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Abstract

We present the very first robust Bayesian Online Changepoint Detection algorithm
through General Bayesian Inference (GBI) with β-divergences. The resulting
inference procedure is doubly robust for both the predictive and the changepoint
(CP) posterior, with linear time and constant space complexity. We provide a
construction for exponential models and demonstrate it on the Bayesian Linear
Regression model. In so doing, we make two additional contributions: Firstly, we
make GBI scalable using Structural Variational approximations that are exact as
β → 0. Secondly, we give a principled way of choosing the divergence parameter
β by minimizing expected predictive loss on-line. We offer the state of the art and
improve the False Discovery Rate of CPS by more than 80% on real world data.

1 Introduction

Modeling non-stationary time series with changepoints (CPS) is popular [24, 52, 34] and important
in a wide variety of research fields , including genetics [8, 17, 43], finance [28], oceanography [25],
brain imaging and cognition [14, 21], cybersecurity [38] and robotics [2, 27]. For streaming data,
a particularly important subclass are Bayesian On-line Changepoint Detection (BOCPD) methods
that can process data sequentially [1, 12, 44, 49, 48, 42, 8, 35, 45, 41, 26] while providing fullly
probabilistic uncertainty quantification. These algorithms declare CPS if the posterior predictive
computed from y1:t at time t has low density for the value of the observation yt+1 at time t + 1.
Naturally, this leads to a high false CP discovery rate in the presence of outliers and as they run
on-line, pre-processing is not an option. In this work, we provide the first robust on-line CP detection
method that is applicable to multivariate data, works with a class of scalable models and quantifies
model, CP and parameter uncertainty in a principled Bayesian fashion.

Standard Bayesian inference minimizes the Kullback-Leibler divergence (KLD) between the fitted
model and the Data Generating Mechanism (DGM), but is not robust under outliers or model misspec-
ification due to a strictly increasing influence function. We remedy this by instead minimizing the
β-divergence (β-D) whose influence function allows us to deal with outliers effectively, see Fig. 1 A.
In addressing misspecification and outliers this way, our approach builds on the principles of General

Preprint. Work in progress.



0 2 4 6 8 10
Standard Deviations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
flu

en
ce

A
KLD

= 0.05
= 0.2
= 0.25

0 100 200 300 400 500 600
Time

0

5

10

15

20

25

30

Va
lu

e

B

Figure 1: A: Influence of yt on inference as function of distance to the posterior expectation
in Standard Deviations for β-divergences with different βs. B: Five jointly modeled Simulated
Autoregressions (ARS) with true CPS at t = 200, 400; bottom-most AR injected with t4-noise.
Maximum A Posteriori CPS of robust (standard) BOCPD shown as solid (dashed) vertical lines.

Bayesian Inference (GBI) [see 6, 22] and robust divergences [e.g. 4, 16]. This paper presents three
contributions in separate domains that are also illustrated in Figs. 1 and 3:

(1) Robust BOCPD: We construct the very first robust BOCPD inference. The procedure is
applicable to a wide class of (multivariate) models and is demonstrated on Bayesian Linear
Regression (BLR). Unlike standard BOCPD, it discerns outliers and CPS, see Fig. 1 B.

(2) Scalable GBI: Due to intractable posteriors, GBI has received little attention in machine
learning so far. We remedy this with a Structural Variational approximation which preserves
parameter dependence and is exact as β → 0, providing a near-perfect fit, see Fig. 3.

(3) Choosing β: While Fig. 1 A shows that β regulates the degree of robustness [see also
22, 16], it is unclear how to set its magnitude. For the first time, we provide a principled way
of initializing β. Further, we show how to refine it on-line by minimizing predictive losses.

The remainder of the paper is structured as follows: In Section 2, we summarize standard BOCPD
and show how to extend it to robust inference using the β-D. We quantify the degree of robustness
and show that inference under the β-D can be designed so that a single outlier never results in false
declaration of a CP, which is impossible under the KLD. Section 3 motivates efficient Structural
Variational Inference (SVI) with the β-D posterior. Within BOCPD, we propose to scale SVI using
variance-reduced Stochastic Gradient Descent. Next, Section 4 expands on how β can be initialized
before the algorithm is run and then optimized on-line during execution time. Lastly, Section 5
showcases the substantial gains in performance of robust BOCPD when compared to its standard
version on real world data in terms of both predictive error and CP detection.

2 Using Bayesian On-line Changepoint Detection with β-Divergences

BOCPD is based on the Product Partition Model [3] and introduced independently in Adams and
MacKay [1] and Fearnhead and Liu [12]. Recently, both formulations have been unified in Knoblauch
and Damoulas [26]. The underlying algorithm has extensions ranging from Gaussian Processes [42]
and on-line hyperparameter optimization [8] to non-exponential families [45, 35].

To formulate BOCPD probabilistically, define the run-length rt as the number of observations at time
t since the most recent CP and mt as the best model in the setM for the observations since that
CP. Then, given a real-valued multivariate process {yt}∞t=1 of dimension d, a model universeM, a
run-length prior h defined over N0 and a model prior q overM, the BOCPD model is

rt|rt−1 ∼ H(rt, rt−1) mt|mt−1, rt ∼ q(mt|mt−1, rt) (1a)
θm|mt ∼ πmt(θmt) yt|mt,θmt ∼ fmt(yt|θmt) (1b)

where q(mt|mt−1, rt) = mt−1 for rt > 0 and q(mt) otherwise, and where H is the conditional
run-length prior so that H(0, r) = h(r + 1), H(r + 1, r) = 1 − h(r + 1) for any r ∈ N0 and
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H(r, r′) = 0 otherwise. For example, Bayesian Linear Regression (BLR) with the d × p re-
gressor matrix Xt is given by θm = (σ2,µ), fm(yt|θm) = Nd(yt;Xtµ, Id) and πm(θm) =
Nd(µ;µ0, σ

2Σ0)IG(σ2; a0, b0). If the computations of the parameter posterior πm(θm|y1:t, rt) and
the posterior predictive fm(yt|y1:(t−1), rt) =

∫
Θm

fm(yt|θm)πm(θm|y1:(t−1), rt)dθm are efficient
for all models m ∈M, then so is the recursive computation given by

p(y1, r1 = 0,m1) = q(m1) ·
∫

Θm1

fm1(y1|θm1)πm1(θm1)dθm1 = q(m1) · fm1(y1|y0), (2a)

p(y1:t, rt,mt) =
∑

mt−1,rt−1

{
fmt(yt|Ft−1)q(mt|Ft−1,mt−1)H(rt, rt−1)p(y1:(t−1), rt−1,mt−1)

}
(2b)

where Ft−1 =
{
y1:(t−1), rt−1

}
and p(y1:t, rt,mt) is the joint density of y1:t, mt and rt.

The run-length and model posteriors are then available exactly at time t, as p(rt,mt|y1:t) =
p(y1:t, rt,mt)/

∑
mt,rt

p(y1:t, rt,mt). For a full derivation and the resulting inference see [1, 26].

2.1 General Bayesian Inference (GBI) with β-Divergences (β-D)

Standard Bayesian inference minimizes the KLD between the Data Generating Mechanism (DGM)
and its probabilistic model [47, 6]. While this is the most efficient way of updating posterior beliefs if
they coincide, this is no longer the case in the M-open world [5] where they match only approximately
[22], e.g. in the presence of outliers. GBI [6, 22] generalizes standard Bayesian updating based on the
KLD to a family of divergences. In particular, it uses the relationship between losses ` and divergences
D to deduce for D a corresponding loss `D. It can then be shown that for model m, the posterior
update optimal for D yields the distribution

πDm(θm|y(t−rt):t) ∝ πm(θ) exp
{
−
∑t
i=t−rt`

D(θm|yi)
}
. (3)

For the KLD and β-D, these losses are the log score and the Tsallis score:

`KLD(θm|yt) = − log (fmt(yt|Ft−1)) (4)

`β(θm|yt) = −
(

1

βp
fmt(yt|Ft−1)βp − 1

1 + βp

∫
Y
fmt(z|Ft−1)1+βpdz

)
. (5)

Eq. (5) shows why the β-D excels at robust inference: Similar to tempering, `β exponentially
downweights the density, attaching less influence to observations in the tails of the model. Conversely,
under the log score of KLD, more influence is associated with an observation the further out in the
tails of the model it occurs. This phenomenon is depicted with influence functions I(yt) in Figure 1
A. I(yt) is a divergence between the posterior with and without an observation yt [29].

Other divergences than the β-D such as α-Divergences [e.g. 20] also accommodate robust inference.
In this work, we restrict ourselves to the β-D as it is the only proper robust divergence not requiring
estimation of the DGM’s density [22]. Density estimation increases estimation error, is computation-
ally cumbersome and works poorly for small run-lengths (i.e. sample sizes). Note that versions of
GBI have been proposed before [15, 33, 39, 11], but instead framing the procedure as alternative to
Variational Bayes.

Apart from the computational gains of section 3.1, we tackle robust inference via the β-D rather than
via Student-t errors for three reasons: Firstly, robust run-length posteriors need robustness in ratios
rather than tails (see section 2.3). Secondly, Student-t errors model outliers as part of the DGM, which
compromises the inference target: Consider a BLR with error et = εt +wtνt, where wt ∼ Ber(p) for
p = 0.01, εt ∼ N (0, σ2) with outliers νt ∼ t1(0, γ). Appropriate choices of βp give most influence
to the (1− p) · 100% = 99% of typical observations one can explain well with the BLR model. In
contrast, modeling et as Student-t under the KLD lets νt dominate parameter inference and lets 1%
of observations inflate the predictive variance substantially. Thirdly, unlike using Student-t errors,
inference with the β-D is applicable to any underlying predictive model.

2.2 Robust BOCPD

The literature on robust on-line CP detection so far is sparse and covers limited settings without
Bayesian uncertainty quantification [e.g. 37, 7, 13]. For example, the method in Fearnhead and
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Figure 2: A: Lower bound on the odds of Thm. 1 for priors used for Figure 1 B and h(r) = 1/100.
B: k̂ for different choices of βp and output (input) dimensions d (2d) in an autoregressive BLR.

Rigaill [13] only produces point estimates and is limited to fitting a piecewise constant function to
univariate data. In contrast, BOCPD can be applied to multivariate data and a set of modelsM while
quantifying uncertainty about these models, their parameters and potential CPS, but is not robust.
Noting that for standard BOCPD the posterior expectation is given by

E
(
yt|y1:(t−1)

)
=
∑
rt,mt

E
(
yt|y1:(t−1), rt−1,mt−1

)
p(rt−1,mt−1|y1:(t−1)), (6)

the key observation is that prediction is driven by two probability distributions: The run-length and
model posterior p(rt,mt|y1:t) and parameter posterior distributions πm(θ|y1:t). Thus, we make
BOCPD robust by using β-D posteriors pβrlm(rt,mt|y1:t), πβp

m (θ|y1:t) for β = (βrlm, βp) > 01.

βrlm prevents abrupt changes in pβrlm(rt,mt|y1:t) caused by a small number of observations, see
section 2.3. This form of robustness is easy to implement and retains the closed forms of BOCPD:
In Eqs. (2a) and (2b), one simply replaces fmt(yt|y0) and fmt(yt|Ft−1) by their β-D-counterparts
exp{`βrlm(θmt |yt)} of Eq. (5). While pβrlm(y1:t, rt,mt) does not integrate to one, pβrlm(rt,mt|y1:t)

still sums to one. Complementing this, βp regulates the robustness of πβp
m (θ|y1:t) by preventing it

from being dominated by tail events. Section 3.1 overcomes the intractability of πβp
m (θ|y1:t) using

Structural Variational Inference (SVI) that recovers the approximated distribution exactly as βp → 0.

2.3 Quantifying robustness

The algorithm of Fearnhead and Rigaill [13] is robust because hyperparameters enforce that a single
outlier is insufficient for declaring a CP. Analogously, we can quantify robustness by conditioning on
rt = r and studying the odds of rt+1 ∈ {0, r + 1}:
p(rt+1 = r + 1|y1:t+1, rt = r,mt)

p(rt+1 = 0|y1:t+1, rt = r,mt)
= ((((((((
p(y1:t, rt = r,mt) · (1−H(rt+1, rt))f

D
mt(yt+1|Ft)

((((((((
p(y1:t, rt = r,mt) ·H(rt+1, rt)fDmt(yt+1|y0)

. (7)

Here, fDmt denotes the negative exponential of the score under divergence D. In particular,
fKLD
mt (yt+1|Ft) = fmt(yt+1|Ft) and fβrlm

mt (yt+1|Ft) = exp
{
−`βrlm(θm|yt)

}
as in Eq. (5). Tak-

ing a closer look at Eq. (7), if yt+1 is an outlier with low density under fDmt(yt+1|Ft), the
odds will move in favor of a CP provided that the prior is sufficiently uninformative to make
fDmt(yt+1|y0) > fDmt(yt+1|Ft). In fact, even very small differences have a substantial impact on the
odds. For BLR, Theorem 1 provides conditions guaranteeing that these odds never favor a CP after a
single observation under the β-D when they would under the KLD, i.e. when fmt(yt+1|y0) is much
larger than fmt(yt+1|Ft).
Theorem 1. If mt in Eq. (7) is the Bayesian Linear Regression (BLR) model with µ ∈ Rp and priors
a0, b0, µ0, Σ0; and if the posterior predictive’s variance determinant is larger than |V |min > 0, then
one can choose any (βrlm, H(rt, rt+1)) ∈ S (p, βrlm, a0, b0, µ0,Σ0, |V |min) to guarantee that

(1−H(rt+1, rt))f
βrlm
mt (yt+1|Ft)

H(rt+1, rt)f
βrlm
mt (yt+1|y0)

≥ 1, (8)

where the set S (p, βrlm, a0, b0, µ0,Σ0, |V |min) is defined by an inequality given in the Appendix.
1In fact, βp= βm

p , i.e. the robustness is model-specific, but this is suppressed for readability
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Thm. 1 says that one can bound the odds for a CP independently of yt+1. The requirement for a
lower bound |V |min results from the integral term in Eq. (5), which dominates β-D-inference if
|V | is extremely small. In practice, this is not restrictive: E.g. for p = 5, h(r) = 1

λ , a0 = 3, b0 =
5,Σ0 = diag(100, 5) used in Fig. 1 B, Thm. 1 holds for (βrlm, λ) = (0.15, 100) used for inference if
|V |min ≥ 8.12× 10−6. Fig. 2 A plots the lower bound (see Appendix) as function of |V |min.
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m (θm) of Eq. (10)

(dashed) and the target πβp
m (θm|y(t−rt):t) (solid) estimated and smoothed from 95, 000 Hamiltonian

Monte Carlo samples for the β-D posterior of BLR with d = 1, two regressors and βp = 0.25.

3 On-line General Bayesian Inference (GBI)

3.1 Structural Variational Approximation based on pseudo-conjugacy

While there has been a recent surge in theoretical work on GBI [6, 16, 22, 15] applications have
been sparse, in large part due to intractability. While MCMC methods have been used successfully
for GBI [22, 16], it is hard to scale them for the BOCPD setting: One would have to sample from
the parameter posteriors for each run-length and additionally require a second layer of sampling
to evaluate the integral in Eq. (5). Circumventing MCMC, most work on BOCPD has focused on
conjugate distributions [1, 44, 12] and approximations [45, 35]. We extend the latter branch of
research by deploying Structural Variational Inference (SVI). Unlike mean-field approximations, this
preserves parameter dependence in the posterior, see Figure 3. Further, since β-D→ KLD as β → 0
[4], there is an especially compelling way of doing SVI based on the fact that

π
βp
m (θm|y(t−rt):t) ≈ π

KLD
m (θm|y(t−rt):t) (9)

is exact as β → 0. Thus we approximate the β-D posterior for model m and run-length rt as

π̂
βp
m (θm) = argmin

πKLD
m (θm)

{
KL
(
πKLD
m (θm)

∥∥∥πβp
m (θm|y(t−rt):t)

)}
. (10)

While this ensures that the densities π̂βp
m and πKLD

m belong to the same family, the variational parameters
can be very different from those of the KLD-posterior. Further, for many models, optima of the
optimization in Eq. (10) can be computed efficiently due to the closed form of its Evidence Lower
Bound (ELBO). We state this in Theorem 2 whose proof is in the Appendix, together with the
derivation of the ELBO for Bayesian Linear Regression (BLR).
Theorem 2. The ELBO objective corresponding to the β-D posterior approximation in Eq. (10)
of an exponential family likelihood model fm(y; θm) = exp

(
η(θm)TT (y)

)
g(η(θm))A(x) with

conjugate prior π0(θm|ν0,X0) = g(η(θm))ν0 exp
(
ν0η(θm)TX0

)
h(X0, ν0) and variational posterior

π̂
βp
m (θm|νm,Xm) = g(η(θm))νm exp

(
νmη(θm)TXm

)
h(Xm, νm) within the same conjugate family

is analytically available iff the following three quantities have closed form:

E
π̂
βp
m

[η(θm)] , E
π̂
βp
m

[log g(η(θm))] ,

∫
A(z)1+βp

[
h

(
(1 + βp)T (z) + νmXm

1 + βp + νm
, 1 + β + νm

)]−1

dz.

The conditions of Theorem 2 are met by many exponential models, e.g. the Normal-Inverse-Gamma,
the Exponential-Gamma, and the Gamma-Gamma. For a simulated autoregressive BLR, we assess
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the quality of π̂βp following Yao et al. [50], who estimate a difference k̂ between πβp
m and π̂βp

m relative
to a posterior expectation. We use this on the posterior predictive, which is an expectation relative to
π
βp
m and drives the CP detection. Yao et al. [50] rate π̂βp

m as close to πβp
m if k̂ < 0.5. Figs 3 and 2 B

show that our approximation lies well below this threshold for choices of βp decreasing reasonably
fast with the dimension. Note that these are exactly the values of βp one will want to select for
inference: As d increases, the magnitude of fmt(yt|Ft−1) decreases rapidly. Hence, βp needs to
decrease as d increases to prevent the β-D inference from being dominated by the integral in Eq. (5)
and disregarding yt [22]. This is also reflected in our experiments in section 5, for which we initialize
βp = 0.05 and βp = 0.005 for d = 1 and d = 29, respectively. However, as Figs. 3 and 2 B illustrate,
the approximation is still excellent for values of βp that are much larger than that.

3.2 Stochastic Variance Reduced Gradient (SVRG) for BOCPD

While highest predictive accuracy within BOCPD is achieved using full optimization of the variational
parameters at each of T time periods, this has space and time complexity of O(T ) and O(T 2). In
comparison, Stochastic Gradient Descent (SGD) has space and time complexity of O(1) and O(T ),
but yields a loss in accuracy, substantially so for small run-lengths. In the BOCPD setting, there is
an obvious trade-off between accuracy and scalability: Since the posterior predictive distributions
fmt(yt|y1:(t−1), rt) for all run-lengths rt drive CP detection, SGD estimates are insufficiently accurate
for small run-lengths rt. On the other hand, once rt is sufficiently large, the variational parameter
estimates only need minor adjustments and computing an optimum is costly.

Stochastic Variance Reduced Gradient (SVRG) inference for BOCPD

Input at time 0: Window & batch sizes W , B, b; frequency m, prior θ0, #steps K, step size η
for next observation yt at time t do

for retained run-lengths r ∈ R(t) do
if τr = 0 then

if r < W then
θr ← θ∗r ← FullOpt (ELBO(yt−r:t)); τr ← m

else if r ≥W then
θ∗r ← θr; τr ← Geom (B/(B + b))

ganchor
r ← 1

B

∑
i∈I ∇ELBO(θ∗r ,yt−i), where I ∼ Unif{0, . . . ,min(r,W )}, |I| = B

for i = 1, 2, . . . ,K do
Ĩ ∼ Unif{0, . . . ,min(r,W )} and |Ĩ| = b
gold
r ← 1

b

∑
i∈Ĩ ∇ELBO(θ∗r ,yt−i), gnew

r ← 1
b

∑
i∈Ĩ ∇ELBO(θr,yt−i)

θr ← θr + η ·
(
gnew
r − gold

r + ganchor
r

)
; τr ← τr − 1

r ← r + 1 for all r ∈ R(t); R(t)← R(t) ∪ {0}

Recently, a new generation of algorithms interpolating SGD and global optimization have addressed
this trade-off. They achieve substantially better convergence rates by anchoring the stochastic gradient
to a point near an optimum [23, 10, 36, 19, 30]. We propose a memory-efficient two-stage variation
of these methods tailored to BOCPD. First, the variational parameters are moved close to their global
optimum using a variant of [23, 36]. Unlike standard versions, we anchor the gradient estimates
to an optimum every m steps for the first W iterations. Compared to standard SGD or SVRG, this
substantially decreases variance and increases accuracy for small rt. Second, once rt > W we
incrementally refine the estimates while keeping their variance low using a stochastic-batch variant
of SVRG [30, 31] on a window with the W most recent observations. The resulting on-line inference
has constant space and linear time complexity like SGD, but produces good estimates for small rt
and converges faster [23, 30, 31]. We provide a detailed complexity analysis of the procedure in the
Appendix Compared to MCMC-based inference, it is orders of magnitude faster: E.g. for the well-log
data in section 5.1, an MCMC implementation in Stan [9] takes 105 times longer.

4 Choice of β

Initializing βp: The β-D has been used in a variety of settings [16, 4, 15, 51], but there is no
principled framework for selecting β. We remedy this by minimizing the expected predictive loss
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with respect to β on-line. As the losses need not be convex in βp, initial values can matter for
the optimization. A priori, we pick βp maximizing the β-D influence for a given Mahalanobis
Distance (MD) x∗ under π(θm). As Figure 1 A shows, βp > 0 induces a point of maximum influence
MD(βp, πm(θm)): Points further in the tails are treated as outliers, while points closer to the mode
receive similar influence as under the KLD. A Monte Carlo estimate of MD(βp, πm(θm)) is found via
M̂D(βp, πm(θm)) = argmaxx∈R+

Î(βp, πm(θm))(x) [29]. We initialize βp by solving the inverse
problem: For x∗, we seek βp such that M̂D(βp, πm(θm)) = x∗. The k-th standard deviation under
the prior is a good choice of x∗ for low dimensions [see also 13], but not appropriate as delimiter for
high density regions even in moderate dimensions d. Thus, we propose x∗ =

√
d for larger values

of d, inspired by the fact that under normality, MD →
√
d as d → ∞ [18]. One then finds βp by

approximating the gradient of M̂D(βp, πm(θm)) with respect to βp. As βrlm does not affect πβp
m , its

initialization matters less and generally, initializing βrlm ∈ [0, 1] produces reasonable results.

Optimizing β on-line: For β = (βrlm, βp) and prediction ŷt(β) of yt obtained as posterior ex-
pectation via Eq. (6), define εt(β) = yt − ŷt(β). For predictive loss L : R → R+, we target
β∗ = argminβ {E (L(εt(β)))}. Replacing expected by empirical loss and deploying SGD, we seek
to find the partial derivatives of ∇βL (εt(β)). Noting that ∇βL (εt(β))) = L′ (εt(β))) · ∇β ŷt(β),
the issue reduces to finding the partial derivatives∇βrlm ŷt(β) and∇βp ŷt(β). Remarkably,∇βrlm ŷt(β)
can be updated sequentially and efficiently by differentiating the recursion in Eq. (2b). The derivation
is provided in the Appendix. The gradient ∇βp ŷt(β) on the other hand is not available analytically
and thus is approximated numerically. Now, β can be updated on-line via

βt = βt−1 − η ·
[
∇βrlm,tL

(
εt(β1:(t−1))

)
∇βp,tL

(
εt(β1:(t−1))

)
)

]
(11)

In spirit, this procedure resembles existing approaches for model hyperparameter optimization [8].
For robustness, L should be chosen appropriately. Thus, in our experiments we use L(x) = |x|.
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Figure 4: Maximum A Posteriori (MAP) segmentation and run-length distributions of the well-log
data. Robust segmentation depicted using solid lines, CPS additionally declared under standard
BOCPD with dashed lines. The corresponding run-length distributions for robust (middle) and
standard (bottom) BOCPD are shown in grayscale. The most likely run-lengths are dashed.

5 Results

Next, we illustrate the most important improvements this paper makes to BOCPD. First, we show
how robust BOCPD deals with outliers on the well-log data set. Further, we show that standard
BOCPD breaks down in the M-open world whilst β-D yields useful inference by analyzing noisy
measurements of Nitrogen Oxide (NOX) levels in London. In both experiments, we use the methods
in section 4, on-line hyperparameter optimization [8] and pruning for p(rt,mt|y1:t) [1]. Detailed
information is provided in the Appendix. Software and simulation code are available at XXXXX.
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5.1 Well-log

The well-log data set was first studied in Ruanaidh et al. [40] and has become a benchmark data
set for univariate CP detection. However, except in Fearnhead and Rigaill [13] its outliers have
been removed before CP detection algorithms are run [e.g. 1, 32, 41]. WithM containing one BLR
model of form yt = µ + εt, Figure 4 shows that robust BOCPD deals with outliers on-line. The
maximum of the run-length distribution for standard BOCPD is zero 145 times, so declaring CPS

based on the run-length distribution’s maximum [see e.g. 42] yields a false discovery rate (FDR) >
90%. This problem persists even with non-parametric, Gaussian Process, models [p. 186, 46]. Even
using Maximum A Posteriori (MAP) segmentation [12], standard BOCPD mislabels 8 outliers as CPS,
making for a FDR > 40%. In contrast, the segmentation of the β-D version does not mislabel any
outliers. Further and in accordance with Thm. 1, its run-length distribution’s maximum falsely drops
to a zero run-length only once, which is in response to >20 consecutive outliers. A natural byproduct
of the robust segmentation is a reduction in mean square (absolute) prediction error by 10% (6%)
compared to the standard version. The robust version has more computational overhead than standard
BOCPD, but still needs less than 0.5 seconds per observation using a 3.1 GHZ Intel i7 and 16GB RAM.

Not only does robust BOCPD’s segmentation in Figure 4 match that in Fearnhead and Rigaill [13],
but it also offers three additional on-line outputs: Firstly, it produces probabilistic (rather than point)
forecasts and parameter inference. Secondly, it self-regulates its robustness via β. Thirdly, it can
compare multiple models and produce model posteriors (see section 5.2). Further, unlike Fearnhead
and Rigaill [13], it is not restricted to fitting univariate data with piecewise constant functions.

5.2 Air Pollution

We apply robust BOCPD to analyze Nitrogen Oxide (NOX) levels across 29 stations in London
using spatially structured Bayesian Vector Autoregressions (VARS) [see 26]. Previous robust on-line
methods [e.g. 37, 7, 13] cannot be applied to this problem because they assume univariate data or do
not allow for dependent observations. As Figure 5 shows, robust BOCPD finds one CP corresponding
to the introduction of the congestion charge, while standard BOCPD produces an FDR >90%. Both
methods find a change in dynamics (i.e. models) after the congestion charge introduction, but variance
in the model posterior is substantially lower for the robust algorithm. Further, it increases the average
one-step-ahead predictive likelihood by 10% compared to standard BOCPD.
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Figure 5: On-line model posteriors for three different VAR models (solid, dashed, dotted) and run-
length distributions in grayscale with most likely run-lengths dashed for standard (top two panels) and
robust (bottom two panels) BOCPD. Also marked are the congestion charge introduction, 17/02/2003
(solid vertical line) and the MAP segmentations (crosses)
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6 Conclusion

This paper has presented the very first robust Bayesian on-line changepoint (CP) detection algorithm
and the first ever scalable General Bayesian Inference (GBI) method. While CP detection is a
particularly salient example of unaddressed heterogeneity and outliers leading to poor inference, the
capabilities of GBI and the Structural Variational approximations presented extend far beyond this
setting. With an ever increasing interest in the field of machine learning to efficiently and reliably
quantify uncertainty, robust probabilistic inference will only become more relevant. In this paper,
we give a particularly striking demonstration of the inferential power that can be unlocked through
divergence-based General Bayesian inference.

References
[1] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. arXiv

preprint arXiv:0710.3742, 2007.

[2] Mauricio Alvarez, Jan R Peters, Neil D Lawrence, and Bernhard Schölkopf. Switched latent
force models for movement segmentation. In Advances in neural information processing
systems, pages 55–63, 2010.

[3] Daniel Barry and John A Hartigan. A Bayesian analysis for change point problems. Journal of
the American Statistical Association, 88(421):309–319, 1993.

[4] Ayanendranath Basu, Ian R Harris, Nils L Hjort, and MC Jones. Robust and efficient estimation
by minimising a density power divergence. Biometrika, 85(3):549–559, 1998.

[5] José M Bernardo and Adrian FM Smith. Bayesian theory, 2001.

[6] Pier Giovanni Bissiri, Chris C Holmes, and Stephen G Walker. A general framework for
updating belief distributions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(5):1103–1130, 2016.

[7] Yang Cao and Yao Xie. Robust sequential change-point detection by convex optimization. In
Information Theory (ISIT), 2017 IEEE International Symposium on, pages 1287–1291. IEEE,
2017.

[8] François Caron, Arnaud Doucet, and Raphael Gottardo. On-line changepoint detection and
parameter estimation with application to genomic data. Statistics and Computing, 22(2):
579–595, 2012.

[9] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76(1), 2017.

[10] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pages 1646–1654, 2014.

[11] Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Variational
inference via χ upper bound minimization. In Advances in Neural Information Processing
Systems, pages 2729–2738, 2017.

[12] Paul Fearnhead and Zhen Liu. On-line inference for multiple changepoint problems. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 69(4):589–605, 2007.

[13] Paul Fearnhead and Guillem Rigaill. Changepoint detection in the presence of outliers. Journal
of the American Statistical Association, (just-accepted), 2017.

[14] Emily Fox and David B Dunson. Multiresolution Gaussian processes. In Advances in Neural
Information Processing Systems, pages 737–745, 2012.

[15] Futoshi Futami, Issei Sato, and Masashi Sugiyama. Variational inference based on robust
divergences. In Artificial Intelligence and Statistics, 2018.

9



[16] Abhik Ghosh and Ayanendranath Basu. Robust Bayes estimation using the density power
divergence. Annals of the Institute of Statistical Mathematics, 68(2):413–437, 2016.

[17] Marco Grzegorczyk and Dirk Husmeier. Non-stationary continuous dynamic Bayesian networks.
In Advances in Neural Information Processing Systems, pages 682–690, 2009.

[18] Peter Hall, JS Marron, and Amnon Neeman. Geometric representation of high dimension, low
sample size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(3):427–444, 2005.

[19] Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konečnỳ, and
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