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Abstract: 

Lasting volume reductions in subcortical and temporal-insular cortices after 

premature birth suggest altered ongoing activity in these areas. We 

hypothesized altered fluctuations in ongoing neural excitability and activity, as 

measured by slowly fluctuating blood oxygenation of resting-state functional 

MRI (rs-fMRI), in premature born adults, with altered fluctuations being linked 

with underlying brain volume reductions. 

To investigate this hypothesis, 94 very preterm/very low birth weight 

(VP/VLBW) and 92 full-term (FT) born young adults underwent structural and 

rs-fMRI data acquisition with voxel-based morphometry and amplitude of 

low-fequency fluctuations(ALFF) as main outcome measure.  

In VP/VLBW adults, ALFF was reduced in lateral temporal cortices, and this 

reduction was positively associated with lower birth weight. Regions of 

reduced ALFF overlapped with reduced brain volume. On the one hand, ALFF 

reduction remained after controlling for volume loss, supporting the functional 

nature of ALFF reductions. On the other hand, ALFF decreases were positively 

associated with underlying brain volume loss, indicating a relation between 

structural and functional changes. Furthermore, within the VP/VLBW group, 

reduced ALFF was associated with reduced IQ, indicating the behavioral 

relevance of ALFF decreases in temporal cortices.  

These results demonstrate long-term impact of premature birth on ongoing 

BOLD fluctuations in lateral temporal cortices, which are linked with brain 

volume reductions. Data suggest permanently reduced fluctuations in ongoing 

neural excitability and activity in structurally altered lateral temporal cortices 

after premature birth. 



 

Key words: premature birth, BOLD fluctuations, resting-state fMRI, lateral 

temporal cortices.



Introduction 

Premature birth, i.e., preterm birth before 37 weeks of gestation and/or birth at 

low birth weight below 2500g - has a worldwide prevalence of more than 10% 

(Blencowe, et al., 2012; Volpe, 2009). It is associated with an increased risk for 

birth complications and adverse long-term outcomes including brain 

functionality (Volpe, 2009). Particularly, premature born individuals have a 

higher risk for long-term neurocognitive impairments, psychiatric disorders, 

and lower socio-economic status (D'Onofrio, et al., 2013; Nosarti, et al., 2012). 

Risk for adverse outcomes increases substantially for very premature born 

individuals, i.e., born very preterm (VP; gestational age < 32 weeks) and/or 

with very low birth weight (VLBW; < 1500 g) (Nosarti, et al., 2012; Saigal and 

Doyle, 2008). The increased risk for adverse neurocognitive outcomes results 

from brain maturation abnormalities induced by adverse perinatal events such 

as brain injury due to hypoxia-ischemia, brain hemorrhage, infections, and 

other inflammatory processes as well as neonatal pain and stress (Volpe, 

2009).  

 

At the microscopic level, these processes primarily impair the development of 

pre-myelinating oligodendrocytes, GABA-ergic interneurons, and subplate 

neurons, which play a fundamental role in the development of cortical 

microstructure, morphology, and connectivity (Back, et al., 2002; Buser, et al., 

2012; Dean, et al., 2013; Deng, 2010; Kinney, et al., 2012; Salmaso, et al., 

2014). For example, during gestational weeks 15-35, different populations of 

subplate neurons control ingrowing of thalamocortical, basal forebrain 

cholinergic, and cortico-cortical afferents into cortical microcircuits (for review 



Hoerder-Suabedissen and Molnar, 2015): these processes are often impaired 

in prematurity due to the vulnerability of subplate neurons to perinatal hypoxia 

(Volpe, 2009), resulting in reduced subplate neuron arborization and local 

microcircuit development (McClendon, et al., 2017). At the macroscopic level, 

while impairments in white matter integrity are widespread (Ball, et al., 2014; 

Ball, et al., 2012; Eikenes, et al., 2011; Meng, et al., 2015; Skranes, et al., 

2007), gray matter volume reductions focus consistently on selected 

subcortical and cortical regions such as the thalamus, striatum, and medial 

and lateral temporal cortices (Ball, et al., 2013; Grothe, et al., 2017; Karolis, et 

al., 2017; Meng, et al., 2015; Nosarti, et al., 2008; Pierson, et al., 2007). 

Consistent grey matter changes, together with micro-structural changes, 

suggest that premature birth might impact very basic local physiological brain 

processes such as ongoing brain activity. Indeed, previous functional imaging 

studies - mainly task- and resting-state functional MRI (rs-fMRI) (Bauml, et al., 

2014; Daamen, et al., 2015; Daamen, et al., 2014; Damaraju, et al., 2010; 

Doria, et al., 2010; Froudist-Walsh, et al., 2015; Lubsen, et al., 2011; Smyser, 

et al., 2010; White, et al., 2014), but also some PET studies such as striatal 

F-Dopa PET (Froudist-Walsh, et al., 2017) - demonstrated overlapping 

structural and functional brain changes in premature born individuals. For 

example, premature born adults with perinatal brain injury have reduced 

dopamine synthesis capacity in the striatum, measured by F-Dopa-PET, in 

which the  volume is also typically reduced after premature birth 

(Froudist-Walsh, et al., 2017). The coherence of slowly fluctuating ongoing 

activity, measured by correlated blood oxygenation fluctuations of rs-fMRI, is 

altered in the striatum, thalamus, and lateral temporal cortices, with these 



alterations being linked with correspondent volume loss (Bauml, et al., 2014). 

Particularly, the last finding is of interest when looking for changed brain 

structure after premature birth accompanied with basic functional changes. 

Recent studies suggest that slowly fluctuating blood oxygenation of rs-fMRI 

reflect slowly fluctuating ongoing neural excitability and activity (Biswal, et al., 

2010; Ma, et al., 2016; Mateo, et al., 2017; Matsui, et al., 2016; Raichle, 2011; 

Sanchez-Vives, et al., 2017; Schwalm, et al., 2017; Zang, et al., 2007), which – 

at least for the cortex – represents a kind of fundamental cortical ‘default 

activity’ generated by basic cortical microcircuits (Sanchez-Vives, et al., 2017). 

Therefore, the link between correlated blood oxygenation and underlying 

volume loss after premature birth suggests potential changes in basic, slowly 

fluctuating, ongoing neural excitability and activity particularly in regions of 

consistent brain volume loss, likely due to prematurity-induced brain 

microstructure changes. To address this issue, the current study tested the 

following hypothesis: fluctuations in ongoing neural excitability and activity, as 

measured by rs-fMRI, are lastingly altered in premature born individuals, with 

alterations occurring mainly in brain areas of significant brain volume loss, a 

loss in volume that could potentially be linked with these alterations. 

 

To test this hypothesis, we assessed 94 VP/VLBW and 92 full-term (FT) born 

young adults at a median age of 26 years with rs-fMRI and structural MRI 

(sMRI). The amplitude of low frequency fluctuations (ALFF) of ongoing rs-fMRI 

signals is a widely used proxy of ongoing BOLD fluctuations (Zang, et al., 

2007). Voxel-based morphometry (VBM) of sMRI data were used to estimate 

brain volume changes. To ensure the functional nature of prematurity effects 



on ALFF, we controlled for effects of prematurity-related structural changes on 

ALFF by including VBM values as covariates in a voxel-wise fashion. To test 

whether group effects on ALFF were indeed linked with brain volume, 

prematurity and adult neurocognitive performance, we performed additional 

correlation analyses with variables of VBM values, prematurity and IQ scores 

in the VP/VLBW group.  



Materials and Methods 
 
Participants 
 
Participants were recruited as part of the prospective Bavarian Longitudinal 

Study (BLS) (Riegel, et al., 1995; Wolke and Meyer, 1999), a geographically 

defined whole-population study of neonatal at-risk infants born in South 

Bavaria. Of the initial 682 infants born VP/VLBW, 411 were eligible for the 

26-year follow-up assessment, and 260 (63.3%) participated in psychological 

assessments (Breeman, et al., 2015). Of the initial 916 term born control 

infants from the same obstetric hospitals and alive at 6 years, 350 were 

randomly selected as term controls within the stratification variables of sex and 

family socioeconomic status in order to be comparable with the VP/VLBW 

sample. Of these, 308 were eligible for the 26-year follow-up assessment, and 

229 (74.4%) participated in psychological assessments. Of the sample 

assessed in adulthood, 101 VP/VLBW as well as 102 FT individuals 

underwent MRI at 26 years of age. MRI assessments were carried out at two 

different sites: the Department of Neuroradiology, Klinikum Rechts der Isar, 

Technische Universität München, Germany (N = 138), and the Department of 

Radiology, University Hospital Bonn, Germany (N = 67). The study was 

approved by the local ethics committees of the Klinikum Rechts der Isar and 

University Hospital Bonn. All study participants gave written informed consent 

and received travel expenses and a payment for attendance. A detailed 

description of participants, particularly including MRI-based brain 

abnormalities, can be found in the supplementary material.  

 
Birth-related variables  

Gestational age (GA) was estimated from maternal reports on the first day of 



the last menstrual period and serial ultrasounds during pregnancy. In cases 

where the 2 measures differed by more than 2 weeks, clinical assessment at 

birth with the Dubowitz method was applied (Dubowitz, et al., 1970). Maternal 

age, birth weight (BW), and Intensity of Neonatal Treatment Index (INTI), 

which reflects the duration and intensity of medical treatment after birth, and 

family socioeconomic status (SES) at birth, were obtained from obstetric 

records (Gutbrod, et al., 2000; Riegel, et al., 1995).  

 
Cognitive assessments 

General cognitive performance was assessed by independent trained 

psychologists using the German version of the Wechsler Adult Intelligence 

Scale (WAIS III) (von Aster, et al., 2006) and converted to age-normalised and 

Full-Scale IQ (FSIQ) scores at the median age of 26 years. 

 
Image Acquisition 
 

At both sites, MRI data acquisition was initially performed on Philips Achieva 

3T TX systems (Achieva, Philips, the Netherlands), using an 8-channel 

SENSE head coil. Due to a scanner upgrade, data acquisition in Bonn had to 

switch to Philips Ingenia 3T system with an 8-channel SENSE head coil after N 

= 17 participants. After N = 133 participants, data acquisition in Munich 

switched to the same Philips Ingenia 3T model as in Bonn. To account for 

possible confounds introduced by scanner differences, data analyses included 

scanner identities as covariates of no interest. Across all scanners, sequence 

parameters were kept identical. Scanners were checked regularly to provide 

optimal scanning conditions. MRI physicists at the University Hospital Bonn 

and Klinikum rechts der Isar regularly scanned imaging phantoms, to ensure 



within-scanner signal stability over time. Signal-to-noise ratio (SNR) was not 

significantly different between scanners (one-way ANOVA with factor 

“scanner-ID” [Bonn 1, Bonn 2, Munich 1, Munich 2]; F(3,182) = 1.84 , p = 0.11). 

Resting-state fMRI data were collected for 10 min 52 s from a gradient-echo 

echo-planar sequence (TE = 35 ms, TR = 2608 ms, flip angle = 90°, FOV = 

230 mm², matrix size = 64 × 63, 41 slices, thickness 3.58 and 0 mm interslice 

gap, reconstructed voxel size = 3.59 × 3.59 × 3.59 mm³) resulting in 250 

volumes of BOLD fMRI data per subject. Subsequently, a high-resolution 

T1-weighted 3D-MPRAGE sequence (TI = 1300 ms, TR = 7.7 ms, TE = 3.9 ms, 

flip angle = 15°; 180 sagittal slices, FOV = 256 × 256 × 180 mm, reconstruction 

matrix = 256 × 256; reconstructed voxel size = 1 × 1 × 1 mm³) was acquired. 

Immediately before undergoing the resting-state sequence, subjects were 

instructed to keep their eyes closed and to restrain from falling asleep. We 

verified that subjects stayed awake by interrogating via intercom immediately 

after the rs-fMRI scan. 

 
Data preprocessing 
 
Preprocessing and measure definition were carried out using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm) and DPARSF (Chao-Gan and Yu-Feng, 

2010). For each participant, functional volumes were realigned to correct for 

head motion and coregistered to each subject’s high-resolution structural T1 

image. Subsequently, the T1-weighted image was segmented using Unified 

Segmentation (Ashburner and Friston, 2005). To transform individual images 

into common MNI (Montreal Neurological Institute) space, 

segmentation-based normalization parameters were applied to the 

coregistered structural and functional data. Data from 17 subjects (7 VP/VLBW 



subjects and 10 FT subjects) were excluded from further analysis due to 

excessive head motion defined as a cumulative translation or rotation >3mm or 

3° (cumulative translation VP/VLBW 1.14+/-0.9mm, FT 1.22+/-0.8mm; 

cumulative rotation VP/VLBW 0.6+/-0.5°, FT 0.64+/-0.52°). To estimate 

motion-induced artifacts, temporal SNR (tSNR), point-to-point head motion, 

and frame-wise displacement were assessed for each subject (Murphy, et al., 

2007; Power, et al., 2012; Van Dijk, et al., 2012). Two-sample t-tests yielded no 

significant differences between groups regarding mean point-to-point 

translation or rotation of any direction (p >0.1), tSNR (p>0.25), and frame-wise 

displacement (p>0.3). One should note that we did not apply additional 

‘scrubbing’ procedures to remove outliers in fMRI volumes (Power, et al., 

2012), as suggested by (Babu and Stoica, 2010; Yan, et al., 2013). Removal of 

non-contiguous time points alters the underlying temporal structure of the data, 

precluding conventional frequency-based analyses of rs-fMRI data i.e., the fast 

Fourier transformation-based ALFF, the main outcome of our study. 

 
Data analysis: outcome variables and statistical analysis 

ALFF. As a first step of analysis, nuisance covariates, including six head 

motion parameters, white matter, global brain signal, and cerebrospinal fluid 

signal intensities were regressed out from preprocessed resting-state fMRI 

data. Subsequently,the data was smoothed using a Gaussian kernel with a 

full-width at half-maximum of 6 mm. Then, after linear-trend removal, the time 

series were transformed to the frequency domain using Fast Fourier 

Transformation to obtain the power spectrum. To calculate the ALFF, the 

power spectrum was square-rooted and averaged across 0.01–0.1 Hz at each 

voxel. Finally, the ALFF of each voxel was then divided by the global mean of 



ALFF values for standardization (Zang, et al., 2007). To test for group 

differences, voxel-wise ALFF maps per subject were entered into a general 

linear model as implemented in SPM12, with the factor ‘group’, and the 

covariates ‘sex’, ‘scanner identity’, and ‘frame-wise displacement’. 

Significance was tested using two-sample t-tests (p<0.05, corrected for 

family-wise error (FWE) at cluster-level).  

Voxel-based morphometry (VBM) and ALFF. We analyzed gray matter 

volumes in order to investigate the relationship between ALFF and underlying 

gray matter volume changes. Voxel-wise gray matter volumes were analyzed 

using voxel-based morphometry as implemented in VBM8 

(http://dbm.neuro.uni-jena.de/vbm.html). T1-weighted images were corrected 

for bias-field inhomogeneity, registered using linear (12-parameter affine) and 

nonlinear transformations, and segmented into gray matter (GM), white matter, 

and cerebro-spinal fluid within the same generative model. The resulting GM 

images were modulated to account for structural changes resulting from the 

normalization process. Here, we only considered nonlinear changes so that 

further analyses did not have to account for differences in head size. Finally, 

images were smoothed with a Gaussian kernel of 6 mm (FWHM). For group 

comparisons, voxel-wise two-sample t-tests were performed (p<0.05 

FWE-corrected), controlling for sex and scanner identity. 

Recent findings suggest that between-group differences in measures derived 

from fMRI signals may potentially be influenced by underlying structural 

differences in gray matter volumes (He, et al., 2007; Oakes, et al., 2007). To 

ensure the functional nature of potential ALFF changes in premature born 

adults, we performed voxel-wise linear regression analysis, namely 

http://dbm.neuro.uni-jena.de/vbm.html


residualizing ALFF values for gray matter volume, as an approximation to 

correct for likely non-linear impact of brain structure changes on ALFF. 

Resulting residuals entered voxel-wise general linear models (see above) and 

were tested for significance using two-sample t-tests (p<0.05, FWE 

cluster-level corrected), controlling for sex, scanner identity and FD.   

Correlation between ALFF, underlying gray matter, prematurity, and 

cognitive performance variables. To analyze the association between 

aberrant ALFF and underlying gray matter, prematurity and cognitive 

performance averaged ALFF values among voxels of brain areas with ALFF 

abnormalities were extracted for all 94 VP/VLBW subjects and associated with 

averaged VBM values (the same voxels as for averaged ALFF), birth-related 

variables (namely GA, BW, and INTI), and the cognitive performance variable 

(namely full-scale IQ), respectively. These associations were investigated via 

three partial correlation analyses, as implemented in SPSS (Statistical 

Package for the Social Sciences). Each correlation approach was controlled 

for sex, scanner identity, and frame-wise displacement, and the significance 

threshold was set at 0.05.  



Results 
 
Sample Characteristics 
 
Group demographic characteristics and clinical background variables are 

shown in Table 1. VP/VLBW and FT group did not differ with respect to age 

(p=0.277), gender (p=0.786), SES at birth (p=0.253) or maternal age 

(p=0.956). By design, VP/VLBW adults had significantly lower GA (p<0.001), 

and BW (p<0.001), and were hospitalized for longer time (p<0.001). VP/VLBW 

individuals had significantly lower WAIS-III Full-Scale IQ scores (p=0.001). 

 

ALFF decrease in temporal cortices and its relation to underlying brain 

structure in VP/VLBW born adults 

Voxel-wise two-sample t-tests of ALFF maps demonstrated significant ALFF 

reductions in an extended cluster of the left lateral temporal and insular cortex 

as well as ALFF increases in the thalamus of VP/VLBW born adults compared 

with mature born adults (p<0.05, FWE cluster-level corrected) (Fig. 1, Table 2). 

To ensure that observed ALFF reductions were independent from our 

methodological approach including global brain signal removal, we controlled 

for global brain signal removal by performing the same analysis pipeline but 

without global signal removal. We found again ALFF reductions in lateral 

temporal cortices (see Figure S1), demonstrating that temporal cortices ALFF 

reductions in premature born adults are not confounded by global brain signal 

removal. 

To assure the functional nature of ALFF reductions, we controlled for 

confounding influences of volumetric changes in VP/VLBW born adults, using 

VBM analyses of sMRI data (Fig. 2). First, we found volume reductions in the 



VP/VLBW group for temporal cortices and subcortical structures such as the 

thalamus and basal ganglia (Fig. 2A, Table S1). Volume reductions overlap 

with ALFF reductions in the left lateral temporal cortex and with ALFF 

increases in the thalamus (Fig. 2B). Second, after controlling for voxel-wise 

VBM scores, a two-sample t-test still revealed residualized ALFF reductions in 

the left temporal cortex in VP/VLBW, while ALFF increases in the thalamus did 

not remain (Fig. 2C). This result supports the idea that ALFF reductions in the 

left temporal cortex are of physiological nature and not totally explained by 

underlying volume loss.  

To further test whether ‘true’ temporal ALFF reductions were indeed related to 

prematurity, we performed partial correlation analyses between ALFF (i.e., 

averaged ALFF scores of group difference clusters) and birth-related variables 

(i.e., GA, BW, INTI) in the VP/VLBW group only (Fig. 3). We found a positive 

correlation between left temporal ALFF and BW (r=0.251, p=0.019), 

demonstrating that temporal ALFF reductions were linked with prematurity.  

To further analyze the relationship between temporal ALFF reductions and 

underlying brain structure, we correlated – in the VP/VLBW group only – 

averaged ALFF values with VBM values (Fig. 2D). We found a positive 

correlation between ALFF and VBM values in the left lateral temporal cortex 

(r=0.231, p=0.029), demonstrating that temporal ALFF reductions are 

associated with underlying brain volume loss. To test whether this relation 

between temporal cortex activity fluctuations and brain structure is specific for 

premature born adults, we performed additional correlation analysis for the link 

between ALFF and VBM across full-term born persons. We did not find a 

significant correlation, indicating the specificity of the link between temporal 



cortex activity fluctuations and underlying structure for prematurity.  

 
ALFF reductions and cognitive performance 
 
To test whether temporal ALFF reductions are associated with changes in 

cognitive performance, we performed correlation analyses between averaged 

ALFF values and general cognitive performance in the VP/VLBW group only 

(Fig. 4). We found a positive correlation between ALFF in full-scale IQ (r=0.267, 

p=0.013), indicating the cognitive relevance of temporal ALFF reductions after 

premature birth. 

 



Discussion: 

To investigate whether BOLD fluctuations are altered after premature birth, we 

explored the amplitude of low BOLD frequency fluctuations, ALFF, based on 

resting-state fMRI data from 94 VP/VLBW and 92 full-term born adults. ALFF 

was reduced in left lateral temporal cortices of VP/VLBW adults. To the best of 

our knowledge, this is the first report of aberrant BOLD fluctuations in 

premature born individuals. Furthermore, we found that temporal ALFF 

reductions remained after controlling for overlapping gray matter volume 

reductions, pointing towards the functional nature of temporal ALFF decreases. 

On the other hand, temporal ALFF reductions were linked with volume 

reductions, suggesting the dependence of ALFF decreases on underlying 

structural changes. Finally, temporal ALFF reductions were linked with IQ 

reductions, demonstrating their behavioral significance. In the following section, 

we discuss these single findings in more detail, focusing particularly on the 

relation between temporal ALFF reductions and underlying structural changes. 

 

In very premature born adults, ALFF was reduced in both the insula and the 

lateral and anterior temporal cortices,  and  increased in the thalamus (Fig. 1, 

Table 2). ALFF changes overlapped with gray matter volume reductions in 

VP/VLBW adults, particularly in the temporal cortices and thalamus (Fig. 

2A&B). The pattern of volume reductions in subcortical areas, such as the 

thalamus and striatum as well as in temporal-insular cortices, is in line with 

previous studies (Ball, et al., 2013; Karolis, et al., 2017; Nosarti, et al., 2008; 

Pierson, et al., 2007). In the left temporal cortex, reduced ALFF remained after 

controlling for gray matter volume (Fig. 2C), supporting the functional nature of 



temporal ALFF reductions in VP/VLBW born adults. Furthermore, temporal 

ALFF reductions correlated with birth weight (Fig. 3), independently from 

gestational age or medical complications at birth, suggesting that ALLF 

reductions are indeed linked with premature birth. Finally, temporal cortex 

ALFF reductions correlated with IQ reductions in premature born persons (Fig. 

4), indicating the functional relevance of temporal ALFF changes. Based on 

these findings, we conclude that premature birth has lasting, relevant 

long-term effects on slowly fluctuating ongoing BOLD activity in the lateral 

temporal cortex.  

 

Previous studies demonstrated that ALFF, particularly in the lateral temporal 

cortices, is not only sensitive to the effects of typical brain development and 

aging, but also to changes in neuro-developmental disorders (Biswal, et al., 

2010; Itahashi, et al., 2015; Yu, et al., 2014). For example, Biswal and 

colleagues showed aging effects on ALFF mainly in cortical midline structures 

such as anterior and posterior cingulate but also in lateral temporal cortices 

(Biswal, et al., 2010); decreased ALFF has been observed in temporal cortices 

and insula of patients with schizophrenia (Yu, et al., 2014) and in lateral and 

inferior temporal cortices of patients with autism (Itahashi, et al., 2015). This 

overlap of findings suggests that ALFF variation, particularly in the temporal 

cortices, may strongly covary with developmental brain changes and thus may 

represent a potential surrogate marker for neurodevelopmental brain disorders. 

This overlap, however, does not point to identical mechanisms underlying 

ALFF changes in temporal cortices across distinct developmental conditions, 

i.e. ALFF reductions in prematurity and schizophrenia may have distinct 



underlying causes, but they may converge on macroscopically similar ALFF 

alteration patterns.  

 

Fluctuations in blood oxygenation, as reflected by ALFF, are assumed to 

indicate slow fluctuations of macroscopic brain activity, which in turn reflect 

fluctuations in ongoing neuronal activity and excitability (Biswal, et al., 2010; 

Ma, et al., 2016; Mateo, et al., 2017; Matsui, et al., 2016; Raichle, 2011; 

Sanchez-Vives, et al., 2017; Schwalm, et al., 2017; Zang, et al., 2007). In more 

detail, restricted to the cortex, local cortical microcircuits generate 

spontaneously slow activity fluctuations of alternating active (i.e., up-state) and 

inactive (i.e., down-state) phases at frequencies of below 1Hz (Sanchez-Vives, 

et al., 2017). Recent studies using simultaneous neuronal imaging and optical 

imaging/fMRI in animals, providing both simultaneous neuronal and 

hemodynamic blood oxygenation-related information, have demonstrated that 

blood oxygenation fluctuations reflect slow fluctuations in excitatory activity 

(Ma, et al., 2016; Schwalm, et al., 2017) and their coherence (Mateo, et al., 

2017; Matsui, et al., 2016). Applying these findings to reduced ALFF in 

temporal cortices of premature born adults, they suggest that correspondent 

changes in slow neuronal activity fluctuations may exist in prematurely born 

subjects (Arichi, et al., 2012). To get definitive evidence for this suggestion, 

simultaneous EEG-fMRI experiments in premature born individuals are 

necessary (Arichi, et al., 2017).  

 

Furthermore, slow fluctuations in ongoing neural activity and excitability are 

thought to represent basic cortical ‘default’ activity, which is generated locally 



by basic microcircuits (Sanchez-Vives, et al., 2017). For example, cortical 

in-vitro slices produce slow fluctuating ongoing activity spontaneously 

(Sanchez-Vives and McCormick, 2000), and simple artificial cell assembly 

architectures simulate slow ongoing activity fluctuations (Markram, et al., 

2015). These findings indicate that slow ongoing fluctuations depend on basic 

underlying structural micro-circuitry, which, in turn, are aberrant after 

premature birth (Ball, et al., 2013; Dean, et al., 2013; McClendon, et al., 2017). 

For example, while Ball and colleagues showed impaired cortical 

microstructure in preterm born infants via diffusion imaging (Ball, et al., 2013), 

Dean and colleagues demonstrated that aberrant cortical diffusion imaging 

signals were associated with reduced dendritic arborization in premature born 

sheep (Dean, et al., 2013). McClendon and colleagues, in turn, showed that 

transient hypoxic episodes in premature born sheep reduce their subplate 

neuron dendritic arborization and subsequent microcircuit development 

(McClendon, et al., 2017). These points together suggest that aberrant cortical 

slow fluctuations in premature born individuals might be linked to aberrant 

underlying gray matter structure. Indeed, we found that reduced temporal 

ALFF was associated with reduced underlying brain volume (Fig. 2D). This 

finding suggests that impaired cortical development after premature birth may 

impact on basic ongoing cortical activity, particularly in the lateral temporal 

cortices via aberrant structural microcircuits. One possibility to test this further 

might be to link cortical micro-structural indices (such as those derived from 

diffusion imaging, for example in Ball, et al., 2013) with ALFF-based measures. 

Conclusively, premature birth might alter ‘default’ slow fluctuations in ongoing 

neural activity and excitability in the temporal cortices, potentially via changes 



in underlying microstructure. 

 

While these points provide a general argument for the link between ALFF and, 

on the one hand, slow fluctuations in local cortical activity and, on the other 

hand, underlying brain structure and cortical microcircuits, it is not clear why 

ALFF changes arise specifically in the temporal cortices. Specific lateral 

temporal cortex changes after premature birth have been reported also in 

other modalities, such as task-fMRI studies (Gozzo, et al., 2009; Schafer, et al., 

2009; Wilke, et al., 2014), resting-state fMRI (Bauml, et al., 2014; White, et al., 

2014), or diffusion tensor imaging (DTI) (Aeby, et al., 2013; Northam, et al., 

2012). In particular, we recently found in, largely the same individuals, that 

coherence of ongoing BOLD fluctuations, i.e. intrinsic functional connectivity 

(iFC), is aberrant in temporal cortices, and that these functional connectivity 

changes were linked with underlying temporal gray matter loss (Bauml, et al., 

2014). One should note the difference between basic ongoing BOLD 

fluctuations, i.e. ALFF, and correlated ongoing BOLD fluctuations, i.e. iFC. 

Such remarkable convergence of changes across distinct modalities and ages 

after premature delivery supports the idea that a basic process of temporal 

cortex-dependent brain development might be affected by prematurity. In the 

following section we will speculate as to whether some specific microscopic 

developments might underpin such focus on the temporal cortex. We are 

aware that this speculation is clearly beyond our experimental approach, but it 

might be a useful way to better understand the regional specificity of our 

findings in terms of testable hypotheses.  

Cortical development depends critically on subplate neurons and their 



development (Hoerder-Suabedissen and Molnar, 2015; McClendon, et al., 

2017; Salmaso, et al., 2014; Volpe, 2009). The subplate zone below cortical 

layer 6, which includes different populations of subplate neurons, represents a 

dynamic ‘waiting compartment’ for ingrowing thalamocortical afferents (Rakic, 

1976), basal forebrain cholinergic afferents (Kostovic, 1986) and corticocortical 

afferents (deAzevedo, et al., 1997), showing the largest activity in gestational 

week 15-35 and being critical for local microcircuit development. In particular, 

in lateral temporo-parietal regions, subplate neuron growth has its highest 

rates (Corbett-Detig, et al., 2011). As premature birth is known to affect 

subplate neuron development (Deng, 2010; Kinney, et al., 2012; Salmaso, et 

al., 2014; Volpe, 2009), we speculate – due the overlap of our findings of 

lateral temporal cortex-focused ALFF reductions with high rate subplate 

growth in the temporal cortices – that ALFF in the temporal cortices might 

reflect late consequences of subplate neuron development aberrances in 

prematurity. It is clear that, to test this idea, future neuropathological and/or 

translational studies with animal models are necessary. 

 

Strength and limitations 

Some points should be carefully considered when interpreting our results. First, 

the current sample is biased to VP/VLBW adults with less severe neonatal 

complications, less functional impairments, and higher IQ. Individuals with 

stronger birth complications and/or severe lasting impairments in the initial 

BLS sample were more likely to be excluded in initial screening for MRI or to 

reject MRI scanning or even continuation in the study. Thus, differences in 

ALFF between VP/VLBW and term control adults reported here are 



conservative estimates of true differences. Second, the study sample was 

limited by MRI- and study-related contraindications including a history of 

severe neurological disorders (e.g. epilepsy, multiple sclerosis, cerebral 

hemorrhage, traumatic brain injury, tinnitus), severe back problems, (potential) 

pregnancy, severely impaired vision, as well as non-removable ferromagnetic 

implants (e.g. pacemakers). Third, the current sample size is large (94 

VP/VLBW and 92 FT adults), enhancing the generalizability of our findings. 

Fourth, head motion in VP/VLBW adults during scanning and scanning at 

multiple scanners used in this study may confound imaging-derived brain 

connectivity measures. The current study controlled for these effects as strictly 

as possible; however, subtle influences of these confounds cannot be ruled out 

completely.  

 

Conclusion 

Slowly fluctuating BOLD activity is reduced in lateral temporal cortices after 

very premature birth, with these functional changes being linked with 

underlying structural changes.  
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Tables: 
 
Table 1. Sample characteristics 
 

  Full-term 
born group 
(n=92) 

   VP/VLBW 
born group 
(n=94) 

 Statistical 
comparison 

 M SD Range  M SD Range  

Sex 
(male/female) 

53/39    56/38   p=0.786 

Age (years) 26.8 ±0.7 26-29  26.7 ±0.6 26-28 p=0.277 
GA (weeks) 39.7 ±1.1 37-42  30.5 ±2.0 25-36 p<0.001 
BW (g) 3413 ±433 2450-4670  1319 ±309 630-2070 p<0.001 
Hospital 
(days) 

6.8 ±2.4 2-15  72.8 ±26.0 24-170 p<0.001 

INTI - - -  11.70 3.84 3-19.8 - 
SESa 29/41/22  1-3  27/42/25  1-3 p=0.253 
Maternal age 29.4 ±5.2 18-42  29.4 ±4.7 17-41 p=0.956 
Full-scale IQb 102.9 ±11.9 77-130  94.5 ±12.9 64-131 p<0.001 

 
Abbreviations: GA, gestational age; BW, birth weight; Hospital, duration of hospitalization; INTI, 
Intensity of Neonatal Treatment (Morbidity) Index; SES, socioeconomic status at birth; 
maternal age, maternal age at birth; IQ intelligence quotient. 
Statistical comparisons: sex, SES with χ2 statistics; age, GA, BW, Hospital, maternal age, IQ 
with two sample t-tests. 
a1=upper class, 2=middle class, 3=lower class 
bData are based on 90 VLBW preterm and 89 full-term subjects, respectively. 
 

 
 



Table 2. Group-different brain clusters for ALLF 
 

 

Brain region Cluster 

size 

T-values  

x 

MNI 

y 

 

z 

p-value 

Thalamus 66 4.29 -3 -12 -12 0.006 

Temporal-insular 

cortex 

224 -6.65 -36 9 -24 <0.001 

 -5.36 -54 -3 -15  

 -4.45 -54 6 0  

 

Statistical analysis: two sample t-test (p<0.05, FWE cluser-level correction), correct for gender, 

scanners, and frame-wise displacement as covariates of no interest.  



Figure legends: 

Figure 1. Aberrant ALFF in premature born adults. Statistical parametric 

map of group comparison for ALFF between VP/VLBW and FT born adults, 

two-sample t-test, p<0.05 FWE-corrected (Table 2). Color bars indicate 

t-values for increased/decreased ALFF in the VP/VLBW group. Abbreviations: 

ALFF, amplitude of low frequency fluctuations; FT, full-term; VP/VLBW, very 

preterm/very low birth weight. 

Figure 2. ALFF and volumetric changes in premature born adults. A) 

Statistical parametric map of group comparison for VBM between VP/VLBW 

and FT born adults, two-sample t-test, p<0.05 FWE-corrected (Table S1). 

Decreased VBM on VP/VLBW group in yellow, increased VBM in turquoise. B) 

Overlap (red) of changes in ALFF (green and blue; see Fig. 1) and VBM 

(yellow, only VBM reductions) in premature born adults. C) VBM-residualized 

ALFF reductions in premature born adults, two-sample t-test, p<0.05 

FWE-corrected. D) Temporal cortices ALFF reductions are correlated with 

temporal cortices VBM reductions, partial correlation, p<0.05. Abbreviations: 

ALFF, amplitude of low frequency fluctuations; FT, full-term; VBM, 

voxel-based morphometry; VP/VLBW, very preterm/very low birth weight. 

Figure 3. Temporal cortices ALFF and birth weight in premature born 

adults. Reduced temporal cortices ALFF (see Fig.1) is correlated with reduced 

BW, partial correlation, p<0.05. Abbreviation: BW, birth weight. 

Figure 4. Temporal cortices ALFF and IQ in premature born adults. 

Reduced temporal cortices ALFF (see Fig.1) is correlated with reduced 

full-scale IQ, partial correlation, p<0.05. Abbreviation: IQ, intelligence quotient. 


