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Abstract

We prove (rigorously) that in 2-dimensional Bernoulli percolation, the
percolation density is an analytic function of the parameter in the super-
critical interval. For this we introduce some techniques that have further
implications. In particular, we prove that the susceptibility is analytic in
the subcritical interval for all transitive short- or long-range models, and
that pbondc < 1/2 for certain families of triangulations for which Benjamini
& Schramm conjectured that psitec ≤ 1/2.

1 Introduction

We prove that several functions studied in percolation theory are analytic func-
tions of the percolation parameter. We consider Bernoulli bond percolation on
a variety of graphs, as well as general long-range models (defined in Section 4.2)
preserved by a transitive group action. The susceptibility χ of a percolation
model is the expected number of vertices in the cluster of a fixed vertex o. The
percolation density θ = θo(p) is the probability that the cluster C(o) of o is
infinite. Let

pC := inf
p<1

θo(p) is analytic in (p, 1] (1)

Our main results are

(i) For every quasi-transitive graph, and every quasi-transitive (1-parameter)
long-range model, the susceptibility χ(p) is analytic in the subcritical in-
terval [0, pc).

(ii) For every quasi-transitive lattice in R2, the (Bernoulli, bond) percolation
density θ(p) is analytic in the supercritical interval (pc, 1] (in other words,
pC = pc). So is the n-point function τ and its truncation τf . The corre-
sponding results are proved for continuum percolation in R2 as well.

(iii) For the infinite d-ary tree, we have pC = pc(=
1
d−1 ).

∗Supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 639046).
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(iv) For every finitely presented, 1-ended Cayley graph, we have pC < 1. More-
over, every finitely presented, 1-ended group has a Cayley graph with
pc ≤ pC ≤ 1/2 for both site and bond percolation.

(v) For every non-amenable graph with bounded degrees, we have pC < 1. It
is possible for θ to be analytic at the uniqueness threshold pu.

(vi) For certain families of triangulations for which Benjamini & Schramm [13]
and Benjamini [12] conjectured that psitec ≤ 1/2, we prove pbondc ≤ pC <
1/2.

Most of percolation theory is concerned with phase transitions, and so a lot of
its earlier work focused on the smoothness of functions like χ and θ that describe
the macroscopic behaviour of its clusters. Kunz & Souillard [40] proved that the
average number of clusters per site κ (the analogue of the free energy in the Ising
model) is analytic for small enough p, and has a singularity at pc for percolation
on Zd, d > 1. Grimmett [26] proved that κ is C∞ for d = 2. A breakthrough
was made by Kesten [37], who proved that κ and χ are analytic for p ∈ [0, pc)
for all d.1 Smoothness results are harder to obtain in the supercritical interval
(pc, 1], partly because the cluster size distribution Pn := Pt(|C(o)| = m) has an
exponential tail below pc (Section 3.2) but not above pc [3]. Still, it is known
that θ, κ, and the ‘truncation’ χf of χ are infinitely differentiable for p ∈ (pc, 1]
on Zd (see [19] or [28, §8.7] and references therein). It is a well-known open
problem, dating back to [37] at least, and appearing in several textbooks ([38,
Problem 6],[31, 28]), whether θ is analytic for p ∈ (pc, 1]. Partial progress was
made by Braga et.al. [16, 15], who showed that θ is analytic for p close enough
to 1. In this paper we fully answer this question in the affirmative in the 2-
dimensional case (Theorems 7.1 and 7.9). We also answer the corresponding
question, asked by Günter et. al. [33], for the Boolean model (Theorem 9.1).

Part of the interest for this question comes form Griffiths’ [30] discovery of
models, constructed by applying the Ising model on 2-dimensional percolation
clusters, in which the free energy is infinitely differentiable but not analytic.
This phenomenon is since called a Griffiths singularity , see [54] for an overview
and further references.

Kesten’s method for the analyticity of χ (or κ) [37] (see also [28, §6.4])
involves extending p and χ to the complex plane, and applying the standard
complex analytic machinery of Weierstrass to the series χ(p) :=

∑
n∈N nPn(p).

This uses the fact that Pn(p) can be expressed as a polynomial by considering
all possible clusters of size n, and can hence be extended to C. To show that
this series converges to an analytic function χ(z), one needs upper bounds for
|Pn(z)| inside appropriate domains in order to apply the Weierstrass M-test (see
Appendix 15). These bounds are obtained combining the well-known fact due
to Aizenman & Barsky [2] that Pn(z) decays exponentially in n for real z, with
elementary complex-analytic calculations. Kesten’s calculations involved the
numbers of certain ‘lattice animals’, but we observe (Theorem 4.11) that this
is not necessary and his proof can be simplified. An immediate benefit of this
simplification is that the proof extends beyond Zd, to bond and site percolation
on any quasi-transitive graph. The only ingredients needed are the appropriate

1The threshold pT in Kesten’s original formulation was later shown to coincide with pc by
Aizenman & Barsky [2].
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exponential decay statement and elementary complex analysis. Moreover, with
a bit more work the proof can be extended to long-range models: the functions
Pn(p) are no longer polynomials, but we show (Theorem 4.8) how they can be
extended into entire functions, i.e. complex-analytic functions defined for all
p ∈ C. This summarises the proof of (i), which is given in detail in Section 4.3.
One application of (i) of particular interest to us is to a long-range model studied
in [29], which was the original motivation of our work.

The technique we just sketched is used in our results (ii)–(v) as well, but
additional ingredients are needed. For (ii), we write θ(p) = 1 −

∑
n Pn(p) by

the definitions, but as Pn decays slower than exponentially for p > pc [40, 28],
the above machinery cannot be applied to this series. Therefore, instead of
working with the size of C(o), we work with the ‘perimeter’ of its boundary.
To make this more precise, define the outer-interface of the cluster C(o) to be
the pair (∂intC(o), ∂extC(o)), where ∂intC(o) denotes the set of edges of C(o)
bounding its outer face, and ∂extC(o) denotes the set of vacant edges incident
with the outside of ∂intC(o) (Figure 1). We say that such a pair of edge sets
I = (∂intC(o), ∂extC(o)) occurs in some percolation instance, if it is the outer-
interface of some cluster, in which case all edges in ∂intC(o) are occupied and
all edges in ∂extC(o) are vacant. For any plausible such I, the probability
PI(p) := Pp(I occurs) is just p|∂intC(o)|(1− p)|∂extC(o)| by the definitions, which
is a polynomial we can extend to C hoping to apply our machinery. Moreover,
these PI exhibit the kind of exponential decay we need: ∂extC(o) gives rise
to a connected subgraph of the dual lattice, and we can combine a well-known
coupling between supercritical bond percolation on a lattice and subcritical bond
percolation on its dual (see Theorem 7.2) with the aforementioned exponential
decay of Pn.

o

Figure 1: An example of two outer-interfaces of percolation clusters, one nested inside
the other. We depict ∂intC(o) with bold lines, and ∂extC(o) with dashed lines. The
rest of the clusters is depicted in plain lines (blue, if colour is shown).

Still, further challenges arise when trying to express θ in terms of the func-
tions PI , because knowing that a certain outer-interface I occurs does not imply
that it is part of the cluster C(o): there could be other outer-interfaces nested
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inside I, as exemplified in Figure 1. We overcome this difficulty using the
Inclusion-Exclusion Principle, to express θ as

θ(p) = 1−
∑
I∈MS(−1)c(I)+1PI , (2)

whereMS is the set of finite disjoint unions of outer-interfaces, and c(I) counts
the number of outer-interfaces in I. The problem now becomes whether the
probability for such an I ∈MS with n edges in total decays exponentially in n.
All we know so far is that the probability to have an outer-interface containing
a fixed vertex x decays exponentially, which seems to be of little use given that
there are many ways to partition n into smaller integers n1, . . . nk, and construct
an I ∈ MS out of k outer-interfaces of lengths ni, each rooted at one of many
candidate vertices xi. But there is a way to bring all these possibilities under
control, and establish the desired exponential decay, by a certain combination
of the following ingredients:
a) the Hardy–Ramanujan formula (Section 3.4), implying that the number of
partitions of an integer n grows subexponentially;
b) some combinatorial arguments that restrict the possible vertices xi at which
the outer-interfaces meet the horizontal axis, and
c) using the BK inequality (Theorem 3.2) to argue that for each choice of a
partition of n, and vertices x1, . . . xk, the probability of occurence of an I ∈MS
complying with this data decays as fast as if we had a single outer-interface of
size n (which we already know to decay exponentially).

This summarises the proof of (ii), which is given in detail in Section 7. Our
method applies to site percolation on the triangular lattice (Corollary 7.9) as
well, but not to general 2-dimensional site percolation. Our proof does not
provide enough evidence in order to conjecture that pC = pc for Zd, d > 2. The
size distribution of the analog of an outer-interface (see below) is shown in [39]
to decay slower than exponentially for p < 1 − pc, hence the point 1 − pc is a
good candidate where to look for a singularity; see Section 10.6 for more. In a
follow-up paper in preparation, we show that pC ≤ 1− pc for certain lattices in
Zd, d > 2.

The only use of planarity in the proof of (ii) we just sketched was the duality
argument needed for the exponential tail of the size of an outer-interface. It is
easy to imagine generalising outer-interfaces to higher dimensions, although
coming up with a precise definition that uniquely associates an interface with
any cluster requires some thought. In Section 10 we offer such a definition that
applies to all graphs, not just lattices in Rd. We show that once we fix a 1-ended
graph G, and a basis of its cycle space (for G = Zd the family of all squares is
a natural choice), every finite subgraph (aka. cluster) C of G uniquely defines
a ‘outer-interface’ I = (∂intC(o), ∂extC(o)) with ∂intC(o) a connected subgraph
of C, and ∂extC(o) containing the minimal cut separating C from infinity. This
refines the argument of Timar [51] used to simplify the proof of the theorem
of Babson & Benjamini that pc < 1 for every finitely presented Cayley graph.
When G is such a Cayley graph, we show that our outer-interfaces exhibit
an exponential tail by repeating the arguments (a)-(c) from above, and reach
(iv) which is the deepest result of this paper (Theorem 10.12), mainly due to
the ‘deterministic’ Theorem 10.4. This result also applies to site percolation
(Corollary 10.15). Moreover, we show that if we ‘triangulate’ our Cayley graph
by adding more generators, then we can achieve pc ≤ pC ≤ 1/2 for both site
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and bond percolation (Theorem 10.16).

We remark that formula (2) can be thought of as a refinement of the well-
known Peierls argument (see e.g. [28, p. 16]), where instead of an inequality we
now have an equality. The price to pay is that the structures arising —of the
form (∂intC(o),∂extC(o)) instead of just ∂extC(o)— are harder to enumerate,
and the benefit is that the events we consider are mutually exclusive, hence the
equality. We found this technique very convenient in this paper and expect it
to be useful elsewhere.

A well-known theorem of Benjamini & Schramm [13] states that pc(G) ≤
1

1+hE(G) where hE(G) is the Cheeger constant of an arbitrary graph G, and so

pc < 1 for every non-amenable graph. We show in Section 5, were we recall the
relevant definitions, that the same bound applies to pC (Theorem 5.1). This
has the interesting consequence that θ does not witness the phase transition at
the uniqueness threshold pu: using the results of [44, 50], we deduce that θ is
analytic at pu for some Cayley graph of every non-amenable group. Another
consequence of pc(G) ≤ 1

1+hE(G) is (iii) (Corollary 6.1).

Most of this paper is concerned with analyticity results, but some of the
methods developed can be applied to provide bounds on pc as well. We display
this in Section 11, where we prove that pbondc < 1/2 for certain families of
triangulations for which Benjamini & Schramm [13], Benjamini [12], and Angel,
Benjamini & Horesh [6] conjectured that psitec ≤ 1/2 ((vi)).

After proving some functions to be analytic, additional fun, and hopefully
results, can be had by studying their complex extensions. As already mentioned,
we proved that the functions Pn admit entire extensions (trivially for nearest-
neighbour models), and are therefore uniquely determined by their Maclaurin
coefficients. As most observables of percolation theory, e.g. χ and θ, are uniquely
determined by the sequence {Pn}n∈N, it makes sense to study those coefficients.
We do so in Section 12, where we show that their signs alternate with n, and
do not depend on the model (Theorem 12.1).

We use this fact in Section 13, where we show how one can make sense of a
negative percolation threshold p−c ∈ R<0. As it happened in the history of pc,
more than one candidate definitions are possible. We could show that some of
them coincide (Theorem 13.3), but there are still more questions than results
on this topic.

Most of the essence of our proofs lies in combinatorial arguments. We have
made an effort to make this paper accessible to the non-expert, except for this
introduction that uses terminology that is defined later. The complex analysis
we use is at undergraduate level, involving only some classics we recall in Ap-
pendix 15 and elementary manipulations. Hardly any background in probability
theory is assumed, but some familiarity with the basics of percolation theory as
in [28] will be helpful.

2 The setup

We recall some standard definitions of percolation theory in order to fix our
notation. For more details the reader can consult e.g. [28, 41]. For a higher
level overview of percolation theory we recommend the recent survey [20].
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2.1 nearest-neighbour models

Let G = (V,E) be a countably infinite graph, and let Ω := {0, 1}E be the set
of percolation instances on G. We say that an edge e is vacant (respectively,
occupied) in a percolation instance ω ∈ Ω, if ω(e) = 0 (resp. ω(e) = 1).

By (Bernoulli, bond) percolation on G with parameter p ∈ [0, 1] we mean
the random subgraph of G obtained by keeping each edge with probability p
and deleting it with probability 1 − p, with these decisions being independent
of each other.

(More formally, we endow Ω with the σ-algebra F generated by the cylinder
sets Ce := {ω ∈ Ω, ω(e) = ε}e∈E,ε∈{0,1}, and the probability measure defined as
the product measure Pp := Πe∈Eµe, where p ∈ [0, 1] is our percolation parameter
and µe is the Bernoulli measure on {0, 1} determined by µe(1) = p.)

The percolation threshold pc(G) is defined by

pc(G) := sup{p | Pp(|C(o)| =∞) = 0},

where the cluster C(o) of o ∈ V is the component of o in the subgraph of
G spanned by the occupied edges. It is well-known that pc(G) does not depend
on the choice of o.

To define site percolation we repeat the same definitions, except that we
now let Ω := {0, 1}V , and let C(o) be the component of o in the subgraph of
G induced by the occupied vertices.

In this paper the graph G is a-priori arbitrary. Some of our results will
need assumptions on G like vertex-transitivity or planarity, but these will be
explicitly stated as needed.

2.2 long-range models

Long range percolation is a generalisation of Bernoulli bond percolation where
different edges become occupied with different probabilities, and each vertex
can have infinitely many incident edges that can become occupied. In fact, the
graph is often taken to be the complete graph on countably many vertices, and
so its edges play a rather trivial role. Therefore, it is simpler to define our model
with a set rather than a graph as follows.

Let V be a countably infinite set (the vertices), and let E = V 2 be the
set of pairs of its elements (the edges). We will typically write xy istead of
{x, y} to denote an element of E. Let µ : E → R≥0 be a function satisfying∑
y∈V µ(xy) = 1 for every x ∈ V (in some occasions we allow more general

µ, satisfying just
∑
y∈V µ(xy) < ∞). The data V, µ define a random graph on

V similarly to the previous definition, except that we now make each edge xy
vacant with probability e−µ(xy)t, with our parameter t now ranging in [0,∞).
The corresponding probability measure on Ω = {0, 1}E is denoted by Pt (We
like thinking of t as time, with the each edge xy becoming occupied if vacant at
a tick of a Poisson clock with rate µ(xy).)

Analogously to pc, one defines

tc = tc(V, µ) := sup{t | Pt(|C(o)| =∞) = 0},

which again does not depend on the choice of o ∈ V .
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We say that such a percolation model, defined by V and µ, is transitive, if
there is a group acting transitively on V that preserves µ. In other words, if for
every x, y ∈ V there is a bijection π : V → V such that µ(π(z)π(w)) = µ(zw).

Long range percolation is a less standard topic that is not typically found in
textbooks, and the term often refers to the special case where the group acting
transitively is Z, for example in order to come up with a model in which θ is
discontinous at tc [5]. In the generality we work with it has been considered in
e.g. [4, 29].

3 Definitions and preliminaries

3.1 Graph theoretic definitions

Let G = (V,E) be a graph. An induced subgraph H of G is a subgraph that
contains all edges xy of G with x, y ∈ V (H). Note that H is uniquely determined
by its vertex set. The subgraph of G spanned by a vertex set S ⊆ V (G) is the
induced subgraph of G with vertex set S.

The vertex set of a graph G will be denoted by V (G), and its edge set by
E(G). A graph G is (vertex-)transitive, if for every x, y ∈ V (G) there is an
automorphism π of G mapping x to y, where an automorphism is a bijection π
of V (G) that preserves edges and non-edges.

A planar graph G is a graph that can be embedded in the plane R2, i.e. it
can be drawn in such a way that no edges cross each other. Such an embedding
is called a planar embedding of the graph. A plane graph is a (planar) graph
endowed with a fixed planar embedding.

A plane graph divides the plane into regions called faces. Using the faces of
a plane graph G we define its dual graph G∗ as follows. The vertices of G∗ are
the faces of G, and we connect two vertices of G∗ with an edge whenever the
corresponding faces of G share an edge. Thus there is a bijection e 7→ e∗ from
E(G) to E(G∗).

3.2 Exponential tail of the subcritical cluster size distri-
bution: the Aizenman-Barsky property

An important fact that will be used throughout the paper whenever we want to
show the convergence of a series is the following exponential decay of the cluster
size distribution pn := P(|C(o)| = n) (or equivalently, of fn := P(|C(o)| ≥ n))
in the subcritical regime, which we will call the Aizenman-Barsky property :2

Theorem 3.1 ([4, Proposition 5.1], [2, 7]). For every quasi-transitive bond,
site, or long-range model, (and any vertex o), if p < pc then

Pp(|C(o)| ≥ n) = O(e−n/5χ
2

).
2Some bibliographical remarks about Theorem 3.1: Kesten [37] proved exponential decay

when χ <∞ for lattices in Rd, and Aizenman & Newman [4] extended it to all models we are

interested in (their precise formula is Pp(|C(o)| ≥ m) ≤ (e/m)1/2e−m/(2χ(p))
2
). Aizenman &

Barsky [2] proved χ < ∞ below pc on Zd, and [41, Theorem 7.46.] claims that ‘their proof
works in greater generality’, that is, for all transitive graphs. Menshikov [43] independently
obtained the same result in a more restricted class of models. Antunović & Veselić [7] extended
this to all quasi-transitive models. Duminil-Copin & Tassion [22] gave a shorter proof that
χ <∞ below pc (or βc) for all independent, transitive bond and site models.
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3.3 The BK inequality

We define a partial order on our space Ω = {0, 1}E(G) of percolation instances
as follows. For two configurations ω and ω′ we write ω ≤ ω′ if ω(e) ≤ ω′(e) for
every e ∈ E.

A random variable X is called increasing if whenever ω ≤ ω′, then X(ω) ≤
X(ω′). An event A is called increasing if its indicator function is increasing.
For instance, the event {|C(o)| ≥ m} is increasing, where C(o) as usual denotes
the cluster of o.

For every ω ∈ Ω and a subset S ⊂ E we write

[ω]S = {ω′ ∈ Ω : ω′(e) = ω(e) for every e ∈ S}.

Let A and B be two events depending on a finite set of edges F . Then the
disjoint occurrence of A and B is defined as

A ◦B = {ω ∈ Ω : there is S ⊂ F with [ω]S ⊂ A and [ω]F\S ⊂ B}.

Theorem 3.2. (BK inequality)[53, 28] Let F be a finite set and ω = {0, 1}F .
For all increasing events A and B on Ω we have

Pp(A ◦B) ≤ Pp(A)Pp(B).

3.4 Partitions of integers

A partition of a positive integer n is a multiset {m1,m2, . . . ,mk} of positive
integers such that m1 + m2 + . . . + mk = n. Let p(n) denote the number
of partitions of n. An asymptotic expression for p(n) was given by Hardy &
Ramanujan in their famous paper [27]. An elementary proof of this formula
up to a multiplicative constant was given by Erdős [23]. As customary we use
A ∼ B to denote the relation A/B → 1 as n→∞.

Theorem 3.3 (Hardy-Ramanujan formula). The number p(n) of partitions of
n satisfies

p(n) ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

The above asymptotic formula for p(n) implies in particular that p(n) grows
subexponentially, and this is all we will need in our several applications of
Theorem 3.3. This weaker statement can be proved much more easily, and we
offer the following elementary proof that makes our paper more self-contained.

Lemma 3.4. Let p(n) denote the number of partitions of n. Then

lim sup
n→∞

p(n)1/n = 1.

Proof. Let us denote f(z) the generating function of p(n), i.e.

f(z) =

∞∑
n=0

p(n)zn.

It is well known that f(z) =
∏∞
k=1

1

1− zk
(this follows easily by considering the

bijection between the set of partitions of n and the set of sequences (i1, i2, . . . , in)
where the ij ’s are non-negative integers such that i1 + 2i2 + · · ·+ nin = n).
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The radius of convergence R of f is given by the formula

R =
1

lim supn→∞ p(n)1/n
.

It suffices to prove that R = 1. Since f(1) = +∞ we have that R ≤ 1. In order
to show that R ≥ 1 we will prove that f is analytic on the open unit disk.

Assume that z ∈ [0, 1). Taking the logarithm of the infinite product we
obtain the infinite sum

∑∞
k=1− log(1− zk). Using the fact

lim
x→0

−log(1− x)

x
= 1

and the convergence of the sum
∑∞
k=1 z

k we deduce that
∑∞
k=1− log(1 − zk)

converges. It follows that
∏∞
k=1

1

1− zk
, and hence

∑∞
n=0 p(n)zn, converges for

every z ∈ [0, 1). This in turn implies that
∑∞
n=0 p(n)zn converges for every z in

the open unit disk and thus it defines an analytic function.

4 The basic technique

A common ingredient of our analyticity results is the following technique, the
main idea of which is present in [37] and was mentioned in the introduction.
We express our function f(p) as an infinite series f(p) =

∑
n∈N anfn(p), where

fn(p) is the probability of an event. For example, when f = χ is the expected
size of the cluster C(o) of o, then fn is the probability that |C(o)| = n, and
an = n. To prove that f(p) is analytic, our strategy is to extend the domain
of definition of each fn to complex values of p (we will usually write z instead
of p when doing so). Our extended fn will turn out to be complex-analytic,
and so f is analytic if the series

∑
n∈N anfn(p) converges uniformly by standard

complex analysis (Weierstrass’ Theorem 15.1). To show the latter, we employ
the Weierstrass M-test (Theorem 15.2), using upper bounds on |fn(z)| inside
appropriate discs (centered in the interval [0, 1] where p takes its values). These
upper bounds are obtained by Lemma 4.1 below for nearest-neighbour models,
and by its counterpart Lemma 4.4 for long-range models.

4.1 Nearest-neighbour models

The following lemma, and its generalisation Corollary 4.3 below, provides the
upper bounds that we are going to plug into the M-test as explained above.

Let Pp denote the law of Bernoulli percolation with parameter p on an arbi-
trary graph G, as defined in Section 2. Let D(x,M) denote the disc with center
x ∈ C and radius M ∈ R+ in C. For a subgraph S of G, let ∂S be the set of
edges of G that have at least one end-vertex in S but are not contained in E(S).

In this lemma, x is to be thought of as a value of our parameter p near which
we want to show the analyticity of some function, and we are free to chose the
radius M of the disc we consider as small as we like.

Lemma 4.1. For every finite subgraph S of G and every o ∈ V (G), the function
P (p) := Pp(C(o) = S) admits an entire extension P (z), z ∈ C, such that for
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every 1 > M > 0, every 1 > x ≥ 0 with x+M < 1 and every z ∈ D(x,M), we
have

|P (z)| ≤ c|∂S|P (x+M),

where c = cM,x := 1−x+M
1−x−M .

Moreover, |P (z)| ≤ c|∂S|M P (1−M) for every z ∈ D(1,M), where cM := 1+M
1−M .

(The second sentence will be used to prove analyticity at p = 1; the reader
who is only interested in analyticity for p ∈ [0, 1) may ignore it and skip the
last paragraph of the proof.)

Proof. By the definitions, we have

P (p) = (1− p)|∂S|p|E(S)|, (3)

because the event {C(o) = S} is satisfied exactly when all edges in ∂S are absent
and all edges in E(S) present. This function, being a polynomial, admits an
entire extension, which we will still denote by P = P (z) with a slight abuse.

To prove the upper bound in our first statement —for 1 > x ≥ 0, and z ∈
D(x,M)— we will bound each of the two products appearing in (3) separately.
Easily,

|z||E(S)| ≤ (x+M)|E(S)|

when z ∈ D(x,M) because |z| ≤ x+ |z − x| ≤ x+M .
Moreover, it is geometrically obvious that the distance |1−z| between 1 and

z, is maximised at z = x−M , which implies

|1− z||∂S| ≤ (1− x+M)|∂S|.

Plugging these two inequalities into (3) we obtain the desired inequality:

|P (z)| ≤ (1− x+M)|∂S|(x+M)|E(S)| =(1− x+M

1− x−M

)|∂S|
(1− x−M)|∂S|(x+M)|E(S)| =

(1− x+M

1− x−M

)|∂S|
P (x+M),

where we also applied (3) with p = x+M .

For the second statement, let z ∈ D(1,M). Then |z| ≤ 1 +M , and |1− z| ≤
M , and similarly to the above calculation we have

|P (z)| ≤M |∂S|(1 +M)|E(S)| =

M |∂S|
(1 +M

1−M

)|E(S)|
(1−M)|E(S)| =

(1 +M

1−M

)|E(S)|
P (1−M).

Remark 4.2. When G has maximum degree d, we have the crude bound |∂S| ≤
d|S|, with which Lemma (4.1) yields |P (z)| ≤ cd|S|M,xP (x+M).

Note that in the proof of Lemma 4.1 we can replace E(S) and ∂S with any
two disjoint finite sets of edges D,F ⊂ E(G), to obtain the following:

Corollary 4.3. For every two disjoint finite sets of edges D,F ⊂ E(G), the
function P (p) := Pp(D ⊆ ω and F ∩ ω = ∅) (i.e. the probability that all edges
in D are occupied and all edges in F are vacant) admits an entire extension

P (z), z ∈ C, such that |P (z)| ≤
(

1−x+M
1−x−M

)|F |
P (x + M) for every M > 0,

1 > x ≥ 0 with x+M < 1 and z ∈ D(x,M).

10



4.2 Long-range models

We now prove the analogue of Lemma 4.1 for long-range models. Recall that in
our long-range setup, we have a vertex set V and any two of its elements can
form an edge. The parameters x,M now take their values in [0,∞), as this is
the case for our percolation parameter t. Let ∂S be the set of pairs {x, y} ⊂ V 2

that are not contained in E(S) but have at least one vertex in S.

Lemma 4.4. For every finite graph S on a subset of V , and every o ∈ V , the
function P (t) := Pt(C(o) = S) admits an entire extension P (z), z ∈ C, such
that |P (z)| ≤ e2M |S|P (x+M) for every M > 0, x ≥ 0 and z ∈ D(x,M).

The proof of this is similar to that of Lemma 4.1, but as our function P (t)
is not exactly a polynomial now we will need some reshuffling of terms and the
following basic fact about complex numbers.

Proposition 4.5. For every µ > 0 and every z ∈ C we have

|eµz − 1| ≤ eµ|z| − 1.

Proof. Expressing eµz via its Maclaurin expansion and using the triangle in-
equality yields

|eµz − 1| =

∣∣∣∣∣∣
∞∑
j=1

(µz)j

j!

∣∣∣∣∣∣ ≤
∞∑
j=1

|zµ|j

j!
. (4)

Since µ > 0, the last expression coincides with the Maclaurin expansion of
eµr − 1 evaluated at r = |z|, from which we obtain |eµz − 1| ≤ eµ|z| − 1.

Proof of Lemma 4.4. Similarly to (3), we have

Pt(C(o) = S) =
∏
e∈∂S

e−tµ(e)
∏

e∈E(S)

(
1− e−tµ(e)

)
, (5)

because the event {C(o) = S} is satisfied exactly when all edges in ∂S are absent
and all edges in E(S) present. Multiplying the second product by

∏
e∈E(S) e

tµ(e)

and the first by its inverse, we obtain

Pt(C(o) = S) =
∏

e∈∂S∪E(S)

e−tµ(e)
∏

e∈E(S)

(
etµ(e)−1

)
= e−tµ(S)

∏
e∈E(S)

(
etµ(e)−1

)
,

(6)
where µ(S) :=

∑
e incident with S µ(e) because the edges incident with S are ex-

actly the elements of ∂S∪E(S). This function clearly admits an entire extension,
which we will still denote by P = P (z) with a slight abuse.

To prove the upper bound, we will bound each of the two products appearing
in (6) separately. Easily,

|e−zµ(S)| ≤ e2M |S|e−(x+M)µ(S)

when z ∈ D(x,M) because |z| ≤ x+ |z − x| ≤ x+M and µ(S) ≤ |S|. For the
second product, we apply Proposition 4.5 to each factor to obtain

|ezµ(e) − 1| ≤ e|z|µ(e) − 1 ≤ e(x+M)µ(e) − 1 (7)

11



for every for z ∈ D(x,M).
Combining these two inequalities, and then applying (6) with t = x + M ,

we obtain the desired bound:

|P (z)| ≤ e2M |S|e−(x+M)µ(S)
∏

e∈E(S)

(
e(x+M)µ(e) − 1

)
= e2M |S|P (x+M).

Again, in this proof we can replace E(S) and ∂S with any two disjoint finite
sets of edges D,F ⊂ E, to obtain, in analogy with Corollary 4.3, the following
statement:

Corollary 4.6. For every two disjoint finite sets of edges D,F ⊂ E, the func-
tion P (t) := Pt(D ⊆ ω and F ∩ ω = ∅) (i.e. the probability that all edges
in D are occupied and all edges in F are vacant) admits an entire extension
P (z), z ∈ C, such that |P (z)| ≤ e2M |V (D∪F )|P (x+M) for every M > 0, x ≥ 0
and z ∈ D(x,M), where V (D ∪ F ) denotes the set of vertices that are incident
with some edge in D ∪ F .

Similarly, if we replace E(S) in Lemma 4.4 with a set of edges incident to
a vertex o and ∂S with the remaining edges that are incident to o we obtain
the following corollary. We let N(o) denote the neighbourhood of o in the
percolation cluster, i.e. the set of vertices sharing an occupied edge with o.

Corollary 4.7. For every o ∈ V and every L ⊂ V , the function
P (t) := Pt(N(o) = L) admits an entire extension P (z), z ∈ C, such that
|P (z)| ≤ e2MP (x+M) for every M > 0, x ≥ 0 and z ∈ D(x,M).

4.2.1 Analyticity of the probability of a given cluster size

Next, we prove that pm(t) := Pt(|C(o)| = m) is analytic, in the full generality
of our long-range models as above. For nearest-neighbour models this is trivial,
because the corresponding probability can be expressed as a polynomial, but the
long-range variant is more interesting. In addition to analyticity, the following
result also provides the upper bound that we will plug into the Weirstrass M-
test to deduce the analyticity of the susceptibility χ for subcritical long-range
models (Theorem 4.11).

Theorem 4.8. For every m ∈ N and every o ∈ V , the function
pm(t) := Pt(|C(o)| = m) admits an entire extension pm(z), z ∈ C, such that
|pm(z)| ≤ e2Mmpm(x+M) for every M > 0, x ≥ 0 and z ∈ D(x,M).

Proof. For m ∈ N, let Gm(V ) denote the set of finite graphs whose vertex set
in a subset of V with m elements containing o (to be thought of as possible
percolation clusters of o). For every such S ∈ Gm(V ), Lemma 4.4 yields an
entire extension PS of Pt(C(o) = S). We claim that the sum∑

S∈Gm(V )

PS(z), (8)

which for z ∈ R, z > 0 coincides with Pz(|C(o)| = m), converges uniformly
on each closed disc D(x,M),M > 0, x ≥ 0 to a function pm : C → C. By
Weierstrass’ Theorem 15.1, this means that pm admits an entire extension.

12



Indeed, this uniform convergence follows from the Weierstrass M-test: each
summand PS can be bounded by |PS(z)| ≤ e2M |S|PS(x+M) = e2MmPS(x+M)
for every M > 0, x ≥ 0 and z ∈ D(x,M) by Lemma 4.4. Moreover, the sum of
these bounds satisfies∑

S∈Gm(V )

e2MmPS(x+M) = e2Mmpm(x+M) <∞.

Thus the Weierstrass M-test can be applied to deduce that (8) converges uni-
formly on D(x,M), and therefore on any compact subset of C.

Finally, the above bounds also prove that |pm(z)| ≤ e2Mmpm(x + M) as
desired.

Corollary 4.9. For every m ∈ N and every o ∈ V , the function fm(t) :=
Pt(|C(o)| ≥ m) admits an entire extension.

Proof. It follows from the formula Pt(|C(o)| ≥ m) = 1 −
∑m−1
i=1 Pt(|C(o)| = i)

and Theorem 4.8.

4.3 Analyticity of χ in the subcritical regime

In this section we prove that the susceptibility χ(t) := Et(|C(o)|) of our models
is an analytic function of the parameter in the subcritical interval. This applies
to both nearest-neighbour and long-range models. For this we need to assume
that our model has the Aizenman-Barsky property.

Theorem 4.10. For every long-range model with the Aizenman-Barsky property
(in particular, for every transitive model), χ(t) is real-analytic in the interval
[0, tc).

Theorem 4.11. For every bounded-degree nearest-neighbour model with the
Aizenman-Barsky property (in particular, for every vertex-transitive graph),
χ(p) is real-analytic in the interval [0, pc).

The proofs of these facts are very similar, and follow Kesten’s proof [37] of
the corresponding statement for (nearest-neighbour) lattices in Zd, except that
we simplify it by avoiding any mention to lattice animals.

Proof of Theorem 4.10. Each summand in the definition
χ(t) =

∑∞
m=1mPt(|C(o)| = m) of χ admits an analytic extension to C by

Theorem 4.8. By Weierstrass’ Theorem 15.1, it suffices to prove that for every
x ∈ [0, tc) there is an open disk D centred at x such that

∑∞
m=1mPt(|C(o)| = m)

converges uniformly in D.
Pick an arbitrary x ∈ [0, tc) and x < y < tc. It is proved in [2] that χ(t) <∞

for every t < tc, and so we have χ := χ(y) <∞.
Since we are assuming the Aizenman-Barsky property, we have Py(|C(o)| ≥

m) ≤ e−m/5χ2

. Since pm(t) := Pt(|C(o)| ≥ m) is an increasing function of t, we
deduce

pm(t) ≤ e−m/5χ
2

(9)

for every t ≤ y. Pick M > 0 small enough that x+M ≤ y and e2Me−1/5χ2

< 1,
that is, M < min{y − x, 1

10χ2 }. Combined with Theorem 4.8, this implies that
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|pm(z)| ≤ Cam for z ∈ D(x,M), where C is a positive constant and a < 1.
Since

∑∞
m=1 Cma

m < ∞, we can use the Weierstrass M-test to conclude that
the sum

∑∞
m=1mpm(z) converges uniformly on D(x,M) and since each pm is

analytic the sum is also analytic. Moreover, this sum coincides with χ(t) for
t ∈ D(x,M) ∩ [0, tc), and so our statement follows.

Proof of Theorem 4.11. This is similar to the above, but instead of Theorem 4.8
we use the corresponding statement for nearest-neighbour models. This is eas-
ier, as the sum (8) is finite. Applying Lemma 4.1 (using the bounded de-
gree assumption, see also Remark 4.2) yields an upper bound of the form
|pm(z)| ≤ cdmP (x + M) which we use instead of that of Theorem 4.8 in our
application of the M-test. The rest of the proof is identical to that of Theo-
rem 4.10.

The above proofs show that there is an open disk centred at any subcritical
value x of the parameter where pm converges exponentially fast to 0. Easily,
every higher moment E(|C(o)|k) =

∑∞
m=1m

kPt(|C(o)| = m) (or for the same
reason, the expectation of every sub-exponential function of |C(o)|) admits an
analytic extension on the same disk, and so we obtain

Corollary 4.12. Every moment Ex(|C(o)|k) is an analytic function of the pa-
rameter x in the subcritical interval for all models as in Theorem 4.11 or The-
orem 4.10.

Let us summarize the ideas used to prove the analyticity of χ. Our proofs
had little to do with χ itself. The main idea was to express χ as a sum of
multiples of probabilities of events, namely χ(t) =

∑∞
m=1mPt(|C(o)| = m),

and use the exponential decay of those probabilities (Theorem 3.1) to counter
the exponential growth of their complex extensions (as in Lemma 4.1) in small
enough discs around every point p. The rest of the proof was standard complex
analysis, namely the Weierstrass M-test and Weierstrass’ Theorem 15.1thmWei.
As we are going to use the same proof structure several times, we reformulate it
as the following corollary, which is a straightforward generalisation of the proof
of Theorem 4.11. To formulate it, we need the following definition.

Definition 4.13. We say that an event E —of a nearest-neighbour model on
a graph G— has complexity n, if it is a disjoint union of a family of events
(Fn)n∈N where each Fi is measurable with respect to a set of edges of G of
cardinality n.

Corollary 4.14. Let Pp denote the law of a nearest-neighbour model, and let
f(p) be a function that can be expressed as f(p) =

∑
n∈N

∑
i∈Ln

aiPp(En,i) in
an interval p ∈ I ⊂ [0, 1], where an ∈ R, Ln is a finite index set, and each En,i
is an event measurable with respect to Pp (in particular, the above sum converges
absolutely for every p ∈ I). Suppose that

(i) En,i has complexity of order Θ(n), and

(ii) for each open subinterval J ⊂ I there is a constant 0 < cJ < 1 such that∑
i∈Ln

aiPp(En,i) = O(cJ
n).

Then f(p) is analytic in I.
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Proof. We imitate the proof of Theorem 4.10, except that instead of the Aizenman-
Barsky property we use our assumption (ii), and instead of Lemma 4.1 we use
its generalisation Corollary 4.3, which we apply to the sequence of events wit-
nessing that (En,i) satisfies (i). (Note that the complexity of an event governs
the exponential growth rate of the maximum modulus of the extension of its
probability to a complex disc as a function of the radius of that disc.)

Remark: A similar statement for long-range models can be formulated, and
proved, along the same lines, except that we use the total µ-weight rather than
the cardinality of an edge-set in Definition 4.13.

5 pC < 1 for non-amenable graphs

The (edge)-Cheeger constant of a graph G is defined as hE(G) := infS
|∂ES|
|S| ,

where the infimum ranges over all finite subgraphs S of G. When hE(G) > 0 we
say that G is non-amenable. A well-known theorem of Benjamini & Schramm
[13] states that pc(G) ≤ 1

1+hE(G) . We show here that the same bound applies to

pC. We use the same technique as in the subcritical case (Section 4.3), except
that we replace the Aizenman-Barsky property with an observation of Pete that
the arguments of Benjamini & Schramm imply the exponential decay above
the aforementioned threshold of the ‘truncated’ cluster size for non-amenable
graphs.

Theorem 5.1. For every bounded degree graph G with h := hE(G) > 0, we
have pC ≤ 1

1+hE(G) .

Proof. By the definitions, we have 1− θ(p) =
∑
n Pp(|C(o)| = n).

The statement follows if we can apply Corollary 4.14 for I = ( 1
1+hE(G) , 1]

and En := {|C(o)| = n} (and an = 1). So let us check that the assumptions of
Corollary 4.14 are satisfied.

The exponential decay condition (ii) is established in [47, Proposition 12.9],
which states that for every p ∈ ( 1

1+hE(G) , 1] we have Pp(|C(o)| = n) ≤ Pp(n ≤
|C(o)| < ∞) < e−rn for some constant r = r(p) > 1, and it is clear from the
proof that r(p) is monotone in p.

For condition (i), we note that if d is the maximum degree of G, then En
has complexity at most dn, as it is the disjoint union of the events of the form
C(o) = S where S ranges over all connected subgraphs of G with n vertices
containing o. We have thus proved that all assumptions of Corollary 4.14 are
satisfied as claimed.

Remark: The same proof applies if we replace θ by some other subexponential
funtion of the restriction of |C(o)| to finite values.

It is well known that when G is amenable and transitive, there can never be
more than one infinite cluster, whence pc = pu [18] where

pu = inf{p ∈ [0, 1] : there exists a unique infinite cluster}.

On the other hand, Benjamini & Schramm [13] conjectured that pc < pu holds
on every non-amenable transitive graph.
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It is natural to ask whether θ witnesses the phase transition at pu whenever
pc < pu, i.e. whether θ is non-analytic at pu. It turns out that this is not the
case, i.e. there are examples of Cayley graphs where θ is analytic at pu. Indeed,
Thom [50], refining the result of Pak & Smirnova-Nagnibeda [44], proved that
whenever the spectral radius ρ(G) of G is at most 1/2 we have pc < pu. In
fact, it follows from their proof that pu >

1
1+hE(G) . Moreover they proved that

ρ(G) ≤ 1/2, and so pu >
1

1+hE(G) , for some Cayley graph of any non-amenable

group. (See [48] for other conditions that imply pu > 1
1+hE(G) .) But then

Theorem 5.1 yields that θ is analytic at pu.

6 pC = pc for regular trees

It is well-known that if G is a d-regular tree for d > 2, then pc = 1
d−1 [41, 47],

and it is easy to prove that hE(G) = d − 2 in this case. Thus Theorem 5.1
immediately yields

Corollary 6.1. If T is the d-regular tree, then pC = pc = 1
d−1 .

For d = 3 this is rather trivial, since θ(p) can be computed exactly using a
recursive formula: assuming the root o has degree d − 1, and all other vertices
degree d, we have 1−θ′ = (1−pθ′)d−1. From this it is easy to compute θ = θo(p)
when o has degree d as well: we have 1 − θ = (1 − pθ′)d. For d = 3 we have
θ′(p) = 2p−1

p2 and hence θ(p) = 1 − (1 − 2p−1
p )3. We remark that this function

is convex, corroborating the common belief about the shape of θ in general (see
e.g. [28, p. 148]). The cases d = 4, 5 can also be solved exactly as they boil
down to finding roots of polynomials of degree 3 and 4 respectively. For high
values of d the Abel–Ruffini theorem kicks in, and Galois theory implies that
our equation is in general not soluble in terms of radicals.

It was proved by Brillinger [17] (using the implicit function theorem) that
each root of a polynomial is an analytic function of the coefficients of the poly-
nomial in any interval in which no two roots coincide. We could deduce Corol-
lary 6.1 from Brillinger’s theorem if we knew that no roots of the above equation
collide in the interval p ∈ (pc, 1]. Checking whether this condition is satisfied
can be done with a certain amount of elementary manipulations, and so Corol-
lary 6.1 can indeed be deduced from Brillinger’s theorem3. Our approach yields
a more probabilistic approach which we find overall simpler.

We finish this section with an open problem:

Problem 6.1. Does pC = pc hold for every tree (for which pc < 1)?

7 Analyticity above the threshold for planar lat-
tices

A quasi-transitive lattice (in R2) is a connected plane graph L such that for
some pair of linearly independent vectors v1, v2 ∈ R2, translation by each vi
preserves L, and this action has finitely many orbits of vertices. Remark: The

3We thank Damiano Testa for some of these remarks.
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seemingly more general definition as a plane graph admitting a semiregular
action of the group Z2 (by isometries of R2 preserving L, or even more generaly
by arbitrary graph-theoretic isomorphisms) with finitely many orbits of vertices
can be proved to be in fact equivalent, but we will not go into the details; the
main idea is to embed a fundamental domain of L with respect to that action
in a square, and then tile R2 by copies of that square. Another approach can
be found in [14, Proposition 2.1]. Theorem 7.1 does not apply to a lattice H in
hyperbolic 2-space just because Theorem 7.2 below fails, but our proof shows
that pC(H) ≤ 1 − pc(H∗). In this case we have 1 − pc(H∗) = pu(H) by [14,
Theorem 3.8]4; in other words, we have shown analyticity of θ above pu for all
planar lattices.

In this section we prove

Theorem 7.1. For Bernoulli bond percolation on any quasi-transitive lattice
we have pC = pc.

This result is new even for the standard square lattice Z2, i.e. the Cayley
graph of Z2 with respect to the standard generating set {(0, 1), (1, 0)}. Sligtly
more effort is needed to prove it in the generality of quasi-transitive lattices. The
reader that just wants to see a simplest possible proof for the lattice L = Z2 is
advised to:

• ignore Theorem 7.2, and just recall that pc(Z2) = 1/2 and Z2∗ = Z2;

• skip the definition of X in Section 7.1, and instead take X to be the
horizontal ‘axis’ of Z2, and X+ the right ‘half-axis’ starting at the origin
o; and

• notice that Proposition 7.3 holds trivially with f = 1.

We will use the following important fact about the relation between the
percolation thresholds in the primal and dual lattice. The history of this result
starts with the Harris-Kesten theorem that pc(Z2) = 1/2. A special case was
obtained by Bollobas & Riordan [8], and almost simultaneously the general case
was proved by Sheffield [49, Theorem 9.3.1] in a rather involved way. A shorter
proof can be found in [21].

Theorem 7.2 ([49]; see also [21]). For every quasi-transitive lattice L, we have
pc(L) + pc(L

∗) = 1.

The analog of Theorem 7.1 for Bernoulli site percolation on the triangular
lattice can be proved along the same lines, see Corollary 7.9. We do not use
any notion of duality in this case, but it becomes important that ṗc = 1/2. Our
proof does not apply to site percolation on arbitrary planar lattices.

7.1 Preliminaries on quasi-transitive lattices

We will construct a 2-way infinite path X in any quasi-transitive lattice L,
which can be thought of as a ‘quasi-geodesic’ of both L and L∗. Alternatively,
we could take X to be a 2-way infinite geodesic of L and prove Proposition 7.3

4The fact that non-amenability is equivalent to hyperbolicity in this setup is well-known,
see e.g. [25].
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below differently, but the approach we follow is not more complicated and has
the advantage that it avoids the axiom of (countable) choice.

Since L is a plane graph, we naturally identify V (L) with a set of points
of R2. Let o ∈ R2 be a vertex of L and recall that o + kv1 ∈ V (L) for some
non-zero vector v1 ∈ R2 and every k ∈ Z. Fix a path P from o to o+v1. We may
assume without loss of generality that P does not contain o+ kv1 for k 6= 0, 1,
for otherwise we can replace v1 by one of its multiples and P by a subpath.
Note that the union

⋃
k P + kv1 of its translates along multiples of v1 contains

a 2-way infinite path X. Moreover, it is not too hard to see that we can choose
X to be periodic, i.e. to satisfy X + tv1 = X for some t ∈ N. For convenience,
we will assume without loss of generality that o lies in X. Let X+, X− denote
the two 1-way infinite sub-paths of X starting at o.

Proposition 7.3. Let L be a quasi-transitive lattice and X+ the o-∞ path
defined above. Then there is a constant f = f(L) such that every subgraph of
L that surrounds o and has at most N edges must contain one of the first fN
vertices X+, and every subgraph of L∗ that surrounds o and has at most N
edges must contain (the dual of) one of the first fN edges of X+.

Proof. Suppose S ⊂ L surrounds o. Then S must separate o from infinity, and
so it must meet the infinite path X+. Similarly, any S ⊂ L∗ surrounding o must
cross both X+ and X−.

By quasi-transitivity, the lengths of the edges of L and L∗ are bounded above
by some B ∈ N. Recall that X is periodic, and let D denote the diameter (with
respect to the euclidean metric of R2) of a period of X. It follows easily that
for some f ≤ D/L

7.2 Main result

Let L be a quasi-transitive lattice, and o a vertex of L fixed throughout this
section. A subgraph S of L is called a outer-interface (of o) if there is a finite
connected subgraph H of L containing o such that S consists of the vertices and
edges incident with the unbounded face of H.

The boundary ∂S of an outer-interface S is the set of edges of L that are
incident with S and lie in the unbounded face of S. It is important to remember
that ∂S may contain edges that have both their end-vertices in S; our proof will
break down (at Lemma 7.5) if we exclude such edges from the definition of ∂S.
Let |S| := |E(S)| be the number of edges in S.

Given a realisation ω ∈ 2E(L) of our Bernoulli percolation on L, we say that
an outer-interface S occurs in ω if S is the boundary of the unbounded face of
some cluster of ω. This happens exactly when all edges of S are occupied and
all edges in ∂S are vacant.

The following is an easy consequence of the definitions.

Lemma 7.4. If two occuring outer-interfaces share a vertex then they coincide.

The following is one of the reasons why our proof only applies to lattices
rather than arbitrary planar graphs.

Lemma 7.5. For every outer-interface S we have |∂S| ≥ |S|/k for some integer
k = k(L).
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For example, if L is the square lattice Z2, then k = 2. (And not k = 1,
because it can happen that most edges in ∂S have both their end-vertices in S;
for example, we can have a ‘space filling’ outer-interface whose vertex set is an
n × n box of Z2. The following proof will give a worse bound than k = 2, but
we can afford to be generous.)

Proof. We first observe that every face of L is bounded: choose vectors v1, v2 as
in the definiton of a quasi-transitive lattice, fix a path P1 from o to o+ v1 and a
path P2 from o to o+ v2, and note that the union of their translates kPi, k ∈ Z
contains a grid that separates R2 into bounded regions containing the faces of
L.

Therefore, since there are finitely many of orbits of vertices of L, there are
also finitely many of orbits of faces, and so the number of edges in the boundary
of any face is at most some k′ ∈ N. Now recall that S consists of the vertices
and edges incident with the unbounded face F of some H ⊂ L. If we walk
along the boundary S of F , we will never traverse k′ or more edges of S without
encountering an edge in ∂S, and we will encounter each edge in ∂S at most
twice. Thus our assertion holds for k = 2(k′ − 1).

A multi-interface M is a finite set of pairwise vertex-disjoint outer-interfaces.

Lemma 7.6. For every outer-interface S, the edge-set ∂S∗ spans a connected
subgraph of L∗ surrounding o. Similarly, for every multi-interface M , the edge-
set ∂M∗ spans a subgraph of L∗ the number of components of which equals the
number of outer-interfaces in M (and each of these components surrounds o).

Proof. Recall that S consists of the vertices and edges incident with the un-
bounded face F of a finite connected subgraph H in a fixed embedding of L.
Let J be a Jordan curve disjoint from H such that H lies in the bounded side of
J , and J is close enough to H that it meets all edges in ∂S and no other edges
of L. Then the cyclic sequence of faces and edges of L visited by J defines a
closed walk in L∗, proving that ∂S∗ spans a connected subgraph of L∗. That
this subgraph surrounds o is an immediate consequence of the definition of an
outer-interface.

Now let M be a multi-interface comprising the outer-interfaces S1, . . . , Sm.
We just proved that each ∂S∗i spans a connected subgraph of L∗, so it only
remains to show that ∂M∗ contains no path between ∂S∗i and ∂S∗j for i 6= j.
Since Si and Sj are vertex-disjoint, one of them is contained in a bounded face
of the other. Let us assume that Si is contained in a bounded face of Sj . Then
it is easy to see that the edges of Si contain a cut of L∗ separating ∂S∗i from
∂S∗j . Since ∂M∗ contains no edge of S∗i by the vertex-disjointness of the Si, this
proves our claim that ∂M∗ contains no path between ∂S∗i and ∂S∗j .

Let MS denote the set of multi-interfaces of L. We say that M ∈ MS
occurs if each of the outer-interfaces it contains occurs. Let |M | :=

∑
Si∈M |Si|

be the total number of edges in M . Let ∂M :=
⋃
Si∈M ∂Si, and let MSn :=

{M ∈MS | |∂M | = n} be the set of multi-interfaces with n boundary edges.

Lemma 7.7. There is a constant r ∈ R such that for every n ∈ N at most r
√
n

elements of MSn can occur simultaneously in any percolation instance ω.
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Proof. Suppose M ∈ MSn occurs in ω. Since occurring outer-interfaces meet
X+ by Proposition 7.3, and they are vertex-disjoint by Lemma 7.4, M is
uniquely determined by the subset D of {x0, x1, . . .} it meets, in other words,
M =

⋃
xi∈D S(xi, ω), where S(xi, ω) denotes the occuring outer-interface con-

taining xi.
Note that |S(xi, ω)| > i/f for every xi ∈ D by Proposition 7.3. Since

kn ≥ |M | =
∑
xi∈D |S(xi, ω)| by Lemma 7.5 and the above remark, we deduce

fkn >
∑
xi∈D i. This means that D uniquely determines a partition of a number

smaller than fkn. Moreover, distinct occurring multi-interfaces in MSn deter-
mine distinct subsets D of {x0, x1, . . .}, and therefore distinct partitions. By
the Hardy–Ramanujan formula, the number of such partitions is less than r

√
n

for some r > 0. Thus less than r
√
n elements ofMSn can occur simultaneously

in ω.

If C(o) is finite, then there is exactly one outer-interface that occurs and is
contained in C(o), namely the boundary of the unbounded face of C(o). We
denote the probability of this event by PS , that is, we set

PS(p) := P(S occurs and S ⊂ C(o)).

Thus we can write the probability θo(p) that C(o) is finite by summing PS over
all S ∈ S, where S denotes the set of outer-interfaces:

1− θo(p) =
∑
S∈S PS(p) (10)

for every p ∈ (pc, 1].
As usual, our strategy to prove the analyticity of θ, is to express θ as an

infinite sum of functions that admit analytic extensions, namely, probabilities
of events that depend on finitely many edges, and then apply Corollary 4.14.
Formula (10) is a first step in this direction, however, the functions PS are not
fit for our purpose: the event {S occurs and S ⊂ C(o)} is not measurable with
respect to the set of edges incident with S only. Therefore, we would prefer to
express θ in terms of the simpler functions

QS := Pp(S occurs).

These functions have the advantage that comply with the premise of Corol-
lary 4.3, and hence |QS(p)| is bounded in D(p,M) by eCM,p|S|QS(p+M), where
CM,p is independent of S. But when trying to write θ as a sum involving these
QS , we have to be more careful: we have

1− θo(p) = Pp(|C(o)| <∞) = Pp(at least one S ∈ S occurs)

by the definitions, but more than one S ∈ S might occur simultaneously.
Therefore, we will apply the inclusion-exclusion principle to the set of events
{S occurs}S∈S . We claim that

1− θo(p) =
∑
M∈MS(−1)c(M)+1QM (p) (11)

for every p ∈ (pc, 1], where c(M) denotes the number of outer-interfaces in the
multi-interface M .

To prove this, we need first of all to check that the sum in the right hand
side converges. This is implied by Lemma 7.8 below, which states that
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∑
M∈MSn

QM (p) decays exponentially in n, and therefore our sum converges
absolutely. Then, we need to check that this sum agrees with the inclusion-
exclusion formula. This is so because, for every set I of outer-interfaces, we have
P(every S ∈ I occurs) = 0 unless the elements of I are pairwise vertex-disjoint
—that is, I ∈MS— by Lemma 7.4 and so we can restrict the inclusion-exclusion
formula to MS rather than consider sets of outer-interfaces that intersect.

The main part of our proof is to show that the probability for at least one
multi-interface in MSn to occur decays exponentially in n, which will imply
the following lemma. The rest of the arguments used to prove Theorem 7.1 are
identical to those of e.g. Theorem 4.11 or 5.1.

Lemma 7.8. For every p ∈ (pc, 1] there are constants c1 = c1(p) and c2 = c2(p)
with c2 < 1, such that for every n ∈ N,∑

M∈MSn
QM (p) ≤ c1c2n. (12)

Moreover, if [a, b] ⊂ (pc, 1], then the constants c1 and c2 can be chosen indepen-
dent of p in such a way that (35) holds for every p ∈ [a, b].

The proof of this is based on the fact that the size of the boundary of an
outer-interface S that contains a certain vertex x has an exponential tail. This
is because ∂S is contained in a component of the dual L∗ by Lemma 7.6, and
as our percolation is subcritical on L∗, the Aizenman-Barsky property holds.
Still, the exponential tail of each |∂S| does not easily imply Lemma 7.8. First
of all, the sum in the left hand side of Lemma 35 is larger than the probability
P(MSn occurs) that a multi-interface ofMSn occurs. Second, a multi-interface
might consist of plenty of outer-interfaces. Nevertheless, we will be able to
overcome these difficulties. Using Lemma 7.7 we prove that the aforementioned
sum does not grow too fast when compared with the probability that a multi-
interface of MSn occurs.

Proof of Lemma 7.8. We start by noticing that∑
M∈MSn

QM (p) = Ep(
∑

M∈MSn

χ{M occurs}),

where χA denotes the characteristic function of the occurence of an event A.
The number of multi-interfaces M ∈ MSn that can occur simultaneously is
bounded above by r

√
n for some r > 0 by Lemma 7.7. It follows that∑

M∈MSn

χ{M occurs} ≤ r
√
nχ{MSn occurs}

which in turn implies that∑
M∈MSn

QM (p) ≤ r
√
nPp(MSn occurs).

Hence it suffices to show that Pp(MSn occurs) decays exponentially in n.
In order to do so we will employ the exponential tail of the size of a certain
(subcritical) cluster in the dual L∗ given by the Aizenman-Barsky property. For
this we will use the natural coupling of the percolation processes on L and L∗:
given a percolation instance ω ∈ 2E(L) on L, we obtain a percolation instance
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ω∗ on L∗ by changing the state of each edge, i.e. letting ω∗(e∗) = 1 − ω(e) for
every e ∈ E(L). Let C(k) denote the event that there is a subgraph of a cluster
of ω∗ that surrounds o and contains at most k edges. Note that C(k) is an
increasing event. We claim that

Pp(MSn occurs) ≤
∑
{m1,...,mk}∈Tn

P1−p(C(m1) ◦ . . . ◦ C(mk)), (13)

where ◦ means that the events occur edge–disjointly (see Section 3.3), and Tn
is the set of partitions of n with the property that for every N ≤ n at most
fN elements of the partition have size at most N , where f is the constant of
Proposition 7.3. Once this claim is established, we will be able to employ the
BK inequality (Theorem 3.2) to bound Pp(MSn occurs).

To prove (13), we remark that eachM ∈MSn defines a partition {m1, . . . ,mk}
of n by letting mi stand for the number of edges in the ith component Ki of
the subgraph of L∗ spanned by ∂M∗. By Lemma 7.6 each Ki surrounds o,
and so if M occurs then Ki is a witness of C(mi), and these witnesses are
pairwise edge-disjoint. Thus the occurence of M implies the occurence of the
event C(m1) ◦ . . . ◦ C(mk) in ω∗. To conclude that (13) holds, we apply the
union bound to the family of events of the latter form, ranging over all parti-
tions {m1, . . . ,mk} ∈ Tn, but we still need to check that for any M ∈ MSn
the corresponding partition lies in Tn. This is true by Proposition 7.3 and the
pigeonhole principle, since the Ki are pairwise edge-disjoint by definition.

The BK inequality [28] states that

P1−p(C(m1) ◦ . . . ◦ C(mk)) ≤ P1−p(C(m1)) · . . . · P1−p(C(mk)).

Recall that a subgraph of L∗ with at most mi edges surrounding o must contain
one of the first fmi vertices of X by Proposition 7.3. Combining this fact
with the union bound, and applying the Aizenman-Barsky property, we obtain
P1−p(C(mi)) ≤ fmic

mi for some constant 0 < c = c(p) < 1. As P1−p(C(n)) < 1
for every n, we deduce that P1−p(C(mi)) ≤ (c+ ε)mi for some ε > 0 such that
c + ε < 1; indeed, for any ε, this is satisfied for large enough mi, and raising ε
we can make it true for the smaller values of mi. In addition, if [a, b] ⊂ (pc, 1],
then the monotonicity of P1−p(C(mi)) implies that the constant c + ε can be
chosen uniformly for p ∈ [a, b].

Combining all these inequalities starting with (13) we conclude that

Pp(MSn occurs) ≤ |Tn|(c+ ε)n.

We have Tn ≤ h
√
n for some constant h by the Hardy–Ramanujan formula

(Theorem 3.3), and so

Pp(MSn occurs) ≤ h
√
n(c+ ε)n.

Thus Pp(MSn occurs) decays exponentially in n as claimed.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. As already explained, Lemma 7.8 implies that the inclusion–
exclusion expression (11) holds. The assertion follows if we can apply Corollary
4.14 for I = (pc, 1], Ln = MSn, and (En,i) an enumeration of the events
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{M occurs}M∈MSn
. So let us check that the assumptions of Corollary 4.14 are

satisfied.
By definition, every M ∈MSn has n vacant edges. Moreover, |M | ≤ k(L)n

by Lemma 7.5. Thus assumption (i) of Corollary 4.14 is satisfied. The fact that
assumption (ii) is satisfied is exactly the statement of Lemma 7.8.

Corollary 7.9. For Bernoulli site percolation on the triangular lattice, the
percolation density θ(p) is analytic for p ∈ (1/2, 1].

Proof. The proof is essentially the same as that of Theorem 7.1, with the simpli-
fications proposed after the statement of that theorem for the case L = Z2 still
applying. The only difference is that instead of the coupling with percolation
on the dual L∗ that we used there, which we combined with Theorem 7.2 to
deduce the exponential decay of the probability that a fixed vertex lies on an
outer-interface of length n, we now obtain this exponential decay by noticing
that if S is an occuring outer-interface, then the vertices incident with ∂S that
do not lie in S form a connected vacant subgraph. But vacant subgraphs are
subcritical when p > ṗc = 1/2, and so applying the Aizenman-Barsky property
to them yields the desired exponential decay.

8 Analyticity of τ above pc for planar lattices

In this section we prove that the n-point function τ and its truncated version τf

are also analytic functions of p for p > pc(L), where as in the previous section
L is any quasi-transitive lattice in R2.

Given a k-tuple x = {x1, . . . , xk}, k ≥ 2 of vertices of L, the function τx(p)
denotes the probability that x is contained in a cluster of Bernoulli perco-
lation on L with parameter p. Similarly, τfx(p) denotes the probability that
x is contained in a finite cluster. The diameter diam(x) of x is defined as
max1≤i<j≤k{d(xi, xj)} where d(xi, xj) denotes the graph-theoretic distance be-
tween xi and xj .

Theorem 8.1. For every quasi-transitive lattice L and every finite set x of ver-
tices of L, the functions τx(p) and τfx(p) admit analytic extensions to a domain
of C that contains the interval (1/2, 1]. Moreover, for every p ∈ (pc, 1] there is
a closed disk D(p, δ), δ > 0 and positive constants c1 = c1(p, δ), c2 = c2(p, δ) < 1
such that

|τfx(z)| ≤ c1cdiam(x)
2

for every z ∈ D(p, δ) for such an analytic extension τfx(z) of τfx(p).

Proof. We start by showing that τfx(p) is analytic. Suppose x = {x1, . . . , xk}.
Let Cxi 6→xj

denote the event that there is an outer-interface that surrounds xi
but not xj or vice versa5. It is easy to see that

τfx(p) = Pp(A)− Pp(B),

where
A :=

⋃
1≤i≤k

{|C(xi)| <∞}

5In this section the term outer-interface is used as in Section 7.2, except that we no longer
require it to surround o.
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and
B :=

⋃
1≤i<j≤k

{Cxi 6→xj
}.

We will prove that both Pp(A) and Pp(B) are analytic functions of p in
(pc, 1]. Let MS(x) denote the set of multi-interfaces each element of which
surrounds at least one element of x andMS ′(x) the set of multi-interfaces each
element of which surrounds some but not all xi ∈ x. By the definitions,MS ′(x)
is a subset of MS(x). Using the inclusion-exclusion principle we obtain

Pp(A) =
∑

M∈MS(x)

(−1)c(M)+1Pp(M occurs)

and
Pp(B) =

∑
M∈MS′(x)

(−1)c(M)+1Pp(M occurs),

provided these sums converge, which will follow as for the corresponding for-
mula (11) for θ. Moreover, provided that

∑
M∈MSn(x) Pp(M occurs) decays

exponentially, the same holds for
∑
M∈MS′n(x) Pp(M occurs), where MSn(x)

and MS ′n(x) denote those multi-interfaces M of MS(x) and MS ′(x), respec-
tively, with |∂M | = n. If this is the case, then the analyticity of Pp(A) and
Pp(B) follows as in the proof of Theorem 7.1.

So let us show that
∑
M∈MSn(x) Pp(M occurs) decays exponentially in n.

First of all, we need an upper bound for the number of multi-interfaces M ∈
MSn(x) that can occur simultaneously. It is easy to see that a crude upper
bound is s̃(n)k, where s̃(n) is equal to s(1) + s(2) + · · · + s(n) and s(i) is the
maximum number of multi-interfaces in MSi({x}) for any x ∈ x that can
occur simultaneously. This is true because a multi-interface M ∈ MSn(x)
comprises (possibly empty) multi-interfaces M1, . . . ,Mk, where each element of
Mi surrounds xi, and each Mi has boundary of size at most n. In Lemma 7.7
we showed that s(n) is bounded above by r

√
n for some r > 0,and so

s̃(n) ≤
(
r
√

1 + r
√

2 + · · ·+ r
√
n
)
≤ nr

√
n.

Similarly to Lemma 7.8, we now obtain∑
M∈MSn(x)

Pp(M occurs) ≤ nkrk
√
nPp(MSn(x) occurs).

Thus it suffices to show that Pp(MSn(x) occurs) has an exponential tail.
Observe that M is the union of k (not necessarily disjoint) multi-interfaces

M1, . . . ,Mk that surround x1, . . . , xk respectively. By the pigeonhole principle
there is some i such that |∂Mi| ≥ |∂M |/k. Using the union bound as in (13),
except that we now also sum over all xi ∈ x, we obtain

Pp(MSn(x) occurs) ≤ k
∑

{m1,m2,...,mk}∈T̃n

P1−p(C(m1) ◦ C(m2) ◦ · · · ◦ C(mk)),

where T̃n is the number of partitions of some number m ∈ {dn/ke , . . . , n}, and
we only consider partitions with the property that for every N ≤ m at most fN
elements of the partition have size at most N , where again f is the constant of
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Proposition 7.3. The exponential decay of Pp(MSn(x) occurs) follows as in the
proof of Lemma 7.8. This completes the proof that τfx(p) is analytic in (pc, 1].

We proceed with τx. Since τfx is analytic, it suffices to show that τx − τfx is
analytic. It is known that the infinite cluster is unique in our setup ([18, 47]),
and this implies that τx − τfx = P(|Cx1

| = ∞, . . . , |Cxk
| = ∞). The latter

probability is complementary to the probability P(A), which we have just shown
to be analytic. Hence τx − τfx is analytic as well.

For the second claim of the theorem, using the inclusion-exclusion principle
once more, we write

τfx(p) =
∑
M∈MS∀(x)(−1)c(M)+1Pp({M occurs} ∩ {x is connected}), (14)

where MS∀(x) is the set of multi-interfaces each element of which surrounds
every element of x, and {x is connected} means there is a path from xi to xj
for every i and j. The key observation is that the size of the boundary of
every element of MS∀(x) is bounded below by diam(x)/g for some constant
g independent of x. Indeed, this can be proved similarly to the proof of Pro-
position 7.3. Our goal is to prove that for every p ∈ (pc, 1] there is δ > 0 such
that Pz({M occurs} ∩ {x is connected}) decays exponentially in the size of the
boundary M for every z ∈ D(p, δ) (here,
Pz({M occurs} ∩ {x is connected}) denotes the entire extension of
Pp({M occurs} ∩ {x is connected}), p ∈ [0, 1], which exists since the latter is a
finite polynomial in p). Then the desired inequality will follow from (14).

Given a multi-interface M ∈ MS∀(x), consider the unique outer-interface
M0 of M which is surrounded by every other outer-interface of M . Since M0

does not separate the elements of x, it is easy to see that when M occurs, any
occurring outer-interface C that surrounds some xi ∈ x but not some other
xj ∈ x is strictly contained in the finite component K of the complement of
∂M0. By ‘strictly contained’ we mean that both the open edges of C and
its boundary are contained in K. Denoting B(M) the event that there is no
such outer-interface C for any pair of i and j, we notice that the events B(M)
and {M occurs} depend on the state of disjoint sets of edges. Hence they are
independent and we obtain

Pp({M occurs} ∩ {x is connected}) = Pp(M occurs)Pp(B(M)).

Using the inclusion exclusion principle we conclude that

Pp(B(M)) = 1 +
∑

S∈MS(x,M)

(−1)c(S)Pp(S occurs),

whereMS(x,M) is the set of multi-interfaces comprising outer-interfaces each
witnessing that B(M) fails. The set MS(x,M) is a subset of MS(x), which
implies that for every z ∈ C,∑

S∈MS(x,M)

|Pz(S occurs)| ≤
∑

S∈MS(x)

|Pz(S occurs)|,

where as usual Pz(·) denotes the entire extension of Pp(·). We proved above
that

∑
M∈MSn(x) Pp(M occurs) decays exponentially in n for every p ∈ (pc, 1].
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By Corollary 4.3 and Lemma 7.5 we deduce that for every p ∈ (pc, 1] and δ > 0
there is c = c(p, δ) > 0 such that

|Pz(S occurs)| ≤ c(p, δ)nPp′(S occurs),

where p′ = p+ δ when p < 1 and p′ = 1− δ when p = 1. (To prove analyticity
at p = 1 we need to extend Corollary 4.3 to also provide a bound similar to that
of the last sentence of Lemma 4.1, but this is straightforward.) Hence∑

S∈MSn(x)

|Pz(S occurs)| ≤ c(p, δ)n
∑

S∈MSn(x)

Pp′(S occurs),

and choosing δ small enough we obtain that∑
S∈MSn(x)

|Pz(S occurs)| ≤ dcn

holds for every z ∈ D(p, δ). Using the triangle inequality and summing over all
n, we thus obtain

|Pz(B(M))| ≤ 1 +
dc

1− c
for every z ∈ D(p, δ).

Combining all the above we conclude that

|τfx(z)| ≤
∑

M∈MS∀(x)

|Pz({M occurs} ∩ {x is connected})| ≤

(
1 +

dc

1− c

) ∞∑
n=m′

∑
M∈MS∀n(x)

|Pz(M occurs)| ≤
(

1 +
dc

1− c

) dcm′
1− c

,

where m′ := diam(x)/g and as usualMS∀n(x) denotes the set of those elements
of MS∀(x) with boundary of size n. The proof is now complete.

Theorem 8.1 has the following corollary

Theorem 8.2. For every k ≥ 1, every quasi-transitive lattice L, and o ∈ V (L),

the functions χfk(p) := Ep(|C(o)|k; |C(o)| <∞) are analytic in p.

Proof. Let us show that χf (p) := E(|C(o)|; |C(o)| < ∞) is analytic. The case
k ≥ 2 will follow similarly. We observe that, by the definitions,

χf (p) =
∑

x∈V (L)

τf (o, x) = 1 +
∑

y∈V (L)\{o}

τf (o, y).

The probabilities τf (o, y) admit analytic extensions by Theorem 8.1, and so it
suffices to prove that the sum

∑
y∈L\{o} τ

f (o, y) converges uniformly on an open

neighbourhood of (pc, 1]. This follows easily from the estimates of the second
sentence of Theorem 8.1, the polynomial growth of L (which holds because L is
quasi-isometric to R2 [9]), and the Weierstrass M-test.
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9 Continuum Percolation

In this section we will prove analyticity results for the Boolean model in R2

analogous to Theorem 7.1, answering a question of [33].

Let Pλ be a Poisson point process in Rd of intensity λ and let N (B) denote
the number of points inside a bounded subset B of Rd. The Boolean model
is obtained by taking the union Z of disks of radius r, called grains, centred
at the points of Pλ. The random radii are independent random variables and
have the same distribution as another positive random variable ρ. They are also
independent from Pλ. We denote (Pλ, ρ) the Boolean model with random radii
sampled from ρ. If ρ is equal to a positive constant r we will write (Pλ, r).

The random set Z is called the occupied region and its complement V is
called the vacant region. We will denote by W (0) the connected component
of Z containing 0 (W (0) = ∅ if 0 is not occupied) and V (0) the connected
component of V containing 0 (V (0) = ∅ if 0 is occupied).

It is well known that there is a critical value λc such that for every λ > λc
there is almost surely a (unique) occupied unbounded connected component Z∞,
but no unbounded connected components exist whenever λ < λc. An important
tool in the study of Z∞ is the perolation density θ0 := Pλ(0 ∈ Z∞) of Z∞ (also
called ‘volume fraction’ or ‘percolation function’). For an introduction to the
subject see [42, 45].

Under general assumptions on the grain distribution, θ0 is continuous for
every λ 6= λc and d ≥ 2, and θ0(λc) = 0 when d = 2 [42]. Similarly to the
standard percolation model on Z2 it is expected that the latter holds for every
d ≥ 3 as well.

Much more is known about the behaviour of θ0 on the interval (λc,∞).
Recently, it has been proved in [33] that θ0 is infinitely differentiable on (λc,∞)
under general assumptions on the grain distribution. The authors asked whether
θ0 is analytic in that interval, and we answer this question in the affirmative
when d = 2. For simplicity we will assume that all discs have radius 1, although
our proof easily extends to the case where the radii are bounded above and
below.

Theorem 9.1. Consider the Boolean model (Pλ, 1) in R2. Then θ0 is analytic
on (λc,∞).

The proof of Theorem 9.1 will follow the lines of that of Theorem 7.1. One
of the main tools in the proof of the latter is the exponential decay of the prob-
ability Pp(some S ∈ MSn occurs), which follows from the Aizenman-Barsky
property, duality, and the BK inequality. In the case of the Boolean model
we will define another notion of outer-interface and our goal once again is to
show that the probability of having large multi-interfaces decays exponentially
in their size. However, the Boolean model lacks a notion of duality which
leads to certain complications. Nevertheless, it is still true that the probability
Pλ(µ(V (0)) ≥ a), where µ(V (0)) denotes the area of V (0), decays exponentially
in a for every fixed λ > λc, which we will combine with the more general Reimer
inequality [34], instead of the BK inequality, to show the desired exponential
decay.

Before stating the Reimer inequality let us fix some notation. We denote a
sample of the Boolean model (Pλ, ρ) by ω = {(xi, ri) : i = 1, 2, . . .}, where (xi)
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is the sequence of points of the Poisson point process and (ri) the associated
sequence of radii. The restriction of ω to a set K ⊂ Rd is

ωK := {(xi, ri) ∈ ω : xi ∈ K}.

We also define
[ω]K := {ω′ : ω′K = ωK}.

We say that an event A lives on a set U if ω ∈ A and ω′ ∈ [ω]U imply ω′ ∈ A.
For A and B living on a bounded region U we define the event

A�B = {ω : there are disjoint sets K,L, each a finite union of

rectangles with rational coordinates, with [ω]K ⊂ A, [ω]L ⊂ B}.
(15)

When A�B occurs we say that A and B occur disjointly .

Theorem 9.2. (Reimer inequality)[34] Let U be a bounded measurable set in
Rd. For any two events A and B living on U we have

P(A�B) ≤ P(A)P(B).

Before delving into the details of the proof of Theorem 9.1 let us give some
more definitions. Let x ∈ R2 and let Ω be a bounded domain in R2 with
piecewise C1 boundary (the sets Ω we will consider are finite unions of disks).
We define dist(x,Ω) = infy∈Ω{|x− y|} to be the Hausdorff distance between x
and Ω. The area of Ω is denoted by µ(Ω) and the length of its boundary ∂Ω by
L(∂Ω).

The Minkowski sum of two sets Ω1,Ω2 ⊂ R2 is defined as the set

Ω1 + Ω2 := {a+ b : a ∈ Ω1, b ∈ Ω2}.

We also define
rΩ := {ra : a ∈ Ω}

for r ∈ R≥0. For x ∈ R2 we will write x + Ω instead of {x} + Ω. Analogously,
the Minkowski difference is defined as the set

Ω1 − Ω2 := {x ∈ R2 : x+ Ω2 ⊂ Ω1}.

Note that in general (Ω1−Ω2) + Ω2 6= Ω1. However, for the kind of sets we will
consider equality will hold.

For r ∈ R≥0 the outer r-parallel set of Ω is the set

Ωr := Ω + rD,

where D = D(0, 1) is the closed unit disk. We will write D(x) for the closed
unit disk centred at x. Notice that Ωr coincides with the set

{x ∈ R2 : dist(x,Ω) ≤ r}.

Moreover it follows by the definitions that (Ωr)s = Ωr+s.
The inner r-parallel set of Ω is the set

Ω−r := Ω− rD.
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This set could be empty for some value of r and for this reason we define the
inradius r(Ω) of Ω by

r(Ω) := sup{r : ∃x ∈ R2 with x+ rD ⊂ Ω}.

Given Y = {x1, x2, . . . , xn} ⊂ R2 we define

Ω(Y ) := ∪ni=1D(xi).

In case Ω(Y ) is not simply connected, consider the bounded connected compo-
nents C1, C2, . . . , Ck of its complement and define

Ω̃ = Ω̃(Y ) := (∪ki=1Ck) ∪ Ω(Y ).

The next theorem upper bounds the measure of Ωr in terms of the measure
of Ω and the length of its boundary. It will be useful in the proof of Theorem 9.1.

Theorem 9.3. (Steiner’s inequality) Let Ω ⊂ R2 be a compact simply con-
nected set with piecewise C1 boundary. Then

µ(Ωr) ≤ µ(Ω) + L(∂Ω)r + πr2.

If Ω is convex, then this inequality holds with equality.

See [24] for a proof when Ω is convex [35, 52] for the general case.

Let us now focus on the function θ0. If 0 6∈ Z∞, then there are two possibil-
ities:

(i) either there is no point of Pλ in D,

(ii) or there are points x1, x2, . . . , xn of Pλ inW such that Ω := Ω({x1, . . . , xn})
is connected and there is no point of Pλ \ {x1, . . . , xn} at distance r ≤ 1
from ∂Ω̃.

This observation leads to the following definition. Suppose that Y = {x1, x2, . . . , xn}
is a subset of R2 satisfying

(i) Ω := Ω(Y ) is connected;

(ii) 0 ∈ Ω̃; and

(iii) D(xi) ∩ J contains an arc of positive length for every i = 1, . . . , n.

Then we call ∂Ω̃ a outer-interface and we denote it by J(Y ). The set S(Y ) :=
J(Y ) +D is called a separating strip. We say that a set Y as above happens to
separate in Pλ if Y ⊂ Pλ and no other point of S(Y ) belongs to Pλ. We say
that S(Y ) occurs whenever Y happens to separate in Pλ.

There is subtle point in the latter definition. It is possible that the boundary
of S(Y ) contains points of the Jordan domain enclosed by J(Y ) (Ω̃ with the
above notation) that do not belong in Y . Moreover, it can happen that some
of these points are occupied. However, having such a Y in Pλ is an event of
measure 0 and so we can disregard it.

To avoid such trivialities, we will always assume that no pair of points xi, xj
of Pλ have distance 2, which implies that no pair of disks touch. We can do so
as this event has measure 0.

The following lemma is an easy consequence of the definitions.
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Lemma 9.4. If Y1 and Y2 happen to separate in Pλ and S(Y1), S(Y2) have non
empty intersection, then Y1 = Y2.

This leads us to define a multi-interface as a finite set of pairwise disjoint
outer-interfaces and a separating multi-strip as a finite set of pairwise disjoint
separating strips. A separating multi-strip occurs if each of its separating strips
occurs.

Using the above definitions we obtain

1− θ0(λ) = Pλ(0 6∈ Z∞) = Pλ(some S(Y ) occurs)

for every λ > λc. The second equality follows from the fact that whenever
0 6∈ Z∞ and no Y happens to separate in Pλ, 0 belongs to an infinite vacant
component, and this event has measure 0 for every λ > λc [42].

Once again we intend to use the inclusion-exclusion principle to obtain the
formula

Pλ(some S(Y ) occurs) =

∞∑
k=1

(−1)k+1Eλ(N(k))

for every λ ∈ (λc,∞), where N(k) is the number of occurring separating multi-
strips comprising k separating strips.

To prove the validity of the above formula we will show that the alternat-
ing sum converges absolutely. In order to do so, we first express the above
expectations as an infinite sum according to the area of S(Yi), i.e.

Eλ(N(k)) =
∑

{m1,...,mk}

Eλ(N(k, {m1, . . . ,mk})),

where the sum in the right hand side ranges over all multi-sets of positive integers
with k elements, and N(k, {m1, . . . ,mk}) is the number of occurring separating
multi-strips S = {S1, . . . , Sk} with bµ(Si)c = mi.

Let us define Pn to be the set of partitions of n and MSn to be the set of
separating multi-strips S = {S1, . . . , Sk} with bµ(S1)c+ . . .+ bµ(Si)c = n. We
denote by Nn the number of occurring separating multi-strips of MSn. The
analogue of Lemma 7.8 is

Lemma 9.5. For every λ ∈ (λc,∞) there are constants c1 = c1(λ) and c2 =
c2(λ) with c2 < 1 such that for every n ∈ N,

Eλ(Nn) ≤ c1cn2 . (16)

Notice that whenever a separating strip S occurs, a subset of S is vacant.
Thus we are lead to use the exponential decay in a of the probability
Pλ(µ(V (0)) ≥ a) for every λ > λc [42]. However, we cannot directly apply the
aforementioned exponential decay as it is possible for the area of the vacant
subset of S to be relatively small compared to the area of S.

In order to overcome this difficulty we fix a λ > λc and consider a small
enough 1 > ε > 0 such that λc(B1−ε) < λ, where λc(B1−ε) is the critical
point of the Poisson Boolean model (Pλ, 1 − ε). We couple the two models by
sampling a Poisson point process with intensity λ in R2 and placing two disks,
one of radius 1 and another of radius 1−ε, centred at each point of the process.
We notice that whenever a separating strip S = S(Y ) occurs in (Pλ, 1), the set
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S(ε) := J(Y ) +D(0, ε) is vacant in (Pλ, 1− ε) in our coupling and our goal is to
show that this happens with probability that decays exponentially in the area
of S.

First we need to show that µ(S(ε)) and µ(S) are of the same order. We do
so in the following purely geometric lemma.

Lemma 9.6. Let 1 > ε > 0. Then there are constants γ1 = γ1(ε) > 0, γ2 =
γ2(ε) > 0 such that for every separating strip S = S(Y ) we have

µ(S(ε)) ≥ γ1µ(S)− γ2.

Proof. Let J = J(Y ) be the corresponding outer-interface of S. Easily, we can
assume that J is not a single circle. We define Ω = Ω(Y ) to be the closure of
the Jordan domain bounded by J . Let S−1(ε) be the intersection of S(ε) with
Ω. We will show that

µ(Ω1)− µ(Ω) ≤ 2(µ(Ω)− µ(Ω−1)) + π (17)

and

µ(S−1(ε)) ≥ d(µ(Ω)− µ(Ω−1)) (18)

for some constant d = d(ε) > 0 independent of S. Then the assertion follows
immediately, as µ(S) = µ(Ω1)− µ(Ω−1).

For inequality (17) it suffices to prove that

L(J) ≤ 2(µ(Ω)− µ(Ω−1)) (19)

because by Steiner’s inequality (Theorem 9.3) we have

µ(Ω1) ≤ µ(Ω) + L(J) + π.

For every x ∈ Y the intersection of J with the the circle C(x) of radius 1
centred at x may contain several connected components. Let (Ji) be an enumer-
ation of all these connected components and (xi) the corresponding sequence of
centres, i.e. xi is the centre of the arc Ji (some x ∈ Y may appear more than
once). Every arc Ji has two endpoints Ai, Bi and each endpoint Ei ∈ {Ai, Bi}
belongs to two disks D(xi) and D(x′i) for some i′ = i′(Ei).

Let S(i) be the open sector of D(xi) enclosed by the radii xiAi, xiBi and the
arc Ji. Notice that S(i) is a subset of Ω \Ω−1. We claim that any two distinct
S(i), S(j) are disjoint. To see this, let xi′ be the second center that has distance
1 from Ei. Observe that no centres x ∈ Y belong to the open disk D(Ei), where
Ei ∈ {Ai, Bi}, because otherwise Ei would not belong to the boundary of S.
Moreover, every segment Ekxj that intersects Eixi has to intersect C(xi) as
well, because Ek belongs to the boundary of S and thus it does not belong to
the open disk D(xi). Hence if Ekxj intersects Eixi, then xj is at distance at
most 1 from C(xi). It is easy to deduce geometrically that for every P ∈ C(xi)
the only points Q of D(P ) \ {xi} such that QP intersects Eixi belong to D(Ei)
(see Figure 2), which implies that the S(i)’s are disjoint.

These observations imply that∑
i

µ(S(i)) ≤ µ(Ω)− µ(Ω−1).
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xi xi′

Ei

Figure 2: Four disks of radius 1 centred at xi, xi′ , Ei and another point of C(xi).

An elementary computation yields L(Ji) = 2µ(Si), which implies that

L(J) =
∑
i

L(Ji) = 2
∑
i

µ(S(i)) ≤ 2(µ(Ω)− µ(Ω−1))

establishing (19).
For inequality (18) we will assume for technical reasons that ε < 1/2. The

case ε ≥ 1/2 follows readily, because S−1(ε) increases as ε increases.
We will split both S−1 and S−1(ε) into several smaller pieces. Let us first

focus on S−1. The two radii Eixi and Eix
′
i that emanate from the endpoint

Ei ∈ {Ai, Bi} of Ji define an open sector T (Ei) of D(Ei). By the definitions,
the collection of all the T (Ei)’s together with all the S(i)’s cover S−1 (see
Figure 3). The elements of the collection are not necessarily pairwise disjoint,
but this works only in our favour as we need a mere upper bound for the area
of S−1.

We will now compare the areas of S(i) and T (Ei) with those of their subsets
S(i, ε) = S(i) ∩ S−1(ε) and T (Ei, ε) = T (Ei) ∩ S−1(ε). As the sectors S(i) do
not intersect, the sets S(i, ε) do not intersect either. It is a matter of simple
calculations to see that

µ(S(i, ε)) = (1− (1− ε)2)µ(S(i)). (20)

On the other hand, the T (Ei, ε)’s may intersect. Our goal is to associate to
every T (Ei) a domain Ω(Ei) that contains T (Ei) and every other T (Ej) such
that T (Ej , ε) intersects T (Ei, ε). Later on we will be generous and keep only
some Ω(Ei) that we need to cover S−1. In order to define Ω(Ei), notice first
that whenever T (Ei, ε) and T (Ej , ε) intersect, Ej has distance at most 2ε < 1
from Ei. Hence any other point of T (Ej) has distance at most 1 + 2ε from
Ei. Consider the points y = y(Ei, xi, ε) and y′ = y′(Ei, xi′ , ε) in Eixi and
Eixi′ , respectively, that have distance 2ε from Ei (see Figure 4). Extend each

32



Figure 3: The domain S−1 enclosed by the the black curves and the sectors
T (Ei) enclosed by the blue radii and the blue/black arcs.

Ω(Ei)w

z xi

y
Ei

y′

xi′
z′

w′

Figure 4: The domain Ω(Ei).

of yxi′ , y
′xi, Eixi and Eixi′ up to distance 1+2ε from Ei, and let z′, z, w and w′

be the endpoints of these new segments. Define Ω(Ei) as the domain enclosed
by the segments Eixi, Eixi′ , xiz, xi′z

′ and the arc of the circle C(Ei, 1+2ε) from
z to z′ that contains w and w′.

It is easy to see from the construction of Ω(Ei) that any T (Ej) such that
T (Ej , ε) intersects T (Ej , ε), is contained in Ωi. This follows from the fact that
the S(i)’s are disjoint as proved above, and so no other sector T (Ej) intersects
Eixi or Eixi′ .

We claim that there is a constant δ = δ(ε) > 0 such that

µ(T (Ei, ε)) ≥ δµ(Ω(Ei)) (21)

for every i. Indeed, the area of the sector S(Ei, w, w
′) of D(Ei, 1 + 2ε) bounded

by the radii Eiw and Eiw
′ is of the same order as the area of Ω(Ei), because the

angles of the segments xiw, xiz and xi′w
′, xi′z

′ are of the same order as the angle
θ of the segments Eixi, Eixi′ . Moreover, there is some constant Θ = Θ(ε) > 0
such that if θ is smaller than Θ, then xi and xi′ are close enough that the sector
of D(Ei, ε) defined by the segments Eixi and Eixi′ is contained in S−1(ε). A
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simple computation shows that the area of this sector is of the same order as
the area of S(Ei, w, w

′). On the other hand, µ(T (Ei, ε)) is bounded from below
by a strictly positive constant for every θ ≥ Θ. Combining all the above we
conclude that (21) holds.

Let us consider a set F of endpoints that is maximal with respect to the
property that T (Ei, ε) and T (Ej , ε) do not intersect for any Ei, Ej ∈ F with
i 6= j. The maximality of F implies that the collection S of all the S(i)’s
together with the collection O of the Ω(Ei)’s for Ei ∈ F cover S−1, because
for any other set T (Ek) with Ek 6∈ F , T (Ek, ε) intersects some T (Ei, ε) with
Ei ∈ F and thus T (Ek) is contained in Ω(Ei). However, it is possible that some
element of S intersects some element of O. Nevertheless, each intersection point
is counted exactly twice, because the elements of S and O are disjoint. Hence

µ(S−1(ε)) ≥ 1/2
(∑

i

µ(S(i, ε)) +
∑
x∈F

Ω(x)
)
,

which combined with (20) and (21) implies inequality (18).

Notice that every S(ε) has a non-empty intersection with the non-negative
real line [0,∞), because S has this property. In fact if x is the point of J∩ [0,∞)
which has greatest distance from 0, where J is the outer-interface that defines
S, then the interval [x, x + ε) is contained in S(ε) ∩ [0,∞). We conclude that
S(ε) contains one of the points {0, ε, 2ε, . . . , Nε} for some N ∈ N depending
on S(ε). The next lemma provides a uniform upper bound for N that depends
only on the area of S.

Lemma 9.7. For every separating strip S = S(Y ) we have

S ⊂ D(0, 3µ(S)).

Proof. Let J = J(Y ) be the outer-interface that defines S, and Ω = Ω(Y ) the
closure of the Jordan domain bounded by J . By the definition of J we have
0 ∈ Ω. Thus the distance of any point of J from 0 is bounded from above by
L(J). This implies that the distance of any point in S from 0 is bounded from
above by L(J) + 1. Combining (19) with the fact that µ(Ω) − µ(Ω−1) ≤ µ(S)
we obtain

L(J) ≤ 2µ(S).

Moreover, µ(S) > 1 because by definition S contains a disk of radius 1. There-
fore

L(J) + 1 < 3µ(S).

Combining these inequalities yields the desired assertion.

We deduce from Lemma 9.7 that N can be chosen to be b3µ(S)/εc. We are
now almost ready to prove the desired exponential decay. Before we do so we
need to upper bound the number of occurring separating multi-strips of MSn.

Lemma 9.8. There is a constant R ∈ R such that for every n ∈ N at most
R
√
n elements of MSn can occur simultaneously in any ω.

Proof. Notice that a separating strip S = S(Y ) contains an interval of the form
[x, x + 1] for some x ∈ [0,∞). Combined with Lemma 9.7 this implies that S
contains some element of the set {0, 1, . . . , b3µ(S)c}. We can now proceed as in
the proof of Lemma 7.7.
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We are now ready to prove Lemma 9.5.

Proof of Lemma 9.5. Since

Nn ≤ R
√
nχ{some S∈MSn occurs}

by Lemma 9.8, we conclude that

Eλ(Nn) ≤ R
√
nPλ(some S ∈MSn occurs).

Hence it suffices to show that Pλ(some S ∈MSn occurs) decays exponentially.
Recall our coupling between the Boolean models (Pλ, 1) and (Pλ, 1 − ε),

and the fact that whenever Y happens to separate in Pλ the set S(ε) is a
vacant connected subset of (Pλ, 1 − ε) in our coupling. For m ∈ N, let V (m)
denote the event that there is a subset V of a vacant component with µ(V ) ≥
γ1m−γ2, where γ1, γ2 are the constants of Lemma 9.6, and some element of the
set {0, ε, . . . , b(3m+ 3)/εc ε} belongs to V , and V is contained in D(0, 3m+ 3).
We claim that

Pλ(some S ∈MSn occurs) ≤
∑

{m1,m2,...,mk}∈P ′n

Pλ,1−ε(V (m1)� . . .�V (mk)),

where as above � means that the events occur disjointly, P ′n is the set of par-
titions of n with the property that for every N ≤ n at most 3N + 3 elements
of the partition have size at most N , and the probability measure Pλ,1−ε refers
to the Boolean model (Pλ, 1 − ε). The upper bound 3N + 3 on the number
of elements of size at most N comes from the fact that any separating strip
S = S(Y ) contains some element of the set {0, 1, . . . , b3µ(S)c}, as remarked in
the proof of Lemma 9.8. The inequality follows similarly to (13).

Reimer’s inequality [34] states that

Pλ,1−ε(V (m1)� . . .�V (mk)) ≤ Pλ,1−ε(V (m1)) · . . . · Pλ,1−ε(V (mk)).

Combining the fact that Pλ,1−ε(µ(V (0)) ≥ a) ≤ ca [42] for every λ > λc and
some c = c(λ) < 1 with the union bound we obtain

Pλ,1−ε(µ(V (m)) ≤ c1c2m,

where c1 = (b(3m+ 3)/εc + 1)c−γ2 and c2 = cγ1 < 1. We can now argue as in
the proof of Lemma 7.8 to obtain the desired exponential decay.

We proceed by establishing the analyticity and the necessary estimates of
the functions involved in Lemma 9.5 that we will combine with their exponential
decay to prove the analyticity of θ0.

Given a partition {m1,m2, . . . ,mk} of a number n, we defineN({m1, . . . ,mk})
to be the number of occurring separating multi-strips S = {S1, . . . , Sk} such that
bµ(Si)c = mi.

Lemma 9.9. Let {m1,m2, . . . ,mk} be a partition of n. Then the function
f(λ) := Eλ(N({m1, . . . ,mk})) admits an entire extension satisfying

|f(z)| ≤ e4nMf(λ+M) (22)

for every λ ≥ 0, M > 0 and z ∈ D(λ,M).
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Proof. To ease notation we will prove the assertion for i = 2. The general case
can be handled similarly.

Given two disjoint sets Y1 = {x1, . . . , xj1} and Y2 = {xj1+1, . . . , xj1+j2},
we let L(x1, . . . , xj1+j2) denote the indicator function of the event that Y1 and
Y2 satisfy conditions (9) and bµ(Si)c = mi. The characteristic function of the
event {Yi happens to separate in Pλ} is denoted by χYi

. Let us also define the
functions

g(x1, . . . , xj1+j2) := µ(S(x1, . . . , xj1)) + µ(S(xj1+1, . . . , xj2))

and
h(x1, . . . , xj1+j2) := L(x1, . . . , xj1+j2)e−λg(x1,...,xj1+j2

).

First we will find a suitable formula for f . We claim that

f(λ) =
∑∞
j1,j2=1

∑∞
m=j1+j2

(λµ(6nD))m

m!

(
m
j1

)(
m−j1
j2

)
f(λ, j1, j2), (23)

where

f(λ, j1, j2) =
∫

6nD

dx1

µ(6nD)
. . .
∫

6nD

dxj1+j2

µ(6nD)
h(x1, . . . , xj1+j2). (24)

Indeed, notice that N({m1,m2}) =
∑
Y1∈Am1 ,Y2∈Am2

χY1χY2 , where AN is

the set of those subsets Y of Pλ that satisfy conditions (9) and bµ(S(Y ))c = N .
Moreover, we have

µ(S(Y1)) + µ(S(Y2)) ≤ (k1 + 1) + (k2 + 1) ≤ 2k1 + 2k2 = 2n, (25)

since 1 ≤ k1, k2, which combined with Lemma 9.7, implies that N({m1,m2})
depends only on the points of the Poisson point process inside the disk 6nD.
Now regard Pλ ∩ 6nD as a finite Poisson process whose total number of points
has a Poisson distribution with parameter λµ(6nD), each point being uniformly
distributed over 6nD. Notice that conditioned on the number of points N (6nD)
inside 6nD, the distribution of the sets Y1, Y2 depends only on their sizes.

Conditionally on the sets Y1 = {x1, . . . , xj1} and Y2 = {xj1+1, . . . , xj1+j2}
being contained in Pλ, the expectation of χY1χY2 is equal to h(x1, . . . , xj1+j2).
Hence expressing f according to the number of points of the Poisson process in-

side 6nD and the size of the sets Y1, Y2 we obtain (23). The factors
(λµ(6nD))m

m!
and

(
m
j1

)(
m−j1
j2

)
correspond to Pλ(N (6nD) = m) and the number of ways to

choose two disjoint subsets of size j1 and j2 from a set of size m, respectively.
Using (23) we see that f extends to an entire function. Indeed, the assertion

will follow from the standard tools once we have shown that every summand of
f is an entire function and that the upper bound (22) holds for the summands
of f in place of f .

First we express e−λg(x1,...,xj1+j2
) via its Taylor expansion

e−λg(x1,...,xj1+j2 ) =

∞∑
s=0

(−λg(x1, . . . , xj1+j2))s

s!
.

We will plug this into (24). We notice that the coefficient∫
6nD

dx1

µ(6nD)
. . .

∫
6nD

dxj1+j2

µ(6nD)
L(x1, . . . , xj1+j2)(−g(x1, . . . , xj1+j2))s/s!
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is absolutely bounded by (2n)s/s!, as g(x1, . . . , xj1+j2) = µ(S(Y1))+µ(S(Y2)) ≤
2n by (25) and 0 ≤ L(x1, . . . , xj1+j2) ≤ 1. Therefore the function defined by
the Taylor expansion

∞∑
s=0

λs
∫

6nD

dx1

µ(6nD)
. . .

∫
6nD

dxj1+j2

µ(6nD)
L(x1, . . . , xj1+j2)(−g(x1, . . . , xj1+j2))s/s!

is entire and by reversing the order of summation and integration we conclude
that it coincides with f(λ, j1, j2).

Now let λ ≥ 0 and M > 0. Since |z|m ≤ (λ + M)m for every z ∈ D(λ,M),
inequality (22) will follow once we prove that

|f(z, j1, j2)| ≤ e4nMf(λ+M, j1, j2) for every z ∈ D(λ,M). (26)

Using once again (25) we obtain

|e−zg(x1,...,xj1+j2 )| ≤ e−(λ−M)g(x1,...,xj1+j2 ) =

e2Mg(x1,...,xj1+j2
)e−(λ+M)g(x1,...,xj1+j2

) ≤ e4nMe−(λ+M)g(x1,...,xj1+j2
).

Hence (26) follows from the triangle inequality. This proves (22).
Combining (26) with (23) and the theorems of Weierstrass in the Appendix

imply that f is analytic as well.

We are finally ready to prove Theorem 9.1.

Proof of Theorem 9.1. Consider the functions

f(λ) =

∞∑
k=1

(−1)k+1Eλ(N(k))

and
gn(λ) :=

∑
{m1,m2,...,mk}∈Pn

(−1)k+1Eλ(N({m1, . . . ,mk}).

Notice that

f =

∞∑
n=1

gn.

By Lemma 9.5 we have
∞∑
k=1

Eλ(N(k)) <∞

for any λ > λc. Hence f coincides with 1 − θ0 on the interval (λc,∞) by the
inclusion-exclusion principle as remarked above. Combining Lemma 9.5 with
Lemma 9.9 we conclude that for every λ > λc there are constants M = M(λ) >
0, c1 = c1(λ) > 0 and 0 < c2 = c2(λ) < 1 such that |gn(z)| ≤ c1c2

n for every
z ∈ D(λ,M). As usual, by the theorems of Weierstrass in the Appendix we
conclude that f , and thus θ0, is analytic on the interval (λc,∞).
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10 Finitely presented groups

In this section we will prove that pC < 1 holds for every finitely presented Cayley
graph. The ideas used involve a refinement of Peierls’ argument as in Timar’s
proof [51] of the theorem of Babson & Benjamini [10] that pc < 1 for those
graphs, combined with the ideas of Section 7. We start with a sketch of these
ideas.

Peierls’ classical argument for proving e.g. that pc < 1 for bond percolation
on a planar lattice G goes as follows. If the cluster C(o) of the origin o is finite
in a percolation instance, then C(o) is surrounded by a ‘cut’ of vacant edges,
which form a cycle in the dual lattice G∗. But the number of candidate cycles
of G∗ with length n is at most dn∗ , where d∗ is the degree of G∗, and each of
them occurs with probability (1− p)n in a percolation instance. Therefore, the
union bound implies that we can make the probability that at least one of them
occurs smaller than 1 if we choose p is close enough to 1, because the exponential
decay of (1− p)n outperforms the at most exponential growth of the number of
candidate cycles.

For this argument it was not crucial that the cut separating C(o) from
infinity was a cycle: to deduce that there are at most cn candidate cuts for
some constant c, it suffices if the edges of any such cut B are close to each
other in the following sense. If we build an auxiliary graph, with vertex set
B, by connecting any two edges of B with an edge whenever their distance is
at most some bound, then this auxiliary graph is connected. For if this is the
case, then using the fact that every regular graph has at most exponentially
many connected subgraphs containing a fixed vertex and n further vertices (see
Section 14), we deduce that there are at most cn candidates for our B. This is
the aforementioned argument of Timar [51]. The upper bound on the closeness
of the edges of B arises from the length of the longest relator in the group-
presentation of G.

Since Peierls’ argument relies on the union bound, and many candidate cuts
can occur simultaneously in a percolation instance, it is not good enough for
our purposes because we need equalities rather than inequalities in formulas like
(11), where we add probabilities of events similar to the event that a cut as above
occurs. To prove that pC = pC in the planar case we therefore considered ...
rather than the cut separating C(o) from infinity. A ... consists of a connected
(occupied) subgraph IO of C(o), namely the boundary of its unbounded face,
as well as the set IV of (vacant) edges disconnecting IO from infinity.

Most of the work of this section is devoted to combining these two ideas
in the setup of a finitely presented Cayley graph G. We introduce a notion of
interface (IV , IO) with the following properties. Every finite percolation cluster
C of G is ‘bounded’ by such an interface (IV , IO), where IV consists of the
vacant edges separating C from infinity, and IO defines a connected sub-cluster
of C, incident with all edges in IV . So far this is trivial to satisfy, as we could
have taken IO = C. But we need the size of IV to be proportional to that of IO
in order to use a Peierls-type argument, so we need IO to be a ‘thin’ layer near
the boundary IV of C. In addition, we need (IV , IO) to be uniquely determined
by C in order to express θ in an equality like (11) (see (30) below). Moreover,
we need the event that (IV , IO) is an interface of some cluster in a percolation
instance to depend on the state of the edges in IV ∪ IO only, in order to have
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a formula (of the form p|IO|(1− p)|IV |) for the probability of this event that we
can do our complex analysis with. (Some complications here are imposed by the
fact that we will use an inclusion-exclusion formula as above.) Finally, we need
IV ∪ IO to span a connected subgraph of G, in order to guarantee that there
are at most exponentially many ‘candidate’ interfaces of C(o), as in Timar’s
aforementioned proof.

Satisfying all these properties at once is non-trivial, as we need the balance
of choices between too large and too small subgraphs of C ∪ ∂C to stabilise at
a uniquely determined middle. After some preliminaries, we offer our notion of
interface in Definition 10.3, followed by proofs of the aforementioned properties.
We then exploit our notion to prove our analyticity results in Section 10.5.

The reader wishing to get a feeling of the results of this section without
all their combinatorial details may do so by reading Section 10.2 up to Defi-
nition 10.1, Section 10.3, the statement of Proposition 10.4, perhaps the proof
of Proposition 10.5, and as much of Section 10.5 needed to be convinced that the
above proof ideas can be carried out along the lines of the proof of the planar
case.

10.1 The setup and notation

The edge space of a graph G is the direct sum E(G) :=
⊕

e∈E(G) Z2, where

Z2 = {0, 1} is the field of two elements, which we consider as a vector space
over Z2. (By coincidence, E(G) is also our space of percolation configurations.)
The cycle space C(G) of G is the subspace of E(G) spanned by the circuits
of cycles, where a circuit is an element C ∈ E(G) whose non-zero coordinates
{e ∈ E(G) | Ce = 1} coincide with the edge-set of a cycle of G.

Let P = 〈S | R〉 be a group presentation, and let G = Cay(P ) be the
corresponding Cayley graph. Let P be the set of closed walks of G induced by
the relators in R. It is straightforward to prove that P forms a basis of the
cycle space C(G) of G.

More generally, we can let G be an arbitrary graph, and let P be any basis of
C(G). For the applications of the theory developed in this section to percolation
it will be important for G to be of bounded degree and 1-ended, and for the
elements of P to have a uniform upper bound on their size.

We will assume for simplicity that all elements of P are cycles (rather than
more general closed walks with self-intersections); this assumption comes with-
out loss of generality.

We let vw = wv denote the edge of G joining two vertices v and w. Every
edge e = vw ∈ E(G) has two directions ~vw, ~wv, which are the two directed sets
comprising v, w. The head head( ~vw) of ~vw is w.

For F ⊂ E(G) we let
↔
F denote the set of directions of the edges of F . Thus

|
↔
F | = 2|F |. In particular,

↔
E(G) denotes the set of directed edges of G.

A percolation instance is an element ω of Ω = {0, 1}E(G).

10.2 A connectedness concept

We say that (B1, B2) is a proper bipartition of a set B, if B1 ∪ B2 = B and
B1 ∩B2 = ∅ and B1, B2 6= ∅.
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Recall that Timar’s argument involved the idea that the edges of the cut B
separating C(o) from infinity form a connected auxiliary graph. This can be
reformulated by saying that for every proper bipartition (B1, B2) of B, there are
edges b1 ∈ B1, b2 ∈ B2 that are ‘close’ to each other. The measure of closeness
used was that there is a relator in the presentation inducing a cycle containing
both (in particular, b1, b2 are then close in graph distance). We use a similar
idea here, but for technical reasons we need to reformulate this in the language
of directed edges.

A P-path connecting two directed edges ~vw, ~yx ∈
↔

E(G) is a path P of G such
that the extension vwPyx is a subpath of an element of P. Here, the notation
vwPyx denotes the path with edge set E(P )∪{vw, yx}, with the understanding
that the endvertices of P are w, y. Note that P is not endowed with any notion
of direction, but the directions of the edges ~vw, ~yx it connects do matter. We
allow P to consist of a single vertex w = y.

We will say that P connects an undirected edge e ∈ E(G) to ~f ∈
↔

E(G)

(respectively, to a set J ⊂
↔

E(G)), if P is a P-path connecting one of the two

directions of e to ~f (resp. to some element of J).

Definition 10.1. We say that a set J ⊂
↔

E(G) is F -connected for some F ⊂
E(G), if for every proper bipartition (J1, J2) of J , there is a P-path in G − F
connecting an element of J1 to an element of J2.

As usual, a notion of ‘connectedness’ gives rise to a corresponding notion of

‘components’. In our case, an F -component of any set K ⊂
↔

E(G) is a maximal
F -connected subset of K. It is an immediate consequence of the definitions

that if two sets J, J ′ ⊂
↔

E(G) are both F -connected, and their intersection is
non-empty, then J ∪ J ′ is F -connected too. Therefore,

the F -components of K form a partition of any K ⊂
↔

E(G). (27)

This implies the following monotonicity property of F -components.

Proposition 10.2. If Y ⊂
↔

E(G) is contained in an F -component of some

J ⊂
↔

E(G) (with J ⊇ Y ), then Y is contained in an F ′-component of J ′ whenever
F ′ ⊆ F and J ′ ⊇ J .

Proof. If Y is not contained in an F ′-component of J ′, then in particular J ′ is
not F ′-connected. As J ′ is partitioned by its F ′-components by (27), we can
then find a proper bipartition (J ′1, J

′
2) of J ′ such that both Y ∩ J ′1 and Y ∩ J ′2

are non-empty and there is no P-path in G− F ′ connecting J ′1 to J ′2. Consider
then the bipartition (J ′1 ∩ J, J ′2 ∩ J) of J , which is proper since both sides meet
Y . As Y is contained in an F -component of J , there is a P-path P in G − F
connecting J ′1 ∩ J to J ′2 ∩ J . But P ⊂ G− F ′ since F ′ ⊆ F , and it connects J ′1
to J ′2, contradicting our assumption.

It is easy to see that

if J is F -connected, then there is a component of G− F containing the
head of every element of J .

(28)
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10.3 P-Interfaces

Given F ⊂ E(G) and a subgraph D of G, let ~FD := { ~vz | vz ∈ F, z ∈ V (D)}.
Thus if f ∈ F ∩ ∂D then ~FD contains the direction of f towards D only,

if f ∈ F ∩ E(D) then ~FD contains both directions of f , and otherwise ~FD

contains no direction of f . Fix a vertex o ∈ V (G).
We now give the crucial definition of this section, following the intuition

sketched in the beginning of this section.

Definition 10.3. A P-interface is a pair I = (IV , IO) of sets of edges of G with
the following properties

(i) IV separates o from infinity;

(ii) There is a unique finite component D of G − IV containing a vertex of
each edge in IV ;

(iii) ~IDV is IV -connected; and

(Note that by (ii), ~IDV contains at least one of the two directions of each
edge in IV . It may contain both directions of some edges.)

(iv) IO = {e ∈ E(D) | there is a P-path in G− IV connecting e to ~IDV }.
(This is equivalent to

IO = {vz ∈ E(D) | { ~vz} ∪ ~IDV or { ~zv} ∪ ~IDV is IV -connected}.)

Note that IV is always non-empty, but IO is empty when IV consists of the
set of edges incident with o. It is not hard to see that IO 6= ∅ for all other IV
when G is 1-ended.

Clearly, IO is uniquely determined by IV via (iv), so any IV satisfying the
other three properties introduces a P-interface by defining IO via (iv). The
reason why we do not define IV alone to be the P-interface is to satisfy the
uniqueness property in Proposition 10.4 below. It follows from this definition
that IV also separates IO from infinity.

Examples: if P is the standard presentation 〈x, y | xy = yx〉 of Z2, then
the P-interfaces coincide with the outer-interfaces from Section 7.

An important aspect of the definition of a P-interface is that (vacant) edges
with both endvertices in the same cluster need to be accepted in IV to satisfy
Proposition 10.9. This is why in (i) IV is declared to be a superset of a o–∞ cut
B, rather than B itself. It is a good exercise to try to visualise a P-interface
of the standard presentation of Z3, i.e. the cubic lattice in R3 presented by its
4-cycles. A further good exercise is to try to visualise how P-interfaces of Z2 or
Z3 grow as we allow further (redundant) relators in our presentation, e.g. all
cycles up to a given length.

10.4 Properties of P-interfaces

We now prove that the notion of P-interface we introduced satisfies the many
properties needed in order to carry out the Peierls-type argument sketched at
the beginning of this section.
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From now on we assume that

G is an infinite, 1-ended, finitely presented Cayley graph fixed through-
out, or more generally, an 1-ended bounded degree graph, admitting
a basis P of C(G) whose elements are cycles of bounded lengths (as
discussed in Section 10.1).

(29)

We say that a P-interface I = (IV , IO) occurs in a percolation instance ω ∈
{0, 1}E(G), if every edge in IO is occupied and every edge in IV is vacant in ω.

We say that I meets a cluster C of ω, if either IO ∩ E(C) 6= ∅, or IO =
E(C) = ∅ and IV = ∂C (in which case C consists of o only).

Theorem 10.4. For every finite percolation cluster C of G such that ∂C sep-
arates o from infinity, there is a unique P-interface (IV , IO) that meets C and
occurs. Moreover, we have IO ⊆ E(C) and IV ⊆ ∂C for that P-interface.

Conversely, every occurring P-interface meets a unique percolation cluster
C, and ∂C separates o from infinity (in particular, C is finite).

The proof of this is rather involved, and needs some intermediate steps which
we gather now.

The following proposition is based on Timar’s [51] aforementioned proof of
the theorem of Babson & Benjamini [10], and contains the quintessence of the
notion of a P-interface.

A minimal cut of G is a minimal set of edges that disconnects G. Note that
if B is a minimal cut, then G−B has exactly two components, and every edge
in B has an end-vertex in each of these components.

Proposition 10.5. Let B be a minimal cut of G and let L ⊂ E(G) be a superset
of B such that some component D of G − L contains a vertex of each edge in

B. Then ~BD is contained in an L-component of ~LD.

Proof. Suppose to the contrary that there are directed edges e, f ∈ ~BD that lie

in distinct L-components of ~LD. Note that e, f cannot be the two directions of
the same undirected edge because no edge of B has both end-vertices in D by
the above remark about minimal cuts. Let (L1, L2) be a proper bipartition of
~LD such that e ∈ L1, f ∈ L2, and there is no P-path in G − L connecting L1

to L2, which exists by the definitions and the fact that ~LD is partitioned by its
L-components by (27).

Let R be an e-f path in D, which exists because D is assumed to contain
a vertex of each edge in B. Let Q be an e-f path in the component of G − B
avoiding D; this component exists because G−B has exactly two components,
one of which contains D since L ⊇ B (Figure 5).

Let K be the cycle obtained by joining these paths R,Q using e and f . Since
P is a basis for the cycle space C(G), we can express K as a sum

∑
Ci of cycles

Ci ∈ P, where this sum is understood as taking place in C(G).
Note that no cycle Ci contains a path in G−L connecting L1 to L2, because

no such path exists by the choice of (L1, L2). Let LCi :=
←−−−−−→
L ∩ E(C) be the

directions of edges of L appearing in Ci. The previous remark implies that LCi

has an even number of its elements in each of L1, L2, because each component
of Ci−L (which is a subpath of Ci) is incident with either 0 or 2 such elements
pointing towards the component, and they lie both in L1 or both in L2 or both
in none of the two.
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Figure 5: The situation in the proof of Proposition 10.5.

This leads into a contradiction by a parity argument: notice that our cycle
K contains an odd number of directions of edges in each of L1, L2, namely
exactly one in each —e and f respectively— because P avoids L and Q avoids

D, hence ~LD, by definition. But then our equality K =
∑
Ci is impossible

by the above claim because sums in C(G) preserve the parity of the number of
(directed) edges in any set. This contradiction proves our statement.

We can use the same ideas to prove the following proposition.

Proposition 10.6. Let L ⊆ E(G), let D be a component of G − L, and let
e = vz be an edge of L such that v, z ∈ V (D). Then ~vz, ~zv lie in the same

L-component of ~LD.

Proof. It is not hard to adapt the proof of Proposition 10.5 to our setup to
prove our statement; the only difference is that instead of the cycle K we now
consider a cycle consisting of the edge vz and a v–z path in D. But we can in
fact just apply Proposition 10.5 to an auxiliary graph to deduce Proposition 10.6
as follows. Subdivide the edge vz into two edges vw,wz by adding a new vertex
w. Consider the minimal cut B of the resulting graph that consists of these two
edges vw,wz (and separates w from the rest of G). Applying Proposition 10.5
to this graph after replacing L with L′ := L − vz ∪ {vw,wz} we deduce that

~wz, ~wv lie in the same L′-component of ~L′D, and it is straightforward to deduce

that ~vz, ~zv lie in the same L-component of ~LD from this.

Next, we prove one of the desired properties of P-interfaces, namely that
IV ∪ IO spans a connected subgraph of G.

Proposition 10.7. For every P-interface I = (IV , IO) of G, the edge-set IO
spans a connected subgraph of G incident with all edges in IV , unless IO = ∅
(in which case IV is the set of edges incident with o).

Proof. Let D be defined as in (ii) of Definition 10.3. By (iv) of Definition 10.3,
for every e ∈ IO there is a P-path P in G− IV connecting e to the head of an

element of ~IDV . Note that all edges of P belong to IO as we can apply item (iv)
to any of them, where we use the fact that since P meets D, it is contained in
D because D is a component of G − IV . This means that every component of
the graph GO ⊆ G spanned by the edges in IO contains the head of an element

of ~IDV .
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Therefore, if GO has more than one components, then these components

define a proper bipartition (J1, J2) of ~IDV , by letting J1 be the set of all j ∈ ~IDV
such that head(j) lies in one of these components. Applying Definition 10.1 to
this bipartition we obtain a contradiction, since for any P-path P in G − IV
connecting j1 ∈ J1 to j2 ∈ J2, all edges of P lie in IO by the above remark,
which implies that the heads of j1 and j2 lie in the same component of GO.
This proves that GO is connected as claimed.

Finally, if some e ∈ IV is not incident with GO, then we can apply the same

argument to the bipartition of ~IDV one partition class of which consists of the

one or two directions of e that lie in ~IDV (recall the remark after (iii) of Defi-
nition 10.3). If IO 6= ∅, then this bipartition is proper because each component

of GO is incident with an element of ~IDV as we have proved, and we obtain a
contradiction as above.

If IO = ∅, and there are at least two vertices x, y of D incident with IV , then
we obtain a proper bipartition of IV by letting one of the classes be the set of
edges incident with x, say, and reach a contradiction with the same arguments.
Thus all edges of IV are incident with a vertex x of D in this case, and in order
to satisfy (i) IV must be the set of edges incident with x = o.

We have now gathered enough tools to prove our main result about P-
interfaces.

Proof of Theorem 10.4. Existence: To begin with, given such a cluster C we
will find an occurring P-interface (IV , IO) such that IO ⊆ E(C) and IV ⊆ ∂C.
For this, let

B := {e ∈ ∂C | there is a path from e to ∞ in G− ∂C}.

(This is the minimal subset of ∂C separating C from infinity.)

Fix an enumeration of the elements of ~BC (this notation was introduced

before Definition 10.3), and let Xi, 1 ≤ i ≤ | ~BC | be the ∂C-component of
↔
∂C containing the ith element of ~BC in that enumeration (the definition of
F -components is given after Definition 10.1). It will turn out that these com-
ponents Xi coincide with each other, but we cannot use this fact yet. Let
J :=

⋃
iXi, and let IV be the corresponding undirected edges, that is, IV :=

{vw ∈ ∂C | ~vw ∈ J}.
We will start by proving that IV satisfies properties (i), (ii) and (iii), after

which we can define IO via (iv) to ensure that (IV , IO) is indeed a P-interface.
To see that (i) is satisfied, we recall that B ⊆ IV by the definitions, and we

claim that B separates o from infinity. This is true because if Q is an infinite
path starting at o, then it has to contain an edge in ∂C by our assumption
that ∂C separates o from infinity. The last such edge of Q then lies in B by
the definitions. Thus all paths from o to infinity meet B, proving that (i) is
satisfied.

It is easy to see that (ii) is satisfied by letting D be the component of G−IV
containing C, which exists since IV ⊆ ∂C. Indeed, C ⊆ D meets all edges in
∂C, hence all edges in IV .
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We will now check that ~IDV is IV -connected, that is, (iii) is satisfied. Pro-
position 10.5 —applied with L = IV , so that D meets all edges in B ⊆ IV as

remarked above— yields that ~BD is contained in some IV -component X of ~IDV .

We will prove that X contains the other edges of ~IDV too. For this, recall that

Xi is a ∂C-component of
↔
∂C, and so Xi is ∂C-connected by the definition of

∂C-components. We can reformulate this by saying that Xi is (contained in)
a ∂C-component of Xi. Recall that J =

⋃
iXi. Using (28) with F = ∂C we

will show that J ⊆ ~IDV . Indeed, the component C of G− ∂C contains the head

of an element of Xi in ~BC by the definition of Xi, and so the head of every

element of J lies in C by (28). Since C ⊆ D, we deduce J ⊆ ~IDV . Plugging these
facts into Proposition 10.2 —with Y = Xi— we obtain that Xi is contained in

an IV -component of ~IDV , because Xi ⊆ ~IDV and IV ⊆ ∂C. Since each Xi meets
~BD, which is contained in the IV -component X, (27) yields that X contains
J =

⋃
iXi.

To conclude that ~IDV is IV -connected, or in other words, that X = ~IDV , it

remains to show that if e ∈ ~IDV −J then e lies in X as well. To see this, note that
for any such e = ~vz the reverse direction e′ := ~zv lies in J , because all edges
of IV have at least one of their directions in J by the definitions. Moreover,

we have z, v ∈ V (D) since e, e′ ∈ ~IDV , where we used the fact that J ⊆ ~IDV .
Thus Proposition 10.6 —with L = IV — yields that e, e′ lie in a common IV -

component of ~IDV . Using (27) again, combined with the fact that (e′ ∈)J ⊆ X
proved above, we deduce that e ∈ X as desired. To summarize, we have proved

that all elements of ~IDV lie in a common IV -component X, in other words, ~IDV
is IV -connected, establishing (iii).

We proved above that J ⊆ ~IDV . Next, we claim that actually ~IDV = J ,
which will be used below. Suppose this is not the case, and consider the proper

bipartition (J, ~IDV − J) of ~IDV . Since ~IDV is IV -connected, there is a P-path P in

G− IV connecting directed edges e ∈ J to f ∈ ~IDV − J . Let g be the first edge
of P that lies in ∂C, directed towards e, if such an edge exists, and let g = f
otherwise. In both cases, the subpath P ′ of P from e to g avoids ∂C, and hence

proves that e and g lie in a common ∂C-component of
↔
∂C. But then g must lie

in J since J is a union of ∂C-components of
↔
∂C. This contradicts that g 6∈ J

when g = f and g 6∈ IV otherwise. This contradiction proves that ~IDV = J .

Thus using (iv) of Definition 10.3 to define IO, we obtain a P-interface
I := (IV , IO). Since IV ⊆ ∂C which is vacant, to show that I occurs it remains
to show that IO is occupied in ω. This is true because if P is a P-path in

G − IV connecting some edge e of IO to ~IDV = J , then the last vacant edge
f of the extended path {e} ∪ P , if such an edge f exists, would have to lie

in IV by the definitions and the fact that ~IDV = J , contradicting that {e} ∪ P
avoids IV . Hence no such f exists, and in particular any e ∈ IO is occupied as
desired. Moreover, I meets C because IO ∪ IV spans a connected subgraph of
G by Proposition 10.7, and that subgraph contains B, hence meets C.

To prove the claim that IO ⊆ E(C), recall that IO spans a connected sub-
graph Go of G by Proposition 10.7. This subgraph meets C unless it is empty,
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because Go is incident with all of IV ⊇ B, and it cannot meet the infinite com-
ponent of G− B as it is contained in D. Since IO, being occupied, avoids ∂C,
we deduce that IO ⊆ E(C) indeed.

Uniqueness: Suppose that our cluster C is met by a further occurring P-
interface I ′ = (I ′V , I

′
O) 6= I. By Lemma 10.7 the subgraph of G spanned by

I ′O ∪ I ′V is connected, and therefore contained in C ∪ ∂C since I ′O meets E(C).
It follows that I ′V ⊆ ∂C since I ′ occurs.

Let D′ be the component of G− I ′V defined in (ii). We claim that B ⊂ I ′V .
Indeed, if I ′V misses some edge of B, then I ′V ⊆ ∂C does not separate C from
infinity, hence C ∩D′ = ∅, contradicting that I ′O ⊆ E(D′) and I ′O ∩ E(C) 6= ∅
unless E(C) = ∅, in which case I ′V cannot separate o from infinity violating (i).

Moreover, we have D′ ⊇ C since I ′V ⊆ ∂C (because I ′ occurs) and I ′O meets
E(C).

We will first prove that I ′V ⊆ IV . So let f ∈ I ′V , and suppose for a contra-

diction that f 6∈ IV . In this case, the bipartition (J, J ′ :=
↔
∂C−J) of

↔
∂C, where

J is as in the definition of IV in the existence part, is such that ~BC ⊆ J and
both directions ~f, ~f of f lie in J ′ and there is no P-path in G− ∂C connecting
J to J ′.

Consider now the bipartition (J ∩ ~I ′D
′

V , J ′ ∩ ~I ′D
′

V ) of ~I ′D
′

V , which is proper

because ~BC ⊆ ~I ′D
′

V (because D′ ⊇ C and B ⊂ I ′V ) and {~f, ~f} ∩ ~I ′D
′

V 6= ∅ (by

the definition of D′). Therefore, since ~I ′D
′

V is I ′V -connected by (iii), there is a

P-path P in G− I ′V connecting J ∩ ~I ′D
′

V to J ′∩ ~I ′D
′

V . Let e be the last edge of P
in ∂C, which exists because P cannot avoid ∂C by the aforementioned property
of the bipartition (J, J ′), and let P ′ be the final subpath of P starting at e. But
then applying (iv) to I ′ using the path P ′ we deduce that e ∈ I ′O, contradicting
that I ′ occurs and e ∈ ∂C is vacant. This contradiction proves that I ′V ⊆ IV .

Next, we prove that IV ⊆ I ′V as well. Indeed, if IV 6⊆ I ′V , then the bipartition

( ~IDV ∩
↔
I ′V ,

~IDV −
↔
I ′V ) of ~IDV is proper because ~BC ⊆ ~IDV ,

↔
I ′V . Since ~IDV is IV -

connected, there is a P-path P in G− IV connecting some edge f ∈ I ′V to some
edge e ∈ IV − I ′V . Since we have proved that I ′V ⊆ IV , we deduce that P lies in
G− I ′V . But then applying (iv) to I ′ using the path P we deduce that e ∈ I ′O,
contradicting that I ′ occurs and e ∈ IV ⊆ ∂C is vacant. This contradiction
proves that IV ⊆ I ′V , and hence I ′V = IV .

To conclude that I is the unique occuring P-interface that meets C, it re-
mains to prove that I ′O = IO. But this is now obvious from (iv), since I ′V = IV
and hence D′ = D by (ii).

Converse: Suppose now that (IV , IO) is a P-interface occurring in a perco-
lation instance ω. Then by Lemma 10.7 it meets a unique cluster C of ω, and
we have IV ⊆ ∂C by what we proved above. By (i) IV , and hence ∂C, separates
o from infinity.

10.5 Using P-interfaces to prove analyticity

Define the boundary size of a P-interface I = (IV , IO) to be |IV |. Note that every
set S of edges which is S-connected (according to Definition 10.1) corresponds
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to a connected induced subgraph of the mth power of the line graph L(G)m of
G, where m = mP := bt/2c and t is the length of the longest cycle in P. The
degree of each vertex of L(G) is at most 2d−2, where d is the maximum degree
of G (we are still assuming that G satisfies (29)), and so the degree of each vertex
of L(G)m is at most (2d− 2)m. Applying the remark after Proposition 14.1 to
L(G)m, combined with the fact that any P-interface I = (IV , IO) is uniquely
determined by IV by the definitions, we thus deduce that

Lemma 10.8. The number of P-interfaces (IV , IO) of G of boundary size n
such that IV contains a fixed edge of G is less than cγnP , where c is a constant,
γP = ((2d− 2)mP − 1)e, and d is the maximum degree of G.

The following is the analogue of Proposition 7.5.

Lemma 10.9. For every P-interface I = (IV , IO) of G, we have |IV | ≥ |IO|/dt,
where d is the maximum degree of G and t is the length of the longest cycle in
P.

Proof. By (iv) of Definition 10.3, each e ∈ IO has distance less than t from IV
in the subgraph GI of G spanned by IV ∪IO. Using this fact we can assign each
e ∈ IO to an edge f(e) of IV so that the distance between e and f(e) in GI is
less than t. Then the number |f−1(g)| of edges of IO assigned to any g ∈ IV is
at most the size of the ball of radius t− 1 around g in G, which is at most dt−1

since G is d-regular. Thus |IV | ≥ |IO|/dt−1 by the pigeonhole principle.

Let R = . . . , r−1, r0, r1, . . . be 2-way infinite geodesic with r0 = o (such a
geodesic exists in every Cayley graph by an elementary compactness argument,
provided we assume e.g. the Axiom of Countable Choice). Let fi denote the
edge riri+1 of R.

Lemma 10.10. For every P-interface I = (IV , IO) of o with boundary size
|IV | = n, the set IV contains at least one of the edges f0, f1, . . . , fdtn−1.

Proof. Each of the two 1-way infinite subpaths of R starting at o connects o to
infinity, so IV must contain an edge from each of them. By Proposition 10.7
and Proposition 10.9, IO is connected, incident to both of these edges, and
|IO| ≤ dtn. Thus if IV contains some edge riri+1 with i ≥ dtn, then it cannot
meet . . . r−1r0 because R is a geodesic.

A multi-P-interface S is a finite set of P-interfaces {(IiV , IiO)}1≤i≤k such
that the corresponding graphs GiO, i.e. the subgraphs of G spanned by the
edges in IiO, are pairwise vertex disjoint. Define the boundary ∂S of S to be⋃

1≤i≤k |IiV |. Let MS denote the set of multi-P-interfaces and MSn the set
of multi-P-interfaces of total boundary size n. Using the above lemma and
Proposition 10.10 we can upper bound the number of elements of MSn that
can occur simultaneously in any ω similarly to the proof of Proposition 7.7.

Lemma 10.11. There is a constant x ∈ R such that for every n ∈ N at most
x
√
n elements of MSn can occur simultaneously in any ω.

We will now prove that pC < 1 for every finitely presented Cayley graph
following the approach of Section 7.2, replacing the use of exponential decay of
the dual by Lemmas 10.8 and 10.9.
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Theorem 10.12. Let G be an 1-ended Cayley graph with a finite presentation
P. Then pC ≤ 1− 1/γP for bond percolation on G.

Proof. Similarly to (11), we claim that

1− θo(p) =
∑
S∈MS(−1)c(S)+1QS(p) (30)

for every p ∈ (q, 1], where c(S) denotes the number of P-interfaces in the multi-
P-interface S, and QS(p) := Pp(S occurs).
We will use Proposition 10.4 to prove that the above formula holds. By that
proposition, C(o) is finite if and only if it meets a P-interface. Since for any
pair of distinct occuring P-interfaces the graphs GO do not share a vertex, the
inclusion-exclusion principle yields

1− θo(p) = P( at least one P-interface occurs ) =
∑

S∈MS
(−1)c(S)+1QS(p)

provided the latter sum converges absolutely.
Once again ∑

S∈MSn

QS(p) = Ep(
∑

S∈MSn

χ{S occurs})

and by Proposition 10.11 we conclude that∑
S∈MSn

QS(p) ≤ x
√
nPp(some S ∈MSn occurs).

The event {some S ∈ MSn occurs} implies that a set of edges with certain
properties is vacant and our goal is to use Peierls’ argument to conclude that
the probability of the latter event decays exponentially for large enough p.

Let S ∈ MSn and let X1, X2, . . . , Xk be the components of the subgraph
of L(G)m spanned by ∂S, where m = bt/2c. By the argument at the begin-
ning of Section 10.5, each Xi contains the boundary of a P-interface of size at
most ni := |Xi|. Thus by Proposition 10.10, Xi contains one of the edges of
f0, f1, . . . , fdtni−1. The Hardy–Ramanujan formula and Proposition 10.8 now
easily yield that the number of all possible boundaries of MSn is at most

r
√
n max{ckdktn1n2 . . . nk}γnP ,

where the maximum ranges over all partitions {n1, n2, . . . , nk} of n such that
every N appears at most dtN times. As in the proof of Theorem 7.1, it is easy
to check that the quantity max{ckdktn1n2 . . . nk} grows subexponentially in n.
Since each S ∈MSn occurs with probability at most (1−p)n by the definitions,
we conclude that

Pp(some S ∈MSn occurs) ≤ r
√
n max{ckdktn1n2 . . . nk}γnP(1− p)n, (31)

and thus Pp(some S ∈ MSn occurs) decays exponentially for every p > 1 −
1/γP .

Finally, combining this exponential decay with Proposition 4.14 and
Proposition 10.9 we deduce that θ is analytic in (1− 1/γP , 1], arguing as in the
end of the proof of Theorem 7.1.

Proposition 10.12 immediately implies

48



Corollary 10.13. For G = Zd we have pC ≤ 1− 1/γd where
γd = ((4d− 2)2 − 1)e.

Here, Zd denotes the cubic lattice in Rd. That pC < 1 for G = Zd is also
proved in [16] and [15]; our bounds are better than those of [16] and worse than
those of [15]. They could be improved if we had a more precise upper bound on
the number of P-interfaces in this case than the one provided by Lemma 10.8.
Our proof that pC < 1 can be extended to any quasi-transitive lattice in Rd.
For this we need to show that such a graph admits a basis of its cycle space
with bounded cycle lengths, but this is just an exercise.

10.6 Extending to site percolation

In this section we extend Theorem 10.15 to site percolation. The proof is essen-
tially the same, all we have to do is to adapt the probability (1− p)n appearing
in (31), but we will also adapt Lemma 10.8 in order to obtain a better bound
on pC.

For a P-interface (IV , IO) of G we let VO denote the set of vertices incident
with an edge in IO, and we let VV denote the set of vertices incident with an
edge in IV but with no edge in IO. We say that a P-interface I = (IV , IO)
is a site-P-interface, if no edge in IV has both its end-vertices in VO. Note
that any site percolation instance ω ∈ {0, 1}V (G) naturally gives rise to a bond
percolation instance ω′ ∈ {0, 1}E(G), by setting ω′(xy) = 1 whenever ω(x) = 1
and ω(y) = 1. It is obvious from the definitions that if I occurs in such an ω′,
then I is a site-P-interface. For site-P-interfaces we can improve Lemma 10.8
as follows, using the same proof except that we work with G rather than L(G).
The vertex-boundary size of (IV , IO) is |VV |.

Lemma 10.14. The number of site-P-interfaces (IV , IO) of G of vertex-boundary
size n such that IV contains a fixed edge of G is less than c′γ̇nP , where γ̇P =
(dmP − 1)e, and d is the degree of G.

Using this we can now adapt Theorem 10.12 to site percolation, repeating
the proof verbatim, except that we use site-P-interfaces instead of P-interfaces.

Corollary 10.15. Let G be an 1-ended Cayley graph with a finite presentation
P. Then pC ≤ 1− 1/γ̇P for site percolation on G.

This bound on pC is far from the conjectured pC = pc, but not so far from
pC ≤ 1− pc, which is the best that our methods can achieve (and possibly the
truth) in light of a result of Kesten & Zhang, saying that for site percolation
on Zd, d ≥ 3, the distribution of the vertex-boundary size of the site-P-interface
of the cluster of the origin does not have an exponential tail [39, Theorem 4]
(here Zd denotes the cubic lattice in Rd, and the basis P consists of the squares
bounding the faces of its cubes). Our next result implies that this ‘theoretical
barrier’ pC ≤ 1 − pc can in fact be achieved if we are allowed to modify the
graph a little by adding some diagonal edges.

Theorem 10.16. Let G be an 1-ended quasi-transitive graph admitting a basis
P of C(G) all cycles of which are triangles. Then pC ≤ 1− pc for both site and
bond percolation on G. In particular, we have pc ≤ 1/2 unless pc = 1.
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In particular, we can obtain such a G by adding to Zd the ‘monotone’ di-
agonal edges, i.e. the edges of the form xy where yi − xi = 1 for exactly two
coordinates i ≤ d, and yi = xi for all other coordinates. Then each square gives
rise to two triangles, and we can use all these triangles as our basis P of the
cycle space.

Note that for d = 2 we obtain the triangular lattice, and so Theorem 10.16
can be thought of as a generalisation of Corollary 7.9.

For its proof we will need the following lemma, which is a special case of
[51, THEOREM 5.1], the main idea of which we used in Proposition 10.5, as
illustrated in Figure 5.

Lemma 10.17. Let G be an 1-ended quasi-transitive graph admitting a basis
P of C(G) all cycles of which are triangles. Then for every site-P-interface
(IV , IO) of G, the vertex boundary VV spans a connected subgraph of G.

Proof of Theorem 10.16. We first prove the statement for site percolation. We
follow the lines of the proof of Theorem 7.1, except that we now letMSn denote
the set of multi-P-interfaces all elements of which are site-P-interfaces. Instead
of Lemma 7.6, which states that the boundary of a P-interface spans a connected
subgraph of the dual lattice in that setup, we now use Lemma 10.17, which is
the analogous statement for the boundary VV of a site-P-interface under our
assumption on P that all its cycles are triangles. The proof of Lemma 7.7
can be repeated verbatim, except that we replace the quasi-geodesic X used
there with an arbitrary 2-way infinite quasi geodesic of G, which exists by a
standard compactness argument. In that proof, we used the canonical coupling
between bond percolation on a planar lattice and its dual, and applied the
Aizenman-Barsky property to the subcritical clusters of the dual. Here, we
instead use the canonical coupling between site percolation with parameter p
and with parameter 1 − p obtained by switching between vacant and occupied
vertices. We apply the Aizenman-Barsky property to the boundaries VV of our
site-P-interfaces: since they span connected subgraphs of G by Lemma 10.17,
each such VV is contained in a cluster of vacant sites. But as p > 1− pc, vacant
clusters are subcritical due to that coupling, hence their size distribution has an
exponential tail by the Aizenman-Barsky property (Theorem 3.1). The rest of
the proof can be repeated as is.

To prove the statement for bond percolation, we use the canonical coupling
between bond percolation on G and site percolation on its line graph L(G),
noting that the cluster of an edge of G is infinite in the former if and only if the
cluster of the corresponding vertex of L(G) is infinite in the latter. Our plan is
to apply the statement for site percolation we just proved to L(G). Note that if
G is quasi-transitive, then so is L(G). Moreover, it is straightforward to check
that we can obtain a basis of C(L(G)) from any basis P of G by adding all the
triangles of the form x, y, z in L(G) whenever the edges x, y, z of G are incident
with a common vertex. Thus we can reduce to the case of site percolation as
desired.

For both site and bond percolation, since pc ≤ pC unless pc = 1 because θ(p)
can never be analytic at pc if pc < 1, we immediately obtain pc ≤ 1/2.
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11 Triangulations

11.1 Overview

In this section we use the techniques we developed to provide upper bounds
on pc and ṗc for certain families of triangulations. Although these bounds will
apply to pC, we stress that the results of this section give the best known (or
only) such bounds on pc, ṗc for these triangulations.

We will prove that pC ≤ 1/2 for Bernoulli bond percolation on triangulations
of an open disk that either satisfy a weak expansion property or are transient.
Once again the analyticity of θo will follow by showing that the outer-interfaces
(P-interfaces) of o have an exponential tail for every p > 1/2.

The interest in the study of percolation on triangulations of an open disk
was sparked by the seminal paper [13] of Benjamini & Schramm. They made
a series of conjectures, the strongest one of which is that ṗc(T ) ≤ 1/2 on any
bounded degree triangulation T of an open disk that satisfies a weak isoperimet-
ric inequality of the form |∂VA| ≥ f(|A|)) log(|A|)) for some function f = ω(1),
where S is any finite set of vertices. More recently, Benjamini [12] conjectured
that ṗc(T ) ≤ 1/2 on any transient bounded degree triangulation T of an open
disk.

Angel, Benjamini & Horesh [6] proved that for any triangulation T of an
open disk with minimum degree 6, the isoperimetric dimension of T is at least
2 and thus satisfies the assumption of the conjecture of Benjamini & Schramm.
They also asked whether pc(T ) ≤ 2 sin(π/18) (and ṗc ≤ 1/2), the critical value
for bond percolation on the triangular lattice, for any such triangulation.

The main results of this section, which we now state, imply that in all
aforementioned conjectures, the bound pc ≤ 1/2 is correct if one considers bond
instead of site percolation.

Theorem 11.1. Let T be a triangulation of an open disc such that every vertex
has finite degree (not necessarily bounded) and6

for all but finitely many sets A of vertices we have
|∂VA| ≥ k log(diam(A)) for some constant k > 0.

(32)

Then there is a constant νk < 1 that converges to 1/2 as k goes to infinity, such
that

pc(T ) ≤ pC(T ) ≤ νk.
In particular, if

for every finite set A of vertices we have |∂VA| ≥
f(diam(A)) log(diam(A)) for some function f = ω(1),

(33)

then
pc(T ) ≤ pC(T ) ≤ 1/2.

(This holds in particular when h(T ) > 0, i.e. when T is non-amenable.)

Theorem 11.2. Let T be a transient triangulation of an open disc with degrees
bounded above by d. Then

pc(T ) ≤ pC(T ) ≤ 1/2.
6The reader will lose nothing by replacing diam(A) by |A| in this statement, which only

strengthens our assumptions.
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We will also prove the same bounds for recurrent triangulations T with a
uniform upper bound on the radii of the circles in any circle packing of T , as
well as analogues for site percolation (Section 11.3).

11.2 Proofs

Notice that any bounded degree triangulation T satisfies the assumptions (29)
of Section 10.4. Hence the arguments of that section imply that pC(T ) < 1 for
bond percolation provided we further assume that T contains a 2-way infinite
geodesic. However, the latter is a rather strong condition. But we only used
the existence of a 2-way infinite geodesic in the proof of Lemma 10.10, and it
will turn out that a variant of that lemma still holds for transient triangulations
and triangulations satisfying the above isoperimetric inequality.

We will first focus on proving Theorem 11.1, but many of the following
arguments will also be valid for transient triangulations.

Our proofs will follow the lines of that of Theorem 7.1. Recall the definitions
of outer-interface and multi-interface of Section 7. Again MS denotes the set
of multi-interfaces of a chosen vertex o, while ∂M denotes the boundary of a
multi-interface M and MSn := {M ∈MS | |∂M | = n}.

Let T be a triangulation of an open disk and o a vertex in T . Once again we
will utilise the inclusion-exclusion principle to express 1− θo as an infinite sum

1− θo(p) =
∑
M∈MS(−1)c(M)+1QM (p) (34)

for every p large enough, where c(M) denotes the number of outer-interfaces
in the multi-interface M , and QM (p) := Pp(M occurs). The validity of the
formula will follow as in the proof of Theorem 7.1 (recall (11)) once we establish
an exponential tail for the corresponding probabilities, which is the purpose of
the following lemma.

Lemma 11.3. There is a constant νk < 1 that converges to 1/2 as k goes to
infinity, such that for every triangulation T of an open disk satisfying condition
(32) of Theorem 11.1 and every p ∈ (νk, 1],∑

M∈MSn
QM (p) ≤ c1c2n, (35)

where c1 = c1(p) > 0 and c2 = c2(p) > 0 are some constants with c2 < 1. More-
over, if [a, b] ⊂ (νk, 1], then the constants c1 and c2 can be chosen independent
of p in such a way that (35) holds for every p ∈ [a, b].

In order to prove the above lemma, we first pick an arbitrary infinite geodesic
R starting from o. Our goal is to show that the outer-interfaces M of o for
which ∂M contains a fixed edge e ∈ E(R), occur with exponentially decaying
probability for every large enough value of p. Then we will upper bound the
choices for e ∈ R.

In what follows we will be using the standard coupling between percolation
on T and its dual T ∗ as in the proof of Lemma 7.8. Since T is a triangulation,
the dual of any minimal cut of T is a cycle. The number of cycles in T ∗ of size
n containing a fixed edge is at most 2n−1, because T ∗ is a cubic graph. Then
the union bound shows that the probability that some minimal cut containing
a fixed edge is vacant has an exponential tail for every p > 1/2. However,
the boundary of an outer-interface is not necessarily a minimal cut. Still, the
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dual of the boundary of any outer-interface in T is a connected subgraph of T ∗.
The desired exponential tail will follow from the Aizenman-Barsky property
(Theorem 3.1) once we show that supu∈V (T∗) χu(p) < ∞ for every p < 1/2,
where as usual χu(p) denotes the expected size of the percolation cluster of u.
The next lemma proves the this statement.

Lemma 11.4. Let T be a triangulation of an open disc. Then

χ∗(p) := sup
u∈V (T∗)

χu(p) <∞

for every p ∈ (1/2, 1].

Proof. Let u be a vertex of T ∗. Note that whenever some vertex v belongs
to C(u) there is a self-avoiding walk from u to v with occupied edges. Hence
we obtain E(|C(u)|) ≤ Ep(P (u)), where P (u) is the number of occupied self-
avoiding walks starting from x. The number σk(u) of k-step self-avoiding walks
in T ∗ starting from u is at most 3 · 2k−1. Consequently,

E1−p(P (u)) ≤
∑∞
k=0 3 · 2k−1(1− p)k <∞ (36)

whenever p > 1/2. Since this bound does not depend on u the proof is complete.

Using Theorem 3.1 we immediately obtain the desired exponential tail.

Corollary 11.5. For every p > 1/2 there is a constant 0 < c = c(p) < 1 such
that for any triangulation T of an open disk and any vertex u ∈ T ∗, we have
P1−p(|C(u)| ≥ n) ≤ cn.

The following lemma converts condition (32) into a statement saying that
every outer-interface of T meets a relatively short initial subpath of R.

Lemma 11.6. Let T be a triangulation of an open disk satisfying condition
(32). Let R be a geodetic ray in T starting at any o ∈ V (G), and let Rn be the
set of edges of R contained in some outer-interface of Sn. Then |Rn| ≤ en/k for
all but finitely many values of n.

Proof. Define a function g : N→ N by letting g(n) be the smallest integer l such
that every outer-interface of Sn contains at least one of the first l edges of R if
such a l exists, and let g(n) =∞ otherwise, with the convention that g(n) = 1
if no such edge-separator of size n exists.

We need to show that g(n) ≤ en/k for almost every n (in particular, g(n) <
∞). In other words, we need to show that g(n) > en/k holds for only finitely
many values of n. To see this, assume n is such a number, which means that
some outer-interface M of Sn does not contain any of the first en/k edges of R.
Let B be the minimal cut of M and A = An be the component of o in G− B.
Our condition (32) says that

k log(diam(A)) ≤ |∂VA| ≤ |∂EA| = |B| ≤ n,

except possibly for finitely many sets A = An, hence for finitely many values of
n.

On the other hand, we have diam(A) > en/k since A contains the first en/k

edges of the geodesic R. Combining these inequalities yields the contradiction
k log en/k > n.
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An immediate consequence of Lemma 11.6 is that g(n) grows subexponen-
tially in n, i.e. lim supn→∞ g(n)1/n = 1, whenever the stronger condition (33)
is satisfied.

Note that the constant e−1/(2χ2) involved in the statement of the theorem
of Aizenman & Barksy does not converge to 0 as p goes to 0, because χ ≥ 1.
Hence when we combine Corollary 11.5 and Lemma 11.6 with the union bound,
we deduce that Pp(some M ∈MSn occurs) decays exponentially in n for every
large enough value of p, only when T satisfies (32) for some large enough value
of k. In particular, when T satisfies (33), then Pp(some M ∈ MSn occurs)
decays exponentially in n for every p > 1/2.

To cover the remaining cases, we will prove in the next lemma an exponential
upper bound for the number of all possible multi-interfaces of MSn and then
we will deduce the desired exponential decay using a Peierls type argument.

A straightforward application of Corollary 14.1 yields

Lemma 11.7. For every graph G with maximum degree 3, and any vertex
e ∈ E(G), the number of 2-connected subgraphs of G with m edges containing e
is at most νm for some constant ν.

The following lemma is the analogue of Lemma 7.7.

Lemma 11.8. There is a constant r ∈ R such that for every triangulation T
of an open disk satisfying condition (32) of Theorem 11.1 and every n ∈ N at
most tr

√
nen/k elements of MSn can occur simultaneously in any percolation

instance ω, where t = t(T, k) > 0 is a constant depending on T and k.

Proof. Let S be an element ofMSn, comprising the outer-interfaces S1, S2, . . . , Sl.
Since any two distinct occurring outer-interfaces are vertex disjoint by Lemma 7.4,
the sizes mi of ∂Si define a partition of n. We call the multiset {m1,m2, . . . ,ml}
the boundary partition of S. It is possible that more than one occuring multi-
interfaces have the same boundary partition. In order to prove the desired as-
sertion we will show that for every partition {m1,m2, . . . ,ml} of n the number
of occuring multi-interfaces with {m1,m2, . . . ,ml} as their boundary partition
is at most ten/k for some constant t > 0. Then the assertion follows by the
Hardy–Ramanujan formula (Theorem 3.3).

Since occurring outer-interfaces meet R and they are vertex-disjoint by
Lemma 7.4, S is uniquely determined by the subset of R it meets. We can
utilise Lemma 11.6 to conclude that the number of occurring outer-interfaces
with boundary of size mi is at most emi/k for every mi ≥ N , where N is a suffi-
ciently large positive integer. It is easy to see that the number of outer-interfaces
with boundary of size at most N is bounded from above by some constant
M > 0. Hence the number of occuring multi-interfaces with {m1,m2, . . . ,ml}
as their boundary partition is bounded above by Men/k.

We are now ready to prove Lemma 11.3.

Proof of Lemma 11.3. By Lemma 11.8 we have∑
M∈MSn

QM (p) ≤ tr
√
nen/kPp(some M ∈MSn occurs)

for every k. Let rm denote the mth edge of R. We pick one of the two endpoints
from every dual edge r∗m and we denote it vm (maybe some of these endpoints are
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the same). Let D(m) denote the event that one of the clusters of v1, . . . , vg(m)

contains at least m vertices. Arguing as in the proof of Lemma 7.8 we can
deduce that

Pp(some M ∈MSn occurs) ≤
∑

{m1,...,mk}∈Pn

P1−p(D(m1)) · . . . · P1−p(D(mk)),

where Pn is the set of partitions of n. By Corollary 11.5 and the union bound
we obtain

Pp(some M ∈MSn occurs) ≤ tr
√
nen/kcn,

where c is the constant of Corollary 11.5.
When k is large enough, there is some constant νk < 1 such that e2/kc < 1

for every p > νk. This proves the exponential decay of
∑
M∈MSn

QM (p) when

k is large enough. Moreover, as k goes to infinity, e2/k converges to 1 and thus
it is easy to choose νk so that it converges to 1/2.

For small values of k we can argue as in the proof of Theorem 10.12 to
conclude that

Pp(some M ∈MSn occurs) ≤ tr
√
nen/kνn(1− p)n,

where ν is a constant provided by Lemma 11.7. Hence
∑
M∈MSn

QM (p) decays

exponentially in n for all p > 1− 1/νe2/k.

The following is an easy combinatorial exercise.

Lemma 11.9. For every triangulation of a disk T and every outer-interface M
we have |E(M)| ≤ 2|∂M |.

Proof. Let H be a finite connected graph witnessing the fact that M is an
outer-interface. We claim that every edge e ∈ M lies in a triangular face Te of
T such that at least one edge of Te − e lies in ∂M . Indeed, e lies in exactly
two (triangular) faces of T , and we choose Te to be one of them lying in the
unbounded face of H; such a Te exists, because by definition the vertices and
edges of M are incident with the unbounded face of H. As Te lies in the
unbounded face of H, one of the two other edges of Te lies in ∂M .

Since any edge of ∂M lies in at most two of these triangular faces Te, the
result follows.

We have collected all the ingredients for the main result of this section.

Proof of Theorem 11.1. We first remark that pc < 1 by (34) because, easily,
c2(p)→ 0 as p→ 1.

To obtain our precise bounds, note that, by definition, every M ∈MSn has
n vacant edges. Moreover, |E(M)| ≤ 2n by Lemma 11.9. Hence we can now
apply Corollary 4.14 for I = (νk, 1], Ln =MSn, and (En,i) an enumeration of
the events {M occurs}M∈MSn

, to deduce that θo(p) is analytic for p > νk. As
usual, we then recall that θo(p) cannot be analytic at pc, and so pc ≤ pC.

Remark: The above proof uses some complex analysis (needed in Corol-
lary 4.14) to prove pc < 1/2. But the complex analysis can be avoided by using
a refinement of the Peierls argument that can be found in [46][Theorem 4.1].
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For the proof of Theorem 11.2 we just need to show that the size of the set
of edges of a 1-way geodesic R that meets

⋃
MSn grows subexponentially in n.

To this end, we will use the well known theorem of He & Schramm stating that
every graph as in our statement is the contacts graph of a circle packing whose
carrier is the open unit disc D in R2; see [36], where the relevant definitions
can be found. We say that an edge e meets MSn, if there is M ∈ MSn with
e ∈ ∂M .

Lemma 11.10. Let T be a triangulation of an open disk which is transient and
has bounded vertex degrees. Let R be a geodetic ray in T starting at any o ∈
V (G), and let Rn be the set of edges of R meeting MSn. Then |Rn| = O(n3).

Proof. Let P be a circle packing for T whose carrier is the open unit disk D,
provided by [36]. The main properties of P used in our proof are

(i) two vertices of T are joined with an edge if and only if the corresponding
circles are tangent, and

(ii) there are no accumulation points of circles of P inside D.

For a vertex u of T , let xu denote the corresponding circle of P . Assume
without loss of generality that xo is centered at the origin of the plane.

Assume that |Rn| = ω(n3) contrary to our claim. Let R′n be the set of
vertices of R incident with an edge in Rn. Then |R′n| > |Rn| = ω(n3).

For any u ∈ R′n Lemma 11.9 yields a connected subgraph Gu of T of at most
2n + 1 vertices containing u and surrounding o; indeed, Gu can be obtained
from any outer-interface M witnessing the fact that u ∈ R′n by possibly adding
the edge of u lying in ∂M in case u does not lie on M .

Let Pu denote the union of the circles of P corresponding to Gu. We claim
that the area area(Pu) covered by Pu is at least r/n2 for some constant r = r(P ).
Indeed, Pu is the union of at most 2n + 1 circles, and its diameter is greater
than the diameter of xo, and so at least one of its circles must have diameter of
order at least 1/n, hence area of order at least 1/n2.

For every n, pick a subset R′′n of R′n such that any two vertices of R′′n lie
at distance at least 4n + 2 along R, and therefore in T since R is a geodesic,
and |R′′n| = ω(n2). Such a choice is possible because R′n = ω(n3). By the same
argument, we can assume moreover that any vertex of R′′n is at graph-distance
at least 4n+ 2 from any vertex of R′′n−1.

Note that for any two distinct elements u, v ∈ R′′n, the subgraphs Gu, Gv
defined above are vertex disjoint: this is because, we chose u, v to have distance
at least 4n + 2 in T , and each of Gu, Gv has at most 2n + 1 vertices and
is connected. Moreover, recall that each Pu has area of order at least 1/n2.
Combining these two facts we obtain

∑
u∈R′′n

area(Pu) = ω(1), a contradiction

since area(D) is finite.

Proof of Theorem 11.2. We repeat the arguments of the proof of Theorem 11.1,
replacing Lemma 11.6 by Lemma 11.10.

In the case of recurrent triangulations the theorem of He & Schramm states
that T is the contacts graph of a circle packing whose carrier is the plane R2 [36].
Let P be such a circle packing. We will prove the analogue of Lemma 11.10 for
recurrent triangulations of an open disk such that the radii of the circles of P are
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bounded from above. This in turn implies that pC ≤ 1/2 for such triangulations
by repeating the proof of Theorem 11.2.

Lemma 11.11. Let T be a triangulation of an open disk which is recurrent and
has bounded vertex degree. Assume that

for some (and hence every) circle packing P of T , the radius of every
disk in P is bounded from above by some constant M .

(37)

Let R be a geodetic ray in T starting at any o ∈ V (G), and let Rn be the set of
edges of R contained in some outer-interface of MSn. Then |Rn| = O(n5).

Proof. We will follow the proof of Lemma 11.10. Assume that |Rn| = ω(n5)
contrary to our claim. Recall the definitions of Pu, Gu and R′n, and let R′′n be
defined as in the proof of Lemma 11.10 with the additional property∞ > |R′′n| =
ω(n4). This is possible because |Rn| = ω(n5). In the proof of Lemma 11.10 we
utilised the finite area of D to derive a contradiction. However the area of the
plane is infinite. For this reason we will construct a family of bounded domains
(Dn) with the property that Pu is contained in Dn for every u ∈ R′′n.

Let un be the vertex of R′′n that attains the greatest graph distance from o.
We claim that Gn := Gun contains a cycle that surrounds o. Indeed, assuming
that Gn does not contain any such cycle, we obtain that o lies in Gn. Moreover,
any graph Gu separates o from infinity, and for any two distinct elements u, v ∈
R′′n, the subgraphs Gu, Gv are vertex disjoint, as mentioned in the proof of
Lemma 11.10. Thus for any other u ∈ R′′n, Gu has to contain some vertex v of
R such that d(v, o) > d(un, o), which is a contradiction. Hence Gn contains a
cycle Cn that surrounds o.

Let Dn be the domain bounded by that cycle. Arguing as above we can
immediately see that each Pu for u ∈ R′′n \ {un} lies in Dn. Moreover, Cn
contains at most 2n edges by Lemma 11.9. Every edge of T has length at most
2M in P by our assumption, therefore, the length of Cn (as a curve in R2) is at
most 4Mn.

As in the proof of Lemma 11.10 if u ∈ R′′n, then some circle of Pu has area
of order at least 1/n2. Hence we obtain

∑
u∈R′′n\{un} area(Pu) = ω(n2), since

|R′′n \ {un}| = ω(n4). Using the standard isoperimetric inequality of the plane
we derive ∑

u∈R′′n\{un}

4πarea(Pu) ≤ 4πarea(Dn) ≤ (4Mn)2.

We have obtained a contradiction.

Using an idea of Grimmett & Li [32], we can slighly improve our results to
obtain the strict inequality pc ≤ pC < 1/2 instead of pc ≤ pC ≤ 1/2 in all above
results. Indeed, it is not hard to see that for any bounded degree triangulation
of an open disk T , σk(o) ≤ 3 ·2d−1(2d−2)bn/dc, where d is the maximum degree
of T . This comes from the fact that for every vertex u and any edge e incident to
u the number of d-step self avoiding walks starting from u that do not traverse
e is at most 2d − 2. Hence pc ≤ pC < 1/2 as claimed.

11.3 Site percolation

A well-known remark of Grimmett & Stacey [41, §7.4] transforms any upper
bound on pc(G) into an upper bound on ṗc via the formula ṗc ≤ 1 − (1 − pc)d
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whenever G has maximum degree d. But in our case we can do better: for the
triangulations for which we proved pC ≤ 1/2 in the previous section we can also
prove ṗc ≤ 1

d−1 . For this, instead of working with the dual T ∗ we work directly
with the primal T . We adapt (36) into
E1−p(P (u)) ≤

∑∞
k=0 d · (d − 1)k−1(1 − p)k < ∞, which yields an analogue of

Corollary 11.5 for p > 1−1/d. We then proceed as in the proof of Theorem 11.1.

12 Alternating signs of Taylor coefficients

In Section 4.2.1 we proved that the functions fm(t) := Pt(|C(o)| ≥ m) and
pm(t) := Pt(|C(o)| = m) are analytic, and even more, they can be extended
into entire functions. Thus pm is uniquely determined by its Maclaurin coeffi-
cients. We remark that most ‘macroscopic’ functions of percolation theory, e.g.
χ and θ, are uniquely determined by the sequence {pm}m∈N, and hence by their
Maclaurin coefficients. It is rather hopeless to try to determine all these coeffi-
cients for any particular percolation model, but perhaps it is less hopeless to e.g.
compare two models by comparing the corresponding Maclaurin coefficients.

Motivated by such thoughts we wondered what can be said about those
coefficients in general. In this section we determine the signs of the Maclaurin
coefficients of fm and pm, which turn out not to depend on the model, and
deduce that they are alternating. In fact this remains valid in any non trivial
percolation model and we do need to impose any transitivity assumption. We
let V be a countably infinite set, and µ any function defined on the set E := V 2

of pairs of elements of V such that
∑
y∈V µ(xy) <∞ for every x ∈ V , and use

this data to obtain a percolation model as defined in Section 2. However, for
ease of notation we will assume that

∑
y∈V µ(xy) = 1 for every x ∈ V , as in

Section 4.2.1. (Some readers may prefer to think of V as the vertex set of a
countable connected graph, with µ supported on its edge set E.)

We call an entire function alternating , if its Maclaurin coefficients are all
real and their signs are alternating. To be more precise, if the Maclaurin series
of f is

∑
cix

i, with ci ∈ R, we say that f is alternating if sgn(ci) = (−1)i+ε,
for some ε ∈ {0, 1}. Here, the sign sgn(c) of a real number c 6= 0 is defined as
c/|c|. With a slight abuse of notation, we allow sgn(0) to take any of the values
1 or −1. For example, any constant real function is allowed as an alternating
function.

More generally, we say that f is alternating at a point r ∈ R, if the Taylor
coefficients ci of f(z) at z = r satisfy sgn(ci) = (−1)i+ε.

For an analytic function f , we let f [k] := f(k)(0)
k! , k ≥ 0 denote the kth

Maclaurin coefficient of f . More generally, let f [k](r) denote the kth Taylor
coefficient of f at r.

Theorem 12.1. The (entire extension of the) function fm is alternating, with
sgn(fm[k]) = (−1)m+1+k.

Since pm = fm − fm+1, this immediately implies that pm is alternating too,
with sgn(pm[k]) = (−1)m+1+k.

We will prove Theorem 12.1 by induction, and to do so we will prove the
following refinement of our statement. Let F , A be non-empty subsets of V ,
such that F is a finite subset of A. Any percolation instance ω ∈ {0, 1}E can be
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restricted to define a random graph Aω on A by only keeping the edges that are
occupied and have both end-vertices in A. By a straightforward extension of
Theorem 4.8, we can prove that the function Pt(| ∪g∈F CA,g| ≥ m), where CA,g
denotes the component of vertex g in Aω, admits an entire extension, which we
will denote by fm. Our aim is to prove that fm is alternating for every m ≥ |F |,
with sgn(fm[k]) = (−1)m+|F |+k. The special case where F = {o} and A = V
then yields Theorem 12.1.

We will prove this using the following formula:

fm(t) = Pt(|NA\F (g1)| ≥ m− |F |)+
m−|F |−1∑
n=0

∑
L∈Bn

Pt(| ∪g∈SL
CA\{g1},g| ≥ m− 1)Pt(NA\F (g1) = L),

(38)

where g1 is a fixed but arbitrary element of F , and Bn is the set of all possible
subsets of size n of the (deterministic) neighbourhood of g1 in A \F , and SL :=(
F \ {g1}

)
∪ L.

The fact that this formula holds (for all t ∈ R+) is easy to check: we consider
all possible neighbourhoods L of g1 in A \ F in our percolation instance, and
compute the probability of the event | ∪g∈F CA,g| ≥ m defining fm conditioning
on L, except that we bulk all L with |L| ≥ m − |F | into the first summand of
the right hand side.

We claim moreover that the functions involved in the right hand side admit
entire extensions, and that these extensions still satisfy (38) for every z ∈ C.

Indeed, the first summand can expressed as a sum of simpler functions via
the formula

Pt(|NA\F (g1)| ≥ m− |F |) = 1−
∑m−|F |−1
n=0

∑
L∈Bn

Pt(NA\F (g1) = L). (39)

By Corollary 4.7 all functions of the form Pt(NA\F (g1) = L) admit entire ex-
tensions and∑

L∈Bn
|Pt(NA\F (g1) = L)| ≤ e2M

∑
L∈Bn

PM (NA\F (g1) = L) <∞ (40)

for every M > 0 and every z ∈ D(0,M). Applying the Weierstrass M-test and
Weierstrass’ Theorem 15.1 as usual we deduce that

∑
L∈Bn

Pt(NA\F (g1) = L)
admits an entire extension, and hence so does Pt(|NA\F (g1)| ≥ m−|F |) by (39).

For the second summand of (38) we observe as above that all functions Pt
involved admit entire extensions and thus it suffices to verify once again the
assumptions of the Weierstrass M-test for the series taken when summing over
L ∈ Bn. To upper bound Pt(|∪g∈SL

CA\{g1},g| ≥ m−1) we will use the identity

Pt(| ∪g∈SL
CA\{g1},g| ≥ m− 1) = 1−

m−2∑
j=1

Pt(| ∪g∈SL
CA\{g1},g| = j).

Using the estimates of Lemma 4.4 and a simple triangle inequality we deduce,
for the corresponding entire extensions, that

|Pz(| ∪g∈SL
CA\{g1},g| ≥ m− 1)| ≤ 1 +

m−2∑
j=1

e2MjPM (| ∪g∈SL
CA\{g1},g| = j)
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for every M > 0 and every z ∈ D(0,M). We can further upper bound
|Pz(| ∪g∈SL

CA\{g1},g| ≥ m− 1)| by 1 + (m− 2)e2Mm, because obviously
PM (| ∪g∈SL

CA\{g1},g| = j) ≤ 1. Combining this with (40) we deduce that the
assumptions of the M-test are verified.

This proves that the right hand side of (38) admits an entire extension as
claimed. Since this extension coincides with fm on R+ as mentioned above, it
must coincide with fm(z) on all of C by the uniqueness principle since fm(z) is
entire.

Our inductive proof of Theorem 12.1 is based on the observation that all
these functions Pt involved in (38) are alternating themselves, and the following
basic fact that products of alternating functions are alternating.

Lemma 12.2. If f, g are entire alternating functions then fg is also alternating,
and sgn(fg[k]) = (−1)ksgn(f [k])sgn(g[k]).

Proof. This is an easy combinatorial excersise, using the well-known fact that
the Taylor series of a product of two analytic functions coincides with the prod-
uct of the Taylor series of the two functions at any point of the intersection of
their domains of definition.

We now prove that the entire extensions of the functions of the form
Pt(NA\F (g1) = L) appearing in (38) are alternating.

Lemma 12.3. Let L, X be non-empty subsets of V , such that L is a finite
subset of X. Then for every o ∈ V , the entire extension f of Pt(NX(o) = L) is
alternating, with sgn(f [k]) = (−1)|L|+k.

Proof. By definition, our function satisfies the following formula:

f(z) := Pz(NX(o) = L) =
∏

s∈X\L

e−zµ(os−1)
∏
s∈L

(
1− e−zµ(os−1)

)
=

e−z
∑

s∈X\L µ(os−1)
∏
s∈L

(
1− e−zµ(os−1)

)
.

(41)

Since the function e−zν is alternating for every real constant ν, the latter ex-
pression is a product of |L| + 1 alternating functions. Thus the result follows
from Lemma 12.2. Indeed, the leftmost factor has its odd Maclaurin coefficients
positive, while each of the |L| other factors has its even coefficients positive.

Next, we prove that the first summand of (38) is also alternating.

Lemma 12.4. Let F , X be non-empty subsets of V , such that F is a finite
subset of X. Then for every o ∈ V , the analytic extension f of
Pz(|NX(o)| ≥ j) is alternating for every j ≥ 0, with sgn(f [0]) = (−1)j.

Proof. We can rewrite f as

f(z) = 1− Pz(|NX(o)| < j) = 1−
∑j−1
n=0

∑
L∈Bn

Pz(NX(o) = L). (42)

Indeed, this formula is easily verified for z ∈ R+, and by the arguments used
for (38) it holds for every z ∈ C.

Note that the right hand side involves j sums, each of which is a sum of
alternating functions with agreeing signs by Lemma 12.3. However, the signs
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of each of those j sums have alternating parities, and since we do not know
anything about the absolute values of their coefficients this formula is not enough
to prove our statement. However, it will be useful below on different grounds.

We start by proving the statement of the lemma for finite X, using a dou-
ble induction on |X| and j. To begin with, for j = 0, f is alternating, with
sgn(f [k]) = (−1)k for every finite X, as it becomes the constant function f = 1.
Moreover, f is identically 0 and hence alternating for X = ∅ and every j ≥ 1,
and we can take sgn(f [k]) = (−1)j+k in this case. For the inductive step, sup-
pose the statement is proved for j ≤ k and every finite X. Then for j = k, we
will prove it by induction on |X| = 1, 2, . . . (remember we already know it for
|X| = 0). For this, we can pick any element x ∈ X, and rewrite f as follows, by
distinguishing between the events of the edge ox being absent or present:

f(z) = Pz(|NX(o)| ≥ j) = e−zµ(ox)Pz(|NX\x(o)| ≥ j) +

(1− e−zµ(ox))Pz(|NX\x(o)| ≥ j − 1).
(43)

(Again, we repeat the arguments used (38) to establish this in all of C.) By our
induction hypothesis, both Pz functions involved are alternating; the sign of the
kth Maclaurin coefficient of the first one is (−1)j+k, while for the second one it
is (−1)j−1+k. By Lemma 12.2, each of the two products of (43) is alternating,
with the sign of the kth coefficient being (−1)j+k.

This completes the induction step, establishing that f is alternating for finite
X. For an infinite X we now use an approximation argument. Let
X1 ⊂ X2 ⊂ . . . be an increasing sequence of finite subsets of X with

⋃
Xi = X.

We claim that each Maclaurin coefficient of Pz(|NX(o)| ≥ j) is the limit, as
i → ∞, of the corresponding Maclaurin coefficient of Pz(|NXi

(o)| ≥ j). Since
we have already proved the latter functions to be alternating because Xi is
finite, this claim implies our statement that f is alternating.

Applying (42) with X replaced by Xi for every i ∈ N, we have

fi(z) := 1− Pz(|NXi(o)| < j) = 1−
∑j−1
n=0

∑
L∈Bn
L⊂Xi

Pz(NXi(o) = L) (44)

To prove the aforementioned claim about the convergence of Maclaurin coeffi-
cients, it suffices to show that fi converges to f uniformly on some open disk
D(0,M), and we next show that this is the case.

Using the explicit formula (41), we have

Pz(NXi
(o) = L) = Pz(NX(o) = L)ez

∑
x∈X\Xi

µ(ox)

whenever L ⊂ Xi. Hence we obtain

j−1∑
n=0

∑
L∈Bn
L⊂Xi

Pz(NXi(o) = L) = ez
∑

x∈X\Xi
µ(ox)

j−1∑
n=0

∑
L∈Bn
L⊂Xi

Pz(NX(o) = L).

Pick some M > 0, and note that as i → ∞, the last factor ez
∑

x∈X\Xi
µ(ox)

approaches the constant 1 function uniformly on D(0,M) because

|ez
∑

x∈X\Xi
µ(ox) − 1| ≤ eM

∑
x∈X\Xi

µ(ox) − 1

61



for every z ∈ D(0,M) by Lemma 4.5, and the latter quantity converges to 0.

Moreover as i → ∞ the sequence
∑j−1
n=0

∑
L∈Bn
L⊂Xi

Pz(NX(o) = L) converges to∑j−1
n=0

∑
L∈Bn

Pz(NX(o) = L) uniformly on D(0,M), since∑
L∈Bn
L 6⊂Xi

|Pz(NX(o) = L)| ≤
∑
L∈Bn
L 6⊂Xi

e2MPM (NX(o) = L)

for every z ∈ D(0,M) by Lemma 4.4, and the latter sum converges to 0. There-
fore fi converges to f uniformly on D(0,M) as desired.

We now have all the ingredients needed for Theorem 12.1:

Proof of Theorem 12.1. We work with the more general function
fm(t) = Pt(|∪g∈F CA,g| ≥ m) as discussed after the statement of Theorem 12.1,
and proceed by induction on m. The statement is trivial for m ≤ |F |, since fm
is the constant function 1 in this case, and we are allowed to consider sgn(0) to
be 1 or −1. For the induction step, supposing we have proved the statement for
m < j, we can obtain it for m = j using (38); we repeat it here for convenience:

fm(z) = Pz(|NA\F (g1)| ≥ m− |F |)+
m−|F |−1∑
n=0

∑
L∈Bn

Pz(| ∪g∈SL
CA\{g1},g| ≥ m− 1)Pz(NA\F (g1) = L),

(45)

The first summand is alternating by Lemma 12.4, while we can prove each
summand of the form Pz(| ∪g∈SL

CA\{g1},g| ≥ m − 1)Pz(NA\F (g1) = L) ap-
pearing in the second summand to be alternating by combining Lemma 12.2
with our induction hypothesis and Lemma 12.3 (here we used the fact that
|SL| = |F |+ |L| − 1 < m− 1 since |L| ≤ m− |F | − 1 in order to be allowed to
apply the induction hypothesis). Moreover, it is straightforward to check that
these results also imply that the kth Maclaurin coefficient of any of those sum-
mands is (−1)m+|F |+k. Since the kth Maclaurin coefficient of fm is the sum of
the corresponding coefficients of these finitely many summands, this completes
the proof that fm is alternating, with sgn(fm[k]) = (−1)m+|F |+k.

We just proved that fm and pm are alternating at 0. Using this we can prove
the same for z on the negative real axis.

Corollary 12.5. The functions fm and pm are alternating at every r ∈ R≤0,
with sgn(fm[k](r)) = sgn(pm[k](r)) = (−1)m+k+1.

Proof. It suffices to prove the statement for fm, since we can then deduce it for
pm using again the fact that pm = fm − fm+1.

Since fm is an entire function, so is it’s nth derivative f
(n)
m (z), and therefore

the radius of convergence of the Maclaurin expansion of f
(n)
m (z) is infinite. Thus

we can determine the sign of sgn(f
(n)
m [k](r)) by using the Maclaurin expansion of

f
(n)
m (z). The latter can be immediately obtained using the Maclaurin expansion

of fm, and we have sgn(f
(n)
m [k]) = sgn(fm[k + n]), which by Theorem 12.1

equals (−1)m+1+k+n. Evaluating the Maclaurin expansion of f
(n)
m at r < 0 we
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see that all terms of that expansion have sign (−1)m+n+1, and so sgn(f
(n)
m (r)) =

(−1)m+n+1. Since sgn(fm[k](r)) = sgn(f
(k)
m (r)) by the definition of the Taylor

expansion, our claim follows.

We finish this section with a related fact about the zeros of our functions.

Theorem 12.6. The functions pm and fm have a zero of order at least m− 1
at z = 0 for every m > 1.

Proof. We first prove the statement for pm. Note that any connected graph
with m vertices has at least m− 1 edges. Hence using the explicit formulas

pm(z) =
∑
S∈Gm

Pz(C(o) = S), (46)

where Gm denotes the set of connected graphs on m vertices in V , and

Pz(C(o) = S) =
∏
e∈∂S

e−zµ(e)
∏

e∈E(S)

(
1− e−zµ(e)

)
,

we see that the summands of pm have a zero of order at least m − 1 at z = 0,
because each factor of the form 1 − e−zµ(e) contributes a zero of order 1 and
|E(S)| ≥ m−1. By Theorem 4.8 the partial sums in (46) converge uniformly on
an open neighbourhood of 0 to pm, which implies that pm satisfies the desired
property.

Combining this with the formula pm = fm−fm+1, we can now easily deduce
that fm too has a zero of order at least m−1 at z = 0. Indeed, by Corollary 12.5
the kth Maclaurin coefficient of fm and −fm+1 have the same sign (−1)m+1+k.
Hence if any of the first m − 1 Maclaurin coefficients of fm or −fm+1 is non-
zero then so is the corresponding coefficient of pm, contradicting what we just
proved.

13 The negative percolation threshold

In Section 4.3 we proved that the susceptibility χ is an analytic function of the
parameter below the percolation threshold pc or tc for all transitive models.
This means that χ(t) admits an extension into a holomorphic function in some
domain D of C containing the interval (0, pc) or (0, tc). It would be interesting
to come up with a definition that determines this D uniquely, and makes it
maximal in some sense. Motivated by this quest, we introduce in this section a
‘negative threshold’ t−c ∈ R<0, at which the boundary of such a D would have to
cross the negative real axis. From now on we will be working with a transitive
long-range model as defined in Section 2, but the discussion can be repeated for
nearest-neighbour models as well.

The standard percolation threshold tc is typically defined as sup{t | θ(t) =
0}. Natural alternative definitions of tc can be given by considering the finiteness
of the susceptibility χ, i.e. as sup{t | χ(t) <∞}, or in terms of the exponential
decay of the cluster size as sup{t | ∃c < 1 : pm(t) ≤ cm ∀m ∈ N}. For a
while it was an open problem whether these three thresholds coinside, which
was settled by the papers [4, 2] (we discussed in Section 3.2 about how these
results generalise to long-range models).
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When trying to define the negative threshold t−c we are faced with similar
difficulties, some of which we are able to overcome below. Perhaps the most
natural definition is the following. Since we know (Theorem 4.10) that χ(t)
admits an analytic extension into a domain containing the real interval [0, tc),
we can let I be the largest real interval that contains [0, tc) and is contained
in the domain of an analytic extension of χ(t) : R+ → R+, and let t−c = tA ∈
R− ∪ {−∞} be the leftmost point of I.

Alternative definitions can be given based on the concrete analytic extension
of χ that we constructed with Theorem 4.10: recall that we used the fact that,
for t ∈ R+, we have χ(t) =

∑
mmpm. Alternatively, we could have used the

formula χ(t) =
∑
m fm. This motivates the following definitions.

Definition 13.1. We define t1 := inf{r < 0 | limm→∞ pm(r) = 0}, t2 :=
inf{r < 0 |

∑∞
m=1m|pm(r)| < ∞}, t3 := inf{r < 0 | limm→∞ fm(r) = 0} and

t4 := inf{r < 0 |
∑∞
m=1 |fm(r)| <∞}.

Moreover, given the important role of the exponential decay of pm in this
paper, it is also natural to define

t5 := inf{r < 0 | ∃c < 1 : |pm(r)| ≤ cm ∀m ∈ N}.

We remark that since sgn(fm[k](r))) = (−1)m+k+1 and sgn(pm[k](r))) =
(−1)m+k+1 when r < 0 by the results of Section 12, we see that |fm(r)| and
|pm(r)| are decreasing functions of r for every m ≥ 1.

We will show that all these values ti coincide (Theorem 13.3). A key role in
our proof will be played by the Hadamard three circles theorem (Theorem 15.3).
In order to use it, we first prove that the supremum of both |fm| and |pm| over
the closed disk D(0,M) is attained at z = −M .

Lemma 13.2. Let f be an alternating function. Then for every M > 0

sup
z∈D(0,M)

|f(z)| = |f(−M)|.

Proof. Let f(z) =
∑∞
k=0 ckz

k be the Taylor expansion of f . Then∣∣∣∣∣
∞∑
k=0

ckz
k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

(−1)kck(−z)k
∣∣∣∣∣ ≤

∞∑
k=0

|(−1)kck|Mk.

Note that the sign of (−1)kck is the same for every k, since sgn(ck) = (−1)k+ε

for some ε ∈ {0, 1}. Hence,

∞∑
k=0

|(−1)kck|Mk =

∣∣∣∣∣
∞∑
k=0

(−1)kckM
k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

ck(−M)k

∣∣∣∣∣ = |f(−M)|.

Thus, f is maximised at z = −M .

Theorem 13.3. With the above notation we have t1 = t2 = t3 = t4 = t5.

Proof. We will show that t1 = t5, from which the remaining equalities follow
easily. It is immediate from the definitions that t1 ≤ t5. To show that t1 ≥ t5,
pick r, r2 ∈ R with t1 < r2 < r < 0. By Theorem 4.8 we have |Pm(z)| ≤
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e2mMPm(M) for every M > 0 and z ∈ D(0,M). Therefore, since Pm(M)
decays exponentially in m for every 0 < M < tc [4, 7], we can choose r1 < 0 with
|Pm(r1)| ≤ ke−lm for some k, l > 0 (for this argument we can do without the
results of [4, 7]; instead, we can use the fact that Pm(M) decays exponentially
in m for 0 < M < 1, which can be proved by comparison with a subcritical
Galton-Watson tree). Pick such an r1 < 0 with r1 > r. Using the Hadamard
three circles theorem (Theorem 15.3) and Lemma 13.2, we have

|Pm(r)| ≤ |Pm(r1)|c1 |Pm(r2)|c2 ,

where c1 =
log|r2| − log|r|
log|r2| − log|r1|

and c2 =
log|r| − log|r1|
log|r2| − log|r1|

. Note that both c1, c2

are positive. Since |Pm(r2)| converges to 0 by the definition of t1, it follows that
|Pm(r2)|c2 is bounded above by some constant c > 0. Moreover, by the choice
of r1, |Pm(r1)|c1 decays exponentially in m. Hence so does |Pm(r)|. This proves
that t1 = t5.

Obviously t1 ≤ t2 and t3 ≤ t4. Using the identity Pm = fm − fm+1 we
see that Pm converges to 0 whenever fm does. This shows that t1 ≤ t3. Also,
assuming that |Pm(r)| decays exponentially in m for t1 < r < 0 we obtain that∑∞
m=1m|Pm(r)| <∞. Hence t1 ≥ t2. Moreover, we have fm(r) =

∑∞
i=m Pm(r):

to see this, note that the functions fm and
∑∞
i=m Pm(z) coincide on the positive

real line. Besides, the exponential decay of |Pm(r)| combined with Lemma 13.2
and the fact that Pm is alternating by the results of Section 12, implies that∑∞
i=m Pm(z) is continuous on D(0,M) and analytic on its interior. Since fm

is entire, the two functions coincide on D(0,M). Therefore, |fm(r)| decays
exponentially in m for t1 < r < 0 and the series

∑∞
m=1 |fm(r)| converges, which

implies that t4 ≤ t1.

We thus let tχ := ti be our second candidate for the definition of t−c . There is
one case where we can actually compute tχ: for the Poisson branching process
(which is not one of our percolation models, but our definitions extend to it
canonically), we have tχ = W (1/e), where W denotes the Lambert function.
This implies that for appropriately parametrised percolation on the d-regular
tree Td, we have limd→∞ tχ(Td) = W (1/e)7.

It is natural to ask whether tχ = tA, but it turns out that this is not the case:
for percolation on the 1-way infinite path, as well as for the Poisson branching
process, we have found out that tA = −∞ although tχ is finite. Since these
two models are the least and the most percolative examples, it might be that
tA = −∞ always holds, and tχ is the ‘right’ definition of the negative threshold.

14 Appendix: On the number of lattice animals
of a given size

Let Td denote the infinite d-regular tree, and let Sn denote the number of
subtrees of Td with n vertices containing a fixed vertex o ∈ V (Td). We claim
that

Sn < cd

(
(d−1)(d−1)

(d−2)(d−2)

)n
, (47)

7The proofs of these and the following facts will be given in the second author’s PhD thesis
(in preparation).
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where cd is a constant depending on d but not on n.
This can be proved using the following idea due to Kesten [38, Lemma 5.1].

Consider bond percolation on Td with parameter p = 1/d−1 (the critical value).
The probability that the cluster C of the root has exactly n vertices is of course
at most 1. This probability can be explicitly computed as

P(|C| = n) = Snpn−1(1− p)(d−2)n+2,

since if |C| = n then |E(C)|n − 1 and |∂C| = (d − 2)n + 2 (the latter can
be proved by induction on n). Substituting p by 1/d − 1 we arrive at (47) by
elementary manipulations.

Using (47) we can also upper bound the number of subtrees of any d-regular
graph:

Corollary 14.1. For every graph G with maximum degree d, and any vertex
o ∈ V (G), the number of subtrees of G with n vertices containing o is at most

cd

(
(d− 1)(d−1)

(d− 2)(d−2)

)n
< cd((d− 1)e)n

where cd is a universal constant depending on d only.

Proof. We may assume without loss of generality that G is d-regular, for oth-
erwise we can attach an appropriate infinite tree to each vertex of degree less
than d to raise all degrees to exactly d.

Since G is d-regular, its universal cover is (isomorphic to) Td, so let p : Td →
G be a covering map. Fix a preimage o′ of o under p. Then every subtree
of G containing o lifts uniquely to a subtree of Td containing o′, and distinct
subtrees of G lift to distinct subtrees of Td. This means that the number of
subtrees of G containing o is at most the corresponding number for Td, which is

less than cd

(
(d−1)(d−1)

(d−2)(d−2)

)n
by (47). We can rewrite the fraction in the parenthesis

as

(d− 1)(
d− 1

d− 2
)(d−2) = (d− 1)(1 +

1

d− 2
)(d−2) < (d− 1)e

to complete our proof.

Remark 1: Corollary 14.1 implies that the number of n-vertex induced
connected subgraphs of G containing a fixed vertex, called (site) lattice ani-
mals in the statistical mechanics literature, or polyominoes in combinatorics, is
upper-bounded by the same expression, since every such graph has at least one
spanning tree, and no two distinct induced subgraphs share a spanning tree. In
particular, we deduce that the growth rate of the number of site lattice animals
of any graph of maximum degree d is at most (d−1)e. In the special case where
G is the Zd lattice this upper bound was proved in [11] with different arguments.

Remark 2: The number Sn is known exactly: it is d((d−1)n)!
(n−1)!((d−2)n+2)! .

8 This

can be proved using analytic combinatorics. One can also arrive at (47) using
Stirling’s formula to approximate the factorials in the latter expression.

8We thank Stephan Wagner for acquainting us with this formula.
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15 Appendix: complex analysis basics

In this appendix we list some classical facts in complex analysis used throughout
the paper. They can be found in standard textbooks like [1]. The first two
provide the standard technique for showing that a sum of analytic functions is
analytic, a technique we employ many times throughout the paper.

Theorem 15.1. (Weierstrass Theorem) Let fn be a sequence of analytic
functions defined on an open subset Ω of the plane, which converges uniformly
on the compact subsets of Ω to a function f . Then f is analytic on Ω. Moreover,
f ′n converges uniformly on the compact subsets of Ω to f ′.

Theorem 15.2. (Weierstrass M-test) Let fn be a sequence of complex-
valued functions defined on a subset Ω of the plane and assume that there exist
positive numbers Mn with |fn(z)| ≤ Mn for every z ∈ Ω, and

∑
nMn < ∞.

Then
∑
n fn converges uniformly on Ω.

The following is only used in Section 13, when we discuss the negative per-
colation threshold.

Theorem 15.3. (Hadamard’s three circles theorem) Let f(z) be an ana-
lytic function on the annulus r1 ≤ |z| ≤ r2. Let M(r) = sup{|f(reit)|, t ∈ R} be
the supremum of |f(z)| over the circle of radius r. Then for every r ∈ (r1, r2)

M(r) ≤M(r1)RM(r2)R
′
,

where R = R(r1, r, r2) =
logr2 − logr
logr2 − logr1

and R′ = R′(r1, r, r2) =
logr − logr1

logr2 − logr1
.
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