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Summary.

Design of time and correlation windows for non-para metric frequency 

response estimates.

The thesis deals with problems that arise in the field of spectral analysis due to finite 

observations of input and output records. In particular, it is concerned with the method 

of applying time and correlation windows in spectral analysis procedures to obtain non- 

parametric frequency response estimates o f open-loop time invariant systems.

The thesis reviews and develops the sources of error that arise when frequency re­

sponse techniques are applied directly to windowed records of input and output data to 

estimate the frequency response of open loop systems.

Having identified the cause of these errors, methods of eliminating or reducing them  

are studied. The techniques introduced, which are believed to  be novel, involve the use 

of differing time windows fo r the input and output data records. Rather than the use of 

previously developed and ad-hoc symmetrical windows, it is shown th a t windows can be 

designed on the basis o f som e specified criterion such as maximum square coherence or 

minimum mean square error.

Another method of w indow  selection is based on minimum a priori knowledge of 

the system characteristics w hich leads to further improvement in the frequency response 

estimates. These L e a s t M ea n  Square E rror W indows, are solved numerically and 

are shown to be superior to  conventional, classical windows developed in the past.

Window carpentry and m odelling of power spectral data

Careful mathematical modelling is always required in the design o f modern suspension 

bridges, as these models are used to predict free vibrations and excitation responses. 

However, in order to va lidate any assumption made in the modelling and accuracy of 

the model parameters, full scale testing procedures need to  be undertaken. From the 

spectrum o f measured am bient responses o f such large structures, it is necessary to  

determine the damping fac to r, resonant frequency and amplitude for each resonance.

(ii)



Such high Q systems have very sharp spectral peaks and any smoothing; by splitting 

into segments or by smoothing over frequencies o f estimates obtained from  a single 

realisation, removes important fine spectral details.

By analysis and experiment, tests on known sim ilar models show that least squares 

fitting  on the windowed unsmoothed estimates reduces bias in the spectral estimates. It 

is also be shown that least squares fitting on the unsmoothed cumulative spectra further 

reduces this bias.

Both procedures, applied to ambient response d a ta  from the Hum ber suspension 

bridge, are found to differ consistently from earlier results. In particular estimates of 

damping factor are shown to be very much smaller than those based on smoothed 

spectral density measurements.
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List of symbols

As far as possible the following conventions have been followed

Lower case variables denote tim e signals, x ( f ) ,  y (t), and upper case denote their

Fourier Transforms.

over a variable denotes an estimated or unsmoothed value, e.g. g (t) 

over a variable denotes a smoothed value, e.g. 7 j ( ju )

CroM, c„ ( t ) — Biased input, output and 

cross covariance functions.

£ 1  1 — Expectation operator.

/ — frequency.

9(<) — System impulse response.

C (jw ) — System frequency response.

— Input and output window kernel.

L — Number of data segments in estimate.

n (l) — Noise signal.

P . .M ,  />„(«), — Input, output and cross

power spectrum of open — loop 

time invariant system.

r „ ( r ) ,  r „ ( r ) ,  r „ ( r ) — Input, output and cross

correlation functions o f open — loop 

time invariant system.

S .. I/ ) .  S „ ( / ) — Smoothed input, output and cross power spectrum 

of windowed sample covariance functions.
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s — Laplace operator.

t — Time.

T — Record length.

u»«(0. *"1(0 — Window on the input time function.

® »(0 — Window on the output time function.

W «(0 » **»n(0 — Window on the input 

correlation function.

u>i2(t ) — Window on the cross correlation function.

w„ ( t ) — Window on the output 

correlation function.

x (t) — System input signal.

y(t) — System output signal.

T — Argument in correlation function.

* » m . * » ( « ) .  * » u * ) — Input, output and cross

power spectrum of open — loop 

time invariant system.

* » ( « ) -  Error power spectrum 

of closed — loop system.

* -0 'u ) — Cross power spectrum

between error and output of closed — loop system.

— Cross power spectrum

between reference and output of closed — loop system.

♦ r .0 " )  : — Cross power spectrum

between reference and error of closed — loop system.
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Chapter 1

Introduction

This thesis deals with problems that arise in the field of spectral analysis due to  finite 

observation records of input-output tim e series when using non-parametric estimation 

methods. In particular it is concerned with the method of applying tim e windows in the 

spectral analysis procedure, to obtain frequency response estimates of open-loop time 

invariant systems. The new procedures discussed are presented with careful mathematical 

and qualitative reasoning.

The purpose of this chapter is to present some background information and essential 

procedures on the subject of non-parametric spectral analysis. An in depth explanation 

into the historical and theoretical evaluation can be found in [1]. Section (1 .1 ) presents 

from basic principles the definition of an open-loop frequency response function. Section 

(1 .2 ) provides a brief historical perspective of non-parametric spectral analysis and gives 

a qualitative description on the effects of unavoidable windowing which occurs in the 

spectral estimation procedures. Section (1 .3 ), presents recent developments on the 

analysis of the statistical errors of frequency response estimates due to short length 

observations and forms the basic motivation of the work undertaken in this thesis. Finally 

section (1 .4 ) contains a summary of the contents in the thesis.
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1.1 The Open-loop frequency response function.

In a wide variety o f physical problems a vector of inputs { X i ( f ) ,  x 2( f ), • • • ,  x * ( f )  } is fed 

into some stable system producing a vector of outputs { y i ( t ) ,y 3( t ) ,  • • • , y * ( f )  } ,  where 

t represents tim e. By solving the differential equations relating inputs and outputs, it is 

possible to express the outputs as a function of all past inputs.

For small fluctuations and a single input x( t )  and output ¡ /( t )  the differential equation 

may be linearised to  give an estimate in the form

Equation (1 .1 ) is called a linear dynam ic equation in continuous tim e and in engi­

neering applications g(t )  is called the im pulse response of the system. Th e  term n(t), 

is a noise term which in practice is assumed to be uncorrelated with the output. This 

term may also include quadratic and higher terms om itted by this linear approximation

There exists many non-parametric methods for estimating g (t )  [3] such as

(1 )  Impulse-Response Analysis,

(2 )  Step-Response Analysis,

(3 )  Sine-Wave Testing,

(4 )  Correlation Methods.

In the presence of output noise, such methods may become significantly unreliable. In 

the assumption that x ( f )  and y(t) are statistically stationary tim e series and the noise 

term is uncorrelated with the input, then on multiplying throughout equation (1 .1 ) by 

x (f -  t ) and taking expectations,

where r „ ( r )  and r rv ( r )  are the respective auto correlation function of the input and

(1.1)

|2]

( 1.2)
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cross correlation function between the input and output. In practice these quantities 

can only be estimated and the impulse response g ( t )  may be estimated by solving the 

integral equation (1 .2 ). Mapping these correlation functions into the frequency domain 

by taking Fourier transforms gives,

which denote respectively the cross power spectrum  and the inpu t power spec­

trum  of the system. Finally the ratio between equation (1 .3 ) and (1 .4 ) is the fre­

quency response estim ate of the open-loop system

1.2 Time windows in spectral analysis.

In non-parametric spectrum estimation there exists much literature on the use of tim e  

limited window functions and their effects on the resolution and statistical errors of the 

estimates [4, 5, and 6]. The two well known methods of power spectrum and frequency 

response estimation are :

(1 )  the Ind irect method in which the correlation functions o f the process 

are estimated, weighted by a selected lag window (the Fourier transform 

of which is called a spectral window) and Fourier transformed.

(2 )  the D irect m ethod in which the spectrum of the process first weighted 

by a tim e window (the Fourier transform o f which is called a frequency 

window) is estimated and smoothed over sections to reduce variance.

(13 )

and

(1.4)
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These time windows have been chosen to  be real, symmetrical, and well behaved func­

tions that have frequency counterparts which exhibit certain desirable leakage reduction 

properties. In general the width of th e  window is said to  control the trade off between 

bias and variability [3].

Since Cooley and Tukey’s introduction of the F F T  (1965) [7], the direct method 

(commonly known as segmental averaging) has become the more popular o f the two 

methods. However the shortening o f the effective record in the segmenting process leads 

to  increase in bias but reduces variability due to the resulting smoothed estimate.

The method o f overlapping segments introduced by Welch [8] (1967) in some cases 

reduces variability further but results in lack of frequency resolution and added correlation 

between segments.

There are two fundamental parameters that critically affect the performance of any 

spectral estimation technique. They are the length o f the available data record of the 

stationary random process, and the effective frequency resolution required.

In practice, various window functions are used which are generally unrelated to the 

data  or random process being analysed and unless one performs good window carpentry 

excessive side lobe leakage may be introduced into the estimate.

The basic idiom on the subject o f windowing is that the  weight given to any individual 

value should be a function of its variance. That is, the more uncertainty there is about 

th e  data point the less weight it should be given.

As a direct consequence, tim e windows have been designed so that their weights are 

maximum at the center of the data, whilst allowing for uncertainty gradually cause a 

reduction of weight at the beginning and end of the records [9J. It is not quite clear 

w hy data at the centre has less uncertainty, however justification can be given to this 

statem ent if it is argued that undesirable end (or transient) effects are predominant 

towards the beginning and end of these records. This decay rate however is objective 

and in practice, leakage suppression is achieved by using well shaped computationally 

simple windows, such as the Hanning.
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1.3 Statistics of the frequency response estimate.

This section reviews the sources o f error which arise when frequency response techniques 

are applied directly to short records of input and output data, to estimate the frequency 

response of open loop systems.

The errors correspond to  bias and variance in the resulting estimates. The magni­

tude o f these separate term s can be evaluated in terms of the excitation, the system 

characteristics and time w indow applied to the input and output records.

A method evaluating the statistics of the measured frequency response has been 

successfully developed by D o u c e  and B a lm e r  [10 and 11]. Their motivation stems from 

consideration of the difference between the observed signal and that o f an equivalent 

periodic signal based on the record.

In relation to an open loop system, the analysis considers an input signal x(<) for 

—oo <  t < T  and an equivalent periodic input xT( t )  such that

xr(n T  +  f )  =  x(<) for n  =  —oo, • • ■ , —1,0 ,

where T  is the record length o f the signal. Under these conditions, x r( f )  =  x ( t )  over 

the duration 0 <  t <  T  . However, the resulting outputs from the system

V r(0 ~  V(0 =  MO.

are not the same. This ‘ t r a n s ie n t ’ h(t)  is such that h( t)  - * 0  as t —* oo and is 

described as containing two term s

( ' )  M>(0* '«sponse due to  the input signal x ( f )  prior to time t =  0,

( i i )  A r(0>  t îe response for t > T  due to the input signal x ( ( )  prior to 

t =  T.

General properties of the transients and possible methods o f reduction is documented in

[10].
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The bias in the estimate is defined as

G . ( »  =  E  [ 6 ( iu )  ] -

For this special case it was shown in [11] to be evaluated using

E l Ó ^ Ì Ì - E l * ^
$ « ( “>) E  [ $ xx(u;) ]

and the variance in the estimate was found to be

where

Var [ Ó ( ju )  ) =  K 0( E  [ ]
E  [ * xx(ur) ]

I G > {ju ) |a)

r b

r i i

for u» =  0 

for u> ^  0
(1.5)

and L is the number of segments over which x (t )  and y ( / )  are averaged.

Finally the combination of bias and variance leads to  the mean square error of the 

estimate

mse [ G(ju>) ] =| Gb(ju>) |2 + V a r  [ G(ju>) ].

1.4 Contents of thesis.

Chapter (2 )  investigates the effects of windows on finite record lengths of observation 

for evaluation of power spectral and frequency response estimates, with attention given 

to newly proposed window carpentry procedures. The te rm  window carpentry is used 

essentially to describe its shape and sharpness. The m ajority o f work undertaken in this 

chapter has been either introduced by the author or extended from previous work. A 

detailed content of contributions made by the author will be given in the introduction



o f the chapter.

Having developed the basic principles o f window carpentry, a new mathematical for­

mulation is presented in chapter (3 )  which allows for the design of these time correlation 

windows based on apriori knowledge of the system characteristics. These Least mean 

square error windows are found to be a solution of integral equation pairs and in 

particular the Fredholm equation o f the second kind.

In chapter (4 ) ,  these windows are applied to simulated realisations of input output 

records. It is shown that the least mean square error windows leads to significant im­

provements in the resultant frequency response estimates when compared to conventional 

windows used in the past.

Chapter (5 )  deals with problems encountered in the power spectral analysis of the 

Humber suspension bridge ambient response data. It is found that with such high Q 

systems that have very sharp spectral peaks, any smoothing by splitting into segments 

or smoothing over frequencies, leads to unacceptable bias in the model parameters. The 

bias is known to be particularly significant in the estimation of damping associated with 

the individual spectral peaks. A procedure is adopted by which the whole record length 

weighted initially by an appropriate choice o f time window, is Fourier transformed. This 

allows for maximum detail and minimum bias in the spectrum. Estimates of the model 

parameters are found to be further improved by curve fitting over the smoother integral 

raw spectrum.

Finally chapter ( 6 )  concludes this thesis by presenting, briefly, other research work 

by the author with a recommendation for further work that needs to be undertaken in 

this field.
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Chapter 2

W in dow  carpentry.

2.1 Introduction.

This chapter investigates the effects of both windows and finite record length on the esti­

mation of the frequency response of linear time-invariant open-loop systems. Comparison 

is made between a range of conventional windows, and their effect on the frequency re­

sponse estimates is studied for different lengths of observation tim e T . The departure is 

made from conventional window carpentry by defining a more generalised trigonometric 

sum type window in order to study the effects of differing window shapes on the spectral 

estimates.

2.2 Summary of contents in chapter (2).

Section (2 .3 ) defines the expected value o f the measured frequency response function in 

terms of steady state correlation functions and the input-output tim e windows applied 

to the record before spectral analysis. An exact relationship between windows on the 

time function and windows on the correlation function is also derived.

Section (2 .4 ) introduces a new class o f tim e window function which encompasses the 

majority of classical tim e windows. This window is termed a trigonometric sum type, as

9



it is formulated from the summation of cosine term s whose amplitudes and phase are 

determined by the coefficients applied at each summation.

Section (2 .5 ) uses the theory derived in (2 .4 ) to define two classical window families.

In section (2 .6 ), these window families are used to study the effects of differing 

window types on the expected value of the  measured frequency response function as 

defined in section (2 .3 ). Specific examples o f input-output observations in section (2 .7 ) 

are given, in order to compare the frequency response estimates derived for the differing 

tim e windows and some conclusions are made.

Finally in section (2 .8 ), further conclusions are drawn by studying the effects of 

asymmetrical input-output tim e windows on the bias and coherence o f the measured 

frequency response functions.

Throughout this chapter, simulation studies and qualitative arguments are used to 

verify assumptions made in the analysis.

2.3 Measured frequency response function.

W ith  reference to figure (2 .1 ), x ( f )  and y ( l )  are the input and output signals obtained 

from a linear time invariant system. Prior to analysis, the signals are windowed by 

their respective time window functions wc( f ) ,  wv( i ) and the constraint o f fin ite record is 

introduced by requiring wT( t ) and u>k(<) to have zero values outside the range 0 <  t <  T.

10



System

X(ju> ) Y (_/to)

Figure 2.1: O pen-loop  identification scheme.

Conventionally such time windows satisfy the conditions

(1) w(T/2)  =  1,

(2) w ( t ) = w ( T - t ) ,

(3 ) w(t )  = 0 ,  faf 0 <  I  and f >  7 \

The short term  Fourier transform o f the measured input is given by

X ( j u ) = f  x ( t )w , ( l ) c xp ( - jw l )d i .
Jo

Similarly the short term Fourier transform of the output from the system is given by

Y ( ju )  =  l  y(t)wy(t)exp(- ju>t)dt  
Jo

From the above two equations, the  raw cross spectrum is defined by

=  f X ‘ ( jw ) r ( ju )  (2.1)

11



where * denotes a complex conjugate.

The expected value o f equation (2 .1 ) is

E  [ Q ry iju )  ] =  J - J  i  r *»(*a -  f iV * ( f i) « 'v ( f 2 ) e x p { -> u ;( < 2  -  tl ))dtl dt2.

Assuming that x ( t ) and y(<) are statistically stationary, by setting r  =  t2 — t x and t =  11, 

E  [ * .» ( > « ') ]  =  7p Jo ”'»(0 ( / ° i  +  J )r *v(T)Wm(t — r) e x p ( —ju T)dTd t.

Figure 2.2: Transform ation o f co-ordinates for the measured cross spec­
tru m .
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From the transform ation in figure (2 .2 ) we obtain

E  I ] =  j ;  j  T r , ( r )w r, ( r ) e x v ( - j u r ) d r (2.2)

where

w *v(r )

f  fo Ttvs{t)wy(t  +  r)dt  for r  >  0 

T ijri u>r (t)u>y(< +  T)^t for r  <  0.

(2 .3 )

Similar expressions are obtained for w i x ( t ) ,  E  [ $TX(ju>) ] and Wyy(r), E  [ 4»vy(j'u>) ) 

by changing the appropriate subscripts in equations (2 .2 ) and (2 .3 ). Equation (2 .3 )  

gives an explicit analytical relationship between windows on the tim e function and their 

corresponding windows on the correlation function. In practice wxy( r )  is normalised such 

that the position o f maximum weight is unity, and in order to strictly adhere to this, the 

constant l/T  in equation (2 .3 ) is replaced by

1

fo wx(t )wy(t)dt

To prevent confusion, we will at this stage note the distinction between windows on

the time and correlation function. When specified with single subscripts, windows such 

as wx(t) ,wy(t )  and tr> i(i), will strictly imply windows on the tim e function defined over 

the time index 0 <  t  <  T.  Those with double subscripts, will imply windows on the 

correlation function defined over the tim e index — T  <  t < T .

From the measured spectral densities, the least square estimate o f the frequency 

response function is given by

X -U -> )Y ( j u-) 
X - U * ) X U * )

K u » )

if the estimate is based on one segment.

(2 .4 )
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For estimates averaged over L  segments, each o f  length T,  the system frequency 

response function is represented by

The effects of windowing the tim e functions before spectral estimation are well docu­

mented 12,3]. The design of such windows aims at th e  minimisation o f the undesirable 

side lobes, whilst maintaining the bandwidth of th e  main lobe acceptable. Windows 

such as the Hanning and Hamming have been adopted in the past, and their bandwidths 

are said to be an index of the range over which th e  smoothing operation is effectively 

extended [3].

2.4.1 A  class o f window function.

Extensive catalogues of time windows along with th e ir suggested uses in different spectral 

estimation procedures have been documented (2,4). However, the implementation of 

these options is still considered somewhat vague and confusing to the practical engineer.

A new function that encompasses the majority o f  these windows will be termed a 

Trigonom etric sum type w indow and is defined by

(2 .5 )

2.4 Spectral windows.

w ,(i) =  a* co.(a./ +  6.) (2 .6 )

where

for U >  T /  2

* *  U < T / 2 .

14



The parameter 6* =  — a * { /  and the vector

{a _ m,a _m+1,- • • ,a0, • • ■ ,a m_ i,a m}

of length 2m  +  1 can take any arbitrary real values. The above specification gives a 

maximum weight at tim e U  and allows for this weight to fall towards zero at t =  0 and

t =  T.

Conventionally the restriction

u>i(0) =  tv i (T)  =  0

is given to these windows. For the Trigonometric sum type window, this is not necessary 

as such factors will be based on the coefficients a  and the position of maximum w eight

u.
For classical windows, the position of maximum weight is fixed such that U  =  T/2. 

The significant difference between Trigonometric sum type and classical windows is th a t  

U  is a allowed to vary over the duration of the observation period

0  <  U <  T.

On applying (2 .6 ) to conventional window carpentry, this function will be subject to  

the constraints

or* =  1 .0 ,

Q* =  Q-k, 

O* >  0,

U =  T/2, 

0 < t < T .

15



By defining a new vector a such that <r0 =  qq , and <r* =  2 a *  for k >  0, equation (2 .6 ) 

simplifies to

«»i( 0  =  <7o +  £  a *  cos(Q *t -  fc jr/2 ) (2.7)
fc=l

where f t*  =  jfcx/7\

The equivalent window on the correlation function is derived from equation (2 .3 ) by 

evaluating

™ /- T - r
+  I  cos(ft*f -  kr/2)dt

k= i  ■/o

+  <*o [  COS(ft*f +  n * r  — kx/2)dt
* - i  ■/o

+  £  ak YL Gi f co s(n *f -  A:t / 2 ) C08(i)>f +  CljT — kx/2)dt,
k= 1 >=i •/ °

and leads to

t » „ ( r ) =  V a J ( r - T )  +  }

¿=1 *=1
(2 .8 )

where ft, =  ix/T,

V' *=!*** Z i=l*=J
ri . * . i . O )

T (<r*, CTj,k,j,T) =  

+

2(n* -̂ n,) { ~ n*r) + + n>«-) }

2(ii?+n,) { -  n‘r) + -  n,r) }
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for k ^  j ,  and

for k =  j .

2.5 Some classical windows.

In this section some classical windows are introduced in the form of the trigonometric 

sum type windows described in section (2 .4 .1 ). The trigonometric sum type coefficients 

for the Blackman, Hanning, and Papoulis windows are given to justify the ease with 

which such windows can be generally implemented and a more detailed study of the 

Hanning and Papoulis windows chosen for analysis.

2.5.1 Hanning window family.

Such a window results when a  =  {/>, 0 ,1  — p ) . Applying this substitution, equation (2 .7 ) 

gives

For clarity, and as in [4], the word 'exact' is used to describe the window that leads to 

the condition

For this condition, the exact Hanning is defined in equation (2 .9 ) when p =  1 /2 . We 

will also denote the word ‘m inimum’ to describe the window that leads to  the greatest 

reduction o f the side lobe levels.

u > i(0  =  /> +  ( !  — p)  cos(u>oi +  *•) (2 .9)

where

0-5 <  p <  1.0, and u*> =  2*/T.

u>,(0) =  w\(T) =  0.

17



i  2

for the Hanning family o f spectral windows, can be represented as a sum o f three Dirichlet 

kernels

The equivalent spectral window for a Do-nothing (or rectangular window) on the

time function is defined by the Dirichlet kernel

w,(u,) =  pWd(v )  +  i ( l  -  p){Wd(u - y )  +  Wd(v  +  ^ ) 1

as in figure (2 .3 ). Since the three side lobes are in phase opposition, summation leads 

to a reduction in the side lobe amplitudes. A minimum side lobe is achieved when

Figure 2.3: Transform  o f  Hanning type  windows as a sum o f  th ree D irich let 
kernels.

p =  0.5385(4dp) and although should be strictly termed minimum Hanning, is commonly 

known as the H am m ing w indow.
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The equivalent window on the correlation function is derived from equation (2 .8 ) 

and leads to

u>n(T) -  ^  ~+  A ^  {  (1 -  ^)(y4i +  i42cos(wor)) +  i43sin(u>0 | r |) | (2.10)

where

Ai =  p2, A 2 (1 - P ) 3 , (5p 1)(1 P)
~ — ----------i i ------------

2.5.2 Minimum bias windows for high resolution spectral 

estimates.

It is important to note the analysis developed by Papoulis [6] as a means to justify  

the selection of this window type. For convenience we shall call this the Papoulis 

fam ily o f  w in d o w s . The author believes this family of windows to be the best out 

of all conventional windows when comparison is made from a statistical viewpoint. Its 

selection is significant in th a t is yields minimum bias in spectral estimates and will 

therefore be reviewed in this thesis.

Consider the correlation window subject to the constraints

w u ( t ) =  Wu (T  — t ) for | t  |<  7 \  u jh ( t ) =  0, for | t | >  T,

where

» i i « ! ) = 7 -  r  w ,i i ( n M ! ! = i-¿"K J —oo

The bias due to windowing the power spectrum S ( i l )  is

S(il — y ) W u (y )d y  — S(il) «  / "  v ' W t l {v)d y .
C"K J —oo 4 TT J —oo
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The object thus is to  determine tV ii(O )  so as to minimise the term

M i =  j ° °

where M 2 is the second moment of the spectral window W 'n if t ) .

On the assumption that this spectrum has a continuous second derivative and that 

T  is sufficiently large so that an acceptable level of variance is obtained, it is found that 

the determination of such an optimum window is equivalent to evaluating a tim e window 

u>i(f) th a t minimises th e  integral

This general window type, <7 =  {(1  — p ),p ),  gives a tim e window of the form

/ “ n ! 1 w , ( n )  \Un.

Such a condition leads to  the Euler equation

and has a solution

>"1 =  ( | ) 1,Js i n ( y ) ,  for 0 <  t <  T,

with an equivalent correlation window

u>n(r) =  i  I s i n ( ^ )  I +(1  -  - ^ - ) c o s ( ^ ) .
T

«> i(0  =  (1 “  P) +  psin(u>oO ( 2. 11)

where 0 <  p < \ ,  and u>0 =  x/T.
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The equivalent window on the correlation function is

“  A,/* +  A1 +  A , T -  +  ( l  -  i T 1 , ( '4 ’ +  A ’  co’ (u,»T )) +  T 1 r  D 

where A t =  4p(l -  2p), A2 =  (1 -  2p)2, and A3 =  2p1.

In the special case when P =  \, this window is proved by Papoulis to result in minimum 

bias for high resolution spectral estimate [6J. Figures (2 .4 ) and (2 .5 ) show examples 

of some classical time and correlation windows. Table (2 .1 ) gives the trigonometric sum 

type coefficients of these windows as defined by equation (2 .6).

---------------- Exact Papoulis window: Exact Blackman window.

................. Exact Hanning w in d o w :................... Papoulis window ( p =  1).

.............  Hamming window.

Figure 2.4: Som e classical tim e windows. 
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Exact Papoulis window: 

Exact Hanning window: 

Hamming window.

Exact Blackman window.

Papoulis window ( p =  \).

Figure 2.5: Equivalent windows on the correlation function.
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Classical windows *> Ol <73 <J\ Of, <7«

Do-nothing 1
Exact Papoulis 0 1
Exact Hanning 0.5 0 0.5

Hamming 0.539 0 0.461
Exact Blackman 0.423 0 0.498 0 0.081

3-term minimum Blackman-Harris 0.450 0 0.494 0 0.056
4-term Blackman-Harris 0.402 0 0.497 0 0.094 0 0.007

4-term minimum Blackman-Harris 0.359 0 0.488 0 0.141 0 0.012

Table 2.1: Trigonometric sum type representation of some classical win­
dows.

2.6 The effects of windows on the spectral esti­

mate.

In this section, the effect of finite record lengths on the expected value of the measured 

frequency response and the squared coherence function will be studied. W here possible 

an attem pt will be made to obtain expressions that are totally dependent on the systems 

correlation functions. In cases where the analysis is deemed too complicated, specific 

but generalised examples through numer cal methods will be presented. Such situations 

arise when evaluating frequency response and coherence estimates for windows that do 

not have positions of maximum weight at U =  T/2.

Explicit and approximate derivation of the spectral estimates for the Hanning and 

Papoulis family o f windows can be achieved for systems that are subjected to  theoretical 

white noise and have record lengths greater than the magnitude of the system settling 

times.

The general expression for the expected value of the measured frequency response is 

given by

E  [ & , ( > “ ) 1 =
E  [ ]

E  [ * „ M  1
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£ ( * » . ( “ > ) ]  =  2 [ w„(r)r„(r) coa(ur)iT,
Jo

and

E  1 *x » (w ) ] =  J ̂  t u „ ( r ) r „ ( T )  e x p (- ju r )d r ,

The analysis for a given white noise input with no intentional windowing is studied 

in [1] and will be briefly reviewed.

In this special case

= w „ ( t )  =  w n ( r) = 1 - Lp

As in (1), the expected value of the measured spectrum for an input signal of constant 

power spectral density 4» is

E  l * „ ( » )  1 =  f T ( 1 -  i - p )  ■ *  • i ( f )  ■ e x p f - jW T ) * -  =  4».

For white noise input the expected value of the measured cross correlation function

rry(r) =  *  • g(r)

where

is similarly substituted to give

E  | ] =  »  J  (1 -  ip ) « ( > - ) e x P( - ju .T )r fT

and these equations lead to  the expected value of the measured frequency response

E  ( 6 „ O u O  ] =  J  (1  -  ) f f ( T ) e x P ( —jw T )d T .
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Two features in this expression lead to bias in the estimate.

( 1 )  T h e  finite value of the upper limit of integration,

( 2 )  T h e  second term within the brackets which leads to  non-zero contribution. 

W hen the period of observation is much greater then the settling time of the system,

the upper lim it of integration can be effectively replaced by infinity. This leads to an 

approximate expression for the expected value of the measured frequency response

Thus in the case of no direct windowing of the input-output record, the bias in the 

expected value of the measured frequency response can be said to be perpendicular to 

the locus o f the true frequency response function G(ju>) on the complex plain with a 

clockwise rotation of magnitude (1 /T) \ dG (joj)/cLo | [1].

2.6.1 Asymptotic effects o f Hanning window on the spectral 

estimates.

Here we use the term asymptotic to imply that the observation time T  is much larger 

than the settling time of the system. If this condition is maintained, the substitution 

T  =  oo in the  limits of integration can be implemented to obtain an estimate. 

Expected value of measured output power spectrum.

For white noise input <£„(u>) =  4».

For the above assumption.

Recalling from equation (2 .1 0 ), the expression derived for Hanning on the correlation

25



function

* »n (r )  =  ,Ax {  (1 -  ty ){M  +  A 3co» ( ljot) )  +  i43sin(wo | r  |) }

( 2 . 12)

Defining

C „(w ) =  cos(ujt)dr, and 5W(u>) =  J r w (r)sm(u>T)<iT

as the expected cosine and sine transforms o f the output auto correlation function leads 

to  five terms in the evaluation of equation (2 .1 2 ).

These terms are

Term (1)

2Ai f  rn ( r )  cos( u>t )dr =  2A\Cyy(u).
Jo

Term (2)

2 A3 f  r wv(T)co8(woT)cos(u>T)dr 
Jo

=  A 2 J ryy(T) cos({u> +  w o }r )d r  +  A 3 J rvv( r )  cos({u> -  u*,}r )d r

=  A 3{Cyy(u} +  U\)) +  Cyy(U — LJQ) }  .

Term (3)

-J T  Jo r.rvv(r)cos(a ;r )< ir =
2A\ dSyy(tjj)
T  dui

where Sn (u>) is the fourier sine transform o f the output auto-correlation function. 

Term (4)

¥ r

Jo ™w(T)cos(woT)co8(u>r)dr 

( t ) coe({u> +  u»o} t )d r -  ^  j f  T.rn ( r )  cos({u> -  uo}r)dT
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2A] dSyy(ljJ + U«o) 2A? dSyy(u) — IjJo)
T  d(u + ujo) T  d(u> — ujo)

Term (5)

2A3 f  rw (r) sin(u*)T) cos(a>r)dr 
Jo

roo roo
= A3 r „ ( t ) sin({u>+ u>o}T)dr + A3 rw (T)sin({u; -  wo)T)<ir

Jo Jo

=  A3{Syy(u +  Uo) -  Sm(u  -  Uo))

where

A i =  pa, A-i . 0  - p ) 1, A3 = (5P -  1)(1 -  P) 
4x

Finally combining all the terms,

E  [ * w (u») ]

+

+

2 A t tC y y  (u>)
2 At * d s n (u>) 

T  du)

Al$Cyy(tjJ +  CJq) +  A34f Syŷ U) +  U\)) --

A i$C n (u) — Wo) — A3QSn {u> — u*o) —

2 A jQ  dSyy( U! +  UJq) 
T  d(u> +  uao)

2A2$ dSyy(uJ — U>o)
T  d(u> — wo)

(2.13)

Expected value of measured cross power spectrum.

For white noise input, the effects of a Do-nothing window on the expected value of 

the measured frequency response has already been described. The analysis will now be 

extended to the Hanning family ( which includes the Do-nothing, for p =  1 ).

The expected value of the measured cross spectrum is

E  [ ] «  *  JQ “>«,(»■ )«(r) exp( —Jojt )dr,

if  it is again assumed that the record length T  is sufficiently large in comparison to the
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settling time of the system.

Using sin and cosine identities

un(uto<) =  -y [exp (s0*) -  exp (-so01.

co*(u*>*) =  -[exp(«oO +  exp(—SoOli

where s0 =  j^o  and the integral substitutions

J  t f ( t )e x p (-s t )d t  =  - ^ F ( a ) ,

I  cos (u o t)f (t )e xp (-s t)d t =  ^ [F (a  -  ■»o) +  F (*  +  *>)].

/  tco s (u > o f)/(f)e x p (—st)dt 
Jo

1 r f F ( j - a o )  d F js  +  sp) 
2T [ d (3 - s 0) d(s +  30) '

where s =  jut, leads to an approximation to the expected value of the measured 

cross power spectrum.

E  [ * n U " )  1 =

+

+

1 dG(jut) 
T  dut '

— (G (j{u ;+  Wo})(i4j +  j A 3)  -

— (G(j{u> -  a>o})(i4j -  jA s ) -

jA 2d G (j{u  -f  u^o})| 
T  d(uj +  U<o) 

jA ,  i G ( i ( u  — t-Jo}). 
T  d(u  -  uo)

(2 .14 )

where ujq =  2x/T.

For the Hanning family o f windows, equations (2 .13) and (2 .14 ) are approximations

28



to the expected value o f the measured output and cross power spectral estimates for 

an open-loop tim e invariant system that is subjected to a white noise input of constant 

power $ .  These expressions are functions of

( 1 )  The record length T.

( 2 )  The Hanning windows coefficients A i,A i,  and A3.

( 3 )  The system characteristics.

Such expressions are new and allow for a more precise observation when studying the 

effects of varying the record length, window parameters, and system characteristics on 

the frequency response and coherence estimates.

The expected value of the measured frequency response and square coherence func­

tions are :-

2.6.2 Asymptotic effects o f Papoulis windows on the spec­

tral estimates.

Similar consideration of this window type leads to :-

E [ 6 „(ju 0  ] = E  [ » „ O '« )  )

and

£ [  72.  (>“ ) ]  =  -;-
1 I E [ j„Uu>) ] I1 
*  £ [ * „ ( « ) !

1 dSyyjuJ +  OJq) . 

T  d(u> +  u»o) ] 
1 dSn (u; -  tup). 
T  d{u> +  cjd) '

(2.15)
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and

+  ^ [ G ( X *  +  u * » ( i  +  i ) - i :
1 d G (j{u  +  Ug)) 
T  d(uj +  mp)

1 d G (j{u  -  M o}). 
T  d ( u - u o)

(2.16)

where =  2 x /T. A, =  4/>( 1 — 2p), A ,  =  (1  -  2*>)J, A r  =  2 ^  and 0  <  ^  <  1 /2  .

2.7 Example (1).

Two examples illustrate the previous work.

W e first consider the effects of the Hanning and Papoulis window families in con­

junction with a second order transfer function defined by a resonant frequency wn and 

damping factor £• Analysis shows that p is a function o f T  when minimum square error 

criterion is chosen, and that as T  —» oo, the window satisfies the condition

W e then examine the effect of non-white noise input by considering a first order filter 

system. Comparison is made between Do-nothing, exact Hanning and exact Papoulis 

windows.

2.7.1 Second order system subject to white noise input.

The transfer function chosen is

u>i(<) =  w i(T  -  t).
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with the parameter values £ =  0.2 and wn =  0.2. The impulse response o f this system 

is

* ( 0  =  S i  a e x p ( - o t )  -  b exp (-b t) J

where

a  =  C +  c , 6 = C ~  c, and c =  wny j(2 — 1.

The cross correlation function between input (o f constant power $ )  and output is given 

by

r *v (T ) =  ♦  • 9 (t )

and the auto-correlation function o f the output is

rn ( T)  =  /  9 (t)g (t +  r)dt
Jo

=  |^{aexp (—ot-)(1 -  ^) +  6exp(-6r)(l -  i ) } .

For this system arrangement the respective cosine, sine and derivative of the sine trans­

forms are

5 „ M  =

u>; a2d
i 411

4ca ( a 2 +  u2

u;2 /  a.d.w 6.e.u;
4c3 a3 +  u>2 +  p  w

and

dSyy(u) _  w2 a.d(a2 — u>2) 6.e(62 — u;2)
duj (a 2 - f  ur3)3 +  (6s +  ur2)2
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Substitution into equation (2.14) and (2 .1 3 ) lead to the expected value of the measured 

output and cross power spectrum for the Hanning family of windows. Substitution in 

(2 .1 6 ) and (2.15) will lead to a similar expression for the Papoulis family o f windows.

Figure (2 .6 ) is an impulse response representation of the system under investigation. 

Figures (2 .7 ) and (2 .8 ) compare expectations of frequency response functions at T  =  150 

and T  =  300 for the Do-nothing, exact Hanning (/> =  0 .5 ) and exact Papoulis (p =  0.5) 

windows.

Figures (2 .9 ) and (2 .10) present square coherence plots for the above windows at 

T  =  150 and T  =  300. Finally figures (2 .1 1 ), (2 .12 ) and (2 .13) compare bias squared

at T  =  150, T  =  300 and T  =  3000.

In all cases, the exact Papoulis window yields the smallest bias in the resulting 

frequency response estimate. As a measure o f variance in the estimate, the coherence 

plots also show Papoulis to be superior. The exact Hanning was found not to be a good 

estimator of the bias when T  is of the same length as the system settling time. However, 

for large T  ( >  150), the resulting frequency response gave results comparable to the 

exact Papoulis window.
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Figure 2.6: Impulse response of

G (s ) =  a.wn/(s2 +  2(w„s +  u £ ),C  =  0.2, tvn =  0.2.
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True value.

Exact Papoulis window (p =  *).

Exact Hanning window (p =  |).

Do-nothing window.

Figure 2.7: Expected value of measured frequency response. Second order
transfer function for T =  150.
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True value.

Exact Papoulis window (p  =  * ) .

Exact Hanning window (p =  * ) .

Do-nothing window.

Figure 2.8: Expected value of measured frequency response. Second order
transfer function for T =  300.
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Exact Papoulis window (p =  | ) .

Exact Hanning window (p =  1).

Do-nothing window.

Figure 2.9: Square coherence of second order transfer function for T =  150.
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Exact Papoulis window (p =  \).

Exact Hanning window (p =  5 ).

Do-nothing window.
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Figure 2.10: Square coherence of second order transfer function for T =  300.
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Exact Papoulis window (p =  5 ).

Exact Hanning window (p =  5 ).

Do-nothing window.
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Figure 2.11: Square o f bias for second order transfer function for T =  150.
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Exact Papoulis window (p — 5 ).

Exact Hanning window (p =  5 ).

Do-nothing window.

Figure 2.12: Square of bias for second order transfer function for T =  300



;{('->
f)o

 -
1 (o

O
^

o
 1 a

}

Exact Papoulis window (p =  5).

Exact Hanning window (p =  * ) .

Do-nothing window.

Figure 2.13: Square of bias for second order transfer function for T =  3000.
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From the view point of minimising the bias, if T  ^  oo, the exact Hanning and 

exact Papoulis are in fact suboptimum windows. Minimising the bias can be justified if 

the assumption is made that the record length is sufficiently long to allow for enough 

smoothing over segments to reduce variance in the frequency response estimate.

Under such conditions, the optimum for these class of windows can be evaluated by 

minimising the integral square of the bias between the true G (ju )  and G xy (jv ) obtained 

by varying p over the range 0.5 <  p <  1 for the Hanning family and 0.0 <  p <  0.5 for 

the Papoulis family.

This is implemented by using a M atlab optimisation routine ”fm in.m ” . Figure (2 .14) 

and (2 .15 ) compare frequency responses between optim um  Hanning, optimum Papoulis 

and exact Papoulis windows at T  =  150 and T  =  300.

It is observed that the superior estimates based on these optimum windows are 

concentrated at parts o f the spectrum which exhibit high signal to noise ratios. As a 

result, further away from  the resonant frequency, estimates become poor in comparison 

with the exact Papoulis window.

Figures (2 .16), (2 .1 7 ) and figures (2 .1 8 ), (2 .19 ) are the respective square coherence 

and bias squared at T  =  150 and T  =  300.
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Optimum Papoulis window (p  =  0.36).

Optimum Hanning window (p  =  0.76).

Exact Papoulis.

Figure 2.14: Expected value of measured frequency function response o f 
second order transfer function using optimum windows for T  =  150.
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True value.

Optimum Papoulis window (p — 0.41).

Optimum Hanning window (p  =  0.84).

Exact Papoulis.

Figure 2.15: Expected value of measured frequency function response of 
second order transfer function using optimum windows for T  =  300.
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Optimum Papoulis window (p  =  0 .36 ).

Optimum Hanning window (p  =  0 .76 ).

Exact Papoulis.

F igure 2.16: Square coherence for optimum estimates for T =  150.
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Optimum Papoulis window (p =  0.41).

Optimum Hanning window (p =  0.84).

Exact Papoulis.

Figure 2.17: Square coherence for optimum estimates for T — 300.
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Optim um  Papoulis window (p  =  0.36).

O ptim um  Hanning window (p  =  0.76).

Exact Papoulis.
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Figure 2.18: Bias squared for optimum estimates for T =  150.
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Optimum Papoulis window (p  =  0 .41).

Optimum Hanning window (p  =  0 .84).

Exact Papoulis.

F igure 2.19: Bias squared for optimum estimates for T  =  300.
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2.7.2 Non-white noise input.

Filter System

White noise 
* 1 X y

1 + 3  7/ 1 + 3 7 ;

Figure 2.20: Schematic for first order filter system  arrangement.

The preceding theory can be applied for stationary arbitrary inputs and systems. For all 

but the simplest cases, numerical evaluation is required throughout. A simple example 

is selected to demonstrate the steps involved to indicate the form of errors with various 

windows.

Consider the first order filter system arrangement in figure (2 .20 ). For this, the 

respective correlation functions are

’■.«(’’) = 5=r<=xp(-î J),211 T,

r . J 7)  =  ^ r 7 5 y ( ( r /  +  r . ) e x p ( - r / r / ) - 2 7 ' . e x p ( - r / r . ) ]  f a  r > 0

=  2 ( 7 /  +  T .) e > p (r/ r '>  f "  ’■ < 0

r „ M  =  2 (r / -  7? ) P > <* P < -  I r  I Z 7»  ~  r - ” p ( ~  I r  I / r . ) l -

Numerical integration is used to evaluate expectation o f measured input, output and 

cross power spectrum.

The correlation functions for 7 /  =  5 and T, =  10 are given in figure (2 .21 ). Figures 

(2 .22 ), (2 .23 ) and (2 .24) show comparison of expected frequency responses, square 

coherence and square o f the bias for the Do-nothing, exact Hanning and exact Papoulis
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window.

It is observed th a t, although Papoulis is overall a better estimator, the Do-nothing 

window performs better at low frequencies whilst the Hanning is the better at higher 

frequencies. Further simulation studies show that as T  becomes larger, the Papoulis 

window exhibits increasing superiority at all frequencies. This was also found to  be the 

case when higher order filter system arrangements were considered.

49



Input correlation r „ ( r )  

Output correlation rn ( r )  

Cross correlation r ry( r ) .

Figure 2.21: Correlation functions for Tj =  5 and T, =  10.
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Exact Papoulis window (p =  A). 

Exact Hanning window ( p =  A). 

Do-nothing window.

True.

Figure 2.22: Expected value of measured frequency response
for ( T j =  5, T. =  10,T  =  60).
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Exact Papoulis window (p =  i ) .  

Exact Hanning window (p  =  * ) .  

Do-nothing window.

0.9- 

0.8 

0.7 - 

0.6 - 

0.5 

0.4 

0.3 -

0 .2 1--------------- *---------------*---------------*------------------------------- ‘---------------
0 0.2 0.4 0.6 0.8 1 1.2

M

Figure 2.23: Square coherence for T j =  5 ,T , =  10 and T  =  60.
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Exact Papoulis window ( p =  * ) .  

Exact Hanning window ( p =  * ) .  

Do-nothing window.
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1 0 2 = \ \  \ 
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Figure 2.24: Bias squared for T j  =  5, T .  =  10 and T  =  60.
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2.8 Window design

So far it has been shown that the best window is a function o f the observation tim e as 

well as the system under consideration. Several criteria which are optimum in a specific 

sense, have been developed in the tim e domain for solving the system identification 

problem. Amongst them are classical Least square analysis [7], and least mean square 

error adaptation algorithms [8]. In the frequency domain however, only very simple, 

suboptimal techniques have been proposed for solving the system identification problem, 

which have proved not to be entirely adequate for many classes of problems [9].

In this section, a qualitative evaluation of a newly proposed window design m ethod­

ology is given with special consideration to short term records.

2.8.1 Differing input and output time windows.

Conventional analysis weights both input and output records with the same windows to 

give good estimates of individual spectra. As frequency response estimation is concerned 

w ith the ratio between the cross power spectrum and the input power spectrum, it may 

prove beneficial to implement on the input-output records different windows so as to 

improve this ratio.

2.8.2 Alignment o f the cross correlation function.

Alignment is the process o f tim e shifting the cross correlation function or the lag window 

so th a t their maximum absolute values coincide.

The process o f alignment can be easily implemented when evaluating frequency re­

sponses through the estimation of sample correlation functions. The misalignment factor 

(say S .) is defined as the difference in tim e from zero lag to the position of maximum  

weight of the cross correlation function and when S  ^  0, it is shown in [11], to lead to  

bias in the resulting cross power and hence coherence and frequency response estimates. 

There are two methods to reduce the effects of this bias :-
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( 1 )  Align the cross correlation function and the window at zero l*g.

(2 )  shift the window on the correlation function so that the maximum weight 

of the window occurs at 5 .

The latter will now be chosen to demonstrate the effect of misalignment on the bias of 

the cross power spectrum estimate.

Consider a window w^ t ) defined by

" ’« .(’■) =  ¿1 1 +  c ° « (^ r  - 0 )  J for t / _ Z ! < r < ( /  +  Z! 

ti>*v( r ) =  0 otherwise

where

The above equation represents a window on the cross correlation function which has a 

position of maximum weight U  variable over the tim e duration —T  <  U  < T .  See figure

(2.25).

1

0.8

l  0.6
■o
f  0.4

0.2

0  L-1— 

T

U=-T/2 U=0 U=T/2

0 r(seconds)

Figure 2.25: W indow  on the cross correlation function with variable posi­
tion of maximum weight U .

The cross correlation function is defined for the first order filter system arrangement
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of figure (2 .26).

Filter System

White noise 
* 1 X 1 y

1 + s  r , 1 + a  r ,

Figure 2.26: Cross correlation function defined by first order filter system 
schematic.

The signal x  has auto correlation function

. ( ’■) =  27\ exP (— f f )

where $  is the constant spectral density o f the white noise input. 

The system impulse response g (t )  is given by

9 (t) =
exp(—t / T i )  

Ti

Using the relationship

=  r „ ( r )  .  s (r ),

this gives

r . « M  =  j | r « P  ( j r ) for T <  0

rn ( r )  =  2 Ï ÿ ( y  +  T) exP ( ~ j r ) for T >  0

Figure (2 .27 ) shows the cross correlation function calculated for T\ =  15. The
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0 .0 2

Figure 2.27: Cross correlation function for Tx =  15 seconds.

misalignment factor 5  =  10 seconds. The amplitude and phase o f the measured cross 

power spectrum estimates are evaluated from the expected value o f the measured cross 

power spectrum

E  ( ] =  f _ T r „ ( r )w n (,r )c x p i - ju r )d r .

Figure (2 .28) show plots of bias in the amplitude and phase cross power estimates 

for value of U  at U  =  —1 0 ,0 ,5  and 10. It shows that bias in am plitude and phase of 

these estimates is smallest at U  =  S  =  10 and confirms similar observations made by 

Jenkins and W atts [11].

In practice this misalignment S. can be obtained from straight forward visual inspec­

tion, thus making it possible to either align the cross correlation function (so that the 

epoch of its peak occurs at zero lag) or to shift in tim e the appropriate lag window which 

weights this function by 5  in order for these peaks to coincide.

As correlation functions are not evaluated in the direct method o f frequency response 

estimation, the alignment factor will not be observed and even if such a parameter where 

known, there comes the added difficulty of applying this knowledge directly to the input- 

output tim e windows.
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Figure 2.28: Bias in gain and phase of cross power spectral estimates for 
varying positions of U  of wxv( t ).



2.8.3 Effects o f transients and external noise.

A good estimate of the frequency response of a linear systems can always be expected 

when the observation time is o f long enough duration and there exists no extraneous 

noise sources to influence these records. When using short input-output records, sources 

o f error arise due to transient effects which lead to bias and variance in the resulting 

frequency response estimate. D o u c e  and B a lm e r  (1], interpret the effects of transients

O utpu t signal ,(t)

Figure 2.29: Design of time windows to reduce transient effects.

as the difference in output responses between an input signal x ( t )  observed over the 

duration — oo < t < T  and an equivalent periodic input

xT( t )  =  x ( f )  for n =  —o o , 1, 0.

This transient, may be viewed in another way.
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Consider the response from  t =  0 due to the input signal x (t )  observed over the time 

duration —oo <  t <  0. Th is  'unobserved' input, results in an output transient /»»(<) 

that dies down as t — ► T  and will be part of the observed ou tp u t signal y(t). See 

figure (2 .2 9 ). Similarly consider the response from t =  T  due to  th e  input signal i ( t )  

observed over the time duration -o o  < t < T .  Assuming that th e  record length is at 

least greater than the settling time of the system, this transient h2( t )  will be mostly due 

to the observed input,

* (< ) for 0 <  t <  T,

and in reality should be incorporated in any spectral estimation procedure. However, it 

will be unobserved due to th e  finite duration of y (t),  i.e,

y ( t )  =  0 for t <  0, and t >  T.

Summarising, at the start o f the output record, there exist components due to unobserved 

inputs /»»(*), and towards th e  finish, part of the complete response M O  to the observed 

input is not observed. Hence it is not unreasonable to give a reduced weight towards 

the end of the input record and also towards the beginning of the output record in order 

to reduce these effects.

2.8.4 Other factors to be considered.

The amount of weight to  be applied on both input and output records must evidently 

depend on the following arguments:

(a ) The observation time T.

The larger the record length T  becomes, the less weight should be applied to the 

record, as the effects o f the transients M O  and M O  will be reduced in comparison to  

the observed records x ( t )  and y(t).

(b )  Differing window types for different systems.
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It is inconceivable to imagine that a first order system described by a simple time 

constant will require the same shape time window pair as a second order system which 

is governed by both a resonant frequency and damping factor.

(c )  Non-white input signals.

If any prefiltering takes place on the input record, then  this must surely also influence 

the time windows to be applied to the record before analysis.

(d ) Output noise.

In [10] it is shown that the effect of short input-output records is analogous to 

considering an equivalent biased system with an uncorrelated noise source. Any extra 

observed noise sources such as environmental or measurement noise (which are assumed 

to be uncorrelated with the input) can be considered for the purpose of analysis, as 

further increasing both the bias in the equivalent system and that of the uncorrelated 

noise component. Lack of information on any one o f th e  above will inevitably lead to  

imperfect band limiting ability of the window [9].

2.8.5 A  Priori knowledge of the system.

Here in order to show qualitatively how a priori knowledge o f the system under analysis 

may prove to be beneficial in the system identification problem, we must give reasons 

as to why in the past such a concept has not been used adequately.

2.8.5.1 Reasons against

Strong criticism has been made in the past on the design of time and lag windows in 

advance o f spectral analysis and frequency response estimation [11]. These are as 

follows

(1 ) Any criteria for determining optimality are case specific. Therefore each criterion 

will produce spectral or frequency windows which are arbitrary in that specific sense.
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(2 ) An optimality criteria will present too rigid a mathematical formulation in the 

objective of spectral analysis and specific features such as width of spectral peaks or 

slopes of the spectrum over such bandwidths may be inadequately catered for.

(3 ) Optimum windows will inevitably differ for different realisations of the same 

system as the approach will only indicate the best window in an average sense.

(4 ) Any optimum window design in practical estimation methods will inevitably be a 

function of the unknown system under analysis and so a bad estimate of the system will 

always lead to bad estimate in the analysis.

It was concluded for these reasons that a more robust and flexible approach for 

window designs was needed in order to build a suitable empirical procedure. These 

procedures although simple have always lead to suboptimal techniques in solving the 

system identification problem, and have in general proven not to be entirely adequate 

for many reasonable classes of problem [9].

2.8.5.2 Optimisation criteria.

The above criticisms have been based on optimum criteria in the frequency domain. The  

most commonly used is the integrated mean square error criterion

/ “  £ [ |  G (ju )  -  G {ju )  | ( 2. 17)

where G (ju )  and G(jw ) are the respective measured and true frequency responses at 

frequency u>.

Another criterion

r  E[(6u»)-G{ju>m,

attempts to obtain a compromise estimate at all frequencies. This differs from (2 .1 7 )  

in that the expected mean square error at a particular frequency is weighted in inverse
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proportion to the value of the true frequency response at that frequency and has also 

been indirectly proposed in [11],

It has been said that such criteria in spectral analysis are very limited and that they 

only serve as a useful tool in enabling windows such as the Bartlett, Hanning, Tukey, 

Parzen and others to be ranked according to  the various criteria [11].

2.8.5.3 Reasons for

Minimum mean square error is the most obvious criterion to choose when designing 

input-output windows for best statistical estimates in the frequency response. This 

however also requires the true system G (ju )  to  be known, and lack of such knowledge 

will result in suboptimal window design.

If  external noise to the system is considered negligible or the record length is long 

enough to allow sufficient smoothing, choosing wx(t),  and wy(t )  to  maximise the square 

coherence will prove desirable. The above is based on the following argument. In [5], 

it was shown that the effect of a finite record on the frequency response estimate can 

be considered analogous to an equivalent biased system that is subjected to an input of 

infinitesimal length with an uncorrelated noise source N  added to the output (see figure 

(2 .3 0 )). Hence maximising the square coherence function is equivalent to minimising 

the noise to signal ratio which in turn will reduce the bias.

(1 ) The major criticism here is that a firm  mathematical formulation to estimate 

these so called 'suboptimal windows’ does not exist. It is for this reason that performing 

such analysis in the frequency domain, becomes too complex to analyse. As windows 

are functions of tim e, there exists a strong argument in performing such an optimisation 

directly in the tim e domain before analysis. This may prove beneficial from both the 

mathematical and qualitative view point.

(2 )  If  a tim e domain approach is adopted, impulse response functions can be chosen 

in the optimisation criteria rather than frequency response. This allows information such 

as settling times, dominating tim e constants, static gains and tim e delays to be used in
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Equivalent 
biased system

N (uncorrelated 

noise source)

Figure 2.30: Equivalent biased system.

building up the initial a priori estim ate in order to obtain acceptable impulse response 

models.

(3 ) Because o f the ease of mapping between tim e and frequency domains, updates 

of the impulse response can be made by taking the inverse Fourier transform of the 

frequency response. This leads to the exciting prospect o f a convergent recursive criterion 

for the frequency response estimate.

(4 ) The above arguments will m ake redundant the behavioral study of leakage in the 

corresponding spectral windows, as this information will be directly catered for in the 

impulse response estimate.
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2.9 Example (2)

In this section, the window design concepts discussed previously will be illustrated. Con­

sider the first order filter system arrangement

G jiU er{a) =  G,y,tem (a) =  (2-18)

with a record length T  =  30. The continuous transfer function is mapped to the discrete 

domain by using a bilinear transformation with a sampling rate o f 1Hz.

The trigonom etric sum type window is again used, the positions o f maximum weight 

for the input w indow Ux and the output Uy are varied over the range 0 <  t <  T  to 

illustrate the effects of alignment, and differing windows on the input-output records. 

The record length is chosen to be not much greater than the settling tim e of the system 

so that transient effects are not negligible.

The two optim isation criteria chosen are minimum square magnitude of the bias and 

maximum square coherence. In the optimisation it is required to solve

min f  | E  [ (G n ^ ju )  1 — G (ju )  |2 du>, 
Jo

max Jo

For window pairs chosen to vary at a frequency of interest,

m ,n {£ [ ( 6 „ 0 u < ) ] - G ( . M } ’

and

max {-I

are chosen. A priori judgment of the system will be dealt with in chapters 3 and 4.

For the Papoulis window, figure (2 .31 ) is a mesh plot of the integral square o f the
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bias (multiplied by -1 ) with varying Ux and (/„.

Description of contour plot.

The contour plot of figure (2 .32) compares th e  relative positions for the four op­

timised window designs. It is observed (from values of the contour lines ), that both 

coherence criteria, lead to greater reduction in bias over the exact Papoulis window 

( Ux =  Uy =  15). As expected, minimisation o f th e  bias; either by minimising at each 

frequency, or by minimising over the whole range o f  frequencies (0  <  u  <  x ) , produces 

the best results.

For the Papoulis window, figures (2.33) and (2 .3 4 ) show window parameter varia­

tion of Ux and Uy with frequency for designs based on minimising square of bias and 

maximising square coherence.

A similar plot of contour (figure (2 .35 )) param eter variation of Ux and Uv with  

frequency (figure (2 .36) and (2 .37 )) is also given fo r the Hanning window.

Simply by its nature, maximising coherence implies minimum noise to signal and 

hence variance. In the contour plots we observe th a t they are also good estimators of 

bias and so will lead to improved estimates when comparison is made with symmetrical 

windows.
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Figure 2.31: -  {E[G(ju)] -  G (jw )}2dut with varying Ux and Uy (Papoulis
window).
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u  =  =  jr Maximum square coherence

(Frequency dependent) criteria max[7 *v(u;)]

u> =  0 - - > - - u/  =  t  Minimum square o f bias (Frequency dependent) 

criteria m in {E  ( G ^ j u )  ] — G(ju>)}3 

□  Exact Papoulis window.

+  Maximum integrated square coherence criteria max 

A  Minimum integrated square of bias criteria — {E [G (ju ) ]  — G ( ju ) } 3du>.

Figure 2.32: Contour plot of — J£{E[(G (ju)] — G(juj)}3du; with varying Ux and
Uy for the Papoulis window.
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-----------------  Frequency independent input parameter Ux.

................... Frequency independent output parameter Uy.

□  Frequency dependent input parameter Ux.

A  Frequency dependent output parameter Uy.

(rad/sec)

Figure 2.33: Variation of Ux and Uy using minimum bias square criterion
(Papoulis window).
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-----------------  Frequency independent input parameter Ux.

--------- . . .  Frequency independent output parameter Uy.

□  Frequency dependent input parameter Ux.

A  Frequency dependent output parameter Uy.

Figure 2.34: Variation of Ux and Uy using maximum square coherence cri­
terion (Papoulis window).
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u> =  0 u) =  jt Maximum square coherence

(Frequency dependent) criteria m a i | 7^ ( u ) ]

u> =  0- - > -  -u> =  tc Minimum square of bias (Frequency dependent) 

criteria m in { E  [ ¿ » » (jw ) ] — G (ju » )}3 

□  Exact Papoulis window.

+  Maximum integrated square coherence criteria max  7i,(u>).

A  Minimum integrated square o f bias criteria — f £ { E [G ( j u ) ]  — G(ju>)}2duj.

Figure 2.35: Contour plot o f — {E[(G(jw)] — G(ju))}2du; with varying Ux and
Uy for the Hanning window.
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----------------- Frequency independent input parameter Us.

................... Frequency independent output parameter Uv.

□  Frequency dependent input parameter Ux.

A  Frequency dependent output parameter Uv.

Figure 2.36: Variation o f Us and ,£/„ using minimum bias square criterion
(Hanning window).
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----------------- Frequency independent input parameter Ux.

...................Frequency independent output parameter Uy.

□  Frequency dependent input parameter Ux.

A  Frequency dependent output parameter (/„.

Maximum coherence

aj(rad/sec)

Figure 2.37: Variation o f Ux and Uy using maximum square coherence cri­
terion (Hanning window).
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2.10 Summary

The introduction o f parametric windows (such as Trigonometric sum type) are in them ­

selves restricting in designing optimal windows for non-parametric spectral estimation. 

Ideally windows should be designed wholly in terms of either the true system or a model 

of the system under investigation. W e have also shown that with no a priori knowledge 

designing windows to maximise square coherence function produces reliable estimates.

The art of window carpentry is introduced in this chapter, it is the basic building 

block in the design of least mean square error windows which will be introduced in the 

next chapter.
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Chapter 3

Least mean square error (L M S E ) 

window (I )

3.1 Introduction

It is not unusual to assume from the system  identification viewpoint that one may have 

prior knowledge about certain characteristics, such as dominant time constants or dead 

times of the system, from which the input x ( t )  and the output y (t ) are obtained. If this 

is the case, it may be desirable to modify x (t )  and y(t) before analysis by choosing an 

appropriate input window wx(t )  and o u tp u t window wy(t )  in order to take account of 

this knowledge. This in turn, may lead to  an improvement in the resulting frequency 

response estimate.

An attractive method is presented here, where a priori knowledge of the system under 

analysis is assumed to be available.

Figure (3 .1 ) illustrates a novel approach to the design of tim e domain windows when 

an a priori model of the system impulse response g(t) is assumed. The object here is to 

minimise the time integral of the expected value of the error squared, ea(f), where the
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True system

yP(t)

Figure 3.1: Proposed least mean square error schematic.

error is the difference between the windowed (or modified) system output ym(t )  and the 

predicted response yp( f )  o f the given model to the windowed input.

In the following sections, we shall deal with the more generalised case when the 

input signal x (t )  is non-white. From this we will define the conditions thus enabling us 

to evaluate the more simplified white noise condition. This special case will be studied 

in section (3 .8 ).
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3.2 Coloured noise input.

Consider an input applied at tim e t =  The output will be composed of responses 

due to  excitations prior to  t , ,  and the response due to the input applied at tim e  

Figure (3 .1 ), defines the  modified output ym(t )  as

ym(0  =  tvy(t) J  ̂ x ( r ) g ( t  -  r)d r. (3-1)

The response to the excitation x(< ) that is windowed by w x ( t )  (prior to input to the 

postulated system g (t )  )  is the predicted response to the windowed input

y p ( 0  =  j  u > * ( t ) x ( T ) g ( t  -  t ) cLt . (3 .2 )

Thus the function to be minimised is

' = r  0 .3 )

Splitting equation (3 .3 ) in to  its three components and approximating the true impulse 

response (fo r the purpose o f this minimisation) by assuming g (t ) =  g (t),

I  =  l x - h  +  h

with

h = !  » J ( 0 ~  T*) f  ̂  r* . ( Ti -  r , ) i ( !  -  r,)dT,dT,dt (3 .4 )
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I 2 =  2 j  wv(t )  J ^ g ( t  -  r2) J  wx(TX)rxx(TX -  r2)g (t  -  rx)dTXdT2dt (3 .5) 

h =  J J u>x(r 2)g (t  -  t2) J u > , ( r , ) r „ ( r ,  -  r2)g (t  -  rx)dTXdr2dt (3 .6)

where

r * «(r , -  t2) =  E [x ( tx) , x ( t2)\

A solution can be formulated by differentiating equation (3 .3 )  separately with respect 

to the input and output windows at the instant t =  tx. Setting these derivatives to zero,

d i
dwx( t x) ~

(3 .7)

d i
dWy(tX) (3-8)

The notation is used to denote the  derivative of /  with respect to the input window

at t =  t x and these equations must be satisfied for all t x in the range 0 <  tx <  T.

3.3 Derivative of integral error with respect to

w x ( t i ) .

Equation (3 .7 ) can be written as

d l2 d h
dwx(t x) dwx(tx)

=  0 (3 .9 )

since f x does not contain terms of wx(t ).

The first term in (3 .9 ) is evaluated by differentiating I 2 w ith respect to wx(r x) for
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Ti =  t 1 and leads to

“ 2 J  *»,(<)#(< “  * t )  J ^  r „ ( t i  -  r2)g (t  -  T2).dr2dt (3.10)

Essentially, in the derivative, we are assuming that the output window is a known 

function which is non-zero only for 0 <  t <  T. Also the postulated system g (t )  is 

physically realisable, which allows for the redefinition of the outer integral in the above 

equation over the range ti < t  < T .

Taking this into account and substituting u =  t t — t3 in equation (3 .10 ),

A  change in order of integration can be realised from figure (3 .2 ) if T  is set to  oo. This 

results in

(3.11)

Evaluating the second term in equation (3 .9 ) gives

2

2 / -  r2) / g (t -  tt )g (t -  T2)dtdr2.
Jti Jn (3 .12)

It is however possible to restate equation (3 .12 ) by defining the inner integral



Figure 3 .2: C h a n g e  o f  o r d e r  o f  in te g r a t io n  o f  P (z )  =  f j  Jq f ( x ,  y) dy dx. 

single function

I / ,?  9 (* -  *1 )9 (1 -  Ti)d t  for ti >  t2 

f ^ 9 ( t  -  *i)g (t -  r2)dt for ti <  Tj.

If equations (3 .11) and (3 .12 ) are substituted in equation (3 .9 ) the generalised solution 

for the best le a s t m e a n  s q u a re  in p u t  w in d o w  is obtained

JQ ws(t)-r (t  -  U)dt =  ¡  w,(t)<p(t -  U )dt (3 .13)
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where

JS° +  v)du for v >  0

7(*>) =  r , x(t>) (3.14)

/o °  i ( u )^ (u — v)du for v <  0

and

(3.15)

The integral in equation (3 .1 4 ) is the auto correlation function to  the output y '(t) 

of the system with impulse response g (t )  that is subjected to white noise excitation (See 

figure (3 .3 ) ). This leads to

Figure 3.3: Schematic o f  ou tpu t from  postulated system  subject to  white 
noise input.

Similarly the integral in equation (3 .15) is the cross correlation between the true 

system input x(<) and the estimated system output y (t) (See figure (3 .4 ))  and simplifies 

equation (3 .15) to

7 ( " )  =  ' ' „ ( » I ' V v H .  

Postulated system

W h ite  noise ¿(<) » '(< )

s ( ( )

r™ (r )  =  i (  r ) r v V ( .)

i f ( v )  =  jM r . i l v ) .
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Postulated system

In p u t signal x ( t )

s ( ')

¿ (0

r , i ( T )

F igure 3.4: Schematic o f output from  postulated system  subject to  input 
signal x (t).

3.4 Determination of w x ( t i )  for a given w y( t\ ) .

In equation (3 .13) there remains a difficulty in obtaining an exact analytical solution 

for wx(t\) as the required function on the left hand side is also within an integral sign. 

This expression can however either be numerically evaluated or simplified by studying 

the behavior of function 7 ( f  — t\) .

M E T H O D  1, Numerical evaluation.

In (3 .13) the required function is under the integral sign and if no assumptions are 

made about the left hand side of this equation, approximate solutions may be found 

at discrete values of f i  by applying the theory of linear algebra. Here the integrals in 

equation (3 .13) are essentially replaced by summations ( to  obtain n equations )  by 

discretising the range of values of The linear transformation in n-dimensional space 

is of the form

f i  =  7»iw*i +  ••• + 7mU>,.. for i =  1, . . .  , n

where

u  =  X > > ,  f i .  ¡.
jml

and is characterized by the matrix formed from the transformation coefficients 7< j. This
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transformation can be written in the alternative form

f  =  r  w x,

where w x (uiI p  ... , wXn) is the unknown vector, f ( / j ,  ... , / „ )  is the transformed  

vector,and T  is the matrix with coefficients 7 ,^ .Hence the unknown can be evaluated by 

inverting the matrix, i.e,

In practice filters are incorporated in order to isolate the frequency range o f interest 

in the analysis. In general the filtering is band selective and may be achieved by a 

frequency translation element combined with a high cut off rate, low pass filter. Such 

filters have bandwidths which are at least of the same order of magnitude as the system 

under investigation. If  such a condition were not true, important spectral details would 

be lost when evaluating the frequency response estimate of the system.

If  this assumption is valid, the function 7 (v ) can be said to approximate a pulse of 

approximate duration l/T , so that for large T , it is reasonable to assume th a t wx( t i )  

is constant over this pulse. Thus at the instant t =  t\, the left hand side of equation  

(3 .13) can be approximated as

w x =  r - ‘  f.

M E T H O D  2 - S im plify ing the analysis.

and simplifies equation (3 .13) to

(3 .1 6 )
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where

x 1
'  Jo“ 9 W < -

Experimental results has shown that even in the case when the above approximation did 

not strictly hold, there was no appreciable difference in the window shapes evaluated. 

For the reasons of accuracy o f implementation, method 2 was chosen for further analysis.

3.5 Derivative of integral error with respect to

Differentiating equation (3 .3 ) with respect to w „ (*i) and using the same notation as 

before gives

d l i  d l 2

dWy(t\) dWy(tl)

since I3 does not contain terms in wy. T h e  first term in equation (3 .17) is

(3.17)

2tn, / *i rU1-T2) J  ̂ rxx(r2 -  Tx)g(t\ -  Tx)drxdT2. (3.18)

Similarly the second term in equation (3 .1 7 ) leads to

-  2 f  ' w x(T2) g ( t i  - t2) [  ' rXI(r2 -  T,)y(<, -  T i)dT XdT2 (3.19)
Jo J -00

Substituting u =  ti — T\ in equations (3 .1 8 ) and (3 .19) and then combining together (as 

in equation (3 .1 7 ))  results in a generalised solution for the best Least mean square 

output w in d o w ,

Wy(tx) =  Ay fQl w , ( tM t i  -  t)dt (3.20)
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where
1

J T  ¥>(«)<«'

3.6 Formulation of integral equation pairs.

Any equation containing the required function under the integral sign is defined as an 

Integral Equation. In equations(3.16) and (3 .2 0 ) we have presented the equations to 

be solved for the required time windows. These can be combined to  give for the input 

window

where A =  AXAV.

By changing the order of integration in both equations (3 .2 1 ) and (3.22),

(3 .21)

and for the output window

(3 .22)

(3.23)

and
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By introducing a function of two variables :

K '( t ,  -  r )  =

K , ( r  -  i , )  =

vK* — — T)dt for 0 <  r  <  tx

j j  <p(t — — r)d t  for <i <  r  <  T

So — * V ( r  ~  t)dt for 0 <  r  <  t i

So' f ( , t i  ~  < )^ (T ~  0 ^  for t i  <  r  <  T  

equations (3 .2 1 ) and (3.22) are simplified to

w J t \ )  =  A f  w x( T ) K z ( t i  — r ) d r .
Jo

and

=  *  [  “ w M * . ( r  -
./O

(3.25)

(3.26)

(3.27)

(3.28)

respectively. In mathematical terms equations (3 .27 ) and (3 .28 ) are known as Fredholm 

integral equations and a brief description of its properties, and the method by which it 

can be solved, will be discussed in the  next section.

3.7 Fredholm equations and their solution.

Consider the integral equation o f the form

V-(x) -  J '  K (x ,  s)1>(s)da =  / ( * ) ,  (3 .29)
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where the function 0 (x ) is unknown, and the functions / (x ) and K (x ,a )  are assumed 

to  be given. The limits o f integration a and b are in general constants and can be finite 

as well as infinite; we also suppose that the variable x varies in the interval (a, 6), in 

which the integration is to  be performed.

The function / (x ) is called the absolute term  of the integral equation and the 

function K (x ,a )  its kernel. The kernel K (x ,a )  defined in the (x ,s )-p la n e  in the square 

a <  x, a <  b, is termed as the basic square, with the interval (a, b) termed as the 

basic interval. Equation (3 .29) is said to be homogeneous if /  =  0. Evidently in 

this case consideration has given not one integral equation, but a family o f homogeneous 

integral equations

The value A, which is an arbitrary numerical quantity in equation (3 .3 0 ), has a non-zero 

solution, and is called the eigenvalue of the kernel K (x ,a )  or of the corresponding 

integral equation. Every non-zero solution o f the equation is called an eigenfunction 

corresponding to the eigenvalue A [1],

From the definition o f the Fredholm equation it's kernel is subjected to  the condition

The solution to this Fredholm equation is considered as quadratically summable in the 

basic interval [1]. For such a solution, the integral

(3 .30)

has a finite value and is said to be u n iq u e .



3.7.1 Method o f  successive approximations.

The Fredholm equation given in (3 .30) may be solved by the method o f successive 

approximations [2]. It  is possible to write the above equation in the form

=  \Krl>

where the function Ktl> is termed as a Fredholm operator.

Given an initial guess t M x ) ,  we take as a subsequent approximation, the  result of 

the function V’n - i ( z )  on the right hand side o f the above equation, i.e,

'l’n (x ) =

Which leads to the succession

V>i(x) =  \KxJ>0, 

V>2(x) =  \ 3K 3rlxh

V’n(x) =  A nK nll>0.

A 'n0o =  J  K n(x,s)iJ)(s)ds

and the function

K .(x ,a ) =  J' j ‘  K ( x , t , ) K ( t , , l1) ■ ■ ■ K (t,.,,a )<U l dt1d t„ .

being termed as the n,k iterated kernel, since it is directly expressed in terms of 

the original kernel / f ( x , s ) .  In order for the sequence o f these quadratically summable
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functions V>n(x ) to be convergent in the mean, it is necessary and sufficient that

-  V’nll =  0.

3.7.2 Solution for w x { t \ )  and w y{ t\ ) .

Since the required functions appear outside as well as under the integral sign the method 

o f successive approximations can be used to solve for wx( i t ) and wp( t t ).

Applying the results obtained to  the homogeneous linear equations of (3 .2 7 ) and

(3 .2 8 ).

u>x +  p(ti)w x =  0, (3 .31 )

¿ , + i ( h K  =  0. (3 .32)

T h e  problem is said to  be equivalent to finding the solution of equations (3 .31 ) and 

(3 .3 2 ) with the homogeneous boundary conditions,

u>x(0 ) =  a ,w t ( T )  =  0 ,w y(0 ) =  0 and u>,(T) =  a . (3 .33 )

Th is  is equivalent to  finding the function wx( t ] )  and wv( t i )  which satisfy the integral 

equations given in (3 .2 7 ) and (3 .28).

Characteristic properties of the function k e rn e l K (U , t ) are

( 1 )  It is continuous in the square defined by the inequalities, 0 <  <i <  T

and 0 < t  < T .

( 2 )  Outside the diagonal, the kernel is the solution of the homogeneous 

equation

u ., =  0
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and

and satisfies the boundary conditions of equation (3 .33 ).

( 3 )  The Kernels are symmetrical and are denoted by

K*(t\  — r )  =  K r ( r  — t i )  

K , ( l ,  -  t )  =  K , (t  -  ( , ) . (3.34)

All of the properties of the kernel follow immediately from (3 .2 5 ) and (3 .26). The  

integral equations defined by equations

(3.27) and (3.28) are called FVedholm equations o f  the second kind as they have 

constant limits of integration.

Equations (3 .16) and (3 .2 0 )  are related as the solution of one requires the solution 

for the other. In fact from studying their forms one can deduce that they are reflections 

of each other and thus have solutions which are conjugate in pairs. For these conjugate 

time window pairs.

over the period 0 <  tx <  T .  This observation has also been confirmed by simulation 

studies made by the author.

Given this conjugate relationship between the input and output tim e windows it is 

possible to redefine equations (3 .1 3 ) and (3.16) respectively in the form

u>,(*i) =  wv(T  -  U )  and wy{T  -  tx)  =  wt (T  -  tx)

(3.35)
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and

(3 .36)

Such equations are V o lte r r a  e q u a tio n s  o f  th e  s e c o n d  k in d . However, analytical 

solutions of these integral equations are usually very complicated and for the purpose of 

this thesis a generalised numerical evaluation will suffice.

3.7.3 Numerical solution for wx(t\ )  and xvy(t\ ).

When the unknown functions also appears outside the integral sign one can numerically 

apply the method of successive approximations to  obtain  solutions to  the equations. 

Assuming the criterion is to solve for wx(t i )  in equations (3 .2 7 ) and (3 .3 5 ), the following 

evaluation steps should be implemented :

( i )  Evaluate the steady state input and estimated output correlation defined

by

¥’( ’■) =  g (.T )r„ (r ).

( i i )  Evaluate either the kernel K x{t\ — r )  if  (3 .2 7 )  is used, or the function

<p(T — r  — t\) if (3 .35) is to be used.

( i i i )  Evaluate the current approximation for the input window from either

or
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( iv )  On normalising the current input window estimate, apply the method 

of successive approximation and compute the error

The index t and i  — 1 are the current and previous estimates o f the input 

window to  be evaluated.

( v )  Repeat steps ( i i i )  and ( iv )  until an acceptable level of convergence e 

is obtained. Termination is accepted in the procedure if F  <  t. From  

experience e is found to be lO-1 0 .

( v i )  Finally compute wv( t t ) by making the substitution,

3.8 White noise input.

An exact analytical solution can be obtained when the input to the system x ( t )  is w hite,

i.e ,

{ 1 if v =  0
(3 .37 )

0 otherwise

Substituting this into equation (3.13) and subsequently in to equation (3.16) leads to,

t/>v(< i) =  wx(T  — t i )  for 0 <  * i  <  T

(3 .38 )

Similarly equation (3 .2 0 ) reduces to,

(3 .3 9 )
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where

X, =  X ,=  r  g \ t ) d t .  (3 .40)
Jo

A unique analytical equation in terms of ws ( t i)  can be obtained by substituting equation

(3 .39) into (3 .3 8 ) to give,

« . ( « . )  =  AJ ! T g \ t  -  I . )  f w , ( r ) g \ t  -  r ) ir d t .  (3.41)
J t 1 Jo

Similarly for the output window the result is

“ « ( ' l )  =  A j j f  '¿ ’ ( I ,  - t ) j  ">,(’• )« ’ (>•-< )d rd t (3 .42)

Changing the order of integration, leads to exact analytical solutions for the least mean 

square input and output window :

•» .(< .) =  i  V ' ( r )K ( t ,  -  r )d r  (3.43)
Jo

U>„(*1)  =  Xl  JQ wv( t )K ( t  ~  t\)dr (3 .44)

where

I
/«T02(* “  U)g2{t -  t )t/<for 0 <  t <  ti

(3 .45)

Sr 92(* ~  t i)92( t — r)dt1of ti <  t  <  T

and
K ( U - t ) =  K ( t - U ) . (3 .46)
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It should be noted that the difference between the above formulation for the white 

noise and that for the non-white noise cases, lies in the evaluation of the kernel. Equa­

tion (3 .2 5 ) contains knowledge of the cross correlation between the true input and the 

predicted (or postulated) output and enables the window to  conform to this shape. Al­

though equation (3 .46 ) also contains information on this function, it is well known that, 

for w hite noise, the cross correlation function is zero for negative lags and takes the 

shape o f the impulse response estimate for positive lags. It is not surprising therefore 

th a t equation (3 .46) is a function only o f the postulated impulse response.

As in equations (3 .3 5 ) and (3 .36 ) the least mean square input-output windows may 

be defined as Volterra equations of the second kind by writing :-

Having developed the theoretical work, it is necessary to consider some specific examples. 

T he evaluation is concerned with numerical computation o f the integral square error of 

the bias G t(jw ), i.e,

(3 .47)

(3 .48)

3.9 Examples.

where

G»(ju>) =  E  [ 6 n ( ju )  ] -  G (ju )

and the  integral error of the noise to  signal ratio N S xy (ju ) is,

/  N S n (ju)<Li
Jo
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for

NS„U») E  [ ♦ „ ( « ) ]
-  10 . 0 « )  l* •

E  [ « „ M l

Steady state input, output and cross correlation functions (for predefined tim e window 

pairs) are used to evaluate the expected value of the measured frequency response 

function and the least mean square error windows are compared with the

( i )  Do-nothing window,

( i i )  Bartlett window,

( i i i )  Hanning window,

( iv )  Hamming window,

( v )  Blackman window.

Comparison for least mean square windows is also made when the postulated system is 

different from the true system under investigation.

Three systems are chosen to illustrate the theoretical work developed and all contin­

uous transfer functions are mapped into their discrete equivalent via the bilinear trans­

formation.

Example ( 1 ) .

A first order filter and system with an open-loop transfer function

G j(s ) =  G .(s )
1

1 +  Tes

with impulse response

9 / ( 0  =  9 . ( 0  =
e x p (- i/ r c)

r .

where Te — 5 seconds. The observation tim e of T  =  30 seconds is chosen to be of 

the same order o f magnitude as the setting tim e of the system Gt (s ), w ith a sampling 

frequency o f F, =  1 Hz.
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Example ( 2 ) .

A second order filter and system with an open-loop transfer function,

G ,(s ) =  G .(s ) =
u 0

(s  +  a y  +  u>l

with impulse response,

0 / ( 0  =  0 . ( 0  =  exp ( —a t)  sin(u;0<),

where a  =  l/Te, Tc =  2.5  seconds, u>„ =  7r/2 and a sampling frequency o f F, =  4 Hz. 

The observation tim e (7 1 =  12.5 seconds) is again chosen to be of the same order as 

the settling tim e o f the system.

Example ( 3 ) .

A first order system G ,(s )  that is subjected to w hite noise input.

3.9.1 First order filter-system.

Figure (3 .5 ) shows the expected value of the measured frequency response for the least 

mean square error window when the postulated system g (t )  is assumed to  be the same 

as the true system g (t ).  Comparisons are made w ith two conventional windows (in this 

case, that of the Bartlett and Hanning). Frequency spacing o f l /3 0 H z  is given in order 

to compare points along the locus of the frequency response estimate.

Figures (3 .6 ) and (3 .7 ) are the respective bias square and the noise to  signal ratio 

plots for the windows described in figure (3 .5 ).

Figure (3 .8 ) shows the computed least mean square error input and output windows. 

It shows that the windows are reflections of each other about T /2 ,  and that the positions 

of their peaks are automatically chosen so that the position o f maximum weight, in the 

resulting cross correlation lag window, coincides w ith the the maximum o f the theoretical 

cross correlation function.

Table (3 .1 ) makes comparisons for the integral square o f the bias between the LMSE
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window and conventional windows, as well as that when the true system tim e constant 

is under estimated ( Te =  2.5 seconds) and over estimated (Te =  7.5  seconds) by 50% .

Figure (3 .9 ) show expected value of measured frequency response for the different 

estimates of the system time constant, and it is observed that even with such bad 

estimates of impulse responses, significant improvements in bias still result, see figure 

(3 .10).

Finally figure (3 .1 1 ) illustrates the effect on the tim e window with the different levels 

of a priori judgment.
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Figure 3.6: Square o f bias for first order filter-system .
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— Hanning W indow .
-  LSM E W indow .
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Figure 3.7: Noise to  signal ratio for first o rd e r filter-system .

......  B artlett W indow .
------ Hanning W indow .
----- LSM E  W indow
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Figure 3.10: Square o f bias for least mean square error windows with dif­
ferent levels of a priori assumptions.

.................  T c = 2.5.
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---------------T c = 7.5.
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Figure 3.11: Least mean square error input tim e windows with different 
levels o f a priori assumptions.
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Table 3.1: Comparison o f square error for differing window types, and 
accompanying factors o f improvement.
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3.9.2 Second order filter system.

Figures (3 .12) and (3 .13 ) show the expected value of the measured amplitude squared 

and phase response. Comparisons are made between :

( i )  Least mean square error window when g (t ) =  g (t ),

( i i )  Do-nothing window,

( in )  Bartlett window.

For this second order filter system arrangement, Do-nothing and Bartlett windows were 

used as they produced best estimates o f mean square error out of the other classical 

windows chosen for comparison. See section (3 .9 ).

In this case, Do-nothing was found to  be a better mean square error than the Hanning 

window. Figures (3 .14 ) and (3 .15) show plots of bias squared and signal to noise ratio 

for the  above windows. The optimum windows are shown in figure (3 .16 ). Figure (3 .17) 

makes comparison of bias with different levels o f a priori knowledge of the impulse 

response model. The Least mean square error windows evaluated for these are shown in 

figure (3 .18 ). Finally Table (3 .2 ) compares integral square of bias with accompanying 

improvement factors.

Based on results carried out in this section and simulation studies of other filter 

system arrangements, the following conclusions are made.

( 1 )  The use of LM SE windows significantly reduces bias and variance in the 

resulting frequency response estimates.

( 2 )  Factors o f improvement result from this new window over conventional 

windows range from 50 % to 900 % when using mean square as the error 

criterion.

( 3 )  Evaluating these windows based on an in exact a priori estimate, will still 

lead to significant improvements the mean square error of the frequency 

response estimates.
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Figure 3.12: Expected value o f amplitude response for second order fil­
ter-system .

G f(S ) =  G ,(S ) =  l̂ 0/((S +  a )2 +  ^ o )°  =  l/Tc. 

where T c =  5 and u>0 =  */2

---------------TVue am plitude spectrum.
...............  Bartlett W indow .
.................. Do-nothing W indow .

LSM E W indow  T c =  5.

107



< 
G

(jo
;)

Figure 3.13: Expected value o f  phase response for second order fil­
ter-system .

Gf(S) = G.(S) =  u„/((S + a )2 + w*)a = 1/Tc,

where T c =  5 and u>0 =  »/2

-------------- ‘ True phase spectrum .
...............  B artlett Window.
..................Do-nothing W indow .

LSM E  W indow T c =  5.
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Figure 3.14: Square o f  bias for second o rd e r filter-system .

G f (S ) =  G .(S ) =  a>o/((S + a )2 + u>2 )a  =  1/TC, 

where T c =  5 and uQ =  it¡2

............... B a rtle tt  W indow.
.......... - - Do-noth ing W indow .

. -LSM E  W indow  T c =  5.
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Figure 3.15: Noise to  signal ra tio  fo r second order filter-system.

G ,(S ) =  G .(S ) =  u .„ /( (S  +  o)> +  u>|)a =  1 /T C,

w h ere  T c =  5 and u>0 =  t /2

B artle tt W indow . 
Do-nothing W indow . 
LSM E  W indow  T c =  5.
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Figure 3.16: Least mean square error windows for second order fil­
ter-system .

---------------- Input w indow wx(t)
Output window wy(t)
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Figure 3.18: Least mean square error windows o f first order filter-system 
with different levels o f a priori assumptions.

..........  Te =  1.25, wo = 5ir/8.
= 2.50, Wq =  ir/2.

--------- Tc =  3.75, Wo =  3jt/8.

Window Type Integral error in bias Improvement
Do-nothing 0.01778 3.18
Bartlett 0.02960 1.93
Hanning 0.04017 1.42
Hamming 0.03145 1.82
Blackman 0.05718 1.00
LMSE Te =  1.25, wo =  5t /8 0.006656 8.59
LMSE Te =  2.50, wo = ir/2 0.009515 6.01
LMSE Tc =  3.75, wo = 3jt/8 0.007277 7.86

Table 3.2: Second order filter, system comparison o f square errors for 
differing window types, and accompanying factors o f improvement.
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3.9.3 First order system subject to white noise input.

It has already been mentioned that obtaining an exact analytical solution for the least 

mean square window, even for the most simple of cases, can prove to be very difficult. 

However, a parametric model has been formulated for the trivial case of a first order 

system subjected to  white noise input.

The LMSE windows evaluated are parametised using a first order trigonometric sum 

type window.

The trigonometric sum type window defined by

is used to minimise the difference between itself and the evaluated least mean square 

window, for varying T/Te. The optimisation used is a Nelder M ead simplex algorithm 

obtained in matlab w ith a precision of 10-B .

It was found th a t the coefficients of the trigonometric sum type window where of a 

fixed value with

w (t) =  £  crk cos(a kt +  fik) (3.49)
* = - i

where

i(T=U) ior U  ^  T ! 2

Ok =

for U >  T/2.

A  = -<*kU

<7— 1 =  <7i =  0.5 <70 =  0.0.

Substitution of these fixed coefficients in to equation (3.49) leads to

w(t) =  cos a j  ( t  — U). (3.50)
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The position the of maximum weight of the windows are

{K T  for the input window

(1 — K )T  for the output window

with

K  =  0.14628^ exp(-0.28823r/rc) + (1 -  exp(-0.17040r/rc))/2.

Figure (3 .1 9 ) is a mesh plot of the parametised input window as a result o f varying Tc 

from 1 to  100 whilst keeping the record length constant at T  =  100. The output window 

is identical w ith the input window with t replaced by (T - t ) .

W e  observe that asymptotically as T/Tc — ► oo the window tends to

«>*(0  =  «»»(*) =  sin ( r t/ T ) .  (3 .51)

This window is in fact known as a Papoulis window.

Papoulis describes this as being minimum mean square error for systems requiring 

high resolution spectral estimates [4]. It is interesting th a t the above analysis agrees with  

conventional practice in that for long observation tim es the input and output window 

become identical and are symmetrical. This has been demonstrated for a first order 

system subject to  a white noise input. In fact further simulation studies have shown that 

the tim e window pairs for higher order systems, subject to  white noise inputs, and large 

observation times, lead to equation (3.51).
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100

Figure 3.19: Param eterised least mean square input windows for first order 
system .
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3.10 Summary

In this chapter the author has shown that designing tim e and correlation windows based 

on priori knowledge of the system under analysis has lead to significant reductions in 

the statistical errors of the measured frequency response estimate. When comparison is 

made with conventional windows, such factors of improvement are shown to range from  

2 to 10. It is also shown that underestimating or overestimating the postulated impulse 

response structure still results in comparable improvements. Th e  theorems developed, 

are an attem pt to  introduce a firm and more robust mathematical formulation to the 

design of tim e and correlation windows for non-parametric spectral analysis. As a result, 

it makes redundant the study of leakage in designing optimum and sub-optimum spectral 

windows. In the next chapter procedures are produced by which this technique can be 

adapted to automatically design time and correlation windows based on single realisation 

of input and output records.
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Chapter 4

Least mean square error windows

(I I )

4.1 Introduction.

In this chapter, simulation results o f frequency response estimates ( based on single 

realisations input-output records ) is analysed and comparison o f these estimates are 

made between LMSE windows and conventional windows.

These comparisons will be given for :-

( 1 )  The indirect method, in which frequency response estimates are com­

puted from windowed sam ple covariance functions.

(2 )  The direct method, in which frequency response estimates are based on 

the segmental averaging o f input-output records.

Section (4 .2 ) describes the procedure by which frequency response estimates based on 

the indirect method are evaluated (1]. The definitions o f biased covariance functions are 

given based on N samples of an input-output record, from which smoothed (or windowed) 

auto and cross spectral estimates are computed. The Gain and phase of the estimate, 

with accompanying confidence intervals, coherence and output noise spectrums, are also 

defined.
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The empirical procedure for determining a suitable bandwidth for the  spectral win­

dow, which has been extensively described in [1] and [4], is summarised in section (4 .2 .1 ). 

Section (4 .3 ) compares directly, the frequency response estimate from  windowed co- 

variance functions computed from a single realisation input-output tim e series. The 

comparison is made between the Tukey window and LM SE windows derived in chapter

(3)
Section (4 .4 ) describes the method of frequency response estimates based on 

non-overlapping segment averaging. In section (4 .4 .2 )  comparison o f this estimate 

(based on the Hanning and LMSE windows) is m ade of windowed segments from a 

single realisation input-output tim e series.

It  should be stated that in the analysis undertaken in chapter (3 ) ,  the LM SE windows 

were evaluated for the noise free case. An attem pt (so far unsuccessfully) has been made 

to  incorporate a measure of output noise into the analysis and is still a subject of further 

research by the author.

4.2 Frequency response estimates based on sam­

ple covariance functions.

One of the most established procedures of time series analysis is the m ethod of power 

spectrum analysis through windowed sample covariance sequences. T h e  importance of 

this method of power spectrum estimation, o f which a schematic account is given in [5], 

fu rther increased when it was extended to the estim ation of frequency response func­

tions through estimates of auto and cross power spectra. The secret to  the success of 

this method lies entirely in the application o f the windowing procedure. This transforms 

the original sample covariance sequences into windowed covariance sequences by multi­

plication with an appropriately chosen numerical factor that constitutes the correlation 

window (1). Thus, the effectiveness of the windowing procedure is most evident when 

th e  appropriately windowed sample covariance sequences provide a better estimate of
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the covariance functions than the original sample covariance sequences.

When viewed as a method of estimation o f a covariance sequence, this windowing 

procedure is obviously a very naive one, unless it is supplied with some rules for the 

adaptive selection of the correlation window. Using information supplied by the  observed 

sample covariance sequences demonstrates the significance of LMSE window selection 

for this method of non-parametric frequency response estimation. Figure (4 .1 )  is a 

schematic presentation by which LMSE tim e windows are evaluated from computation  

of the sample cross covariance function and knowledge of the postulated impulse response 

of the system. In section (4 .3 ), comparison o f frequency response estimates between 

LMSE window selection and the Tukey window will be given. The Tukey window is given 

for comparison in section (4 .3 )  as this was extensively used by Jenkins and W atts  in their 

evaluation of frequency response estimates from sample covariance function [1].
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= ! for m = 0. 1...V/

Figure 4.1: A  schematic for the evaluation o f  LM SE  tim e windows based 
on single realisations o f  an input-output record.
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All theory so far has been formulated with the assumption th a t the record x( t )  and 

y(t)  are continuous. In practice these records are discrete and a digital procedure is 

required since most spectral analysis is implemented using computers. This sampling 

process is well documented and a detailed analysis of its effects on correlation analysis 

is given in [2 j.

Let the sampling records o f the input and output records be represented respectively 

by xt, t =  1 ,...,7 V  and yt, t =  1 at a sampling interval A ,  and have mean

values given by
1 N i  N

X =  N p , X' * n<l *  = N p V‘

The biased auto and cross-covariance functions are defined by

£ . . ( * )  =  £  E * ( x .  - * ) ( * . + »  - * ) ,  o <  t  <  ( N  -  1)

f  Z > -  -  » ) (» ■ «  -  5 ) .  o <  *  <  (AT -  1)

and

f EÜ7* (* . - * ) ( * ♦ » - « for 0 < k <  ( N  -  1)

for —(N  — 1) <  k <  0.

Another covariance function in common use is obtained by replacing w ith ]yT|£j 

in the above equations. The latter are unbiased covariance functions and would seem, 

at first, to  be the better choice. However, the biased estimator has a lower variance and 

in general will produce a lower mean square error [1].

Computing discrete Fourier transforms of the windowed covariance functions, leads 

to the smoothed auto and cross spectral estimates

* . . ( / ) =  A  e ' <"~(‘ )i..(*)raP<->2»/ ‘ A ), 0 < / < - i r - ,  (4.1)

1 2 2



(4 .2 )
* — < *-*>

and

fc= -(M -1)

where wxx(k),  wvy(k),  w ^ k )  are th e  windows on the correlation function with trun­

cation point M that are only defined at discrete tim e points u =  kA.

Its  has been suggested in [3] that the measured spectral estimates should be com­

puted at values of frequency corresponding only to /  =  0 , 5^ ,  j£ .  However, in

[1], it is stated that such frequency spacings are normally too great and the spectral 

estimates should be evaluated at a fraction of this spacing. For simulation studies un­

dertaken in [1], frequency values are computed at a spacing of where K is 2 or 3

times M . A similar procedure will also be adopted by the author.

Defining the real and imaginary components of the smoothed cross spectral estimates

leads to the smoothed gain, phase, square coherence, and output noise power spectra,

! „ (/ )  =  *  & „ ( , / ) )  and 3 „ (/ ) =  3 [ R , , U ) \

and

*»</)« JU /X l-T ii/)).
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Jenkins and W atts [1] have studied the sampling distribution of frequency response esti­

mators, and have shown that the function (7?*r | T2rv — Gty \ •* approximately

Fisher distributed. The approximate confidence interval (100 (1 — a ) % )  for the gain and 

phase estimates were shown to  be

is the number of degrees of freedom associated with the smoothing of the spectrum 

spectral estimates and fj,„_a(l — a) is the upper 100 (1 — a)% point on the F 2i„_3 

distribution.

In the indirect method of spectral analysis, the window closing procedure, chosen by 

suitable truncation points M , will adjust itself to the local smoothing properties of the 

frequency response function. However, the window carpentry technique (i.e. the most 

appropriate shape for the window) is chosen in an inexact manner.

An advantage of LSME windows is that this information is readily evaluated from 

the postulated system characteristics. As any optimum window will inevitably be a 

function of the unknown system characteristics, this does not seem too surprising. For 

this reason, it is suggested that the grey box methodology implied by LMSE windows 

will always yield better estimates than any previously developed non-parametric method, 

as was shown to be the case in chapter (3 ) .

and

The quantity
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4.2.1 Window closing.

The technique of window closing involves computing windowed spectral estimates with 

an initially large bandwidth and then reduction of the bandwidth until significant and 

relevant features in the frequency response estimate are observed [1]. The optimum  

truncation point M is thus a function of both the frequency response estimate and the 

window used. This optimum value is evaluated in [4] to  be

M U / )  -  ( 4 M ' «  <>

where

p l n  1<PC ..(/) , d G „ ( f )  d R ,'U )  1

W> 2 d P  4 f  ' d f  « . . ( / ) '

M '  =  / *  M J =  / _ *

Here, as M  increases, the frequency window Wxy( f )  becomes narrower and M\ decreases 

as A /j increases. If  Wxy( f )  is wide, then a greater number o f frequencies will be weighed 

together, which should lead to a small variance in 7jxy( f ) .  A t the same time a wide win­

dow will involve frequency estimates further from the frequency o f interest and therefore 

cause a large bias. The frequency dependent optimum value Mopt(f) ,  however, cannot 

be realised, since it contains several unknowns. A typical empirical procedure would 

be to start by taking M =  N /2 0  and then compute and compare plots for corresponding 

estimates o f ^ xy( f ) for various values of M. On increasing M more detail in the estimate 

should appear due to a decreased bias but this will also result in an increased variance 

(spurious, random peaks). The procedure should be halted when emerging details in the 

frequency response estimate become predominately spurious.

4.3 Simulation studies.
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W h ite  noise un corre la ted

w ith  w (t)  N (0 , l /4 )

Figure 4.2: Schematic o f  experim enta l simulation fo r  frequency response 
estim ates based on windowed sam ple correlation functions.

In this section comparison will be made between LSME and conventional windows using 

the developed windowing procedure in [1],

Figure (4 .2 ) represents a linear second order filter system chosen for the experiment 

w ith  w„ =  x /5  and £ =  0.4. The input x ( t )  to  the system is obtained by passing white 

noise N (0 ,1 ) through the filter. Similarly, the output y ( f )  is obtained by passing x (f )  

through the system and adding the filtered noise input z( t )  to  it.

A  total observation period o f 400 seconds was chosen with a sampling interval A  =  

0.5  second. The first 100 samples are not considered in order to allow for the initial 

transients, thus leaving a total of N = 7 0 0  samples for analysis.

4.3.1 Computations and display

( a )  The sample auto and cross covariance functions are computed for trun ­

cation points M  =  5 0 ,6 0 ,7 0 ,8 0 ,9 0  and 100.
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( b )  The two auto spectra HIX( f ) ,  Hyy(f) .  the noise spectra 7 ? « ( / ) .  square 

coherence 7 ^ ( / )  and the gain and phase spectra based on aligned covariance 

functions are computed for the range o f truncation points in (a ) .

(c )  The gain estimate on a logarithm ic scale at each value of M is plotted 

against frequency (H z). The phase, square coherence and output noise 

spectra are all plotted against frequency (H z).

( d )  All gain and phase plots are accompanied by 95 % confidence intervals 

and their true theoretical values.

4.3.2 Computation o f spectral estimates for Tukey window.

The auto, gain, phase, coherence, and noise spectra for the different truncation points 

M are based on a Tukey window

U>*r(fc) =  ^ y y ( k )  =  «*>*»(*) =  ^ ( 1 +  COS ̂  ) for -  M  <  k  <  M,

which is applied directly to the input, o u tp u t and cross covariance functions. Figure 

(4 .3 ) shows the sample auto and cross correlations functions of the simulated system 

for M  =  60. Alignment between this w indow and ¿»„(r) is implemented before spectral 

analysis for reasons which were given in chapter (2 ) ,  section (2 .8 .2 ).

Evaluation o f  results.

In the window closing procedure, the gain estimate showed significant changes on 

increasing M from 50 to 60 but little change on increasing M further. Figures (4 .4 ), (4 .5 ) 

and (4 .6 ) show plots of gain, phase, square coherence and noise spectra for M  =  50 ,60  

and 100. The decision to accept M  =  60 was based on the phase estimates, as these 

were found to fluctuate violently above M  =  60, for /  >  3 .5Hz.
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Figure 4.;}: Sample auto and cross covariance function based on M =  60.
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Figure 4.4: Tukey estim ates o f gain, phase, square coherence and output
noise spectra o f  simulated system  for M  *  50.
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Figure 4.5: Tukey estimates o f  gain, phase, square coherence and output
noise spectra o f simulated system  for M  =  60.

130



I <
*'*

,(>
»)

 I

Gain Phase

Square Coherency Output noise spectra 
0.251-----------------.--------■—

0.2

0.15

0.1

o.o5 - ;

O'---------■ --------
0 2 4 6 8

K H z )

Figure 4.6: Tukey estimates o f  gain, phase, square coherence and output
noise spectra  o f  simulated system  fo r M  =  100.
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4.3.3 Computation o f spectral estimates for LM SE win­

dows.

In the schematic for evaluating LM SE input-output time windows of figure (4 .1 ), two 

requirements are needed :

( i )  An estimate of the cross covariance function,

( i i )  The postulated impulse response o f the system.

The first requirement can easily be evaluated by computing the sample cross covariance 

function between the xt and yt.

There exist two options for evaluating an impulse response directly from its measured 

frequency response data. These are

( 1 )  To compute (as in [1]) the impulse response by evaluating the inverse 

Fourier transform of the frequency response, i.e,

for t =  0 , A , 2 A , ..., M A .

( 2 )  To implement a least square analysis that performs a best fit on the 

frequency response data.

In practice method ( 2 )  is preferred because o f its ability to perform such an analysis 

over any desired frequency range or spacing. This enables any undesirable portion of the 

frequency response data to be ignored or given a reduced weight in the analysis. Figure

(4 .7 ) shows the impulse response estimates o f the above two methods for the Tukey 

window at M  =  60 and the least square curve f it  based on the frequency response data 

over the range

Neither method gives an exact representation o f the true impulse and both lead to an 

over estimation o f the damping factor. Th e  principles of least square curve fitting  to

0 <  /  <  3 .5 (Hz) .
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frequency response data have been extensively studied and documented in [5]. Using the 

above estimates as postulated impulse responses in the computation o f LM SE windows, 

both the resulting frequency response estimates were found to be superior to  that of the 

Tukey window, w ith the impulse response estimate of method (2 ) yielding slightly better 

results.

This was also found to be the case at different truncation points M  and different 

filter system arrangements. The simulation results presented in this section however are 

on estimates o f the impulse response obtained by method (1 ).

Figure (4 .8 ) shows the LMSE windows evaluated for M  =  60 after alignment with 

the sample cross covariance function crv ( r )  superimposed. Figures (4 .9 ) and (4.10) 

show plots o f gain, phase, coherence and noise spectra for M  =  50 and 60 using aligned 

LMSE windows on the cross correlation function.

E v a lu a t io n  o f  re su lts .

It is evident that the evaluation o f the spectral estimates leads to  a substantial 

reduction in variability when comparison is made with the Tukey window estimates of 

figures (4 .4 ) and (4 .5 ). By strictly abiding with the window closing procedure in [1], 

M  =  80 was chosen as the best LMSE window (see figure (4 .1 1 )) .

From these and numerous simulation studies of other filter system arrangements, 

two conclusions are made

( 1 )  Least mean square error windowing reduces some o f the undesired spu­

rious details.

( 2 )  Th e  reduction in variability, allows for larger truncation points M  and 

so leads to  reduced bias in the estimate.
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Figure 4.7: Impulse response estim ates based on inverse Fourier transfor­
mation and least square curve fit for the Tukey w indow estim ate o f the 
frequency response function based on M  =  60.

. . . . . . . . . . . . . . . .  T u k e y  w i n d o w

—  —  —  —  L e a s t  m e a n  s q u a r e  e r r o r  w i n d o w  u \  ,  I  f c  I  =  “ I

• — • — • — Least mean square error w i n d o w

-------------  Normalised sample cross covariance function f* y(k)

Figure 4.8: Least mean square error window based on postulated impulse 
response from the Tukey estimate at M  =  60.
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Figure 4.9: Least mean square error w indow estim ates o f  gain, phase,
square coherence and output noise spectra o f  sim ulated system  for
M  =  50.

135



IW
V

; I



I G
„(

>u
»)

 I

Square Coherency O utput noise spectra

HHz)

Figure 4.11: Least mean square error w indow  estim ates o f  gain, phase, 
square coherence and output noise spectra o f sim ulated system  for

M  =  80.
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4.4 Estimation of frequency response functions 

by segmental averaging.

The estimation of frequency response functions can also be based on averaging over 

short, modified periodograms. An advantage of this method is that it involves fewer 

computations than the direct method. The procedure has been extensively documented 

in (6].

4.4.1 Method o f segmental averaging.

Let * ( * )  and y ( t )  , * =  0 ,1 ,2 , N  — 1 represent samples of the input and output from  

a stationary process G ( ju ) ,  \ u  |<  7 r /A .

By taking L segments (each o f length M ), we can define as follows

* » ( * )  =  *(* ' +  M ( n  -  1 ) )  and y „ (i) =  y ( i  +  A /(n  -  1))

for I =  0 ,1 ,2 , . . . ,  M  -  1 and n =  1, . . . , £ .

Here we are assuming that L is such that the condition M L  =  N  is true. The L 

segments will then cover the entire records of x ( i )  and y(*').

Selecting the appropriate input-output time windows,

u)x ( t )  and «>„(*)» f ° r * =  0 ,1 ,2 , . . . ,  M  — 1

forms the sequences

*» (« ')*" ,(* ) and y„(i')u>,(i)

for i =  0 ,1 ,2 , . . . ,  M  — 1 and n = l , . . . , L .
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Discrete finite Fourier transforms of the above windowed sequences gives

X „(fc) =  T7 Y  *»(<)«"*(«) exp (—>2*rr»t/A /) (4 .5) 
™ 1=0

and

for it =  0 ,1 , . .

Y , [k )  =  -T7 ¿  ( - j 2 k n i/ M ) .  (4 .6 ) 
M  i=0

M
*» 2 ‘

From equations (4 .5 ) and (4 .6 ), the modified periodograms of the input and output

are given by

f r „ M  = —  1 *.(*) |J
9*

ir„ («,) = ^  | Y . ( t )  |' 

K , (M ) = —  *„(*)>;•(*>
9*v

where
1 « - I

™ i=0

1 M - l

= s  5>.<iK (0.

and
2nk M
AM 1 = 0,1....T '

Finally by averaging the modified periodograms evaluated from the segments, 

obtain the smoothed modified periodograms

T U < * ) - x £ * Z t o » ) .
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TKvM =  j  J2 f l i i ’ t“ * ) .

~R*,Uuk) =  j  E  * y O '" * ) -

The above equations lead to expressions for frequency response and coherence estimates 

defined respectively by

S*’0u’‘)-Tu^r
and

T ì.(w » )  - l * „ ( M )  l1

4.4.2 Example o f frequency response estimate based on seg­

mental averaging.

White noise uncorrelated 
with x(t) N(0,l/4)

White noise input 
N(0.1)

x(t)

SYSTEM n(t)

/k
s 2  +  2 (,'u/n s  +  o i 2 y

Output

Figure 4.12: Schem atic o f experim ental sim ulation for segm ental averaging.

Figure (4.12) represents a linear second order system chosen for this experiment with 

wn =  x  and £ =  0.4. The white noise input N(0,1) is passed into the system and the 

output is then corrupted by additive white noise N(0,0.25) that is uncorrelated with x ( f ) .  

W ith an observation tim e o f T  =  1600 seconds at a sampling interval o f A  =  0.025, 

the corresponding input and output records are then divided into L  =  250 segments of 

length M  =  256. From figure (4.13) we observe th a t M A  =  6.4 is chosen so that its
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value is o f the same order of magnitude as the system settling time.

From the input and output records that result, the method of segmental averaging is 

applied to give smoothed modified periodograms at a frequency spacing of u ,  =  0.9856 

radians per second.

Figure (4 .14) shows plots of frequency response estimates based on the Hanning and 

LM SE windows. The postulated system is computed by the inverse Fourier transform of 

the frequency response estimate using the Hanning window. Figure (4 .14) makes com­

parisons between the square o f error in the resulting frequency response estimates. Both 

plots are shown for the first 8 harmonic frequencies and figure (4 .13), is accompanied 

by the true system frequency response.

E v a lu a tio n  o f  re s u lts .

The coherence plot in figure (4 .14) further emphasises the superiority o f LMSE 

windows. W e observe that whilst these windows show dramatically improved coherence 

estimates at low frequencies, at high frequencies, the Hanning (which in practice gives 

exceptionally good estimates,) does not differ significantly from the estimates based on 

the LM SE windows. Finally figure (4 .15) shows the tim e windows evaluated for the 

segmental averaging process.
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0.06 System Impulse Response

Figure 4.13: Impulse response m odel o f  system  under investigation

--------^ --------------------------------  True Value.

A  Hanning window estimate.

□  Least mean square error window estimate.
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I C
iM

Square Error

Figure 4.15: Square o f  error between estim ates and true frequency re­
sponse.

Square Coherence

Figure 4.16: Com parison for coherence estim ates ot Hanning and Least 
m ean square error windows

143



L e a s t M e a n  Square E r ro r  W in d o w s

Figure 4.17: P lo ts  o f  Least mean square error and Hanning windows.
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4.5 Summary

In this chapter a more generalised schematic was introduced to design time and cor­

relation windows based on single realisations o f input-output records. These windows 

are robust and are found not to vary significantly for different realisations of the same 

system. The advantage of this method is apparent in that it allows engineers to  design 

optimum windows which are based wholly on the input-output record available. As a 

result it removes any uncertainty which may exist in choosing the numerous forms of 

other classical windows. In the next chapter, window carpentry is again used to design 

tim e windows for power spectral analysis. T h e  example used is taken from ambient 

response data of the Humber Suspension bridge and is shown to further emphasize the 

significance of the Papoulis window.
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Chapter 5

M odelling o f spectral estimates 

from  high Q bridge dynamics.

5.1 Introduction

Careful mathematical modelling is always required in the design of modern suspension 

bridges, as these models are used to predict free vibrations and asynchronous excitation  

responses [1]. However, in order to validate any assumptions made in the m odelling and 

accuracy of the model parameters, full scale testing procedures need to be undertaken. 

Such tests are usually in the form of

( 1 )  Measurement of dynamic responses from ambient excitation.

( 2 )  Forced vibration response measurement.

The term  ambient is used to describe all forms of uncontrollable inputs such as excitation  

caused by wind, waves and vehicle vibration.

This chapter is concerned with modelling power spectral data computed from am bient 

response data of the Hum ber suspension bridge.

To investigate problems that arise in fitting such models to the auto power spectrum , 

consideration is given to  the over-estimation of the damping factor £ due to 

( i )  The finite length of data given for analysis.
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( i i )  The frequency resolution at which th e  spectral data and modelling pro­

cedure is performed.

( i i i )  Th e  number of averages that are performed on the spectral data to  

reduce variability, in order to produce smooth spectral estimates for the 

model fitting procedure.

( i v )  T he type of time window that is applied to the ambient response before 

spectral analysis in order to reduce th e  effects of spectral leakage due to 

this finite length of data.

To reduce the above effects we will

( a )  Investigate the concept of the integrated power spectrum in order that 

the modelling procedure is implemented with the highest possible fre­

quency resolution based on the data.

(b )  Review the use of tim e windows in order to achieve minimum bias in 

the spectral data.

Main advantages of ambient vibration testing are :-

(a )  There  is no need for eccentric mass excitors or hydraulic actuators, 

as these simplified test procedures require the use of data acquisition 

equipment only. As a result they are less disruptive to normal operations 

in the structure.

( b )  As data is analysed, it is easier to return to  the structure to  run additional 

tests.

(c )  Advances in computer hardware and software makes it possible to ob­

tain rapid on-site multi-channel spectral analysis, thereby reducing the 

complexity of the systems identification problem for the engineer [1].

The main disadvantage of this method is th a t the non-stationary random process 

of the excitation and the extraction of model properties is made more difficult by the 

varying and sometimes negligible participation o f some structural response modes [4].
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In the majority of cases, some knowledge of mathematical structure of th e  unknown 

system is available and the problem of system identification becomes that o f determin­

ing unknown parameters within the structure in accordance with a stated identification 

criterion.

5.1.1 General comments on the testing and modelling of 

large structures.

The fundamental motivation for testing large structures is to obtain information which 

will help to produce in an economical manner, structures which are safer for their in­

tended function. More specifically, one may wish to verify or improve the modelling or 

analysis techniques. Knowledge of certain characteristics is often imperative, and such 

characteristics as damping factors or nonlinearities which are difficult to predict by ana­

lytical means, often play an important role in determining how the structure will behave 

under loads. Thus testing can provide a signature of the system which can be used to 

identify changes in the system resulting from damage caused by severe loads such as 

earthquakes, hurricanes and fatigue damage [2].

The system identification problem can be divided into three parts [1] :

(1 )  SYSTEM  STRUCTURE ID E N T IF IC A T IO N - This is the selection from experience 

of differential equations (or transfer functions) for the assumed model, from which 

unknown parameters within the structure may be determined.

(2 )  CRITERIO N FU N C TIO N  ID E N T IF IC A T IO N - The mathematical criterion which is 

optimised in order to accomplish identification and the goodness o f fit of the models 

response to the actual system inputs.

(3 )  S Y STEM  PARAM ETER ID E N T IF IC A T IO N - The alogrithm used to adjust and 

identify the unknown parameters in which the system identification criterion is 

minimised.
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5.2 System identification structure.

The first step in the identification scheme is to  simplify the representation of the sus­

pension bridge model structure. Initially the non-linearities in the system and its time 

dependent characters are often ignored [1]. As a result, in the analysis it is assumed that 

the structure is linear w ith constant coefficient differential equations [2j. Th e  formulation 

can be further simplified by the fact that large bridge structures exhibit light damping 

factors [3], which allows identification to be typically reduced to finding a system's lower 

natural frequencies and modal damping factors.

Given the above assumptions, this identification scheme ( based on a system of light 

damping and multiple degrees of freedom [1]), can be closely approximated by a single 

degree of freedom system w ith an appropriate natural frequency and damping factor in 

the region near each o f the system’s natural frequencies.

5.3 Criterion function identification.

The fundamental relationship which enables spectral analysis to be used in estimating a 

system’s frequency response is given by

* w (w )  =1 G (ju )  |3 P „ ( u/) (5 .1 )

where

Prx (u>)is the power spectral density of the input to the system,

G (ju )  is the frequency response of the system,

Pyy(u))i* the power spectral density o f the output o f the system.

The most severe restriction in the use of this formulation is that the system must be 

linear with constant coefficients and the response must be stationary and ergodic [2]. In 

equation (5 .1 ) the ratio Pxx(u)/Pyy(u) provides the desired estimate for the amplitude 

squared of the frequency response.
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In the analysis of the Humber suspension bridge / ’« (u ; )  cannot be measured accu­

rately, but as P«(u>) can be assumed to be constant in each o f the regions surrounding 

the natural frequencies o f interest, the magnitude o f the frequency response can be 

obtained on replacing it with a multiplicative constant [3].

The error criterion used in the modelling of such data is the  integrated error between 

the measured and modelled output power spectral data around each natural frequency 

o f interest

The parameters u>2 and oj\ represent the upper and lower lim its o f integration bounding 

the natural frequency o f interest.

Typical transfer function models chosen are of the form

where K ,  C and wn are the gain, damping factor and resonant frequency respectively. 

To fit these models to  the resulting power spectral data it is assumed that

( 1 )  the exciting force spectrum is flat over the frequency range of interest,

( 2 )  there exists minimum cross coupling (or interference) between successive

(5 .2 )

(5 .3 )

(5 4 )

frequency modes.

For equation (5 .3 ) the output power is readily evaluated and gives

(5 .5 )
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The object here is to relate the characteristics of the measured spectral estimates 

to the structural parameters ( K, u»n , Ç )  by minimising the error function M e in 

equation (5 .2 ). This least squares curve fitting  procedure can be implemented with 

any optimisation package. A Matlab Optimisation Toolbox has been written by Bangor 

University (W ales) and although not commercially available, the author would like to 

take this opportunity to thank Professor P J . Fleming and his group for perm itting the 

use of this package.

Another error criterion, proposed by Professor J.L. Douce, is minimum integrated 

square error between the measured and modelled cumulative spectral data

This criterion is believed to  be reliable in the identification scheme; as for record lengths 

T , significantly larger than the systems settling time, large fluctuations in the measured 

spectral estim ate will be effectively reduced by its averaging out (or smoothing) effect.

In previous analyses [3-5], minimisation o f equation (5 .2 ) has been used to model 

the measured spectrum density around the natural frequencies o f interest and in order 

to reduce large fluctuation (variability), smoothing o f the spectral estimate is achieved 

by segmental averaging o f the response data [2] , or by averaging unsmoothed spectral 

estimates over frequencies [5].

The curve fitting procedure adopted has been designed for unsmoothed spectral 

estimates obtained from computing the Fast Fourier Transform o f the response data. 

Reliable initial estimates for model parameters are always required in order to  improve 

the efficiency o f any least squares curve fitting  procedure and a review o f this will be 

made in section (5 .4 .1 ).

(5 .6 )

The cumulative spectrum is defined by

I P „ ( u )  =  J~ (5 .7 )
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The advantages o f this procedure are th a t bias errors associated with smoothed spec­

tral estimates are reduced, maximum frequency resolution is obtained and the statistics 

of each spectral estim ate are well defined enabling a criterion to be developed for the 

selection of the analysis interval [1]. Also the data can be fitted directly to  higher order 

systems thus allowing for closely spaced spectral peaks to be identified [2],

In this chapter, both curve fitting criteria are applied to the Humber suspension bridge 

data and they are found to yield estimates differing consistently from earlier results [4]. 

In particular estimates of damping factor are shown to be very much smaller than those 

based on smoothed spectral density measurements.

5.4 The model cumulative spectrum and its prop­

erties.

Performing the integration in equation (5 .6 ) for £ <  1, leads to the cumulative spectrum

I P n (u )  =  Co(sin( — ) log(^j-
u 2 +  2u>nu) c o s (a /2 ) +  u;jj

+  2cos( —) a r c t a n f- -------- — j—
' 2  l 2tdnU>8in(or/2)

2o>„u; cos( q / 2 ) +  u i2
,2 _, ,a

] )  +  C (5 .8 )

C  = / ■ t Q\\ rw ? +  2w»‘*,i  c o s (a /2 ) +  a ;*, C0( . ,n ( - ) lo g [u t?_ ^ iCo<[(a/2) +  ^ ]

— 2cos(-) arctanf------— . . . .
v2 ; l2u>„u>i sin(o/2) ]),

K.w„
Co  =  ■■ . . , q  =  arccos( 1 — 2C2) and Ç <  1.

4 sin(a)

In practice, performing a least square curve fit on the cumulative spectra will lead to a 

superior estimate for the following reasons
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(1 )  The cumulative spectrum by definition performs a smoothing operation 

on the raw auto spectral data and thus will lead to a more consistent 

estimate of K , un and However, this consistency will be subject to 

the particular realisation.

(2 )  The effects of nearby resonant modes will be to broaden the bandwidth 

of the spectral peak under consideration. This problem can be reduced 

(although not eliminated) by fittin g  the cumulative spectra in equation

(5 .8 ) over the range

OJ- <  u> <  u>+,

where u>_ and u>+ are the half power bandwidth frequencies.

(3 )  From straightforward visual inspection of the cumulative spectra it be­

comes easier to make estimates o f u>n ,u;_, and u>+ in order to define the 

frequency range over which th e  model is to be fitted  and so produce 

initial estimates for the damping factor.

5.4.1 Initial model parameter estimates.

In any optimisation routine, reliable initial estimates o f the model parameters are required 

to assure that the global minimum is found. A  brief explanation (as found in [1]) will be 

given in this section to the methods used in providing initial estimates o f gains, damping 

factors and resonant frequencies that are evaluated at each resonant mode.

Initial gain estimate. Employing a least square estimate, the estimate K  is chosen in 

such a way that the loss function

L / =  /  I -  A»M I ajJu/i

is a minimum. Pvv(u )  and Pyy{u) are th e  respective experimental and modelled auto  

spectral data around the resonant frequency o f interest. This leads to  the common least
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square notation

f,

Initial damping estimate.

For small values of damping, computation shows the 'Log' te rm  to  be much smaller 

than the ‘Arctan’ term in equation (5 .8 ). A t the resonant frequency u> «u > n, an initial 

estimate o f the damping can be evaluated by setting the ‘Arctan’ te rm  in equation (5 .8 ) 

to zero, i.e,

u 1 — 2u>un sin(^) — w* =  0,

which leads to the solution

(5 .9 )

In particular, for values of damping, £( <  0.1 ),

8«n(|) «C, *nd C2 «  C,

and equation (5 .9 ) can be approximated by

v  =  uin(l +  £). (5.10)

A t the resonant frequency (u> =  u>„),
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and at the half power frequency u± =  u>±/u>3 is given by

1 1
8C2 ua — 2u(2(3 — 1) +  1 (5.11)

has solution u =  ± 2 £ . 

From equation (5.10).

( ~ ) 2 = l ± 2C + ca* (5 .12)

Assuming that C2 «  0, equations (5 .1 1 ) and (5 .12) leads to an initial estimate for the 

damping factor

Initial estimate of resonant frequency. Initial estimates of resonant frequency can be

readily obtained from straight forward visual inspection o f the auto spectral or cumulative 

spectral data. On the auto spectral data, this estimate is found from the spectral peak 

and at each resonant mode, and on th e  cumulative spectral data, the estimate is obtained 

from the approximate point of inflexion around each resonant mode.

5.5 Simulation studies.

To illustrate the advantage of implementing this least square curve fitting procedure on 

the cumulative spectrum, consider figure (5 .1 ) for n =  5.

The gain,damping and resonance frequency for the 5 modes are set to

K  =  [0 .500 ,0 .600 ,0 .2 50 ,0 .130 ,0 .120 ],

C =  [0 .0250,0 .0398 ,0 .0136,0 .0109,0 .0098], 

w,, =  [0 .425 ,0 .071 ,0 .1 00 ,1 .356 ,1 .700 ],
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, . , mode 1 ,
G i(ju j) ------------f  I G\(ju>) |2 du ■

G i( ju i) I G j( ju )  |2 du ■

A m bient

In p u t
G3( ju ) I G3( ju )  I2 du £

~ r ~

Gn( ju )  ------------f  I G n (jij)  I2 du

C um ulative  

Spectral M odal

Figure 5.1: Schematic o f an n-m ode cu m u la tive spectral m odal

These parameters are chosen to best illustrate (visually) the type of power spectral 

structure observed from the Humber suspension bridge data  taken from [4].

5.5.1 Method.

( 1 )  The overall transfer function of the system is evaluated by summing the 5 modal 

transfer function models. This gives

, __________Qgs8 +  a i s 7 +  ags6 +  a $ s s +  a«34 +  0 3 s 3 +  a 3s 2 +  Q|S +  ap_______

5  — b io s 10 +  69s9 +  f>S38 +  b jS 7 +  ¿83*  +  bS3> +  b4s 4 +  6 3 s3 +  6j 32 +  b i3 +  ¿>0

(5.13)
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where

a8 =  0 .157 , a T =  0.00683, a« =  0.0818, a» =  0.00265, 

a 4 =  0 .0121, a3 =  0.000258, a2 =  0.000547,

а , =  0 .00000569, ao =  0.00000617.

and

б, 0 =  1,6» =  0.0549,6» =  0 .7 4 3 ,6 , =  0.0322,

6e =  0 .170,6» =  0.00549,6« =  0.0137,6a =  0.000291,

6 j =  0 .000347 ,6 , =  0.00000356, 6q =  0.00000355.

( 2 )  Equation (5 .13 ) is excited by white noise with sampling interval A  =  1 second.

(3) The resulting output o f the system of record length T  =  217 windowed by a 

Papoulis weight is Fast Fourier Transformed and multiplied with its complex conjugate 

to obtain the unsmoothed power spectral estimate.

( 4 )  A  least square curve fitting  procedures is implemented on the power spectrum  

as well as its cumulate.
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5.5.2 Results.

Figure (5 .2 ) show plots of the raw auto power and cumulative spectral estimate. Theoret­

ically, there is no distinction between the two curve fitting procedures, but for realisations 

of the true output, use of the cumulative spectrum reduces the effects of variability and 

sharp spikes in the raw spectrum and thus should improve the accuracy of the curve fit.

Tables (5 .1 ) gives comparison between the model fit on the raw power spectrum and 

its cumulate. Table (5 .2 ) show the standard deviation in gains, damping factors and 

resonant frequency in comparison to the true values.

O ptim isation on Pzx(u ) O ptim isation  on /  Px (uj)djj
M ode no. ¡jjn (rad /sec) c K un (rad /sec) c K

( i ) 0.4209 0.0194 0.4535 0.4206 0.0251 0.5447
(2) 0.7061 0.0333 0.5479 0.7046 0.0359 0.5786
(3) 1.0051 0.0142 0.2271 1.0013 0.0139 0.2247

(4 ) 1.3565 0.0108 0.1187 1.3568 0.0109 0.2096

(5) 1.7037 0.0107 0.1121 1.7034 0.0102 0.1088

Table 5.1: Estimates o f resonant frequency, gain and dam ping factor fo r 
simulated m odel.

O ptim isation  on P „  M O ptim isation on
M ode no. Vn (% ) c i » ) K  (% ) U>„ (% ) ( W K'<54> '

( i ) 0.96 22.4 9.3 1.03 0.4 8.9
(2) 0.87 16.3 8.7 0.57 2.3 3.6
(3) 0.15 4.4 9.2 0.13 2.2 10.1
(4) 0.37 0.9 8.5 0.59 0.9 6.9
(5) 0.22 11.2 6.7 0.20 1.1 9.3

Table 5.2: Com parison o f  standard(% ) for simulated m odel

Figure (5 .3 ) is a graphical representation for the two model fitting procedures at 

mode 2. The curves marked ( - .- .- .- )  represent the modelled data resulting from a least

square curve fit on the unsmoothed power spectrum. Also the curves marked ( --------------- )

represent the modelled data resulting from a least square curve fit on the unsmoothed 

cumulative power spectrum.
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B rie f sum m ary o f  «b o v e  results

It is found that estimates o f u>„ show favourable agreement w ith the true model pa­

rameters and for the damping factors Ç, curve fitting  o f the cumulative spectra lead to 

consistently improved estimates. This was shown to  be the case for studies of other 

realisation and system arrangements.
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5.6 Humber Suspension Bridge.

Previous to the ambient vibration tests undertaken on the Humber bridge by the Bristol 

University group only one series of tests has been carried out on suspension bridges with 

slender towers,inclined hangers and box-girder (Boshporus bridge). The Humber bridge 

tests describe measurements of wind and traffic induced vibrations to  determine vertical, 

lateral and torsional acceleration characteristics o f th e  desk and tower.

Figure (5 .4 ), reproduced from reference [4], is a schematic representation of the 

Humber suspension bridge with travelling accelerometers positioned to  measure relative 

accelerations in the vertical mode. The accelerometer I I  positioned a t either R1 or 

R2 is used as a reference. 12 and 13 are used as travelling accelerometers along the 

bridge between measurements in order for the sum 12+13 in this position to produce 

a measure of the vertical response. The calibrated accelerometers are Schaevitz force 

balance servo-accelerometers with operating ranges ±0.25<j in the frequency range 0- 

30Hz. Measurements of the vertical mode are m ade at R1 and R2 over averaging 

periods of 13 hours to relate measurements with a common reference R2 and to obtain 

the highest possible quality over all relative measurements.

Vertical response data from the Humber bridge a t  positions R1 and m l6  have been 

presented to the author for analysis with permission of the Bristol University group. It 

must be stated here that in analysis undertaken by Bristol group, full scale testing of the 

response data at vertical, torsional, lateral, longitudinal tower, lateral span modes have 

been undertaken and the main purpose in this section is simply to justify the use of the 

new modelling procedure described in the previous sections. If the results are deemed 

satisfactory then it is hoped that similar analysis will be undertaken on the response data 

at the other modes.
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5.6.1 Data processing procedure from the Humber bridge 

response data.

From recorded acceleration signals, estimates of resonance frequency, damping and spec­

tral amplitude a t each resonance mode up to  an appropriate frequency limit is evaluated 

by the use o f a Winograd discrete Fourier transform twin channel Spectral analyser. 

The ‘auto power' facility in the analyser automatically applies a Hanning window before 

spectral analysis and gave averaged 501 frequency data point after analysis.

Around each resonance mode a least squares curve fitting  procedure of the auto 

power spectral response data is implemented with a single degree of freedom (SDO F) 

oscillator and in the curve fitting procedure it was hoped that the resulting smoothed 

response would reduce the effect of bias error and so obtain reliable estimates of natural 

frequencies, amplitude and damping ratios [4J. In [4j it was however concluded that 

damping estimates obtained by fitting SD O F response curves to the windowed and 

averaged auto power spectra are probably higher than the values that would be obtained 

from forced vibration testing.

5.7 Examination of results.

In this section an examination of the results obtained from least square curve fitting 

o f the raw power and cumulative spectral data is made and comparison with results 

obtained by the Bristol group is given.

The vertical mode response data supplied was recorded from the accelerometers with 

gain lOOV/g and was attenuated by 10 on recording. Data was replayed at 64 times the 

recording speed, amplified by a factor of 50 and passed through a high order low-pass 

anti-aliasing filter with a cut-off frequency of 160 Hz. The resulting signals were digitised 

a t 512Hz for 420 seconds to give 215040 samples with a tim e interval o f A  =  0.00195 

seconds.
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The A /D  convertor output

Pd(i) for i  =  1,...,215040,

is obtained in the form 0-4095 and corresponds to a range o f ±  10V. The original data 

is obtained by computing

y (i) =  ((ya(i) -  2048)/204.8)/500 for i =  1, ...,215040,

with A  =  A  x  64 results in a Nyquist frequency of 4Hz.

Figure (5 .5 ) shows the resulting unsmoothed power spectrum at position R1 evalu­

ated using 'M atlab ' from a Sun 4 workstation. Performing the Fast Fourier Transform 

took approximately 90 seconds under normal operating multi-user conditions and the 

original data for vertical mode at positions R1 and m l6  were weighted with a Papoulis 

window before spectral analysis. The full significance of this will be made apparent in 

the next section.

In figure (5 .5 ), the spike labelled (a ) was not considered to be a resonance mode on 

closer inspection of its detailed structure. Typical bounce frequencies of vehicles are in 

the frequency range

1.8Hz < f <  2.5Hz

[1], and so all response data above 1.8 Hz is ignored.

Tables (5 .3 ) and (5 .4 ) gives estimates of resonant frequencies, damping factor (as 

a percentage o f critical) and gains for the two curve fitting procedures. Figures (5 .6 ) 

and (5 .7 ) are graphical representations of results obtained for modes R1V2 and m l6 V l.  

As in figure (5 .3 ), in figures (5 .6 ) and (5 .7 ), the curves marked (- .- .- .- )  represent the 

modelled data resulting from a least square curve fit on the unsmoothed power spectrum.

Also the curves marked ( — — -------) represent the modelled data resulting from a least

square curve fit on the unsmoothed cumulative power spectrum.
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In Figure (5 .8 ) comparison is made between the modelled damping estimates (against 

frequency) from the above experiment and those obtained by the Bristol group and figure

(5 .9 ) shows a plot o f the model power spectral output for position R l.

It is found th a t all of the damping estimates from the authors analysis and partic­

ularly those obtained by least square curve f it  on the cumulative power spectra, shows 

significant reductions over those obtained by the Bristol group [4].
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M o d e no.
O ptim isa tio n  on f  Pxz(u )<Lj O ptim isation on P**(u>)

/ .  (H 2 ) ( ( % ) K  ( 1 0 -7) fn (HZ) < ( * ) K  ( IO " 7)

R I V I 0.1167 2.77 1526 0.1166 2.77 1526
R 1V 2 0.1569 2.09 1923 0.1571 1.23 1307
R 1V 3 0.1789 2.59 1124 0.1791 2.71 1159
R 1V 4 0.2415 1.43 901 0.2417 1.45 908
R 1V 5 0.3129 1.55 890 0.3130 1.69 950
R 1V 6 0.4662 1.14 456 0.4663 1.11 443
R 1V 7 0.4861 1.16 311 0.4863 1.23 325
R 1V 8 0.5438 0.76 214 0.5436 0.71 201
R 1V 9 0.7243 0.71 180 0.7238 0.75 188

R 1V 10 0.8184 0.65 98 0.8184 0.64 97
R 1V11 0.8653 0.66 76 0.8654 0.73 82
R 1V 12 0.9200 0.46 42 0.9200 0.47 43
R 1V13 1.0250 0.48 93 1.0259 0.53 100
R 1V14 1.0743 0.76 54 1.0742 0.83 56
R 1V15 1.1347 0.65 67 1.1344 0.64 65
R 1V 16 1.2505 0.48 40 1.2507 0.53 43
R 1V 17 1.3700 0.63 80 1.3701 0.60 77
R 1V 18 1.7473 0.48 77 1.7473 0.49 78

Table 5.3: Estimates for vertical modes at position  R l .
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M o d e  no.
O ptim isation on /  Pzr(u)doj O ptim isation on Pxx(u>)

7 T ( H z ) C (% ) K  (1 0 -* ) / .  (H z ) w K  ( 1 0 - * )

m l 6 V l 0.1572 2.13 4680 0.1568 1.25 3193
m l6 V 2 0.1799 2.43 7280 0.1801 1.99 6174
m l6 V 3 0.2023 2.23 1786 0.2023 1.95 1553
m l6 V 4 0.3134 1.69 2875 0.3123 1.70 2874
m l6 V 5 0.3861 1.29 1840 0.3856 1.09 1588
m l6 V 6 0.4676 1.34 1010 0.4670 1.09 833
m l6 V 7 0.4852 1.52 1372 0.4852 1.30 1205
m l6 V 8 0.5439 0.94 351 0.5442 0.76 303
m l6 V 9 0.6321 0.63 596 0.6321 0.67 624

m l6 V 1 0 0.6547 0.93 436 0.6547 1.02 475
m l 6 V l l 0.7245 0.64 533 0.7244 0.64 536
m l6 V 1 2 0.8189 0.74 194 0.8191 0.72 191
m l6 V 1 3 0.9202 0.49 170 0.9202 0.46 164
m l6 V 1 4 1.0266 0.51 309 1.0265 0.54 322
m l6 V 1 5 1.0756 0.74 222 1.0754 0.86 250
m l6 V 1 6 1.1345 0.57 282 1.1374 0.56 277
m l6 V 1 7 1.2764 0.63 168 1.2766 0.64 160
m l6 V 1 8 1.3717 0.53 152 1.3719 0.52 149
m l6 V 1 9 1.4926 0.48 296 1.4924 0.45 283
m l6 V 2 0 1.6193 0.64 263 1.6188 0.66 286

Table 5.4: Estim ates for vertica l m odes at position  m !6 .
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5.8 Evaluation of errors due to windowing and 

averaging over segments.

An attem pt is now made to illustrate the accuracy of results obtained in the previous 

section. Also, a more precise analysis of resulting errors in the damping estimates due 

to the windowing and averaging process in [4j is given.

The effects on the expected value o f the smoothed output power spectrum for the 

Papoulis and Hanning windows have been studied in chapter ( 2 )  section (2 .5 ). For the 

exact Hanning window this value is evaluated as :

where M is the segment length and u>o =  2n/M.

The terms C ^ iu ;) ,  Svv(lo) are the cosine and sine transforms of the output auto  

correlation function r w ( r )  and are defined by

E  ( ] =

+  +  <*,) +  — s„(u >  +  « . ) -

+  ~  ~  i  S „ (u ; -  um) -

1 dSn (u  +  um)
2M  d (u  +  UJq )

C w (“ ) =  i  ryy(T )coa (u r )d r

and

Also for the Papoulis window

E  [ **»(<*>) ] =  2 +  ~  ~MM  d ( u  -f- u \j) 
J S „ ( u  -  um ). 

d( w  +  um)

d S „ (  ui +  um)
Al  /. > X  /.u ^

(5 .15 )
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where u>q =  x / M .

Although averaging a record of length T  over L  segments will improve variability, 

such an effect will also lead to an increase in bias caused by the unavoidable reduction 

o f the segment length from M  =  T  to  M  =  T/L.

Assuming the author's evaluation of the bridge data to be a reasonable representation 

of the bridge dynamics, it should be possible to quantify the error caused by the combi­

nation of windowing and reduction of the record length due to the segmental averaging 

in |4J.

To illustrate this, the cosine, sine and differentiated sine transforms of the theoretical 

output correlation function derived at each mode, are substituted into equation (5 .14) to 

give the expectation of the measured output power spectrum for the Hanning window. 

An overall power spectral structure is achieved by summing the individual spectrums 

at each mode. A  similar substitution into equation (5 .15 ) gives the expectation of the 

measured output power spectrum for the Papoulis window.

From the i tk mode impulse response

the output auto correlation function is evaluated using

where

The cosine, sine and derivative o f sine transforms at each mode is given by

+  a? +  4(6, -  u,y
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(5 .1 6 )
6? l a? +  4 (6 i+ u 0 3 1 a? + 4 (w - i i ) j l

a,c?e,. 1 1 ,
26? a? +  4 (6 i +  a;)lJ a? +  4 (6 , — u>)3

c?< i,. a? — 4(6j +  u ) 2 a? -  4 (w  -  6 ,)J

6? l [ « ?  +  4 ( » i + « ) • ] » [<.? +  4 ( U . - 6 , ) 1] “ 1

a,c?e<  ̂ 4 (6, +  a>) 4 (6 , -  « )

In Brownjohn et al [4], given a frequency resolution of 0.003125 Hz. L = 100  and 

results in a record length of T = 2 6 8 8 0  seconds. Thus, averaging over 100 segments will 

result to  a segment length o f M = 2 6 8 8  seconds.

For the  Hanning window, the  theoretical power spectrum at M = 2 6 8 8  is evaluated 

from equation (5.14). Similarly the theoretical power spectrum for the Papoulis window 

at M = 2 6 6 8  is evaluated from equation (5 .15). For the above results, figure (5 .11 ) shows 

theoretical power spectrums for the first tnree modes. On comparison, it is shown that :

( 1 )  windowing with the  Hanning weight,

( 2 )  averaging over 100 segment of length M = 2 6 6 8 .

will yield unacceptable bias in the power spectrum estimate and in particular, model 

estimates o f damping factor will be too high. It is also noted that the weighting with a 

Papoulis window yields a better spectral estimator than the Hanning window.
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5.9 Summary

Evidence suggests that in order to obtain the best possible model due to ambient testing 

of the bridge data

( i )  A v e ra g in g  o v e r segm ents s h o u ld  n o t  be  im p le m e n te d  so th a t  

h ig h e s t p o ss ib le  fre q u e n c y  re s o lu t io n  can  be o b ta in e d .

( i i )  A l l  a c c e le ra tio n  response d a ta  s h o u ld  be  g iven  a P a p o u lis  

w e ig h t  b e fo re  s p e c tra l a n a ly s is  a nd  so keep  th e  b ias  in  th e  

re s u lt in g  e s tim a te  to  a m in im u m .

( ¡ i i)  T h e  le as t sq ua re  c u rv e  f i t t in g  p ro c e d u re  s h o u ld  be a d o p te d  

on  th e  s m o o th e r  c u m u la t iv e  p o w e r s p e c tru m  in s te a d  o f  th e  

u n s m o o th e d  p o w e r s p e c tru m  e s tim a te .
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Chapter 6

Conclusions

This chapter summarises the results presented in the thesis, draws conclusions and sug­

gests, possible areas for future research.

Chapter ( 1 )  defined from basic principles the frequency response function of open- 

loop tim e invariant systems. As well as a brief historical perspective of non-parametric 

spectral analysis, it discussed qualitatively the effects of windows on spectral estimates.

There exists for review an extensive literature on the statistics o f frequency response 

estimates [1-3]. Reference [3] was chosen for review in this thesis because it gives a clear 

and concise evaluation of these statistics, whilst at the same tim e  minimising the number 

of approximations made in error analysis. It also gave a qualitative understanding o f the 

problem from  which possible methods of reduction of these statistical errors could be 

discussed.

As a result, the motivation for the use of asymmetrical windows for open-loop fre­

quency response estimation was proposed in [4] and developed by the author.

Chapter ( 2 )  discussed extensively the concept of differing windows on the input 

and output. In particular, it introduced a general class o f w indow functions (termed 

Trigonometric sum type windows) which as a subset encompasses a majority of the 

conventional windows. These new windows were used to evaluate theoretical frequency
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response and coherence functions in order to study the effects of different window shapes 

on bias and variance in the resulting frequency response estimate. Also, for the Hanning 

and Papoulis family of windows, exact theoretical expressions of auto and cross power 

spectral estimates (in terms o f record length T )  were derived and compared.

Many authors recommend the Hanning window because of its excellent variance 

reduction and relatively good bias properties [4-5] . Little attention in the past has been 

paid to the minimum bias window developed by Papoulis [6] . This, however, is shown 

(by the author) to be statistically the superior window.

Factors found to greatly influence the statistics of the measured frequency response 

function are

( 1 )  The record length T.

( 2 )  The position of maximum weight o f the input and output windows u>x(<) 

and u>„(t).

( 3 )  The shape and sharpness o f the windows.

( 4 )  The asymmetrical properties of the windows.

( 5 )  The true (or postulated) filter and system transfer function characteris­

tics.

It was also shown that these windows could be chosen to be dependent on a frequency 

or on a frequency range of interest. In particular, choosing the trigonometric sum type  

input-output windows by maximising the square coherence function led to improvements 

in the resulting frequency response estimate. In order to  include the above factors, a 

new procedure based on a priori knowledge of the system characteristics was introduced 

in chapter (3 ) .  Originally proposed by D o u c e  (1987 ), this novel concept has been 

extensively developed by the author and has led to the evaluation of least mean square 

e r r o r  w in d o w s .

The methods developed in chapter (3 )  were applied in chapter ( 4 )  to computer sim­

ulated realisations o f input and output data. These experiments confirmed the predicted
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improvement of these least mean square error over conventional windows.

In chapter (5 )  the Papoulis minimum bias window was used in the modelling of the 

high Q dynamics of a modern suspension bridge.

It was shown that applying the Papoulis window over the whole record before spectral 

analysis, and implementing the curve fit on the smooth cumulative spectrum, led to 

significant reduction in bias when evaluating the model parameters corresponding to 

each spectral peak.

6.1 Proposals for future work.

The range o f application for least mean square error windows introduced in this thesis is 

by no means exhaustive. Some possible areas of fu ture  investigation are now outlined.

6.1.1 Closed-loop systems

Consider the general closed loop system in figure (6 .1 ).

Figure 6.1: Schematic o f  c losed-loop system 

In the presence of a noise term  N (ju ) ,  it has been shown that the open-loop fre-
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quency response estimate based on

is biased [7].

In order to reduce this bias, the estimator used in closed loop conditions is

It is explained in [4] that transients in closed-loop systems are due to feedback present 

in both the output and input of the forward path.

The estimation of the closed-loop frequency response will be based on the  Fourier 

transform of r (f) .u ;r (<), c(t).w c(t ),  and e(t).w e(t ),  where tvr( i ) ,  wc(t )  and we( t )  are 

the tim e windows applied to the reference, output and error signals in the closed-loop 

schematic.

It is proposed that least mean square error windows of wT(t ) ,  wc(t )  and we(t ) ,  should 

be evaluated by considering the control ratio

R(ju>) 1 +  G(ju>)'

The object would be to :-

( 1 )  Design windows wr(t )  and u>c( f )  based on the postulated impulse re­

sponse

G Ü » )  _  G{jw ) 
R ( j » )  1 +  G (jijj) ’

and the error ratio

E U » )

where G ( jv )  is the postulated frequency response o f the system. See 

figure (6 .2 ).
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( 2 )  Design window we( t ) based on the postulated impulse response

»<•(<) =  /  , , !  . . exp(ju)t)dui,
•, o l +  G ( ju )

under the assumption that wr(t )  is the optimum window on the reference

signal. See figure (6 .3 ).
True closed-loop

output w indows based on postulated closed-loop transfer function.

6.1.2 Frequency dependent windows.

A further range of possibilities is opened if windows are chosen optimally to vary with 

the frequency at which the gain is to be determined. The main disadvantage here is 

that each frequency will require the evaluation o f an optimum window pair thus leading 

to  added computation. However it could be possible to design these optim um  windows 

over a specified range of frequencies and so reduce computation time.
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Figure 6.3: Proposed schem atic o f Least mean square error w indow  based 
on postulated error ratio  transfer function.

It was felt that some mention o f this work should be made in order to give the reader 

an appreciation of the complexity o f the problem that remains to be solved. Although 

formulation is only given for w hite noise input, it must be stated that the author's 

work on this topic also assumes non-white input, and that the white noise case is only 

considered here for simplicity.

Figure (6 .4 ) represents the the proposed schematic for the evaluation of frequency 

dependent least mean square error windows.

6.1.3 Formulation

Consider an excitation applied at tim e t =  * i such that 0 <  <i <  7 \  W e assume that 

the input is modelled as a series o f independent impulses of strength h W (0 ,a 2), where 

a2 =  E [h 2\ =  <J>, with $  the constant power spectral density of the input signal. The 

response to  this excitation lasts for infinite tim e but can only be measured over the
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wz(t)

—  g (t) Z (ju ,)

yP(‘ ) Yp(ju)

Figure 6.4: Schematic fo r  frequency dependent Least mean square error 
windows.

observation time 0 <  t <  T  of the record due to the unavoidable windowing of the 

response by Assuming g (t ) =  g (t )  the modified system output is

Sm (i) =  h.g(t -

and the short term Fourier transform o f ym(t )  is given by

For the  estimated system output, the input excitation is weighted by wx( t i )  before it is 

passed through the postulated system ¿(<) and is given by

y,{t) =  h .W 'it iM t
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This response, unlike y ,(t), is observed over <1 <  t <  oo, and when Fourier transformed 

leads to

Y , ( ju )  =  h.wx( t i )  J  g(t -  t i )  exp (—ju>t)dt.

Substituting u =  t — 11,

Yr ( ju )  =  I  j (< j )e x p ( - ju (u  +  t ,))J u
JO

=  h.wx(t i )e x p ( - ju t i )d ( ju j ) ,  (6.1)

where G (ju ) is the postulated system frequency response.

The error between the postulated and modified system output is given by

Z(ju>) =  h . [ f  g ( t - t t)w ,(t )e x p (-ju jt )d t
i

-  exp(- j u t  i )d ( ju )}=  » . [ ( « . ( » )  -  j l „ ( u , ) )  -  -  J / , H ) | ,
where

72m(<*>) =  f  g (t  -  ti)w y(t ) cos(ujt)dt,
Jt i 
fT/m(a>) =  / g (t — ti)wy(t)sin(u>t)dt,

K . M  -  «> .(«. ) ( £ , ( « )  cos(uj<i ) +  sin(w<i)),

and

M w) =  u;x(< i ) (6 r(u;)sin(u>f|) -  (5'i(u>)co8(u;fi)).
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Dropping the dependence on us, the function to be minimised is

I  =  E [Z .Z m]

= + /ii -  + i , u \  + * .[« ; + /;i. (6.2)

The solution for a frequency dependent input window is achieved by setting

d l
d w x ( t i )

=  0.

In equation (6 .2 ),

R -l +  Ip = $ . w l( t i ) [ G , cos2(a;i1) +  G ?  sin2(u;*i) 

+  G28in2(u;ti) +  G2 cos2(a>f j)]

the derivative of which is given by

d[G2r +  g?) = 2ti>,(f, ) .* .[£ ?+ Ó?].
dwx(t t )

Differentiating the second term in equation (6 .2 ) gives

tT
$ . (G >  cos (u r ti) +  G i s in (u ;< i)) / g ( t  — t i ) w „ ( t )  cos (u ;t)d t 

Jt\

(6 .3)

rT
■f $ .(G >  sin(o;fi) — Gi cos(u;i|)) g (t — ti)w v( t )  ain(ut)dt. (6 .4)

The combination of equations (6 .3 ) and (6 .4 ) leads to th e  least square frequency
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dependent input window,

Gi rT+ Jt (6.5)

Similar consideration for the output window however, leads to a solution of the form

where f x and /„  are functions related to the postulated systems characteristics.

As the required window wv(t )  is also within an integration, an analytical solution 

could not be found. It was also found that conditions by which u>y(t )  could be taken  

out of this integral, could not be satisfied.

However in chapter (3 ) ,  we note that the least mean square error window pairs 

are mirror images of each other about time T /2 .  If  this assumption is made also for 

frequency dependent windows, a solution would lead to.

Substituting equation (6 .5 ) into (6 .6 ) and equation (6 .6 ) into (6 .5 ) will lead to  

formulation o f the two Fredholm integral equation pairs to be solved

(6 .6 )

(6 .7 )
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where

!!>„((,)=/ W ,( T ) K , ( t , ,T ,U > ) d T .
Jo

(6.8)

K , ( t u r , w )  =

f * < f ( t  — t i , t  — T , u ) d t  for 0 <  r  <  t i

jJ if> ( t  — t \ , t  — T ,ijj)d t for t \  <  t T

I
JZ  — t , r  — t,u )d t  for 0 <  t <  ti 

/q‘ <p(ti — t,T  — t,u>)dt for t\ <  t T

and

¥>(< - l i , t - T , u )  =  ^  ^ ~  ‘ i> 7 .(‘  -  r )

+ - r)sina»(2< — <i - t)
+  ¿?7.(* -  <i)7.(< “  r)l.

7 c (f  -  * i )  =  -  < i )c o s u » ( f  -  i , ) ,

lc { t  -  r) = $(t - r)cosw(i -  t), 
7.(< “  <i) =  9 (t ~  <i)sinw(i -  U ) ,

and

7 .(<  -  r )  =  ¿(1 -  r ) 5inu(i -  t ) .

In sections (3 .8 )  and (3 .1 0 )  of chapter ( 3 ) ,  a solution for the least mean square 

windows was evaluated through the method of successive approximation. However a 

particular problem arises when applying this method for least mean square windows that
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are dependent on the frequency of interest. The introduction of the cosine and sine terms 

in the evaluation of the kernels, leads to a inability to apply the constraint o f absoluteness 

in the evaluation of the window function. By this we mean that the solution for any 

least mean square error window must satisfy the condition

wt ( t )  >  0 , a n d  w ,(t)  > 0 ,  fo r  0 <  t <  T.

Under the condition of absoluteness, the solution will be uniformly (or absolutely) con­

vergent (8). If this constraint is violated, the the solution is said to be weakly convergent. 

To ensure absolute convergence in the solution , the kernel defined in the square

0 < t ,  < T ,  a n d  0 <  r  <  T ,

must take either all positive or negative values. Therefore a modification of the function 

defining the kernels K x and A'y will need to be made. These modification are defined 

by

I /iT  I — <i,< — T ,w ) | dt for 0  <  t  <  ti 

I t I ¥>(* — < i,f  — r ,u ;)  | dt for <i <  t T

and

I Jo I ¥>(*1 — t , r  — t>u) | dt for 0 <  t  <  ti

■

fo‘ I ¥’(* i — t ,T  — f,u>) | dt for ti <  t T

To date the author has not been able to apply the constraints of absoluteness prior 

to the formulation of the problem. Applying such a constraint after formulation as been 

adopted with some success. In some systems, estimation of frequency responses based
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on such windows have been found to  be better than their conventional and frequency 

independent counterparts. But for other systems and at some frequencies, the resulting 

estimates are very poor indeed. From this, it must be assumed that applying the con­

straint of absoluteness prior to analysis is not the same or equivalent to  applying this 

constraint after.

Many other techniques and procedures have been adopted by the author and it is 

believed that in tim e, and with contributions from other readers, a solution will be found.
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