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Abstract
Groundwater flow models are usually subject to uncertainty as a consequence of the random
representation of the conductivity field. In this paper, we use a Gaussian process model based
on the simultaneous dimension reduction in the conductivity input and flow field output
spaces in order quantify the uncertainty in a model describing the flow of an incompressible
liquid in a random heterogeneous porous medium. We show how to significantly reduce the
dimensionality of the high-dimensional input and output spaceswhile retaining the qualitative
features of the original model, and secondly how to build a surrogate model for solving the
reduced-order stochastic model. A Monte Carlo uncertainty analysis on the full-order model
is used for validation of the surrogate model.

Keywords Porous medium · Dimension reduction · Gaussian process emulation · Spatial
fields · Uncertainty quantification
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ESGPMR Empirical simultaneous GP model reduction
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q Darcy flux
K Hydraulic conductivity
h Pressure head
� Sample space
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F Set of events
P Assignment of probabilities to the events
Z Gaussian discrete random field
KL Karhunen–Loéve
m Expected value of Z
C Covariance matrix for Z
c Correlation function
σ 2 Correlation variance
λ Spatial correlation length
M Number of grid points
� Matrix of eigenvectors
� Matrix of eigenvalues
ξ KL coefficients
D Dimension of the input space
fh Numerical simulator for the pressure head
τ Travel time
fτ Numerical simulator for the travel time
d Number of design points
ξ̂ Design points
SE Square exponential
k Square exponential covariance function
σ 2
f GP variance

� GP length scale
σ 2
f GP noise variance

ξ̂∗ Untested inputs
θ Collective representation of the hyperparameters
D Training set
mD Predictive mean
kD Predictive variance
δi j Kronecker delta
SVD Singular value decomposition
PC Principal component
PCA Principal component analysis
RE Relative error
Dmax Maximum dimension considered by the ESGPMR method
r Number of PCA basis vectors
MSE Mean squared error
LOO-CV Leave-one-out cross-validation
ε Accuracy tolerance of the ESGPMR method
REtrue-red RE between the true and the reduced rank approximation
REtrue-pred RE between the true and the predicted
t Time
ζ Location of the convected particle at a given time
N Number of samples
CDF Cumulative distribution function
ECDF or F̂ Empirical cumulative distribution function
I Indicator function
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1 Introduction

Groundwater flowmodels are widely used to study the flow of groundwater and contaminants
in soils and aquifers, helping, for example, to mitigate seepage and spillages (Karatzas 2017).
Such models, however, are frequently too time-consuming for extensive parametric studies,
which has motivated the development of simplified models (Bozic et al. 2009; Vomvoris and
Gelhar 1990; Barry et al. 2002).

Of particular interest is the quantification of uncertainties arising from the stochastic rep-
resentation of the natural heterogeneity of rocks and soils (Nezhad and Javadi 2011; Nezhad
et al. 2011; Al-Tabbaa et al. 2000; Kristensen et al. 2010). To date, there have been relatively
few attempts at such uncertainty quantification (UQ) (e.g. Feyen et al. 1998; Aly and Peralta
1999; Sreekanth and Datta 2014). Most of the current numerical models used for UQ are
based on brute-force Monte Carlo (MC) sampling (Fu and Gomez-Hernandez 2009; Paleol-
ogos et al. 2006; Kourakos and Harter 2014; Maxwell et al. 2007; Herckenrath et al. 2011),
requiring many runs (of the order 105) of the numerical model (or simulator). For complex
simulators, this approach may be impractical unless considerable computing resources are
available (Maxwell et al. 2007). Even if such resources are available, they could be bet-
ter deployed if more efficient methods are developed. This has led to a variety of alternative
methods, including analytical models (Gelhar and Axness 1983; Gelhar 1986), multi-grid (or
multi-level) algorithms (Giles 2008), surrogate models (emulators) or reduced-order models
(Razavi et al. 2012; Ketabchi and Ataie-Ashtiani 2015). The method presented in this paper
falls into the latter category.

Data-driven surrogate models have the advantage that no approximation of the physics
or numerical scheme is required (they are non-intrusive), in contrast to intrusive methods
that simplify the model and/or reduce the complexity of the numerical scheme, typically via
projection onto a low-dimensional space. Non-intrusive methods include (generalised) poly-
nomial chaos expansions (Ghanem and Spanos 1991), in which, for instance, the coefficients
can be approximated using spectral projection or regression (Xiu and Karniadakis 2002).
Such schemes, however, are limited by the input space dimension and polynomial order and
tend to perform poorly with limited observations, especially for highly nonlinear problems
(Xiu and Hesthaven 2005; Nobile et al. 2008).

Other non-intrusive approaches, also based on data generated from the full model, are
based on machine learning methods such as artificial neural networks (ANNs) and Gaussian
process (GP) models (Sacks et al. 1989). Groundwater flow modelling using ANNs is well
established (Bhattacharjya and Datta 2005; Kourakos and Mantoglou 2009), but ANNs are
not considered to be particularly suited to UQ tasks since they typically require large data
sets, as a consequence of fewer a priori assumptions. GP models make a priori assumptions
with regards to the relationship between data points and therefore tend to perform better in
cases of limited data, which is an enormous advantage when a simulator is very costly.

GP models have been applied only in a small number of groundwater studies (Bau and
Mayer 2006;Hemker et al. 2008;Borgonovo et al. 2012;Crevillen-Garcia 2018). For instance,
in Bau and Mayer (2006), the authors use a GP model to learn 4 well extraction rates in a
pump-and-treat optimisation problem. In Crevillen-Garcia (2018), the authors measured the
gain in computational time of the GP model compared with a highly demanding numerical
simulator. In that study, 18 days of continuous intensive CPU computations on a 12-core
Intel Xeon cluster processor were required to compute 256 spatial output fields, while only
4h were required to compute the final prediction of the same 256 spatial fields with a GP
emulator on the same processor.
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In this paper, we are interested specifically in UQ in cases where both the (random) input
and output are fields, which leads to high-dimensional input and output spaces. The orig-
inal GP modelling framework is impractical for such high-dimensional input and output
spaces. To overcome this limitation, we use the empirical simultaneous GP model reduc-
tion (ESGPMR) method developed in Crevillen-Garcia (2018). The ESGPMR algorithm is
designed to recursively find the lowest dimension of the input space for which the GP emula-
tor response surface best approximates the numerical simulator. The GP emulator is tested on
a convection model for which it is possible to perform a full MC UQ to validate the results.

The outline of this paper is as follows. In Sect. 2, we describe the mathematical model,
numerical simulator and how we model the uncertainty parameter, namely the hydraulic
conductivity. In Sect. 3, we introduce the framework of a GP emulator and the dimension
reduction methodology. In Sect. 4, we show and discuss our numerical results and use the
MC simulation method for the validation of the approach proposed earlier in Sect. 3. We
finish this paper with our concluding remarks.

2 Mathematical Model

In this section, we describe the governing equations and the numerical solution of the math-
ematical model selected for the application.

2.1 Darcy’s Flow in a Horizontal Confined Aquifer

The governing equations used for steady-state, single-phase subsurface flow in a square
domain R = [0, 1] × [0, 1] consist of Darcy’s law (1) coupled with an incompressible
continuity equation (2) (Cliffe et al. 2011, 2000; de Marsily 1986):

q + K∇h = 0, in R ⊂ R
2, (1)

∇ · q = 0, in R ⊂ R
2, (2)

where q m2 s−1 is the Darcy flux, K m s−1 is the hydraulic conductivity, h m is the pressure
head, and the source terms on the right-hand side of Eq. (2) are set to zero for simplicity.
The process considered in this paper is therefore the flow of an incompressible liquid in a
horizontal confined aquifer. The governing equations defined in (1) and (2) are coupled to
yield a single equation for the pressure head:

∇ · (K (x)∇h(x)) = 0, x = (x, y) ∈ R. (3)

The hydraulic conductivity in the above equations characterises the porousmedium. Constant
values for K (homogeneous scenario)would lead to trivial solutions for h. In previous studies,
it has been shown (see, e.g. Byers and Stephens 1983; Hoeksema and Kitanidis 1985; Russo
and Bouton 1992) that spatial variations in the conductivity fields are spatially correlated,
and that such fields can be modelled using a log-normal distribution assumption (see, e.g.
Laloy et al. 2013; Russo et al. 1994; Russo 1997; Kitterrød and Gottschalk 1997). Thus, in
this study we will take the latter approach to model the hydraulic conductivity.

In the next section, we show how to model the hydraulic conductivity as a log-normal
random field and how to draw samples. The numerical solution to (3) for a given hydraulic
conductivity is then described.
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2.2 Generation of Random Conductivity Fields

For any x ∈ R, we can form a real-valued random field indexed by x on a given probability
space (�,F,P), where Z(x, ·) : � → R is a random variable. For a fixed ω ∈ �, Z(x, ω)

(also written as Z(x)) is a deterministic function, and when evaluated at all x ∈ R is called
a realisation of the process. We define the mean function m(·) : R → R of the random field
Z(x) by:

m(x) = E[Z(x)] =
∫

�

Z(x) dP(ω),

and the covariance function c(·, ·):R × R → R, by:

c(x, x′) = E
[
(Z(x) − m(x))(Z(x′) − m(x′)

]
. (4)

In practice, for solving Eq. (3), the numerical model simulator requires the values of the
conductivity at the nodes of the discretised domain. Thus, given a set of nodes {xi }Mi=1, the
vector Z := (Z(x1), . . . , Z(xM ))ᵀ is a discrete random field. In fact, Z : � → R

M is a
random vector with mean and covariance matrix:

m = (m1, . . . ,mM )T = E[Z] ∈ R
M , C = E[(Z − m)(Z − m)T] ∈ R

M×M , (5)

respectively, where:

mi = E[Z(xi )] = m(xi ), Ci j = c(xi , x j ), i, j = 1, . . . , M (6)

If we now choose Z to be normally distributed, then K = exp(Z) is log normal (Lord et al.
2014).

There are various possibilities for generating Gaussian random fields Z, for instance, the
circular embedding algorithm (see, e.g. Lord et al. 2014; Dietrich and Newsam 1997; Laloy
et al. 2015). While this method provides an exact simulation of a Gaussian random field,
the numerical implementation is not trivial and, therefore, it is mainly recommended for
extremely large computational domains. A more straightforward method consists of either
using a direct Cholesky factorisation or an eigen or Karhunen–Loéve (KL) decomposition
of the covariance matrix given in (6) (Strang 2003). These methods also provide an exact
representation of the Gaussian field at the grid points, although the computational cost for a
large computational domain can sometimes be unaffordable. While a Cholesky factorisation
is faster than a eigendecomposition, there are cases in which the method fails due to the strict
positive definiteness condition of the numerical scheme (Gill et al. 1996). As a consequence
of the characteristics of our mathematical model and the size of the computational domain,
in this paper, we opt for the eigendecomposition method (see, e.g. Ghanem and Spanos 1991;
Crevillen-Garcia et al. 2017; Crevillen-Garcia and Power 2017). The computational domain
does not change over time, and thus the advantage of this approach is that it only requires a
single eigendecomposition of the covariance matrix, the results of which are stored and used
to generate new realisations of the conductivity field very cheaply.

For modelling the correlation of Z, we use the classical exponential covariance function
(see, e.g. Cliffe et al. 2011; Crevillen-Garcia et al. 2017; Hoeksema and Kitanidis 1985;
Collier et al. 2014):

c(xi , x j ) = σ 2 exp

(−||xi − x j ||2
λ

)
xi , x j ∈ R, (7)

where λ denotes the spatial correlation length and σ 2 is the process variance. Appropriate
values for these parameters are discussed in Sect. 4. Since the covariance matrix expressed
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in (6) is real-valued and symmetric, it admits an eigendecomposition (Strang 2003): C =
(��

1
2 )(��

1
2 )ᵀ, where � is the M × M diagonal matrix of ordered decreasing eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0, and� is the M×M matrix whose columns φi , i = 1, . . . , M , are
the eigenvectors ofC. Let ξi ∼ N (0, 1), i = 1, . . . , M , be independent randomvariables.We
can draw samples from Z ∼ N (m,C) using the KL decomposition of Z using the following
(Lord et al. 2014):

Z = m + ��
1
2 (ξ1, . . . , ξM )ᵀ = m +

M∑
i=1

√
λiφiξi . (8)

The discrete random conductivity field is therefore given by K = exp(Z). The terms ξi ∼
N (0, 1) above will be called KL coefficients.

An approximation ofK can be obtained by restricting the expansion in (8) to the first, say,
DKLcoefficients.Although this approximation is commonly used (see, e.g. Cliffe et al. 2011;
Kitterrød and Gottschalk 1997), it adds additional uncertainty to the numerical calculations
in the form of truncation errors. This also reduces the representation of the heterogeneity
yielding to ‘smoother’ conductivity fields. In this paper, we wish to deal with a highly
heterogeneous porous medium, and for this purpose, we generate exact realisations of the
conductivity field by considering thewhole set ofM KLcoefficients (one for each node)when
generating conductivity samples. The numerical simulator used to solveEq. (3) is based on the
standard cell-centred finite volumemethod; then, the only errorwe have to take into account is
the error arising from the numerical (finite volume) scheme.Moreover, the simulator receives
as inputs the value of the hydraulic conductivity at the nodes of the computational domain
and returns the values of the pressure head at the same nodes. Thus, the simulator can be seen
as a mapping from K to h, where h ∈ R

M represents pressure head values at the nodes for
a given conductivity input field K. Alternatively, the representation (8) of the Gaussian field
allows us to consider a mapping fh : ξ 
→ h, for any ξ = (ξ1, . . . , ξM )ᵀ ∈ R

M distributed
according to N (0, I). In the next section, we will develop an emulator for this mapping.

3 Gaussian Process Emulation of Spatial Fields

In this section, we summarise a recent methodology developed in previous work Crevillen-
Garcia (2018) for building surrogate models based on GP emulation for a given spatial
field simulator, such as the one introduced in Sect. 2. We use GP regression (Rasmussen
and Williams 2006), setting a prior specification for the target model by specifying a mean
and a covariance function for the GP. The mean and covariance functions are expressed in
terms of so-called hyperparameters. This prior distribution is updated by inferring suitable
values in the light of data by using the Bayes’ rule. Then, the derived posterior distribution
is used for inference. The data used to update the prior distribution are generated by running
the numerical simulator at some carefully selected design (input) points and obtaining the
simulator outputs (observed values or targets) at these inputs. The data set formed by the
design points and the targets is called the training set.

To build the set of design points, we simply spread the points to cover the input space,
in this case R

M . There are in the literature several methods for sampling the inputs, for
instance, Latin hyper-cube sampling (McKay et al. 1979) or a low-discrepancy sequence
(Sobol 1967). We use the latter since it leads to more uniform distributions of points. A
more detailed discussion on the different choices of design points can be found in Sacks et al.
(1989). The inputs ξ are defined inRM and distributed according toN (0, I). Thus, in practice,
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to form a set of d design points, we first generate d Sobol points in [0, 1]M , and second, we
push the d points component-wise through the inverse cumulative distribution function of M
random variables distributed according to N (0, 1), to jointly form the set of design points
ξ̂ j = (ξ̂1j , . . . , ξ̂

M
j )ᵀ, j = 1, . . . , d . If we now run the simulator at the design points ξ̂ j , we

obtain the corresponding observed values fh(ξ̂ j ) = h j to form the training set D.
Finally, for simplicity and without loss of generality, in this study we will use a mean-

zero function and the square exponential (SE) covariance function for the prior specification,
which is given in terms of hyperparameters as follows (Rasmussen and Williams 2006):

k(ξ , ξ ′) = σ 2
f exp

(
−1

2
(ξ − ξ ′)�diag(�−2

1 , . . . , �−2
M )(ξ − ξ ′)

)
+ σ 2

n δi j , (9)

where σ 2
f is the process variance, � = (�1, . . . , �M ) is the length scale, σ 2

n is the noise
variance, and δi j is the Kronecker delta. The hyperparameters are collectively represented
by θ = (σ 2

f , �, σ
2
n ). We can make predictions for new untested inputs ξ∗ ∈ R

M by using the
predictive equations for GP regression (Rasmussen and Williams 2006):

mD(ξ∗) = 
(ξ∗,X)
[

(X,X) + σ 2

n I
]−1

y, (10)

and
kD(ξ∗, ξ∗) = k(ξ∗, ξ∗) − 
(ξ∗,X)ᵀ

[

(X,X) + σ 2

n I
]−1


(ξ∗,X), (11)

in which 
(ξ∗,X) = (k(ξ∗, ξ̂1), . . . , k(ξ∗, ξ̂d))ᵀ. The (i, j)th entry of 
(X,X) ∈ R
d×d is

given by k(ξ̂ i , ξ̂ j ). Expression (10) for theGP posteriormeanmD can be then used to emulate
the simulator output at any new input ξ∗, i.e. we can write mD(ξ∗) ≈ fh(ξ

∗). Expression
(11) provides the predictive variance (error bound) in this estimate of the output.

For high-dimensional input and output spaces, i.e. M large, the GP emulation method-
ology described earlier becomes impractical due to numerical issues when estimating the
hyperparameters (Crevillen-Garcia 2018). This necessitates a model reduction technique to
reduce the dimension of the input and output spaces to a practical size, while preserving
the qualitative features of the original full-order model. In this paper, we will apply to our
groundwater flow model the ESGPMR method developed in Crevillen-Garcia (2018) which
is described in the next section.

3.1 The Empirical Simultaneous GPModel ReductionMethod

The ESGPMR method is designed to overcome the limitation of GPs when dealing with
inputs defined in high-dimensional spaces. It also includes a mechanism (the reduced rank
approximation) for dimension reduction in the output space. This latter is conducted by
using Higdon’s method (Higdon et al. 2008). In this method, the spatial output fields in the
training set are projected onto a lower-dimensional space spanned by an orthogonal basis
via singular value decomposition (SVD). Thus, the output field can be expressed as a linear
combination of principal component analysis (PCA) basis vectors with coefficients treated as
independent univariate GPs. In this paper, the accuracy of the reduced rank approximations
with respect to the original data will be tested with the L2-norm relative error, i.e. for two
vectors x = (x1, . . . , xM )ᵀ and y = (y1, . . . , yM )ᵀ, we define the L2-norm relative error
between x and y as:

RE(x, y) = ||x − y||2
||x||2 , (12)
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where ||x||2 is the Euclidean norm. The details of the dimension reduction methodology
for the output space are given in Crevillen-Garcia (2018), although, for convenience, we
reproduce the algorithm below.

Let us consider our simulator fh which receives inputs in RM and returns outputs in RM

(rather than R). Let Y be the M × d matrix with column j given by the j th run of the
simulator.

1. Subtract the mean for each dimension M to obtain the centred versionY′ of the matrixY.
2. Multiply the centred matrix Y′ by the normalisation constant 1/

√
d − 1 to obtain Y′′.

3. Compute the SVD of Y′′ and obtain the M × M matrix U whose columns u j , j =
1, . . . , M , are the PCA basis vectors.

4. Project the original centred data into the low-dimensional space to obtain the matrix of
coefficients, α = (αi j ), i = 1, . . . , M, j = 1, . . . , d .

5. An orthonormal basis for a lower-dimensional space of dimension r < M is given by
the first r PCA basis vectors {u j }rj=1. Thus, a reduced rank approximation Ỹ

′′ of Y′′ can
be obtained by using the first r columns of U and the first r rows of α.

Now,wecanbuild r separate and independentGPs from the input spaceRM toRbygenerating
r separate training sets with the coefficients of the PCA basis vector expansion treated as
the observed values, i.e. the first r rows of α. For a new given input ξ∗ ∈ R

M , we can now
employ expression (10) and all of the r GPs to estimate the r coefficients. These are stored
in vector form and can be mapped back to the original output space to obtain the final GP
prediction y∗ ∈ R

M .
Let Ỹr be the reduced rank approximation of Y obtained by considering the first r ≤

M coefficients in the PCA basis. The columns ỹrj , j = 1, . . . , d , are the corresponding
reduced rank approximations of the observed fields y j , j = 1, . . . , d . We wish to reduce
the dimension M of the original input space. The sequence of training sets is defined as

follows: {DD
i = (XD,αi )}ri=1, for any D ≤ M , where XD = [ξ̂ D

1 , . . . , ξ̂
D
d ] is the truncated

design matrix with D of the M KL components used (e.g. for ξ̂1 = (ξ11 , . . . , ξ D
1 , . . . , ξM

1 )ᵀ

we have ξ̂
D
1 = (ξ11 , . . . , ξ D

1 )ᵀ), and αi = (αi j ), j = 1, . . . , d . The ESGPMR algorithm
(Crevillen-Garcia 2018) is then:

1. Set accuracy tolerance ε and maximum dimension of the input space to be considered
Dmax.

2. Set r = 1.
3. Find a reduced rank approximation Ỹr of the original Y by using the first r PCA basis

vectors.
4. Set D = Dmax.
5. Form the training sets {DD

i }ri=1 and build r independent GPs. Follow the leave-one-out
cross-validation (LOO-CV) method and use the GPs to predict the fields at the leave-out

points ξ̂
D
j , j = 1, . . . , d , and check if the following expression holds:

RE(y j , ŷ
D
j ) < ε, ∀ j = 1, . . . , d, (13)

where y j are the columns of Y (the true fields) and ŷDj denotes the predicted field at ξ̂
D
j .

6. If expression (13) does not hold, set r = r + 1 and go to (iii) (to refine the reduced rank
approximation error). If expression (13) holds, set D = Dmax−1 and go to (v) (to reduce
the dimension of the input space) until the expression does not hold, and then, return D
and r .
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While the value for ε is set according to the user needs, the value for Dmax can be derived
from the training data by examining the mean squared error (MSE) as we will see later. To
estimate the hyperparameters θ = (σ 2

f , �, σ
2
n ) in expression (9), we use the leave-one-out

cross-validation (LOO-CV) method (see, e.g. Rasmussen and Williams 2006; Crevillen-
Garcia et al. 2017; Crevillen-Garcia 2018). LOO-CV consists of using all the design points
of the training set data but one (the leave-out) for training, and computing the errors on the
predictions for the leave-out points. This process is repeated until all available d points have
been exhausted.Weuse each of thed leave-out training sets and a conjugate gradient optimiser
to obtain estimates of the hyperparameters by maximising the log marginal likelihood (14)
w.r.t. the hyperparameters:

log p(y|X, θ) = −1

2
yᵀ(
 + σ 2

n I)
−1y − 1

2
log |
 + σ 2

n I| − n

2
log 2π. (14)

The prediction errors during the LOO-CV scheme are quantified through the MSE:

MSE = 1

d

d∑
j=1

(y j − m j )
2, (15)

where m j is the predicted expected value in (10) and y j the corresponding observed value,
both at the same (leave-out) input. In the next section, we apply the dimension reduction
and GP emulation techniques introduced earlier to the groundwater flow model described in
Sect. 2.1.

4 Numerical Results

In subsurface flow applications, λ is typically chosen to be significantly smaller than the size
of the computational region and also large enough to be taken into account in the numerical
formulation (Cliffe et al. 2011). In this paper, we have taken the values from the ranges
suggested in the literature (see, e.g. Russo et al. 1994; Russo 1997; Kitterrød and Gottschalk
1997). In order to deal with high heterogeneity we will set a relatively large value for the
process variance, σ 2 = 1.0. The value for the correlation is set to λ = 0.3.

Let us consider the mapping fh : ξ j 
→ h j , for any j ∈ Z
+, which receives as and input

the KL coefficients ξ j ∈ R
M , distributed according to N (0, I), and used to generate the

hydraulic conductivity fieldK j ∈ R
M , and returns as outputs the pressure field h j ∈ R

M . To
solve Eq. (3) in [0, 1] × [0, 1], subject to the boundary conditions: h(0, y) = 100, h(1, y) =
0, ∂h

∂ y (x, 0) = 0, ∂h
∂ y (x, 1) = 0, we use a numerical code based on the standard cell-centred

finite volume method on a computational grid (50 × 50 centroids) of M = 2601 nodes (the
reader is referred to Cliffe et al. (2011) for full details on the discretisation scheme).

Before we start applying the reduction and emulation techniques, we need to generate
some data with the simulator. This will help us to learn the underlying functional form of the
model. For doing this, we generate d = 256 design points ξ̂1, . . . , ξ̂d from a Sobol sequence
as described in Sect. 3. For them, we run our simulator fh and compute the corresponding
pressure fields h j to form our training set. Once we have generated the training set, we
use the ESGPMR algorithm to reduce the dimensionality of the input and output spaces.
Table 1 shows the number of KL coefficients used for the input space, the number of PCs
from the PCA basis for the output space and the relative error achieved for different accuracy
tolerances ε. From Table 1, we can see that for the larger tolerance ε = 0.1, the original
problem defined in RM 
→ R

M was significantly reduced to R6 
→ R
4 leading to an overall
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Table 1 Relative errors between
the true and reduced rank
approximation (REtrue-red) and
between and the true and the
predicted concentration fields
(REtrue-pred) for three different
tolerances (ε)

ε PC KL REtrue-red REtrue-pred

0.100 4 6 0.060 0.100

0.050 8 8 0.035 0.043

0.010 15 12 0.009 0.010

The number of PCs (PC) and KL coefficients (KL) used is also provided

0 5 10 15 20 25 30
0.3

0.35

0.4

0.45

0.5

0.55

Fig. 1 MSE against the number of KL coefficients or input space dimension D. This data corresponds to the
emulation of the first PC component

relative error between true and predicted pressure fields of REtrue-pred = 0.1. This is
already a huge saving in computational cost while keeping a high level of accuracy. And,
even for the smallest tolerance considered ε = 0.01 the model dimension reduction achieved
is R12 
→ R

15 which is still a substantial reduction from the original dimension M = 2601
of the input and output spaces. The value of Dmax can be estimated by analysing the decay of
the MSE for each of the r components or by visual inspection. As an example, Fig. 1 shows
the decay of the MSE along the input space dimension D for r = 1. In this study, the value
of Dmax was set to 30. Figures 2 and 3 show, respectively, an example of conductivity for an
untested point ξ∗ ∈ R

M , and the dimension reduction and GP emulation results with D = 12
and r = 15 for the same point. The RE between the true and the reduced rank approximation
was 0.009. The RE between the true and the predicted was 0.01.

In the next section, we use the reduced-order model obtained for the smallest tolerance
(ε = 0.01) investigated earlier, i.e. D = 12 and r = 15, to perform a full GP uncertainty
analysis on the full-order model. The quantity of interest that will be considered in this
application of the ESGPMR method is the travel time of a convected particle in a horizontal
confined aquifer.

4.1 UQ of the Travel Time of Convected Particles in Groundwater Flow

The goal is to derive the uncertainty distribution of the travel time τ that a convected particle
(or water molecule) released at the centre of the domain, (x0, y0) = (1/2, 1/2), takes to hit

123



Uncertainty Quantification for Flow and Transport in Highly…

Fig. 2 Permeability field used for the prediction of the pressure fields shown in Fig. 3

the right boundary. To compute the travel time τ , we let x = ζ (t) = (ζ1(t), ζ2(t)) be the
location of a particle released from a spatial point (x0, y0). After the pressure is calculated for
each realisation from Eq. (3), the travel time τ can be computed by direct Euler integration
(Crevillen-Garcia and Power 2017) from the trajectories of the transport equation:

dζ (t)

dt
= −K (ζ )

φ
∇h(ζ ), (16)

subject to the initial condition ζ (0) = (x0, y0), by determining the time τ for which
ζ1(τ ) = 1, i.e. when the convected particle lies on the right boundary. A realisation K j

of the conductivity field represents possible sets of conductivity values in a slice of porous
rock across which we would like to study the fluid flow. An example of a set of simulated
trajectories for a convected particle for different realisations of the hydraulic conductivity
K j are shown in Fig. 4. If, for each of the j trajectories, we compute the travel time τ j ,
we can define the mapping fτ : ξ j 
→ τ j , for any j ∈ Z

+, which receives as inputs the
KL coefficients ξ j ∈ R

M distributed according to N (0, I) and returns as outputs the travel
times τ j ∈ R. To predict the travel times for untested inputs, we can use our GP emulator to
predict the pressure fields at the required inputs, and then, derive the predicted travel times
as we did with the direct (true) travel times from the transport equation. We can measure the
accuracy of the GP emulator predictions by direct comparison with the original simulator
fτ. Next, we perform a MC UQ of the travel time distribution using the numerical simulator.
Subsequently, we compare the results to an equivalent UQ using the GP emulator in order to
demonstrate its accuracy.

4.1.1 Monte Carlo Uncertainty Quantification of the Travel Time Using the Simulator

In this section, we calculate the cumulative distribution function (CDF) of τ , for whichwe use
the MC method (for details on the method, see e.g. Cliffe et al. 2011; Crevillen-Garcia et al.
2017).We use theMC simulationmethod to approximate the CDFwith the empirical cumula-
tive distribution function (ECDF) of a large sample of τ values as follows: (i) generate a large
number N of different ensembles {ξ∗

1, j , . . . , ξ
∗
M, j }Nj=1 of KL coefficients, where each ξ∗

i, j is
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Fig. 3 True (top), reduced rank (middle) and predicted (bottom) pressure fields for the conductivity shown
in Fig. 2. The dimension of the input (D) and output (r ) spaces and the relative error (RE) achieved are also
reported in the pictures
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Fig. 4 Example of simulated trajectories of a convected particle released at the centre of the domain. These
trajectories are used to computed the uncertainty distribution of the travel time τ
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Fig. 5 The Monte Carlo ECDF (black line) based on 50,000 travel times from the simulator. The dashed lines
show the 95% uncertainty bounds

distributed according toN (0, 1); (ii) use the simulator to compute the corresponding true τ j

for each of the ensembles; (iii) compute theECDF, F̂ , of the set of values {τ j }Nj=1 according to:

F̂(s) = 1

N

N∑
j=1

I{τ j≤s}, (17)

where I is the indicator function:

I{τ j≤s} =
{
1 if τ j ≤ s,
0 if τ j > s.

Figure 5 shows the MC uncertainty analysis for a large sample of N = 50,000 random
conductivityfields. Theblack line is the estimationof theCDFof τ computedwith (17) and the
dashed lines the 95% uncertainty bounds for this empirical distribution. The 95% uncertainty
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Fig. 6 GP uncertainty analysis of the CDF of the travel time based on 50,000 samples

bounds are computed by using the Greenwood’s formula implemented in MATLAB® for
approximating the variance of the Kaplan–Meier estimator (Cox and Oakes 1984).

4.1.2 Gaussian Process Emulation for Uncertainty Quantification of the Travel Time

In this section, we use the GP emulator to approximate the distribution of τ empirically based
on the sample size N = 50,000. The idea is to replace the simulator fτ(·) by our GP emulator
and perform the MC uncertainty analysis as in Sect. 4.1.1. The predictions for untested
inputs ξ∗

j and uncertainty bounds are computed by using the predictive mean given by (10).
Although a more precise measurement of the accuracy of the GP results could be provided by
calculating some analytical scores from the numerical data derived in this study, the goal of
this application is to show that the GP emulator is able to quantify the uncertainty at the same
level of resolution as MC, and thus, the results of the GP emulation uncertainty analysis are
reported in Fig. 6 by direct comparison of both approaches. Figure 6 shows that the ECDF
(black) previously computed with the MC method is fully covered with the lower and upper
95% GP uncertainty bounds, i.e. the 2.5th and 97.5th percentiles (dashed magenta). The GP
prediction mean (red) of the cumulative distribution function is also provided for reference.

5 Conclusions

In this paper, we developed a procedure for quantifying the uncertainty introduced by the
randomness of the conductivity (or any other) field on the field output of the groundwater
flowmodel. We used dimension reduction on the input and output fields to develop a feasible
routine for Monte Carlo-based UQ. The method was implemented for a model of the travel
time of a convected particle in a horizontal confined aquifer, derived from a field output
model. The results were compared to a full MC UQ and showed excellent agreement.

Possible extensions of this work to other existing groundwater models include the use on
nonlinear dimension reduction techniques, in particular on the output space (Xing et al. 2016,
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2015), and the consideration of additional random input parameters (e.g. reaction rates) as
an extra source of uncertainty.
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