. If X � Xα, then the projection

of aYb to CpXq is two adjacent curves and has diameter 1. Suppose X � Xα. Since

no subsurface of Xα can be in X, some curve of BSXα intersects X. This curve is

disjoint from every curve of a Y b so the diameter of the projection is at most 4.

Hence, the projection πX is 4-Lipschitz.

2. Nesting. The partial order on X is inclusion of subsurfaces, with X � Y

if X is contained in Y . The unique �-maximal element is S. If X � Y , then we

can take πY pXq � BYX � CpY q, that is, all boundary curves of X which are non-

peripheral in Y . This has diameter at most 1 in CpY q as the curves are pairwise

disjoint. The projection πYX : CpY q Ñ 2CpXq is the subsurface projection from CpY q
to 2CpXq.

3. Orthogonality. The orthogonality relation K on X is disjointness of

subsurfaces. If Z is disjoint from Y then it is disjoint from any subsurface of Y .

Suppose X P X and Y � X. Then either no other subsurface of X disjoint from

Y is in X, or the complement Z � X z Y is in X and any U � X which is disjoint

from Y is nested in Z. Finally, if X and Y are disjoint then neither is nested in the

other.

4. Transversality and consistency. Two subsurfaces X and Y in X are

transverse, X&Y , if they are neither disjoint nor nested. If X&Y , let πXpY q be the

subsurface projection of BSY � CpSq to CpXq, and similarly for πY pXq. These each

have diameter at most 2 by Proposition 3.4.1. By Behrstock’s lemma (Theorem 4.3
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of [5]), for each S there exists κ such that for any X & Y and any multicurve a

projecting to both (and hence any vertex a of KpSq),

mintdXpπXpaq, πXpY qq, dY pπY paq, πY pXqqu ¤ κ.

For a more elementary proof due to Leininger, with a uniform value of κ, see

Lemma 2.13 of [40]. Given X � Y , and a in KpSq consider

mintdY pπY paq, πY pXqq,diamCpXqpπXpaq Y πYXpπY paqqqu.

The second term compares projecting a directly to CpXq from KpSq and projecting

a first to CpY q and then to CpXq. This gives the same result, so this quantity is

diamCpXqpπXpaqq ¤ 2. Also, if X � Y , then the union of their boundary components

is a multicurve in CpSq, so for any Z P X such that Y � Z or Y & Z and X M Z,

dZpπZpXq, πZpY qq ¤ 2.

5. Finite complexity. The length of a chain of nested subsurfaces in X is

bounded above by ξpSq.

6. Large links. Let X P X and a, b P KpSq, with R � dXpa, bq � 1.

Assume for now that ξpXq ¥ 2. Let γ1, γ2, . . . , γR�1, γR be a geodesic in CpXq,
where γ1 P πXpaq and γR P πXpbq. For each 1 ¤ i ¤ R, let Yi be the component of

X zγi containing the adjacent curves of the geodesic. Note that Yi is not necessarily

in X. Suppose Y P X satisfies Y � X and dY pa, bq ¡ M , where M is the constant

of Theorem 3.1 of [42] (Bounded Geodesic Image; see also Axiom 7 below for more

detail). The Bounded Geodesic Image Theorem implies that, in this case, some γi

does not intersect Y . Hence Y is contained in a single component of S zγi. Suppose

that this component is not Yi. Then the adjacent curves to γi in the geodesic also do

not cut Y . Since SzYi is contained in Yi�1 or Yi�1, so too is Y . Hence, Y is contained

in some Yi. We also need to check that this Yi is in X. This follows from the fact

that Y is in X, and hence so is any subsurface containing Y . We include only those

Yi which are in X in the list. If there are no subsurfaces of X properly nested in X,

and, in particular, if X � S0,4, then trivially dY pa, bq ¤ M for every Y P X with

Y � X. Finally, for each i, we have dXpπXpaq, πXpYiqq � dXpπXpaq, πXpγiqq ¤ R.

7. Bounded geodesic image. By Theorem 3.1 of [42], there exists M so

that for all Y � X, and any geodesic g in CpXq, either diamCpY qpgq ¤ M or some

vertex γ of g does not intersect Y . If γ is disjoint from Y , then it is adjacent in

CpXq to πXpY q � BXY . Hence, if diamCpY qpgq ¡M , then gXNCpXqpπXpY q, 1q � ∅,

and so the conditions of this axiom are satisfied for E � M . For a proof that the
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constant M does not depend on the surface S, see [59].

8. Partial realisation. Any set of pairwise disjoint subsurfaces in X con-

tains at most two elements (at most one if S has at least three boundary compo-

nents). First suppose the set contains only one element X1. Let γ1 be a curve in

X1. Consider the multicurve BSX1 Y γ1. We may complete this to a vertex of KpSq
by, for example, adding curves to obtain a pants decomposition of S. Firstly, the

projection of a to X1 is a multicurve containing γ1, so dX1pπX1paq, γ1q ¤ 1. Let

X be a subsurface of S containing X1. Then dXpπXpaq, πXpX1qq ¤ 2, by Proposi-

tion 3.4.1, since a contains BSX1. Let Y P X be transverse to X1. Then similarly

dY pπY paq, πY pX1qq ¤ 2. Now suppose X1 and X2 are distinct and disjoint subsur-

faces in X. Let γj be a curve in Xj for each j. Again, there exists a in KpSq contain-

ing γ1, γ2, BSX1 and BSX2. Moreover, as before, for each j, dXj pπXj paq, γjq ¤ 1,

dXpπXpaq, πXpXjqq ¤ 2 for every X containing Xj , and dY pπY paq, πY pXjqq ¤ 2 for

every Y transverse to Xj .

We remark that all of the above constants, apart from the complexity, may be

taken to be independent of the surface S. Our proof below that Axiom 9 holds gives

constants which do depend on the surface S and are probably far from optimal. It

would be interesting to consider how far they can be improved. The quasi-isometry

constants in Section 4.3 also a priori depend on the surface.

4.2.3 Verification of Axiom 9

The most significant part of the proof of Theorem 4.2.3 is the verification of the

final axiom. For brevity of notation, we will now suppress the projection maps

when considering distances and diameters for subsurface projections.

Proposition 4.2.4. Let S satisfy the hypotheses of Theorem 4.1.1. For every K,

there exists K 1, depending only on K and ξpSq, such that if a and b are two vertices

of KpSq, and if dXpa, bq ¤ K for every subsurface X in X, then dKpSqpa, bq ¤ K 1.

In order to prove this, we make use of a combinatorial construction based

on that described in Section 10 of [14]. This will give us a way of representing a

sequence of multicurves in S. We shall construct this sequence inductively so that

eventually it will be a path in KpSq. We remark that this method is also related to

the hierarchy machinery of [42].

We shall consider the product S � I, for a non-trivial closed interval I. We

consider S to be the horizontal direction and I to be the vertical direction. We have

a vertical projection S � I Ñ S and a horizontal projection S � I Ñ I. When we
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denote a subset of S� I by A1 �A2, A1 will be a subset of the horizontal factor, S,

and A2 of the vertical factor, I. To ensure that curves in S are pairwise in minimal

position, we will fix a hyperbolic structure on S with totally geodesic boundary and

take the geodesic representative of each isotopy class of curves.

Definition 4.2.5. A vertical annulus in S � I is a product γ � Iγ , where γ is a

curve in S and Iγ is a non-trivial closed subinterval of I. The curve γ is the base

curve of the annulus.

Definition 4.2.6. An annulus system W in S � I is a finite collection of disjoint

vertical annuli. An annulus system W is generic if whenever γ1� I1 and γ2� I2 are

two distinct annuli in W , we have BI1 X BI2 � BI.

We denote S � ttu by St and W X St by Wt. Each Wt is a (possibly empty)

multicurve, and there is a discrete set of points in I where the multicurveWt changes.

Hence the annulus system is a way of recording a sequence of multicurves in S.

Definition 4.2.7. Let ξpSq ¥ 2. A tight geodesic in CpSq between curves γ and γ1

is a sequence γ � v0, v1, . . . , vn�1, vn � γ1, where:

• each vi is a multicurve in S,

• for any i � j and any curves γi P vi, γj P vj , dSpγi, γjq � |i� j|,

• for each 1 ¤ i ¤ n�1, vi is the boundary multicurve of the subsurface spanned

by vi�1 and vi�1 (excluding any components of BS).

If ξpSq � 1, then a tight geodesic is an ordinary geodesic in CpSq.

This definition comes from [42], although the tight geodesics of [42] are

equipped with some additional data which will not be relevant here. A tight geodesic

can be realised as an annulus system as follows.

Definition 4.2.8. A tight ladder in S � I is a generic annulus system W so that:

• there exists a tight geodesic v0, v1, . . . , vn�1, vn in CpSq so that the curves

appearing in the tight geodesic correspond exactly to the base curves of the

annuli in W ,

• for two annuli γ � Iγ and δ � Iδ in W , the intervals Iγ and Iδ intersect if and

only if γ and δ are disjoint,

• there exist t0   t1   � � �   tn�1   tn in I such that for each i the multicurve

Wti � vi.
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In the case where ξpSq ¥ 2, this corresponds to moving from vi to vi�1 by

adding in the curves of vi�1 one at a time then removing the curves of vi one at a

time (Figure 4.8a). In the case where ξpSq � 1, this corresponds to moving from

vi to vi�1 by removing the curve vi then adding in the curve vi�1 after a vertical

interval with no annuli (Figure 4.8b).

(a) Complexity ξpSq ¥ 2. (b) Complexity ξpSq � 1.

Figure 4.8: Illustrations of tight ladders in S � I.

From now on, we will assume that S satisfies the hypotheses of Theorem 4.1.1.

Definition 4.2.9. Let t P I, and let X be a component of St zWt. Let J � I be

the maximal interval containing t such that X is a component of Ss zWs for every

s P J . The product X � J̄ is a brick of W . The surface X is the base surface of the

brick.

We remark that this differs slightly from the definition of “brick” in [14]. Note

that the interiors of any two distinct bricks are disjoint, and that we may decompose

S � I as a union of regular neighbourhoods of all bricks of W (recall that when we

remove a multicurve a from S, we also remove a regular open neighbourhood of a).

In order to obtain a path in KpSq, we want to decompose S � I into bricks whose

base surfaces are not in X.

Definition 4.2.10. A brick X � rs, ts is small if one of the following holds.

(Type 1) The base surface X is not in X.

(Type 2) The base surface X is a copy of S0,4 and is in X. Moreover, Ws and Wt

each intersect X in an essential non-peripheral curve, and the two curves are

adjacent in CpXq.
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Notice that a generic annulus system W where every brick is small realises

a path in KpSq, as follows. First assume there are no copies of S0,4 in X. Consider

the multicurves Wt for t P I. These change precisely at the points in the interior

of I which are the endpoints of horizontal projections of annuli in W . Let P denote

this set of points. Let I0, . . . , In be the components of I z P in the order in which

they appear in I, and for each 0 ¤ j ¤ n pick any tj from Ij . Let aj be the

multicurve Wtj . The sequence a0, . . . , an is a path in KpSq.
In the case where there are copies of S0,4 in X, we place an additional restric-

tion on a generic annulus system, requiring that whenever we have a Type 2 small

brick, the endpoints of its horizontal projection to I are consecutive points of P .

This can be achieved by appropriate isotopies. Again, let W be a generic annulus

system where every brick is small. Construct the sequence of curves aj as above and

suppose that, for some j, S zaj has a component X which is an S0,4 subsurface in X

(and hence aj is not a vertex of KpSq). Then by the restriction on the endpoints of

the horizontal projection of a Type 2 small brick, X is not a component of S z aj�1

or S z aj�1, nor is any other S0,4 subsurface in X. Then aj�1 and aj�1 are adjacent

vertices of KpSq. Hence we obtain a path in KpSq as for the previous case except

that we remove any multicurves in the sequence a0, . . . , an which are not vertices

of KpSq.

Definition 4.2.11. The K-complexity of an annulus system W is

pNξpSq, NξpSq�1, . . . , N1q, where, for each i, Ni is the total number of non-

small bricks of W whose base surface is a subsurface in X of complexity i. We give

this the lexicographical ordering.

Since there are no subsurfaces in X of complexity less than 1, the K-com-

plexity is p0, 0, . . . , 0q precisely when every brick is small.

We now begin the proof of Proposition 4.2.4. Let I � r0, 1s. We shall

construct a generic annulus system in S � I, with K-complexity p0, 0, . . . , 0q, which

realises a path in KpSq from a to b, and show that the length of this path is bounded

in terms of K and ξpSq.

We construct the annulus system inductively. We start by choosing distinct

points tα P p0, 1
2q for each curve α of a and tβ P p1

2 , 1q for each curve β of b and

defining an annulus system W p0q �
�
αpα� r0, tαsq Y

�
βpβ � rtβ, 1sq.

We will describe below the procedure for constructing a new annulus system

W pk�1q from W pkq, where the first annulus system W p0q is as defined above. We shall

do this in such a way that each annulus system interpolates between a and b (in fact,

W pk�1q contains W pkq), and such that the K-complexity of W pk�1q is strictly less
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than that of W pkq. This process will eventually terminate with an annulus system

with K-complexity p0, 0, . . . , 0q.

Suppose we have constructed a generic annulus system W pkq. We will de-

scribe how to construct the next stage W pk�1q; see Figure 4.9 for an illustration.

Consider the bricks of W pkq. If every brick is small, then the K-complexity of W pkq

is p0, . . . , 0q and we are done. Suppose this is not the case, and choose a brick

Y � rt�, t�s, where Y is in X and has maximal complexity among such bricks.

(Note that a priori the same subsurface Y might appear as the base surface of

more than one brick.) Decreasing past t� and increasing past t�, the components

of St zW
pkq
t change to not include Y . Since Y has maximal complexity among base

surfaces of W pkq in X, it is not a proper subsurface of any component of St zW
pkq
t for

any t P I. Hence, the intersection of W
pkq
t� and of W

pkq
t� with Y must be non-empty,

and, since W pkq is generic, it is in each case a single curve, which we call γ� and γ�

respectively. Slightly extend rt�, t�s on each side to J � rt� � ε, t� � εs so that

the subset Y � J now contains vertical annuli corresponding to each of these curves

but still intersects no other annuli. We may consider annulus systems in Y � J as

for S � I. Add a tight ladder in Y � J , corresponding to a tight geodesic in CpY q
from γ� to γ�, arranging that the resulting annulus system in S � I is generic by

slightly moving the endpoints of intervals if necessary. The annulus system W pk�1q

is the union of W pkq and the tight ladder in Y � J . Notice that the K-complexity

of W pk�1q is strictly less than that of W pkq.

Figure 4.9: Constructing W pk�1q from W pkq by adding a tight ladder in a brick
Y � J .
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At each stage, we add a tight ladder v0, v1, . . . , vn�1, vn in some brick, Y �J ,

increasing the length of the sequence of multicurves determined by the annulus

system, where these multicurves are not yet necessarily vertices of KpSq. Let

us consider the maximal increase in the length of this sequence. Let Q be the

set of points in the interior of J corresponding to the endpoints of the horizon-

tal projections of bricks to J . First suppose ξpY q ¥ 2. The transition from

vi to vi�1 gives a point of Q for every curve in vi and every curve in vi�1, so

|Q| � p|v0| � |v1|q � p|v1| � |v2|q � � � � � p|vn�1| � |vn|q ¤ nξpY q. Now suppose

ξpY q � 1. Then the number of points of Q is 2n � 2nξpY q. Hence between W pkq

and W pk�1q, when we add a tight ladder of length n in a brick Y � J , we add at

most 2nξpY q to the length of the corresponding sequences of curves.

The length of the tight ladder we add between W pkq and W pk�1q is equal to

dY pγ�, γ�q. We now show that this quantity is bounded above in terms of k and K.

Claim 4.2.12. Let Γpkq be the set of the base curves of all annuli in W pkq and

K as in the statement of Proposition 4.2.4. Then diamCpXqpπXpΓ
pkqqq ¤ 3kK for

each X P X.

We prove this by an induction on k. The base case is when k � 0 and

holds since, by hypothesis, diamCpXqpa Y bq ¤ K for every X P X. Suppose at

stage k � 1 the projection has diameter at most 3k�1K. At stage k, we add a

tight geodesic v0, v1, . . . , vn�1, vn in CpY q for some Y P X, where v0 and vn are

curves which already appear as base curves in W pk�1q. By the induction hypothesis,

n � dY pv0, vnq ¤ 3k�1K. There are several cases depending on how X and Y

intersect.

Case 1: X is disjoint from Y . Then none of the curves added in Y contributes

to the projection to X so the diameter is unchanged.

Case 2: X intersects Y and is not nested in Y . Then there is a curve δ in

BSY which intersects X non-trivially. Such a curve is also a base curve in W pk�1q.

Every curve added in Y is disjoint from δ. Hence every curve added either does not

intersect X so does not change the projection to CpXq, or projects to a curve at

distance at most 2 from πXpδq. Hence, the diameter of the projection increases by

at most 4.

Case 3: X is nested in Y . Suppose that some multicurves vp and vq in the

tight geodesic do not intersect X, for p   q. Then there is a curve in X which

intersects neither, so we have dY pvp, vqq ¤ 2, and q ¤ p � 2 by the definition of a

tight geodesic. Moreover, if q � p� 2 then vp�1 also does not intersect X since it is

the boundary of the subsurface spanned by vp and vq. Hence, any multicurves in the
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geodesic which do not cut X are consecutive terms. Let vp and vq be respectively

the first and last terms which do not intersect X. Suppose p ¡ 0 and q   n. Then

the increase in diameter between πXpΓ
pk�1qq and πXpΓ

pkqq is at most the sum of the

maximal possible distances from πXpv0q to πXpvp�1q and from πXpvq�1q to πXpvnq.

By Proposition 3.4.1, and the induction hypothesis,

diamCpXqpΓ
pkqq ¤ 3k�1K � 2pp� 1q � 2pn� pq � 1qq ¤ 3k�1K � 2 � 3k�1K � 3kK.

Similarly, if p � 0 or q � n then we have only one of the terms 2pp�1q or 2pn�pq�1qq,

and again diamCpXqpΓ
pkqq ¤ 3kK. If every term in the tight geodesic cuts X then the

increase in diameter from W pk�1q is bounded above by the maximal distance from

v0 or vn to the middle term. In any case, diamCpXqpΓ
pkqq ¤ 3kK. This completes

the proof of Claim 4.2.12.

In order to find an upper bound on the length of the final path in KpSq, we

will find upper bounds on the length of the sequence of curves at certain stages of

the induction. For each 1 ¤ i ¤ ξpSq, let ki be minimal such that N
pkiq
j � 0 for all

i ¤ j ¤ ξpSq. In particular kξpSq ¤ kξpSq�1 ¤ � � � ¤ k1, and k1 is the stage where the

K-complexity of the annulus system reaches p0, 0, . . . , 0q. For 1 ¤ i ¤ ξpSq, define Ti

by TξpSq � p2K � 2qξpSq and Ti � Ti�1 �Ki31�2TξpSq�����2Ti�1 for 1 ¤ i ¤ ξpSq � 1,

and define Li by LξpSq � 1 and Li � 1� 2TξpSq � � � � � 2Ti�1 for 1 ¤ i ¤ ξpSq � 1.

Claim 4.2.13. For each 1 ¤ i ¤ ξpSq, ki ¤ Li and the length of the sequence of

curves corresponding to W pkiq is at most Ti.

We shall prove this by a reverse induction on i. We start with the annulus

system W p0q defined above. Between W p0q and W p1q, we add a tight ladder in the

maximal complexity brick, the length of which is at most K. There is now no brick

of complexity ξpSq, so kξpSq � 1 � LξpSq. The length of the sequence of multicurves

given by W
p1q
t is at most |a| � |b| � 2KξpSq ¤ p2K � 2qξpSq � TξpSq.

Now assume for induction that ki�1 ¤ Li�1 and that the length of the se-

quence of multicurves given by W
pki�1q
t is at most Ti�1. If there are no bricks of

complexity i, then ki � ki�1 and we are done, so suppose there is at least one.

For each multicurve, there are at most two complementary components which are

in X, since a set of pairwise disjoint subsurfaces in X has cardinality at most 2 (see

Section 4.1.2). Hence, N
pki�1q
i ¤ 2Ti�1. The maximal complexity is now i so we add

tight ladders in bricks of complexity i until there are no more. We will need to do

this at most 2Ti�1 times, so ki ¤ ki�1 � 2Ti�1 ¤ Li�1 � 2Ti�1 � Li. The length of

the tight ladder we add between W pkq and W pk�1q is at most 3kK, by Claim 4.2.12,
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and so adds at most 2Ki3k to the length of the sequence of multicurves. Hence, in

total, between W pki�1q and W pkiq, we add at most the following to the length of the

sequence of multicurves:

2Kip3ki�1 � 3ki�1�1 � � � � � 3ki�1�2Ti�1�1q � 2Ki3ki�1p1� 3� � � � � 32Ti�1�1q

� 2Ki3ki�1
32Ti�1 � 1

3� 1
¤ Ki3ki�1�2Ti�1 ¤ Ki3Li�1�2Ti�1 � Ki31�2TξpSq�����2Ti�1 .

Therefore, the length of the sequence of multicurves given by W
pkiq
t is at most

Ti�1 �Ki31�2TξpSq�����2Ti�1 � Ti, proving Claim 4.2.13.

In particular, the length of the sequence of multicurves corresponding to

W
pk1q
t is at most T1, which is a function of K and ξpSq. At this stage, the K-

complexity is p0, 0, . . . , 0q, so this sequence of multicurves in fact gives a path in

KpSq joining a and b. Taking K 1 � T1, this completes the proof of Proposition 4.2.4,

and hence also of Theorem 4.2.3.

4.3 The separating curve graph

We now relate KpSq to SeppSq to prove Theorem 4.1.1. Since every separating

curve is a vertex of KpSq, there is a natural inclusion φ : SeppSq Ñ KpSq defined

by φpαq � tαu for every separating curve α. Again, we are considering SeppSq and

KpSq as discrete sets of vertices with the induced combinatorial metric.

Proposition 4.3.1. Let S be as in Theorem 4.1.1. Then the inclusion φ : SeppSq Ñ

KpSq is a quasi-isometry.

We first make the observation that in order to find an upper bound on the

distance between two vertices in SeppSq or in KpSq it is sufficient to bound their

intersection number. To see this, fix some n. For each of the two graphs, up to

the action of the mapping class group, there are only finitely many pairs of vertices

intersecting at most n times. Each graph has an isometric action of MCGpSq, so

we can take any pair of vertices intersecting at most n times to one of these finitely

many pairs without changing the distance between the vertices. Moreover, each of

these graphs is connected so there is a maximal distance between the vertices in any

such pair, which depends only on n and the surface S.

The most substantial part of the proof of Proposition 4.3.1 is to show that

the distance between two separating curves in KpSq is bounded below by a linear

function of their distance in SeppSq. To prove this, we associate a bounded diameter
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subset of SeppSq to each vertex of KpSq. Let N be a constant such that for each

vertex a of KpSq there is some separating curve which intersects a at most N times.

Such an N exists since, up to the action of the mapping class group, there are only

finitely many vertices of KpSq. Fixing some separating curve γ, we can take N to

be the maximal number of times γ intersects any of this finite list of vertices. Given

a vertex a of KpSq, define Ca � tγ P SeppSq | ipγ, aq ¤ Nu. This is non-empty by

construction.

Lemma 4.3.2. There exists N 1, depending only on N and ξpSq, such that the

diameter of Ca in SeppSq is at most N 1.

Proof. Note that throughout “separating curve” will refer to a curve that is sep-

arating in S even when the curve is being chosen to be contained in a particular

subsurface. Let a be a vertex of KpSq and β, β1 two separating curves each intersect-

ing a at most N times. If some curve of a is separating, then we have a separating

curve which intersects both β and β1 at most N times and this gives a bound on the

distance between β and β1 depending only on N and S. Assume, therefore, that no

curve of a is separating. We shall use the fact that (by definition of KpSq) for each

component Y of S z a, there is a separating curve γ disjoint from Y . Furthermore,

since β intersects a at most N times, up to the action of the mapping class group

there are only finitely many possibilities for β X pS z Y q, which is a collection of at

most N arcs (or a single curve) in S z Y . Hence, we can choose γ to have bounded

intersection with β, where the bound depends only on N and S. The same argument

applies for β1.

We shall split the proof into several cases, observing that if a vertex a1 of

KpSq is obtained by removing curves from another vertex a, then Ca is a subset of

Ca1 and hence the diameter of Ca in SeppSq is bounded above by the diameter of

Ca1 . For every vertex a of KpSq, either a will fit into one of the first four cases below,

or there will exist another vertex a1 of KpSq which is obtained from a by removing

curves and which fits into one of the cases.

Case 1. First suppose that S z a has only two components Y1 and Y2 (by

definition of KpSq, there cannot be only one component). Choose a separating curve

γ1 in Y2 � S z Y1 such that γ1 has bounded intersection with β, and choose γ2 in Y1

with bounded intersection with β1. Since γ1 and γ2 are disjoint, this gives a bound

on the distance in SeppSq between β and β1 depending on N and ξpSq.

Case 2. Now suppose that S z a has more than two components, and that

there is some component Y1 such that S z Y1 is disconnected. Choose a separating

curve γ1 in one of the components Z of S zY1 such that γ1 has bounded intersection
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with β. Note that S z Z is connected. Suppose that Z is in X. Then S z Z is

planar and attached to Z by either all or all but one of its boundary components,

otherwise S z Z would contain a separating curve. However, then no subsurface of

S z Z could have a disconnected complement in S, contradicting that Y1 has this

property. Therefore, Z is not in X. Then there is a separating curve γ2 in S z Z,

and we can choose γ2 to have bounded intersection with β1. As above, this gives a

bound on dSeppSqpβ, β
1q depending on N and ξpSq.

Case 3. Suppose that S z a has three components, Y1, Y2, Y3, and that the

complement of each component in S is connected. We will construct a sequence

β, γ1, γ2, γ3, γ4, β
1 of separating curves of S, such that the intersection number be-

tween consecutive curves is bounded by a constant depending only on N and ξpSq.

Since β has bounded intersection with a, there are only finitely many possibilities

for pβ Y aq X pS z Y1q up to the action of the mapping class group. Hence we can

choose a separating curve γ1 in S z Y1 whose intersection with both β and a is

bounded in terms of N and ξpSq. Since γ1 has bounded intersection with a, up to

the action of the mapping class group there are only finitely many possibilities for

pγ1 Y aq X pS z Y2q. Hence, we can find a separating curve γ2 in S z Y2 which has

bounded intersection with γ1 and with a. Now choose a separating curve γ4 in S zY1

such that γ4 has bounded intersection with β1 and with a. The curve γ2 is contained

in Y3 Y Y1 and γ4 is contained in Y3 Y Y2 (so they do not intersect in S z Y3) and

both have bounded intersection with a. Hence, up to the action of the mapping

class group, there are only finitely many possibilities for pγ2 Y γ4q X pS z Y3q. We

can therefore find a separating curve γ3 in S z Y3 which intersects both γ2 and γ4 a

bounded number of times. This once more gives a bound on dSeppSqpβ, β
1q depending

only on N and ξpSq.

Case 4. Suppose that S z a has four components, Y1, Y2, Y3, Y4, and that

the complement of each of these components in S is connected.

We can represent how the four components are connected by dual graphs.

We avoid loops and multiple edges and instead put a single edge between distinct

vertices if the components they represent meet along a multicurve. The possible

configurations are precisely the 2-vertex-connected simple graphs on four vertices

and are shown (up to symmetries) in Figure 4.10. The marked vertices will be

explained shortly.

Note that if the union of two components is connected and is not in X then we

could reduce to the case of three components by removing a curve of a which meets

both components, while staying in the vertex set ofKpSq. We will hence suppose that

for any pair of components whose union in S is connected, that union is a subsurface
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(a) (b) (c) (d)

Figure 4.10: Possible dual graphs for Case 4.

in X. This requires that for any such pair of components, their complement in S

is either one or two planar surfaces with at most one boundary component of S

contained in each component. In particular, every component of S z a is planar.

The marked vertices in Figure 4.10 show components of S z a where it is possible

that boundary components could be located (up to symmetries). The condition

is that if we remove any edge with its endpoints, there is at most one boundary

component of S for each component of the complement. In particular, S can never

have more than two boundary components. To ensure that the relevant subsurfaces

are planar, it is necessary that if the union of two subsurfaces is connected, the two

other subsurfaces meet along at most one curve. Hence, the possibilities for S and a

are as shown in Figure 4.11, where any of the boundary components might be filled

in with a disc and where the number of curves joining Y1 and Y3 in 4.11c and 4.11d

can vary.

(a) (b) (c) (d)

Figure 4.11: Possible surfaces and multicurves for Case 4.

In the case of Figures 4.11b and 4.11c, we have complementary components

which are annuli, meaning that two of the curves are isotopic. This should not arise

in the multicurve a so we may discard these cases.

Consider Figure 4.11a. Let γ1 and γ4 be two separating curves in S z Y1,

such that γ1 has bounded intersection with both β and a, and γ4 has bounded

intersection with β1 and a. Apart perhaps from Y1, each component of S z a is a

copy of S0,3, so γ1 and γ4 are determined by their arcs of intersection with each
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component of S z a and by twists around the curves of a. Consider a curve η in

S z Y2 intersecting each of the curves of a joining Y1 and Y4 and joining Y3 and Y4

exactly twice (see Figure 4.12). Up to twists on the boundary of Y3, ηX Y3 consists

of one arc intersecting each arc of γ1 X Y3 at most twice, and η X Y4 consists of two

arcs intersecting each arc of γ1XY4 at most once, again up to twists on the boundary

of Y4. However, the number of intersections between γ1 and η is not bounded due

to twists around the curve of a joining Y3 and Y4. Twisting η appropriately about

this curve, retaining the property of being separating, reduces the number of such

intersections to below some uniform bound so the intersection number of γ1 and

the new curve obtained by twisting η, which we call γ2, is bounded in terms of N

and ξpSq. Similarly, take a curve η1 in S z Y4 intersecting exactly twice each of the

boundary components of Y2 which meet Y1 or Y3, choosing η1 to intersect η only four

times as shown. Twisting η1 appropriately about the curve of a joining Y2 and Y3, we

obtain a separating curve γ3 whose intersection number with γ4 is bounded in terms

of N and ξpSq. Moreover, ipγ2, γ3q ¤ 4. The sequence of curves β, γ1, γ2, γ3, γ4, β
1

gives a bound on the distance in SeppSq between β and β1 in terms of N and ξpSq.

Figure 4.12: The curves used for the case of Figure 4.11a.

Now consider Figure 4.11d. We can assume that both boundary components

are present since otherwise at least two of the curves of a shown would be isotopic.

Let γ1 be a separating curve in S z Y1 with bounded intersection with β and a,

and let γ2 be a separating curve in S z Y3 with bounded intersection with β1 and

a. These two curves intersect Y2 and Y4 in essential arcs. By the restrictions on

which subsurfaces γ1 and γ2 may intersect, γ1 X Y2 is a collection of arcs in Y2 with

both endpoints in the boundary component of Y2 which meets Y3. This is a unique

isotopy class of arcs in Y2, which is homeomorphic to S0,3. Similarly, γ2 X Y2 is

represented by a unique isotopy class, which intersects the isotopy class of γ1 X Y2

twice (see Figure 4.13). The same holds for the intersection of these curves with Y4.

The number of arcs of each of γ1 and γ2 in Y2 and Y4 is bounded since both

curves have bounded intersection with a. Hence the number of intersections between

γ1 and γ2 is bounded, so their distance in SeppSq is bounded in terms of N and ξpSq.
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Figure 4.13: An example of the intersection of γ1 and γ2 with Y2 or Y4 in the case
of Figure 4.11d.

Case 5. Finally, suppose that S z a has more than four components and

that the complement in S of each component is connected. We claim that we can

remove curves of a to obtain a vertex of KpSq which falls into one of the cases above.

Firstly, we may assume that removing any single curve from a gives a multicurve

which is not a vertex for KpSq since otherwise we could replace a with a vertex of

KpSq with fewer curves. The dual graph G describing how the components of S z a

are connected is a 2-vertex-connected simple graph on at least five vertices. We

claim that it is possible to find two edges in G which share no endpoints. Firstly,

if G is a complete graph then we may choose any four distinct vertices and there

will be a pair of disjoint edges with these as endpoints. Assume now that G is not a

complete graph, and let v and w be distinct vertices of G which are not connected by

an edge. Let G1 be the (not necessarily connected) subgraph of G given by removing

v, w and all edges containing these vertices. Suppose v is connected by an edge to

a single vertex x in G1. But then G z x is disconnected, contradicting that G is

2-vertex-connected. Hence v is connected to G1 by at least two edges. The same

holds for w. From the edges joining v to G1 and the edges joining w to G1, we can

choose two edges which are disjoint.

By assumption, removing any curve of a gives a multicurve which is not a

vertex of KpSq, and hence which has a complementary component which is in X.

In this way, each edge of G corresponds to a pair of subsurfaces whose union in S

is a subsurface in X, so, in particular, there is a pair of disjoint subsurfaces in X,

X1 and X2, which are each the union of exactly two components of S z a. As

discussed in Section 4.1.2, S must be either Sg, Sg,1 or Sg,2, and either X2 � S zX1

or we are in one other specific case.

First suppose X1 � S zX2. Then there is no component of S za which is not

contained in either X1 or X2, contradicting that there are at least five components.

Now suppose that X1 � S z X2. Then S � Sg,1 and X1 and X2 are both copies

45



of S0,g�1, arranged, up to the action of MCGpSq, as in Figure 4.3b. Let Y �

S z pX1 YX2q. Then Y is a copy of S0,3, meeting exactly two components of S z a,

one in X1 and one in X2. Joining Y onto one of these two components gives a

subsurface which is still not in X. Hence, we can remove a curve of a to get a vertex

of KpSq with only four complementary components in S. This concludes the final

case.

All of the bounds depend only on N and S, and we can take the overall

bound N 1 to be the maximum of those found above. Then the diameter of the set

Ca is at most N 1 � N 1pN, ξpSqq.

Proof of Proposition 4.3.1. Firstly, as already discussed, there exists N such that

for any vertex a of KpSq there exists a separating curve γ intersecting a at most

N times. Moreover, again as discussed above, the distance between two vertices

in KpSq is bounded above by a function of their intersection number, and so there

exists R � RpN, ξpSqq such that dKpSqpa, tγuq ¤ R. Hence, φpSeppSqq is R-dense

in KpSq.

Upper bound. Let γ � γ0, γ1, . . . , γn�1, γn � γ1 be a geodesic in SeppSq.

For each 0 ¤ i ¤ n�1, γi is disjoint from γi�1, so tγi, γi�1u is a multicurve, and also

necessarily a vertex of KpSq. Hence, tγ0u, tγ0, γ1u, tγ1u, . . . , tγn�1u, tγn�1, γnu, tγnu

is a path in KpSq of length 2n. Therefore, dKpSqpγ, γ
1q ¤ 2dSeppSqpγ, γ

1q.

Lower bound. Now let us consider the lower bound for the quasi-isometric

embedding. Given a vertex a of KpSq, define Ca � tγ P SeppSq | ipγ, aq ¤ Nu,

for sufficiently large N , as above. In particular, we can assume N ¥ 4, as will

be relevant below. By Lemma 4.3.2, the diameter of Ca is at most N 1, where N 1

depends only on N and ξpSq.

Now suppose that a and b are adjacent vertices of KpSq. First assume that

the edge joining a and b does not correspond to a move in an S0,4 subsurface in X.

Then, without loss of generality, b is obtained from a by adding a single curve.

Hence Ca Y Cb � Ca, which has diameter at most N 1.

Now suppose that a and b differ by a move in an S0,4 subsurface. In partic-

ular, S is one of S3, S3,1, S2,2 or S1,3. We shall show that Ca and Cb share at least

one curve, so the diameter of Ca YCb is at most 2N 1. Let X be the S0,4 subsurface

in which the move takes place, α � aXX and β � bXX.

We first observe that every curve γ which is essential and non-peripheral in X

separates two boundary components of X on one side and two on the other, and

that this partition of BX determines whether or not γ is separating in S. Moreover,

if three curves give the vertices of a triangle in the Farey graph CpXq, that is,
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they pairwise intersect exactly twice, then the three curves give the three different

partitions of the components of BX into pairs.

Now, suppose first that the subsurface X contains some separating curve

of S. If α is separating, then α is in Ca X Cb, since it intersects each of a and

b at most twice, and similarly if β is separating. If neither α nor β is separating

then we can take γ in X intersecting each of α and β exactly twice. Since γ will

give a different partition of the components of BX to α and β, and since X contains

separating curves of S, it follows that γ must be separating. Once again, γ intersects

each of a and b at most twice, so γ P Ca X Cb.

Figure 4.14: An example of how to find a curve in Ca X Cb, where a and b are
connected by a move in an S0,4 subsurface which contains no separating curve of S.

Suppose now that X does not contain any separating curve of S. We claim

that given α and β in X � S0,4 intersecting twice, a boundary component δ of X

and a partition of the other three boundary components of X into a set of one and

a set of two, we can find an arc c satisfying the following: both endpoints of c are

in δ, c separates X into two components which correspond to the chosen partition

of the boundary components, and c intersects each of α and β at most twice. As

above, the curves α and β are two vertices of a triangle in the Farey graph CpXq.
For the partition we have chosen of three boundary components of X, first add the

boundary component δ to the set with one boundary component, to get a partition

of all four boundary components of X into two pairs. Now let ω be either α, β

or the third vertex of a Farey triangle containing these, such that ω separates the

boundary components of X according to this partition. Let t be an arc joining δ

and ω, with the interior of t disjoint from α and β, and let c be the boundary of a

regular neighbourhood of tY ω. Then c satisfies the required conditions.

Now, choose a component δ of BSX and take an essential arc c1 in S zX with

both endpoints in δ, choosing c1 to be disjoint from aXpS zXq. This arc c1 separates

the components of BSX in a certain way. We can now choose an arc c2 in X with

both endpoints in δ and separating the same boundary components as c1. We can

join up c1 and c2 in such a way that they form a separating curve η. Moreover,
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from above, we can choose c2 to intersect each of α and β at most twice. See

Figure 4.14 for an example of this construction. Hence, ipη, aq ¤ 4 and ipη, bq ¤ 4.

We assume N ¥ 4, so η P Ca X Cb.

Let γ and γ1 be two separating curves, and tγu � a0, a1, . . . , an�1, an � tγ1u

a geodesic in KpSq. For each 1 ¤ i ¤ n � 1, choose γi in Cai , and take γ0 � γ

and γn � γ1. From above, dSeppSqpγi, γi�1q ¤ 2N 1 for each 0 ¤ i ¤ n � 1. Hence

dSeppSqpγ, γ
1q ¤ 2N 1dKpSqpγ, γ

1q.

By Theorem 4.2.3 and Proposition 3.7.1, this completes the proof of Theo-

rem 4.1.1.
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Chapter 5

Surgery arguments in the coarse

geometry of curve complexes

In this chapter, we give two instances of the use of surgery arguments to obtain

uniform constants for coarse geometric properties of graphs associated to surfaces.

Section 5.1 gives a new proof of the uniform hyperbolicity of the curve graphs,

which is based on methods of Przytycki and Sisto [48]. The proof in [48] applies

only for closed surfaces and our proof extends this to also apply for surfaces with

boundary. Section 5.2 gives an elementary proof that the disc graphs are uniformly

quasiconvex in the curve graphs, also making use of the methods of [48], along with

work of Masur and Minsky [43]. The work in this latter section appears in [57].

5.1 Uniform hyperbolicity of the curve graphs

In this section, we will give a proof of the uniform hyperbolicity of the curve graphs

using surgery arguments. This result is originally due to Aougab [1], Bowditch [12],

Clay, Rafi and Schleimer [20] and Hensel, Przytycki and Webb [35], in independent

proofs.

The methods of the four proofs are rather different. The arguments we use

here are inspired by those of [35]. Hensel, Przytycki and Webb introduce the idea

of unicorn arcs produced by surgeries to construct paths in the arc graph which are

close to geodesics. They prove, using these paths, that arc graphs are uniformly

hyperbolic, and deduce from this that curve graphs are uniformly hyperbolic. By

analogy with unicorn arcs, Przytycki and Sisto introduce bicorn curves in [48] to

give a proof that the curve graphs of closed surfaces of genus at least two are

uniformly hyperbolic. We here extend the method of [48] to apply also to surfaces
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with boundary.

In [48], the following criterion for hyperbolicity is used. This appears as

Theorem 3.15 of [45] (without the final clause on Hausdorff distance, which we shall

use in Section 5.2) and Proposition 3.1 of [12]. This result is also related to work of

Gilman [27].

Proposition 5.1.1. Let G be a connected graph with vertex set V pGq and let h ¥ 0.

Let dG be the combinatorial metric on G. Suppose that for every x, y P V pGq there

is a connected subgraph Lpx, yq � G, containing x and y, satisfying the following:

1. for any x, y P V pGq with dGpx, yq ¤ 1, the diameter of Lpx, yq in G is at

most h;

2. for all x, y, z P V pGq, Lpx, yq � NGpLpx, zq Y Lpz, yq, hq.

Then G is δ-hyperbolic for some δ depending only on h. Furthermore, there exists

R depending only on h such that the Hausdorff distance between Lpx, yq and any

geodesic from x to y is at most R.

We will use the following slight modification.

Proposition 5.1.2. Let G be a connected graph with vertex set V pGq and let h, h1 ¥

0. Let dG be the combinatorial metric on G. Suppose that for every x, y P V pGq there

is a (not necessarily connected) subgraph Lpx, yq � G, containing x and y, satisfying

the following:

1. for any x, y P V pGq, NGpLpx, yq, h1q is connected;

2. for any x, y P V pGq with dGpx, yq ¤ 1, the diameter of Lpx, yq in G is at

most h;

3. for all x, y, z P V pGq, Lpx, yq � NGpLpx, zq Y Lpz, yq, hq.

Then G is δ-hyperbolic for some δ depending only on h and h1. Furthermore, there

exists R depending only on h and h1 such that the Hausdorff distance between Lpx, yq
and any geodesic from x to y is at most R.

Proof. We prove only that Proposition 5.1.2 follows from Proposition 5.1.1. For a

proof of Proposition 5.1.1, see [12] or [45]. Suppose subgraphs Lpx, yq satisfy all

the hypotheses of this modified proposition, that is, all the hypotheses of Proposi-

tion 5.1.1 except with the assumption of connectedness of Lpx, yq replaced by the

assumption of coarse connectedness described. Define L1px, yq � NGpLpx, yq, h1q.
This is a connected subgraph of G containing x and y. For any x, y P V pGq
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with dGpx, yq ¤ 1, the diameter of L1px, yq in G is at most h � 2h1, and for any

x, y, z P V pGq, L1px, yq � NGpL1px, zqYL1py, zq, hq. Hence, the conclusion of Propo-

sition 5.1.1 holds, except with constants now depending on h and h1.

Let S be a compact, oriented surface such that ξpSq ¥ 2. In what follows,

we will be working with fixed representatives of isotopy classes of curves, as this will

be convenient for the surgeries.

For two essential, non-peripheral curves α, β, fixed in minimal position, we

can form new curves by surgeries. We join arcs of α and β at points of α X β. To

obtain an embedded curve the arcs should not intersect in their interiors. We call

curves obtained this way pα, βq-curves. We will allow up to two arcs of each of α

and β, and call the subarcs contained in α, α-arcs, and the subarcs contained in β,

β-arcs. We call the points of intersection of the α- and β-arcs corners. Note that

we will also consider α and β to be pα, βq-curves; in each case the number of corners

is zero. We include arrangements of two arcs of each curve where one endpoint

is common to all four arcs (see, for example, Figure 5.1b). Here it is necessary to

perform an additional surgery in a neighbourhood of this intersection point to get an

embedded curve. Following [48], we will call pα, βq-curves with exactly two corners

bicorn curves (see Figure 5.2 for examples). We will typically denote arcs of α by a,

arcs of β by b and so on.

Remark 5.1.3. In the figures in this section, we show each pα, βq-curve disjoint

from its α- and β-arcs. This is for clarity of the illustrations. We really want to

consider the pα, βq-curve as actually coinciding with its α- and β-arcs (except for in

a small neighbourhood if there is an endpoint common to all four arcs).

(a) Four intersection points. (b) Three intersection points.

Figure 5.1: Examples of pα, βq-curves with four corners.

For α and β fixed in minimal position, define Λpα, βq to be the set of pα, βq-

curves with at most four corners which are essential and non-peripheral. Let Lpα, βq

51



be the full subgraph of CpSq whose vertices are the isotopy classes of all curves

in Λpα, βq. Note that one vertex in Lpα, βq could correspond to more than one

representative curve in Λpα, βq.

Condition 2 of Proposition 5.1.2 is easily verified for Lpα, βq. If two curves

α and β are at distance at most 1 in CpSq then they do not intersect in minimal

position, so Lpα, βq � tα, βu. Thus Lpα, βq has diameter at most 1 in CpSq.
To show hyperbolicity of CpSq, we still need to show the following conditions

are satisfied.

Lemma 5.1.4. There exists h1 ¥ 0 such that for all α, β, NCpSqpLpα, βq, h1q is

connected.

Lemma 5.1.5. There exists h ¥ 0 such that for any three curves α, β, δ in S,

Lpα, βq � NCpSqpLpα, δq Y Lpβ, δq, hq.

We begin with the proof of Lemma 5.1.4. Let γ be an pα, βq-curve with at

most four corners. The arcs defining γ contain two, three or four points of αX β.

Orient γ, and follow an α-arc, say, according to this orientation to reach one of

these points. To stay on the curve γ by following the appropriate β-arc requires

turning either left or right at this intersection point. This gives a sequence of left

and right turns associated to each oriented curve, defined up to cyclic permutation.

If there are only three points of α X β, then one of them (the point where all four

arcs intersect) will be counted twice. We denote left turns by L and right turns

by R.

The possibilities for an oriented bicorn curve are LL, LR and RR, as il-

lustrated in Figure 5.2. We will call a curve with sequence LL an LL-curve, and

so on.

Note that reversing the orientation of the pα, βq-curve changes left turns to

right turns and right turns to left turns. Hence an LL-curve is the same as an

RR-curve with the opposite orientation, and so on.

(a) An LL-curve. (b) An RR-curve. (c) An LR-curve.

Figure 5.2: The possibilities for bicorn curves.
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Lemma 5.1.6. An oriented bicorn curve γ cannot bound a disc on the left, and γ

can bound a peripheral annulus on the left only if it is an LL-curve.

Proof. Suppose an LL-curve γ (as in Figure 5.2a) bounds a disc on the left. This is

the same as saying that α and β form a bigon here, which contradicts the assumption

that the two curves are in minimal position.

Now let γ � aYb be an LR-curve (Figure 5.2b) and suppose for contradiction

that it bounds a disc D on the left. Since γ turns right at one of the two points of

a X b, at this point, p, the arcs of α and β which are not part of γ are on the left,

and hence enter the disc D. The arc of α z a entering must leave D somewhere, and

can do this only by intersecting the boundary of D again. It cannot intersect the

component of BD which is in BS as it is a subarc of a curve, so it must intersect γ.

Moreover, it cannot intersect a, so must intersect b at a point q. The arc a1 of α z a

joining p and q in D divides the disc D into two components, each of which must

also be a disc. Moreover, each of these components has boundary made up of one

arc of α and one arc of β: for one it is a1 Y b1, where b1 � b, and for the other it is

paYa1qYpbzb1q. Each of these discs is in fact a bigon between α and β, contradicting

minimal position of α and β.

Similarly, suppose that γ � a Y b is an LR-curve and that it it bounds a

peripheral annulus A on the left. As above, we find that the arc of α z a crossing A

from the right turn divides A into two components, where now one of these compo-

nents is a disc and the other is an annulus. The disc component is a bigon between

α and β, again contradicting minimal position of α and β.

The same argument applies for an RR-curve (Figure 5.2c), where now there

are two points where arcs of α and β enter the disc, and there might be an LR-

curve bounding a disc instead of a bigon, which again we have shown to be a

contradiction.

Remark 5.1.7. By reversing the orientation of γ, we can see that it is equivalent

to say that an LL-curve can bound some topological type of subsurface on the left

and to say that an RR-curve can bound the same surface on the right. Similarly, it

is equivalent to say that an LR-curve can bound a particular subsurface on the left

or on the right. Hence Lemma 5.1.6 shows that every bicorn curve is essential, and

that every LR-curve is also non-peripheral.

Lemma 5.1.8. Let γ be an pα, βq-curve with four corners. Then γ can bound a

disc on the left only if γ is an LLLL-curve.

Proof. Suppose γ is not an LLLL-curve, so that at at least one of the intersection

points is a right turn. First suppose that there are four distinct intersection points.
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Let a and b be α- and β-arcs respectively, and let p � aX b be a right turn. At this

intersection point, there is an arc a1 of α entering the disc D. This arc a1 must leave

the disc through a point p1 in one of the β-arcs (possibly at a corner), and cuts D

into two discs. If p1 P b, then a1 Y b1 is a bicorn curve, for b1 � b with endpoints p

and p1. If p1 R b then pa Y a1q Y b2 is a bicorn curve, where b2 is a subarc of the

other β-arc of γ. In either case, this gives an inessential bicorn curve, which is a

contradiction by Lemma 5.1.6.

Now suppose that there are only three intersection points, as in Figure 5.1b.

Let γ be made up of α-arcs a1 and a2 and β-arcs b1 and b2, where a1 and b1

intersect at two points and a2 and b2 intersect at two points. Then γ1 � a1Y b1 and

γ2 � a2 Y b2 are bicorn curves. If γ bounds a disc on the left, then γ1 and γ2 must

each also bound a disc, which is again a contradiction by Lemma 5.1.6. Hence, only

an LLLL-curve can bound a disc on the left.

Lemma 5.1.9. Any LRLR-curve is non-peripheral.

Proof. Let γ be an LRLR-curve and suppose it has four distinct intersection points.

Suppose that γ bounds a peripheral annulus A on the left. Let a be an α-arc and

b a β-arc in γ, intersecting at a right turn p. An arc a1 of α enters the annulus

from p and either intersects γ again at a point p1 in one of the two β-arcs or meets

the other α-arc of γ at the other right turn. In the first case, it divides A into a

disc and an annulus, one of which is bounded by an LL-curve and the other by an

LLLR-curve. In the second case both the disc and annulus components are bounded

by LL-curves. This is a contradiction in each case since neither an LL-curve nor an

LLLR-curve can bound a disc.

Now suppose that there are only three distinct intersection points in γ. Then

the α- and β-arcs in γ pair up to give two LL-curves. Since neither of these can

bound a disc, γ cannot bound a peripheral annulus.

Furthermore, since an LRLR-curve cannot bound a peripheral annulus on

the left, it also follows, as in Remark 5.1.7, that an LRLR-curve cannot bound such

an annulus on the right. Hence any LRLR-curve is non-peripheral.

Lemma 5.1.10. Let γ be an pα, βq-curve with at most four corners. Let k be

the total number of intersections of β with the interiors of the α-arcs of γ. Then

ipα, βq ¤ k � 2.

Proof. Orient γ. To take γ and β into minimal position, we in particular want to

ensure that they intersect transversely by isotoping γ off its β-arcs. Take an annular

neighbourhood of γ, and let γL and γR be its boundary components on the left and
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right of γ respectively (in the case where one endpoint is common to all four arcs,

we choose only the boundary component which does not intersect γ). Each of these

curves is isotopic to γ. We may arrange that γL and γR intersect β transversely and

that the number of intersections coming from intersections of β with the interior

of α-arcs of γ is unchanged. At a left turn, there is an intersection of β with γR

coming from this corner, but not with γL. Similarly, at a right turn, there is an

intersection of β with γL coming from this corner, but not with γR. Since we can

choose whichever of γL and γR has smaller intersection with β to get an upper

bound on ipγ, βq (except in the one case mentioned above, where we get at most

two intersections from the corners), we find that ipγ, βq is at most two more than

the number of intersections of β with the interior of α-arcs of γ.

To show that the subgraph Lpα, βq is coarsely connected in CpSq, we define

a partial order on Λpα, βq. Recall that the isotopy classes of the curves in Λpα, βq

make up the vertex set of Lpα, βq. The partial order is defined by γ1 ¡ γ if the

union of the α-arcs of γ1 is strictly contained in the union of the α-arcs of γ, where

the α-arc of β is taken to be empty. In this partial order, β is the unique maximal

element. Since Λpα, βq is finite, a sequence of elements in Λpα, βq which is increasing

in this partial order eventually terminates in β. Hence, the following lemma implies

that there is a coarse path in Lpα, βq connecting each vertex to β.

Lemma 5.1.11. Let γ � β in Λpα, βq. There exists γ1 in Λpα, βq such that γ1 ¡ γ

and dSpγ, γ
1q ¤ 13.

Proof. Firstly, if ipγ, βq ¤ 6 then their distance in CpSq is at most 2 � 6� 1 � 13 (see

Lemma 2.1 of [41]), so we can take γ1 � β. Suppose ipγ, βq ¥ 7. By Lemma 5.1.10,

there are at least five intersections between β and the interior of α-arcs of γ. Since

there are at most two α-arcs, it follows that β must intersect some α-arc a of γ at

least three times outside the endpoints of α (if γ � α, we can take a to be a subarc

of α which contains all intersections with β).

Let b be an arc of β intersecting the interior of a exactly three times. Assume

that b is minimal, in that there is no proper subarc of b which has three intersections

with the interior of an α-arc of γ. Then b has at most two intersections with another

α-arc of γ. There may also be at most two intersections between b and γ (once γ

is slightly isotoped off its β-arcs) coming from corners of γ, which may arise if b

contains β-arcs of γ. We shall form γ1 P Λpα, βq using subarcs of a and b.

Orient b and consider its three intersections with a. Either there are two

consecutive intersections p1, p2 with the same orientation or the orientations of

the intersections alternate. In the first case (see Figure 5.3a) there is an LR-curve
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formed from subarcs of a and b intersecting at p1 and p2. In the second case, either

we get an LR-curve, as in Figure 5.3a, with an extra intersection with a, or we

get an LRLR-curve, as in Figure 5.3b. Each of these curves must be essential and

non-peripheral by the above lemmas. Moreover, from the bound on how many times

b can intersect γ, in each case the resulting curve γ1 satisfies ipγ, γ1q ¤ 6 and hence

dSpγ, γ
1q ¤ 13.

(a) Consecutive intersec-
tions with the same orien-
tation.

(b) Alternating orienta-
tions.

Figure 5.3: Examples of finding γ1 ¡ γ.

This proves Lemma 5.1.4, where h1 can be taken to be 7. Lemma 5.1.5 is

implied by the following.

Lemma 5.1.12. Let α, β and δ be in minimal position, and let γ be a curve in

Λpα, βq. Then there exists γ� in Λpα, δq or Λpβ, δq such that dSpγ, γ
�q ¤ 17.

Proof. If γ and δ intersect at most eight times then take γ� � δ. Now assume γ

and δ intersect at least nine times. Then δ must intersect some arc in γ, without

loss of generality, an α-arc a, at least three times. Take an arc d joining three

intersections with a consecutive along δ. Assume d to be minimal as with b above,

so that any pα, δq-curve formed from subarcs of d and a intersects each other arc

of γ at most twice. It is possible to find some such curve γ� which is essential and

non-peripheral by the same methods as before, replacing b by d. Then ipγ, γ�q ¤ 8

and dSpγ, γ
�q ¤ 17.

Therefore, all the conditions of Proposition 5.1.2 are satisfied and this proves

that CpSq is hyperbolic. Moreover, the proofs above did not depend on the surface

as long as the complexity was sufficient to have pairs of disjoint curves. Thus, this

method shows uniform hyperbolicity.
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5.2 Uniform quasiconvexity of the disc graphs in the

curve graphs

5.2.1 Statement of results

When a surface S is a boundary component of a compact, orientable 3-manifold M ,

we can consider the subset of the vertex set of CpSq which consists of those curves

which bound embedded discs in M . Equivalently, by Dehn’s lemma, these are the

essential curves in S which are homotopically trivial in M . The disc graph, DpM,Sq,

is the full subgraph spanned by these vertices. Masur and Minsky proved that

DpM,Sq is K-quasiconvex in CpSq (see Definition 2.1.4), for some K depending only

on the genus of S [43]. The proof relies on a study of nested train track sequences.

A train track is a graph embedded in a surface which carries certain curves, in

particular a finite collection of curves called the vertex cycles of the train track.

More specifically, to any pair of vertices of DpM,Sq, Masur and Minsky associate

a sequence of curves in DpM,Sq, and a nested train track sequence whose vertex

cycles are close in CpSq to the curves of this sequence. They prove that the sets of

vertex cycles of nested train track sequences are quasiconvex in CpSq, and the result

follows.

This result was improved by Aougab, who showed in [2] that the constants

of quasiconvexity for nested train track sequences can be taken to be quadratic in

the complexity of the surface, obtaining as a corollary that there exists a function

Kpgq � Opg2q such that DpM,Sq is Kpgq-quasiconvex in CpSq, where g is the genus

of S. That this bound can be taken to be uniform in the genus of S follows from work

of Hamenstädt [29]. In Section 3 of [29], it is shown that the sets of vertex cycles

of train track splitting sequences give unparametrised quasigeodesics in CpSq (that

is, they can be reparametrised to give quasigeodesics as in Definition 2.2.1), with

constants independent of the surface S. Along with the uniform hyperbolicity of

the curve graphs, this implies that such subsets are uniformly quasiconvex in CpSq.
Here, we give a direct proof of the uniform quasiconvexity of DpM,Sq in CpSq,
without using train tracks.

Theorem 5.2.1. There exists K such that, for any compact, orientable 3-manifold

M and boundary component S of M , the disc graph, DpM,Sq, is K-quasiconvex

in CpSq.

For the main case, where the genus of S is at least 2, this uses an observa-

tion that the disc surgeries of [43] give a path of bicorn curves as defined in [48]

(see Section 5.1 for a definition). The lower genus case is straight-forward, and is
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discussed in Section 5.2.2.

5.2.2 Exceptional cases

Let M be a compact, orientable 3-manifold. If a boundary component S has genus

at most one then the associated disc graph, DpM,Sq, is very simple. Firstly, since

there are no essential curves on the sphere, the curve graph of the sphere is empty,

so we can ignore any sphere boundary components. We shall see that for a torus

boundary component S, the graph DpM,Sq contains at most one vertex.

Suppose S is a torus boundary component of the 3-manifold M . Suppose

an essential curve δ in S bounds an embedded disc D in M . Take a closed regular

neighbourhood N of S Y D in M . This is homeomorphic to a solid torus with

an open ball removed. Suppose some other curve δ1 in S bounds an embedded

disc D1 in M . We can assume that D1 intersects the sphere boundary component

of N transversely in simple closed curves. Repeatedly performing surgeries along

innermost discs to reduce the number of such curves eventually gives a disc with

boundary δ1 which is completely contained in N . Therefore, an essential curve in

S bounds an embedded disc in M if and only if it bounds an embedded disc in N .

In S, there is, up to isotopy, no curve other than δ which bounds an embedded disc

in N , since such a curve must be trivial in H1pN ;Zq. We hence find that if S is any

torus boundary component, then DpM,Sq is at most a single point. In this case,

DpM,Sq is 0-quasiconvex, or convex, in the curve graph of S (which is the Farey

graph, as described in Section 3.3.1).

5.2.3 Proof of the main result

Now let S be a boundary component of genus at least 2 of a compact, orientable

3-manifold M , and DpM,Sq the associated disc graph. To prove that DpM,Sq is

uniformly quasiconvex in CpSq, we will again make use of Proposition 5.1.2. This

time the important result will be the final clause on Hausdorff distances. As noted

above, Proposition 5.1.2 is a slight adaptation of Proposition 5.1.1, which appears

in [12] and [45].

Given two curves α and β in S, we shall define Θpα, βq to be the subgraph of

CpSq containing the isotopy classes of α, β and all bicorn curves between α and β.

We could just as well take the set of curves Λpα, βq (or their isotopy classes) from

Section 5.1 and use results from this section. However, since bicorn curves are all

we shall need, we shall instead quote results from [48].

Przytycki and Sisto define in [48] an “augmented curve graph”, CaugpSq,
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where two curves are adjacent if they intersect at most twice. Such curves cannot

fill S (which has genus at least 2) so are at distance at most 2 in CpSq. Given two

curves α and β in minimal position, ηpα, βq is defined in [48] to be the full subgraph

of CaugpSq spanned by Θpα, βq. This is shown to be connected for all α and β. It

is further verified that the hypotheses of Proposition 5.1.1 are satisfied when G is

CaugpSq, Lpα, βq is ηpα, βq for each α, β, and h is 1, independently of the surface S.

Since ηpα, βq is connected in CaugpSq, for any γ, γ1 P Θpα, βq, there is a

sequence γ � γ0, γ1, . . . , γn � γ1 of curves in Θpα, βq, where dSpγi�1, γiq ¤ 2 for each

1 ¤ i ¤ n. Hence, NCpSqpΘpα, βq, 1q is a connected subgraph of CpSq. Moreover, if

dSpα, βq ¤ 1, then α and β are disjoint, so Θpα, βq contains no other curves and its

diameter in CpSq is at most 1. Finally, since ηpα, βq � NCaugpSqpηpα, δq Y ηpβ, δq, 1q

for any curves α, β, δ, we have Θpα, βq � NCpSqpΘpα, δq Y Θpβ, δq, 2q. Now using

Proposition 5.1.2, this proves the following lemma.

Lemma 5.2.2. There exists R such that, for any closed, orientable surface S of

genus at least 2, and any curves α, β in S, the Hausdorff distance in CpSq between

Θpα, βq and any geodesic in CpSq joining α and β is at most R.

We now show that, moreover, any geodesic between α and β in CpSq lies in

a uniform neighbourhood of any path within Θpα, βq connecting α and β.

Lemma 5.2.3. Let α, β be two curves in S, P pα, βq a path from α to β in CpSq
with all vertices in Θpα, βq, and g a geodesic in CpSq joining α and β. Then g is

contained in the p2R� 2q-neighbourhood of P pα, βq.

Proof. This uses a well known connectedness argument. From Lemma 5.2.2, P pα, βq

is contained in NCpSqpg,Rq. Take any vertex γ in g. Let g0 be the subpath of g from

α to γ and g1 the subpath from γ to β. Then the three sets NCpSqpg0, R � 1q,

NCpSqpg1, R� 1q and P pα, βq intersect in at least one vertex, say δ. Let γ0 in g0 and

γ1 in g1 be such that dSpγ0, δq ¤ R�1 and dSpγ1, δq ¤ R�1. Now dSpγ0, γ1q ¤ 2R�2

and γ is in the (geodesic) subpath of g from γ0 to γ1, so dSpγ, γiq ¤ R� 1 for either

i � 0 or i � 1. Hence, dSpγ, δq ¤ 2R � 2. Since γ was an arbitrary vertex in g and

δ is in P pα, βq, we have g � NCpSqpP pα, βq, 2R� 2q.

Given that α and β bound embedded discs in M , we now describe how to

choose P pα, βq so that all curves in the path are also vertices of DpM,Sq, following

Section 2 of [43].

Assume curves α and β are fixed in minimal position and choose a subarc

J � α. Masur and Minsky define several curve replacements, of which we shall

need only the following. A wave curve replacement with respect to pα, β, Jq is the
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replacement of α and J by α1 and J1 as follows (see Figure 5.4). Let w be a subarc

of β with interior disjoint from α, and endpoints p, q in the interior of J . Suppose

that w meets the same side of J at both p and q; then w is called a wave. Let J1 be

the (proper) subarc of J with endpoints p, q, and define α1 to be the curve wY J1.

This is an essential curve since α and β are in minimal position, so, in particular,

no subarc of J and subarc of β can form a bigon. Where intpJq X β � ∅, we define

a curve replacement with respect to pα, β, Jq by α1 � β, J1 � ∅.

Figure 5.4: A wave curve replacement. The dashed curve is α1.

Remark 5.2.4. In [43], it is arranged that α1 and β must intersect transversely and

be in minimal position by requiring an additional condition on the wave w and by

slightly isotoping wY J1 to be disjoint from w. However, this will not be necessary

here, so we choose to simplify the exposition by removing this condition.

Notice that since α does not intersect intpwq, ipα, α1q � 0. Moreover, α1Xβ

consists of the arc w and a set of points which are all contained in the interior of J1,

and |β X intpJ1q|   |β X intpJq| whenever |β X intpJq| is non-zero.

We can iterate this process as follows. Athough α1 and β coincide in an

arc, any intersections in the interior of the subarc J1 are still transverse. Moreover,

no subarc of J1 can form a bigon with a subarc of β, since α and β are in mini-

mal position. Hence, we may still define a wave curve replacement with respect to

pα1, β, J1q as for pα, β, Jq above and obtain an essential curve. A nested curve re-

placement sequence is a sequence tpαi, Jiqu of curves α � α0, α1, . . . , αn and subarcs

α � J0 � J1 � � � � � Jn, such that J0 contains all points of α X β in its interior,

and such that αi�1 and Ji�1 are obtained by a curve replacement with respect to

pαi, β, Jiq. We will allow only wave curve replacements in the sequence and not the

other curve replacements possible in [43]. We always have ipαi, αi�1q � 0, as for α

and α1. Observe that all curves αi in this sequence are bicorn curves between α

and β, since the nested arcs Ji ensure that they are formed from exactly one arc of

α and one of β.

The following is a case of Proposition 2.1 of [43]. We include a proof for com-

pleteness, with the minor modification of the slightly different curve replacements.
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Proposition 5.2.5. Let S be a boundary component of a compact, orientable 3-

manifold M , and let α and β be two curves in S in minimal position, each of which

bounds an embedded disc in M . Let J0 � α be a subarc containing all points of αXβ

in its interior. Then there exists a nested curve replacement sequence tpαi, Jiqu, with

α0 � α, such that:

• each αi bounds an embedded disc in M ,

• the sequence terminates with αn � β.

Proof. Suppose that α and β bound properly embedded discs A and B respectively.

We can assume that A and B intersect transversely, so their intersection locus is a

collection of properly embedded arcs and curves. Furthermore, we can remove any

curve components by repeatedly performing surgeries along innermost discs, so that

A and B intersect only in properly embedded arcs. We will perform surgeries on

these discs to get a sequence of discs Ai with BAi � αi. Throughout the surgeries,

we will keep A and B fixed, and each Ai, except A0 � A and An � B, will be a

union of exactly one subdisc of each of A and B.

Suppose the sequence is constructed up to αi � BAi. If βXαi is empty, then

αi�1 � β � BB by definition, so the sequence is finished.

Figure 5.5: The disc surgeries of Proposition 5.2.5. The horizontal disc is Ai, shown
with arcs of intersection with B.

Suppose β intersects αi (as illustrated in the example of Figure 5.5). Let

Ai � Di Y Ei, where Di is a subdisc of A and Ei is a subdisc of B. If i � 0, then

Ei is empty. If i ¡ 0, let Ji be the arc of BDi which is contained in BAi. Any point

of intersection of β and Ji is an endpoint of an arc of intersection of B and Di. Let

Ei�1 be an outermost component of B zpAiXBq. Then Ei�1 is a disc in B such that

the boundary of Ei�1 is made up of an arc e in intpDiqXB and a subarc w of β, and

such that the interior of Ei�1 is disjoint from Ai. This in particular means that the

interior of w is disjoint from αi, that the endpoints p, q of w lie in the interior of Ji,

and that w meets the same side of Ji at both of these endpoints, so w is a wave. Let
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Ji�1 be the subarc of Ji with endpoints p, q. Let Di�1 be the disc in Ai bounded

by eY Ji�1. This disc is contained in Di and hence in A. The curve wY Ji�1, with

interval Ji�1, is the wave curve replacement αi�1 obtained from pαi, β, Jiq, and it is

also the boundary of the embedded disc Ai�1 � Di�1 Y Ei�1.

Since at each stage |βXintpJiq| decreases, this terminates with |βXintpJn�1q|
� 0 and αn � β.

This sequence defines the vertices of a path P pα, βq in CpSq, with these

vertices contained in both DpM,Sq and Θpα, βq. By Lemma 5.2.3, there exists K,

independent of S, α and β, such that any geodesic g joining α and β in CpSq is

contained in the closed K-neighbourhood of P pα, βq. Hence, g is contained in the

closed K-neighbourhood of DpM,Sq, completing the proof of Theorem 5.2.1.
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