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Summary

L e t M be a surface with dM *  0  and N a n-manifold , also consider S a 
embedded surface in N . The problem treated in this thesis is the existence of a smooth 
map <p:M -* N  satisfying the following conditions :

(i)  AM<p +  Nr(<p)(d<p,d<p) « 0  , AM -  Laplace-Beltrami operator on (M,y)

Nr  -  Christoffel symbols o f (N,h)

(ii) There exist a strictly positive function X :M -»R  such that the pull-back 

metric <p*h on each fiber of the pull-back vector bundle <p''(TN) over M satisfies 

the relation 9  h ■ X.y

(iii)  9(9M) c  S

(iv) |2 (w )  x  T<p(w)S for all w e  9M ; dtp.n where n is the normal

direction along 9M induced by the orientation on M .

T he technique used is based on Critical Point Theory applied to Variational 
Analysis . Instead of finding a solution <p, o f the elliptic system in ( i ) , as a solution

for the Euler-Lagrange equations of the energy functional E(«p) -
M

, the solution is found by considering 9  as the limit when o - » l  o f solutions for the 
Euler-Lagange equations associated with the a-energy functionals

Ea (<p) -  I  J[ 1+ Idepl2 f 1 dM for a  > 1 .

T he condition in (ii) is proved assuming a condition known as Douglas 
Condition , which statement guarantees that the minimal surface in the homotopy class 
of 9  has  the same number o f boundaries components and the same genus (as a 
topological space) as M .
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CHAPTER 1. 

Introduction

Let (M^.gjc) be a C °° compact surface with genus g and connectivity k. 

Let (N11̂ )  be a C°° n-m anifold isometrically embedded in R^ and h a 

complete Riemannian m etric defined on N . We assume that for all x e N and all 

v e TxN there exist strictly positive constants k and K such that

n n
(1 .0)  k. ^  v V  £  h(xKv.v) £  K . £  v V  .

i-i

In this thesis we are interested in proving the existence o f  minimal surfaces 

of genus g for certain hom otopy classes o f maps from M into N , such that the 

image of the boundary o f M  lies on a closed C°°-surface S embedded in N . 

This is done by reducing to tw o  problems;

1H : To prove the existence o f  solutions for an elliptic operator in an appropriate 

space of m aps.

2— : To prove that the m inim al surface is topologically equivalent to a surface of 

genus g .

Let a:X j(M ) -* X j(N ) , p:Jtj(9M) -* iij(S ) be fixed homomorphisms and 

assume XjiN) -  0  . So , a  homotopy class 9ra p of continuous maps from M 

into N is defined as the set o f  all maps f: M -♦ N , f(9M) c  S such that f* -  o



2

and (fldM)* "  P . where f*:Xj(M) -» Xj(N) and * j(S) are

the homomorphisms induced by f . If x2(N) *  o  then the homomorphisms a  

and P do not define a class of homotopy . In fac t, as  proved in [191, if  ^ ( N )  •  0 

the non-trivial elements of ^ ( N )  are an obstruction to prove the existence o f an 

harmonic map minimizing the energy in each c lass.

A curve c on S is called essential if the hom otopy class o f c in Xj(S) is 

not the identity , otherwise it is not essential . U n less S -S ^  , we will avoid the 

homotopy classes where p: Xj(9M) -» Xj(S) takes som e boundary component of 

M to a null homotopic curve on S . If the im ag e  o f one components of the 

boundary of M is not essential on S we have no m ethods to avoid the decrease of 

k  or even the triviality of the solution in certain classes o f  maps.

The results obtained in this thesis are restricted to the following homotopy 

classes where S is fixed , P is a class o f  homomorphisms satisfying some 

condition and a  is any possible homomorphism :

(1.1) Let S - S ^ , so p is trivial.

(1.2) Let S be any closed surface and consider c j  , C2 . . . . .  c^  the boundary 

components of M . Let p: Xj(9M) -» Xj(S) be  an  homomorphism such that 

PtfqD ^e (e-identity in Xj(S)) for all boundary com ponents q  ( i - 1 , . .. ,  k) of M

(1.3) Let S be any closed surface and P as in (1 .2 ) . Define 7  _ as a class of
a p

maps associated to a , p  and satisfying the following property H :
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(H) There exists a continuous curve p: I -» y  _ inducing a map p: IxdM -» S 

such that [p(IxdM>] -  p  in ^ (S .U iZ ) , where p  is the fundamental c lass and U 

is a subspace o f S such that ^ (S .U jZ )  is isomorphic to (^ (S iZ ) (see examples 

in appendix 3 ).

The question which we pose in this thesis is the existence in each of the 

homotopy classes defined in (1.1),(1.2) and (1.3) of a map (p :M -* N  satisfying 

the following properties:

(1.5) AM<p + Nr(<p)(d<p,d<p) -  0  , Am  -  Laplace-Beltrami operator o n  (M,y)

Nr1 -  Christoffel symbols o f (N,h)

(1.6) There exists a positive function X: M -» R such that the pu ll-b ack  metric 

<p*h on each fiber o f the pull-back vector bundle <p''(TN) over M satisfies the 

relation q>*h -  X.y for a  metric y  defined on M , and such that <p is  a critical 

point for the energy and area functionals defined on (M ,y).

(1.7) < p 0 M )c S

(1.8) d„<p(w) x Tq>(w)S for all w e  dM ; 9n<p -  d<p.n where n is the normal 

direction along dM induced by the orientation on M .

Define the set -  { q>: -»(N,h) I q> is non-trivial and harm onic }

The results which were obtained are the following:
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1.9 -  Theorem  : Let y be a Riemannian metric on M and let S be a

compact surface without boundary , embedded in N and class C°° . If XjiN) ■ 0 

.then :

(i) For the homotopy classes described in (1.2) there exists an harmonic map 

q>: M -> N satisfying the conditions (1.5) , (1.7) and (1.8) and minimizing the 

energy in its class.

(ii) Assuming » 0  we have in the homotopy classes described by (1.1) 

and (1.3) that there exists an harmonic map <p:M -» N satisfying the conditions

(1.5), (1.7) and (1.8) but not minimizing the energy in its class .

1.10 -  Rem ark: The set of classes described by (1.3) are subsets of classes 

described in (1 .2); therefore the result in (1.9) claims that for the classes (1.3) 

both (i) and (ii) are true.

By assuming an extra hypothesis called the Douglas Condition . which is 

defined in (7 .35), we are able to prove (1.6) for the map 9  of (1.9).

1.11 -  Theorem  : Consider S c  N as in (1.9) . Assume the Douglas 

Condition fo r the homotopy classes defined in (1.1) , (1 .2), (1.3) and ^ (N )  -  0  . 

Then in the homotopy classes defined in (1.2) there exists a map 9 : M -» N 

satisfying (1.5) , (1.6) , (1.7) and (1 .8 ). If -  0  then such 9  also exists in 

the homotopy classes defined in (1.1) and (1.3). It follows that

(i) In (1.2) it minimize the energy and the area ,

(ii) In (1.1) and (1.3) it does not minimize the energy and the a rea,
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It follows that <p: M -» N  is a minimal surface.

The results which are known for (1.11) can be summarized as follows;

(i) In the cases of homotopy classes in (1.2);

-  R. Courant gives a proof in [3] for the situation where M  ■ D2 , N  « R 3 and 

S -  T2
-  J. Jost proves in [201 the case when M is a surface o f genus g . N is a three 

manifold whose boundary 3N has non-negative mean curvature and S is a closed 

subset o f  N . His techniques relies on geometric measure theory and he assumes 

that in the homotopy class of maps considered there exists an embedding in order to 

obtain a embedded minimal surface of genus g .

(ii) In the cases of homotopy classes in (1.1);

-  M. Struwe gives a proof in [7] for the case when M -  D2 , N « R3 and S -  

S2 (D2 and R3 with the standards euclidean m etrics).

The method we used relies essentially on the techniques and ideas 

developed by Sacks and Uhlenbeck in [4]. The result obtained by M.Struwe in r7] 

was an encouragement to extend his result to surfaces in general.



The basic tool is the energy functional E(<p) -  i  JldtpPdM , from which it
M

is natural to introduce the Sobolev space L ^ (M ,N )S -  { f:M -* N  I f(dM) c  S

, J  ( lf|2 + Idfl^ )dM < 00} as the space of maps we use in the rest of the thesis. 
M

1 2However, L ’ (M,N)S fails to be a differentiable Banach manifold and the 

Critical Point Theory cannot be used . One o f the troubles is the impossibility to 

verify a condition like the Palais-Smale (PS)-Condition (defined in 2.14) for the 

energy functional .

In [4] Sacks-Uhlenbeck introduced a perturbed functional, which we call

the a-energy  functional, defined as Ea (<p)-iJ (l+ld<pl2)a dM . The interesting
M

properties o f this functional are for the situation when a > l  , then it is naturally 

defined on the space of maps L*’̂ a (M,N)s c  C®(M,N)S, which is a differentiable 

Banach manifold and on it the a-energy  satisfies the Palais-Smale Condition.

So, to prove theorem (1.9) we first have to prove the existence o f a critical 

point for the a -energy  functional when a > l  and then we take the limit a  -» 1 . 

In this process we can guarantee a priori estimates over all except for a finite 

number o f points where the limit blows up . If J^iN ) ■ 0  then we can manage to 

avoid this by using a result, first proved in [4], that an harmonic map from the 

punctured disk with finite energy can be extended to a harmonic map from the disk.
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The regularity along the boundary was first proved in [8] by a different 

approach to ours . The method we have used relies strongly on the fact that the 

critical points of a -energy  satisfy the condition (1.8) and S is embedded in N . 

The interior regularity o f critical points of a-energy  is C°° and it is proved in [4).

As far as the conformality condition is concerned , all we need is to ensure 

the convergence of a minimizing (energy) sequence in the moduli space associated 

with , once a  sequence in C^(M,N)S with finite energy is equicontinuous by 

the Lebesgue-Courant Lemma . The ingredients to achieve such convergence are 

the Douglas Condition (7.35) and Munford's Compactness Theorem (7.28).

The Theorems (1.9) and (1.11) can be extended to the cases below , 

where dim(S) > 2 , and for all homotopy classes if  it satisfies the condition (H) in 

the following form (H*):

(IT) There exists a continuous curve p: I -* ^  inducing a map p: IxdM -» S 

such that Ip(IxdM)l « p  in Hp(S,U;Z) , where p -  dim (S), p  is the fundamental 

class and U is a subspace of S such that Hp(S,U;Z) is isomorphic to Hp(S;Z) .

-  If S is a compact manifold embedded in N and for situations where S C 3M .

-  For the case where S has more than one connected component in N .

Possible results obtained from observation above are :

1.12 -  Theorem : Let S -  S** c  N (p<n) be a embedded submanifold
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diffeomorphic to the p-sphere . Assuming that ^ ( N )  “  0 , ■ 0  (as in 1.9)

and the Douglas Condition , then there exists a map 9 : (M.y.gJO -* (N,h) 

satisfying (1.5), (1 .6) ,  (1.7) and ( 1 .8) ,  i.e. 9  is a  minimal surface.

1.13 -  Theorem  : Let S -  SjlJS2 be a embedded submanifold of N such 

that S jDSj  ■ 0  . Assuming ^ ( N )  -  0 and the Douglas Condition , then for 

each homotopy class of continuous maps in C®(M,N)S there exists a minimal 

surface 9 : (M.y.gJO -» (N,h) satisfying (1.5) , (1.6) , (1.7) and (1.8) and 

minimizing the energy and the area among all maps in the same c la ss . Furthermore 

, if  Sh -  0  and in the homotopy class there is a curve satisfying the H'-condition 

then there exists a map 9 : (M,Y.gJ0 (N,h) satisfying (1.5) , (1.6) , (1.7) and

( 1 .8) .  i.e. 9  is a minimal surface which is a saddle point for the energy and the area 

functionals.
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CHAPTER 2.

Preliminaries.

In this section the main point is to give a description of the main tools and the 

fundamental facts for later use.

Consider (M,y) and (NJi) , N c  Rk , as C°° Riemannian manifolds of 

dimension m and n , define the vector bundle t] ■ M  * and the fibre bundle 

Ç = M x N ,  Ç c t i .

As is well known from Riemannian Geometry, the Riemannian structure on the 

vector bundle TM over M induces a Riemannian structure on the bundles 

(k*-tensor product) and (* -  dual) over M .

Each map f  : M -» N can be considered as a section f  : M -» Ç in the bundle Ç. 

The (k + l)* -o rd er derivative of f  associated with the Riemannian structures on M 

and N induce the sections Vk(df) : M -» ®*c+*T*M®f- l(TN) , -  V o...» V (k

times), because

Vk(df)<x) E Hom(®k+1TxM,Tf00N) -  ®'=Tx, M®Tf(x)N .

The Riemannian metrics induced on these vector spaces let us define the norm

(2.0) IVk(df)Kx) -  trace [(V«Kdf))*h)Kx) .

where the trace is taken relative to the metric on ®^T*M , induced by the metric on

T M .
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2.1. D efinition: The LP-spaces associated with the maps from M into N , 

considering the element of volume as the m easure, are defined as lP(£) -  (f:M -* £ I f

is a section a n d j  Ifl^dM < oo } . Define the L^-norm  as I f l p - l J  klpdM]1 / I \  
M M

where I I -  norm in Rk .

As in the cases for domains in Rn these spaces are known as Sobolev spaces 

and they are complete with respect to their natural norm . In general they are not Banach 

spaces because o f the non-linear character of N . Assuming the existence of a theory 

for weak-derivatives of sections in the bundle £ (see [21), we give the following 

definition:

2.2. D efinition: The Sobolev spaces associated with maps from M into N , 

considering the  element of volume as the measure, are defined as Lr*P(£) -  ( f : M -» £ I 

f s L pf f l  and

Z f  IVi<df)lp
1-0 M

dM < oo} . Define the norm IBLr*P as

IVi<df)IPdM]l/p + 11%,,)

The fundamental fact about this space is contained in the theorem below; in the 

reference ([101, pg.97) it is proved in general.

2.3. Theorem : (Sobolev's embedding theorem) Let (M,y) and (NJi) be C°° 

Riemannian manifolds of dimension m and n . Let r  be a  non-negative integer and 

p satisfy 1 <L p  < oo . Then there exist the following embeddings:
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Case A: Suppose r p < m , then

Lr>pffi-> L <'< 0 for all p S q s J 2 H -

Case B: Suppose rp « m , then

Lr 'p f f l L q( 0  for all p £ q < » .

Case C: Suppose rp > m , then

Lr,p(0 -»O > (0  for all O S j c r ™ .  where 

C S ff l-  { f : M - .  £  I Vs ~ '(d fl exists pointwise and is continuous}.

Proof: See [10], pg.97. 0

The case C  is of particular interest for later developments because estimates for 

the norm in Lr,p (Q  gives the class o f  pointwise differentiability.

Assuming N is isometrically embedded in IR  ̂ we have the following results 

which are vital for Critical Point Theory.

2.4. Theorem : Let T) ■ M x IR^ b e  a vector bundle . If rp > m  then the Sobolev 

spaces Lr,p(ii) are Banach spaces.

Proof: See [21. D

2.5. Theorem : If we assume rp >  m  and N is isometrically embedded in , 

then the Sobolev spaces Lr,p( 0  have a C°° differentiable structure as a Banach
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submanifold of Lr*P(T|).

Proof: Sec (2), pg.49. □

In the situation in which this w ork is developed, M is a  surface, i.e. dim M -  2 

and since the a-energy functional is the basic tool to be used, we are particularly 

interested in the Sobolev spaces , a  > 1 . As we are  interested in situations

where M has non-empty boundary , consider the Sobolev space «{f e

1-1 ’2 a ( 0 1 f(9M) c  S } , where S is a  closed C°°-embedded submanifold of N as in

(1.8). Then , for a  > 1 L^’̂ C O s has a  C°° differentiable structure as a submanifold 

of l I ^ O i) and the theorems (2.3) and (2.5) are also true fo r  this class of spaces .

2.6. Definition: The a -energy  functional E a  : L 1 ’̂ c t( 0 s -* R is defined as

Ea (0  -  i f  (1 + ldfl2)a dM  -  i  J  dM ; Idfl2  -  trace (f*h)
M M

I f  l < a < 2  then ^ a : L ^ ^ i O s  ^  is C ^-differentiab le. Because the 2°^

term is independent of f  we consider on many occasions Ea (f)  -  i j  ( l+ ld fl2)a dM
M

It is useful to consider the a-en erg y  above defined as a restriction of the 

functional Ef* : L ^ a (ri) -* R , given by the same expression in  (2 .6).

Considering that N is embedded in Rk , we can define local projections 

P(x) : R *1 -* TXN which induce C°° sections P : N -» HorrKR^.TN) . Taking the
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orthogonal complement in Rk , we also have Q(x) -  I-P (x ) : Rk -> (TXN)X inducing 

a C°° section Q : N-» Hom(Rk, (TN)1) ((TN) 1  -  normal tangent bundle induced by 

the Riemannian structure on Rk) .

Likewise, we can define the morphisms Ps and Qs associated with the 

embedded surface S in N .

The tangent space of L *^a (£)s at the point f  can be described as 

T jL1-2 0 ® ,  -  {v: M f*(TN) I v 6 L 1’2“ (Os , Q(v) -  0  , Qs(vlaM> -  0}1 . 

Therefore differentiating the C2-functions Ea  : L*,2ct(O s -* R , for a  >  1 , we 

define a  section dEa : L 1 -2a ffls -»<TL1 '2“ (C)s>* •

The next steps are concerned with introducing concepts to formulate a sufficient 

condition for a general functional to ensure that the (PS)-Condition (defined in 2.14) 

is satisfied by the functional.

2.7. Theorem: Let 1 £  p  , q  < oo and let k and l  be  real numbers with

and k  2 1 . Then Lk,p((;)s £  L ^ O ,  and  the inclusion map is

continuous. If k -  (—) > t  -  (^-) and k > l  then the inclusion map is completely 

continuous.

Proof: See A.P. Calderon, VoL4. AMS, Symposia in Pure Mathematics,

"Lebesgue spaces of differentiable functions and distributions". D

1 — Its is important to note that if «p « L i,2 a (O i then the bundle <p*(TN) is o f class L 1,2“  ,

Ia  , it does make sense to talk about the space L1,2a (9»(TN))-{i:M -* <p»TN I s isL, '2ointegrable }



2.8. Proposition: I f  T  €  Hom(Lr,p(Ti), Lr,pOl)) then for rp > m  T  maps 

bounded sets in JLr,p(T|) into bounded sets in Lr,pCn).

Proof: See 12], pg. 112.

2.9. Proposition: Given any sequence (<Pi)* j in Lr,p(O s . for rp > m  , which 

is bounded in Lr,p( q ) , by taking a subsequence we can suppose that 

KK9iX<Pi-9j)*Lr,p(T1) -» 0  as i j  -♦ oo (Q -  Q  by abuse o f notation).

Proof: (See 121,19.15) The hypothesis that rp > m  implies (by (2.3)) that

Lr,p(Q c  C ° (0  and therefore C°°(Q is dense in Lr,p( 0  . Choose a finite set of 

smooth vector fields on M  , say Xi,..,Xm  , such that each V(x) e  TXM  can be 

written as a linear combination of the X}(x) , i -  1 ,...,m .

14

(2 .10) »Q(q>i)(9i-<Pj)iLr,p( n ) -»Q(9i)(<W-^)«Lp( n ) + X  lXi(Q(q>i)«Pi-<Pj))lLr-

1.P*

In the first term on the right hand side of e.q. (2.10) we know that 

IQOnWK'WOO-'PjWilpk S d ^ iW - f jC ^ p k  . c > 0  •  constant, because Q(q>i(x)) 

is a projection, so integrating

,0<<PiX'W-<PjXLp(T1) 5 ckW-<t,j 'LP(n) •

The embedding Lr ’P(q) -» C°(q) is completely continuous, which implies that

we can consider the subsequence (<Pi)"| as a Cauchy sequence in C °0 l) .
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Hence, KX9i)(9i-9j)lLp(n) < £/ 2  •

For the second term on the right hand side o f  (2.10), assume

( W C ,  c  c ” ( 0 ,  SO

(2.11) X(QGn)«|>i-9j)) -  X(Q(<pj))(<pi—<pj) +  Q«K)X«Pi) -  Q(<Pi)X(<f.j).

Using the fact that Q -  I -P  and P(q>i)X(<pj) -  X(q>i), we have

(2.12) X (Q (9i)(9i-9j)) “  X(P«Pi))«Pi-<pj) +  (P«Pi)-P«Pj))X«pj) ,

but the bilinear map X o Q : C °°(0  * C°°(ti) -» C°°

(9 ,s) -» X(Q(9 )s)

is C °°, so by the fact that C°°(il) is dense in Lr,P (n ) , the bilinear map above can be 

extended to XoQ :Lr,P(£) x Lr^(T)) -» Lr“ *’P(Ti) , thus (2.12) can be extended to

( < . , d . r 'P( D .

Now choose 0  < e  < 1 so that k -  e > Consider (9i)”  j c  Lr’P(£), then 

by the Theorem (2.7) the inclusion Lr,P (0 s  c* ^  E’̂ (O s is completely continuous, 

so taking a subsequence we can suppose that 9i -» 90 in L  C’*>( 0  . Since the map

L  ^ ( O  into L  ^ (H o m iq .q ))  given by (9  -♦ P(9 )) is C00 and hence
r-e,p

continuous. So it follows that lP(9 j)-P(9j)l -* 0  in L (Hom(q,q)) , and also

,<W' <Pj,L.r- C-P(0 "
0 .
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Thus, from the second term on the right hand side of the eq. (2.10)

(2.13) IX(Q«Pi)<q>i-<f>j)XLr - l .p (ri) *  IX(P«K»«Pi-1>j> + (P«W)-P«l>j))X(((lj)l S 

S IX(P«t4))lLr- l.p (n) ■ «<Pi-'Pj"Lr-e .p (n) +  IP«Pi)-P«Pj), Lr - e.p(T1) K i ^ r -

1 -P( '1) S
S KlP(9i)lLr-l.p(I)) kpi -<Pj>Lr-e.P(T)) + IP(9i)-P(«Pi

The result follows by (2.8), the hypothesis, observations above and inequality

(2.13) . 0

Although the Sobolev spaces Lr,p(£)s » ÔT rp > m  , have a C00 

differentiable structure as a Banach manifold, they are manifolds with infinite 

dimension and are not locally com pact. The (PS)-Condition is a sufficient condition 

to replace the lack of compactness.

2.14. Definition: A functional F : Lr,p(T)) -* R , rp > m , satisfies the (PS)-

Condition if  for any sequence (9n)”_ j . such that (F(<Pn))"_| *s bounded and 

ldF(<pn)l -* 0  , there exists a subsequence (<Pnk) s°  11141 9nk -» 9  in Lr,p(q) and 

ldF(<p)l -  0 ,  i .e ., 9  is a critical point for the functional F .

2.15. Proposition: Consider the C^-functionals F : Lr,p(£)s -* R  and F : Lr,p(q)

-* R (F -  F |jq), and a sequence (9 n )" .j  c  Lr’P( 0 s  bounded in Lr,p(ri) such that 

ldF(9n)l -» 0  (in Lr,p( 0 s) . Then passing to a subsequence we have that

«F<1>nK9n-'l>m)l- 0  in Lr -P( n ) .
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Proof: (Sec 121,19.17)

dF«Pn>«Pn-<M -  dF(9n)(P(9n)(<Pn-«Pm)) + dF«Pn)(Q«Pn)(9n-<Pm)) -  

-  d F ^ J .iq in -q W  + dF(<Pn) (Q(<Pn) (<Pn-<Pm)) • *> 

ldF(9n)«Pn-9m)* < >dF«Pn)l N>n-9mlLr,p(n) + ldF((Pn)I.IQ(cPn)(<Pn-<Pm)lLr,p(n) 

and it then follows by (2.8) and (2.9).
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CHAPTER 3.

(PS)-C oiidition for  the functional E «  : L ^ ° ( C ) *  ■* R . a  > 1 .

The proof o f the (PS)-condition (as in [21) depends essentially on the properties 

o f the "density o f a-energy" (Lagrangian) . In this section we do not consider the 

general situation , for this see [21-Chapter 19.

3.0. D efinition: Let V j ,..., Vs be orthogonal vector spaces and let 

£i -  M x Vj be the corresponding Riemannian vector bundles over M . If Aj is a 

differential operator carrying sections o f T) -  M * to sections o f C i »* ■ 1.—.s 

then we say that {Aj} is an ample fam ily  of r^1-order linear operators for T) , 

provided that there exist constants c j  and C2  such that for all <p e  Lr,P(T])

M L ^ ( n ) S c ‘ § ' Ai,p,LP(t i ) +<:2M LP(n)

and we shall say that {Aj} is strongly ample if we can choose C2  -  0 .

3.1. Example: Aj -  X i ^  •  X i * •....• X i^ " . where a j  +...+ <%, £  r

Xj -  and X -  X • ...•  X ( a  times).

It follows from the definition o f I • l |T , p ^  that (Aj) is ample.

We are really interested in the case dim  M -  2 , because by (2.7) if a  > 1 we have
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L1 ’2a <T))< = c 0(n ).

Let (U.X) be a local chart for M , then the a -energy  can be expressed as

(3.2) Ea (<p) -  } J  [1 + Ytn)hij3^<pia 1)9ila <lU. dU -  V? dx1 A...A dxm

y  -  det (Yjj)

(summation in repeated index).

From (3.1) the family of l st-order differential operators 0 ^ }  , p  -  1,2 is

ample.

The next definition are taken from 121 in a particular case which suit ours

purposes.

3.3. D efinition ([21,19.1): A la  order lagrangian on i) -  MxR^ is an 

element o f D*(t],Rm) -  (set of all differential operators o f order 1 from tj to the 

bundle R m  “  MxR} . We denote the vector space of Is  order lagrangian on r\ by 

Lgldl).

3.4. D efinition : Consider a functional F: L^’P(ti) -» R  (f (9 )  < oo if  <p e

L1 ,p(ri)) defined by F(«p) «  J L(q>)dM , where L e  L g j(r i ) . W e say that L is the 

lagrangian associated with the functional F.

3.3. Definition: Let L  be a lagrangian associated to a functional

F: L 1 ,pOi) -  R as in 3.4 . Then we say that L  is (strongly) p-coersive if  there
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exists a (strongly) ample family {Aj} of IS -order linear differential operators such 

that for all <p, A e  C°°Cn)

s
d^L(p(A,A) 2  X  l A ^ ' ^ A I 2  .

3.6. Exam ple: In this example we prove that the a -energy  functional has a p - 

coersive Lagrangian according to (3.3). This example is fundamental to prove the 

(PS)-Condition for the a-energy, a  > 1 . It is divided in 3 steps.

Step 1: Because y  is a Riemannian metric on a compact surface M , there

exist constants c > 0 and k > 0 such that

(3.7) clvl*2 < mJ , <  ldv^2 ,

where I • I ?  -  euclidean norm in R2 
R

I • Im  ■ norm on M induced by the metric y .

Let us consider A^ -  and Ea (<p) -  J ea (<p)dM , then by (3.2)

Ca(<p) -  i  II +  Y*W>hyA ^9iAv <piJa  £  i  ll + CjlAjtpl2 + CjlAjtpl2]®. 

We claim  that there exists a constant c > 0  such that

(3.8) [1 +  C|lA|(pJ2 +  c 2\A2< f ]“  > ^ flA jip l2“  + lAjCpI2“ ) .

To prove (3.8) consider the function f : R -» R defined as ,
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f(x) -  (x+a)a  -  xa -a a  , so f(0) -  0

f(x) -  al(x+a)a - * -  xa - 1 l , if  a  £ 1 and a > 0 then f (x )  > 0 .

Hence, if  x £  0 - >  f (x )  £  0 ,  that m eans f  is an increasing function in tO.oo).

Take c  -  miniCj.Cj) .

Step 2 : Define la (9 )(x) -  }[(A,9A,<P)a  + <.A2<p.A2<()aXx) , (...) -  inner
2

product in IR

[dia «p).AKx) -  y [ (A 1 A.A1 <p)IA1 <pl2 (a - 1) + (A2A,A2<p)IA2<pl2 ( a “ 1)Kx) 

Step 3  ([2J, 19.31):

d2 t a ( 9 )(AWXx) -  ^ l> I A ,< p l2 ( a - 2 ) (A 1<p.A1W)(A1<p,AI A) +

+ y l  IAI9 )i2(a - 1 )(A 1W.AI A )+  lA2«pl2<“ _2)(A29.A2W)(A2<p.A2A) +

+ y l A 29l2<a‘ 1)(A 2A ^2W ). S o .

d2i a ( 9 XAAXx) -  IA1 q>l2a - 4« A 1 9A lA ))2  +  y  lA^ 2“ “2  IA,Al2  ++

2 i ^ i i |A 29t2 a ' 4 ((A29 .A2A))2  +  y l A 2<pl2 0 -2  IA2AI2  - -  ylA itp l2“ “2^ ^  [l 

( (A p A .A ))2

♦  y l A 2tH2a - 2 IA2AI2 [ 1 +  ( a -1 )  ^ y V f l l ' A , / 1- 2 ^ . ) .
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T hus by (3.8) ea  is 2a-coercivc.

3.9. T heorem  (121,19.29): Let p 2  2 and p  > m and le t L be a p-coercive

L(«p)dMLagrangian . Let F: L^’P(r\) -» R  be a -functional given b y  F(<p) -  J
M

such that dF: L ^ C n )  -» ^TL^’P(ti))* maps bounded sets to  bounded sets and let 

F : L*’P(£)S -♦ R be the restriction . Then the functional F satisfies the 

(PS)-Condition.

Proof: It is divided into 3 steps.

Step 1: L is p-coercive, so there exist c j  > 0  and c j  >  0  such that for all

9 r 9 2  £  C°°(Tl) we have

dF«p1).(91-92)-<iF(92)<»1-'P2) 2 c1l9 ,- 9 2lLl,p(tl)- c 2l9 1-92lLp(I1) ■

Proof: Take a -  <Pj(x) , b -  » c  : I -► Rk c(t) -  b  +  t(a-b)

[dL(91 ) -d L (9 2)] (9 1 -9 2) -  J d 2Uc(t)).(9 1 - 9 2 ,9 1 - 92) d t ï  
0

f  2
a j  ¡LlAi(c(t))l>’- 2.IAi(91- 9 2)l2<ltï

2 '
(3 .10) 2  Ç.IAi«p1 - 9 2 l2 . J IAi(92) +  t.Ai(9 1 - 92)l', - 2dt
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Using the fact that J lx + tytmdt ̂  clyt”1 (see [2] ,19.27) in (3.10), it follows that 
0the right hand side of 3.10 is lower bounded by

2
*  c lAi(q>1(x ) - *2(x))P.

Hence, after integration on M and using the fact that Aj is an ample family, it follows 
that

«pr <p2)*cllkPr<P2lLl.P(T1) - C2 î-^2liP(rù

Step 2: The functional F : L̂ ,p0i) -» R satisfies the (PS)-Condition .
Proof: By hypothesis dF : L̂ ,p(n) -♦ (TL*’pCn))* maps bounded sets to
bounded sets ( (TLr’p(n))* - Lr,q(T%) where i  + i -  1 )p q

Consider c(t) - q>2 ■ Pro™ step-1 we have
[dF(c(.))-dF(91].(t(»2-<p1)) 2 ■c,l»2-f1lLl,P(t)) - K2«92-'P,lLp(T1)

1F(<P2) - F(9,) + J dF(c(t)).(92-<p,)dt - 
0

- F(91) + dF(9|).(9i~92)+ J i|dF(c(t))-dF(c(i1)].t(<p2-91)dI 2 
02 F«p,) + dF(9, ).«!>,-92) + c1kp2-<p,«L,.p(n)- c2kp2-91«Lp(Ti). (3.11)
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By taking a sequence (<Pn)“_j in L 1,p(£) , bounded in L 1 ,p(n) ( 2.7 •+ (<Pn)~ - i  is 

Cauchy in Lp(£) ) and such that ldF(<pn)l -* 0 , it then  follows by (3.11) that

(3.12) F(9n)-P( f i nHl l k t n Xt n- -  c2«9n- 9 mlLp(n)

Now we have lP(<pn) -  F(<pm)l-> 0 , as n ,m -* oo , because F : ,p(ri) -» IR 

is continuous . Also ldF(q>n)(<pn-q>m)l -» 0 because

d F i ^ X ^ n - V - d F ^ ^ n - ^  +  d F i ^ K C K ^ n - ^ ) )  • so

*  * * * * *  lV * J L 1 *<n> ♦

(by hypothesis ldF(q>n)l is bounded and by (2.9) lQ(9nX<Pn- 9m)*Ll,p (T1) goes to

zero ) .  So in the expression (3.12) it follows that H(p - t p l  \ v  -* 0  and by then m l  ’K(q)
completeness of L^,p(rj) there is 9  e  L^,p(Tj) such that 9 n “»<P in L*,p(q ).

Step 3: Let 9  = lim 9n in L 1 ,p( q ) , then <p 6 L 1 ,p(Qs and ldF(9 )l -  0 .

Proof: Since (9n)”«i c  L^’p(£)s and L* ,p(Q s is a closed submanifold of

L*,pOl) , it follows that 9  6 L*,p( 0 s and by continuity ldF(9 )l -  0 .  □

3.13. Corollary . The a-energy functional E d  : L*’̂ a (Q -» IR satisfies the 

(PS)-Condition for a  > 1 ,.
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Proof: In example (3.6) we worked out the case for the a-energy's

Langrangian and it was proved that it is 2a-coercive. In order of applying Thm 3.9

1 201
we need to prove that dE« : L 1 <2o (t0  -» (TL1*2“ ^ ) )*  -  L ’ 2a - 1  (q*) (2) takes 

bounded sets into bounded sets . Taking 9  e  L 1 *2ct(r|) then the w e get a continuous 

linear operator dEa (9): L*,2a (9*TRlc) -»C°°(M) whose norm is defined (see [22]) by

K f i l ldEa ( ,) -AI

The explicit formulae is given by equation (5.3),

dE (9 ) -  a  J (1 + ld9l2)a "V<d9 ,VA>dM . Applying the Holder inequality 0 M

, „  _ 1 2a - 1(see [21) for —  +  2^ - -  1 we get

2a(tt-t) 2a  2a -1

ldE„(9 ) .A K a (J  (l+kkpl2)  20,-1 .kkpl20,-1 dM> 20 . ( J  IVAJ2a d M )1 /2 a
°  M M

2a(a-t) 2« 2a(a-l) f a

but J  (1 +  ld.pt2) 2a_1 Jd » |2“ ' ' d M s J  (1 + ld.pt2) 2“"1 2“' 1 dM  -  E (9 )
w  u  u

2a - 1

Then ldEa (9 ).AI S  a .(E a (<p)) 20 since A 6 L 1 -2o (<p'TRk) *

2a - 1

s  “ .(Ea (9 )) 20 . S o , if <9„)n«l «  » bounded sequence in

2-  T|* -  dual vector bundle associated with the vector bundle
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L**2°(T|) it follows that ldEa (9 n)lL 1'2n_1 is bounded for all n e  Z . Thus by the 

Theorem above it follows that the a-energy E «  : R satisfies the (PS)-

Condition. □

The geometric meaning of (PS)-Condition is that if there is no critical values in 

the interval [a,b] c  ( - 00,00) for a functional F : Lr^(T\) -» R satisfying the 

(PS)-Condition then the curves generated by the gradient flow (VF) are transverse to 

the submanifolds F~*(a+e) and F~*(b-e) for all sufficiently small e > 0 .  This is 

the main step to produce the deformations which leads to critical points for the 

functional, because the deformation along such curves cannot pass through a critical 

point.

3.14. Definition: Let 9- be a family of subsets of a Banach manifold. We shall 

say that 7  is isotopy invariant if  there exists an isotopy {9^  of M so that VF e  y  

we have 9 t(F) 6 ? ,  V t .

3.13. Definition: Let M be a differentiable manifold and f : M -* R . We define 

the minimax o f f  relative to f  by

minimax ( f ,^ )  -  Inf sup lf(x)l.

F e ?  xeF

The next theorem is the main result to prove existence of critical points. It needs 

the definitions of Finsler structure to replace the Riemannian structure in case the 

dimension of M is 00 (see [1]).

3.16. M inimax Theorem: Let M be a complete C^-Finsler manifold without 

boundary and f  : M -» R a -function satisfying (PS)-Condition. Let 9" be an 

isotopy invariant family o f subsets of M so that -00 < minimax(f,9r ) <  00 . Then
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eitherminimaxCf,?) is a critical value or there is a sequence of distinct values (c^), k e 

Z with Cfc -* m inim ax(f,?) and such that f  assumes the constant value on a 

component of M .

Proof: Seell] ,T hm 5.18  □

3.17 -  Theorem : Let M be a complete Cp Finsler manifold without boundary 

and f: M -* R a C* function satisfying condition (P S ). If f  is bounded below on a 

componente Mq  of M then f l j ^  assumes its greatest lower bound . If f  is 

bounded below then either f  assumes its greatest lower bound or else there is a 

sequence {M^} o f components of M , on each of which f  is constant, and such that 

f(Mk) -» Inf{f(x) I x e  M}

P ro o f:  See [11, Thm 5.7
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CHAPTER 4.

Existence o f critical points fo r  the energy in L *’2 ( 0 s  ■

In this section we prove the existence o f critical points for the energy functional 

defined in the homotopy classes (1.1), (1.2) and (1.3) in L*,2(£)s . The strategy is to 

prove the existence of these critical points for the a -energy  by using the result in 

(3.16) . Then we pass to the limit a  -»1 .

As enunciated in (1.9), the critical points in the classes (1.2) are minima for the 

energy whilst in (1.1) and in (1.3) the critical points are of saddle type .

In those homotopy classes in (1.2) the minimum can be degenerated into a 

point or a closed curve on S . The closed curve turns out to be a geodesic on S .

4.0. Proposition: If q>: M -* N , <p(5M) <= S , is a critical point for the energy 

E : L*’2 ( 0 s R and <p(M) is a curve on S , then <p(M) is a geodesic on S with 

respect to the metric hjj -  J  y *1 hjjdx2 defined on S , where (hjj) is the induced 

metric from (N,h).

Proof: Once we have such degeneration we can assume that d2<p -  0 .

Therefore, locally we get

(4.1) E(q>) -  i f f r 1 1 3 , f i3 1Vi>>ij<ix1«L2 .  } / a i 4to1 «ty'Y 'lhydX jIdx,
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So by the hypothesis we can consider a variation q>t : M -* N  , <pt(3M) c  S 

d(E(9 t))
such that <Pq -  <p and — —— lt_Q -  0 .

Having done this in (4.1 ) we get the geodesic equation. □

4.2. Proposition: For all homotopy classes defined by (1.2), the infimum of the 

a-energy  Ea  : L*’̂ a (Ç)s -» R  is achieved in the class and it is non-trivial.

Proof: Since the (PS)-Conditon is verified by the a -en e rg y  , Theorem 3.17

claims that the infimum of this functional is achieved for all homotopy classes of maps 

in L*’̂ a (£)s . Since in the homotopy classes , defined by (1 .2 ) , the images of 

the boundary components are essential on S none of them collapse to a point . 

Therefore the a -energy  o f the minima is positive . Thus it follows that there exists 

<Pa c  L*’2 a (O s such IhM Ea (9 a )  -  inf Ea (f) > 0.

4.3. Corollary: In all homotopy classes defined by (1.2) , the infimum of the 

energy functional E :L * ’̂ (Q S-*R  is achieved and is non-trivial.

Proof: As 0  < E a 'itpa ') < Ea (<pa ) if a '  <  a  , the sequence (« P a)« ^  (given by

(4.2) ) is in L ^ ( Q | . It follows from the weak compactness o f  the ball in L*’̂ (£)s 

that there exists a subsequence o f O P a )^ ]  such that q>a  -> 9  in L*’̂ (0 s ^  

therefore E(<p) -  inf lim Ea (9 a ) as a-+  1

□
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The next result proves the existence of a critical point o f saddle type and the 

method used is quite illustrative for the general situation.

4.4. Proposition: There exists a critical point o f saddle type for the a-energy 

functional Ea :L *^a (£)s ■* R in the homotopy class o f maps defined by ( 1 .1 ) .

Proof: The idea is to use the minimax principle. In this homotopy class it is clear that 

the infimum is achieved by the trivial maps . As we are looking for critical points of 

saddle type consider the following construction (here the condition (H) defined in

(1.3) becomes clear to the problem ). Assume k -  1 (the same construction can be
1 2made for a general k) then a curve p:I -* 9 a p induces a map p: IxS -* S .

IxM
Consider the identification given by the projection x:IxM -*------------------------ — , the

({0}xS ) U (il>xS )

restriction to the boundary defines ft:IxS* -♦-------- -——---------— *
({0}xS ) U (il)x S  )

( io ixs1) U ( ( l )x s 1)
-» N be a continuous map inducing a map

q:--------- --------------- -— ► Sz  and assume degree(q) -  1 . Define a curve p:I -» ?  „
({0}xS ) U ({l)xS  ) aP

by p  -  qo ji. By degree(p) -  1 we mean degree(q) -  1

Claim: p is not contractible in L*’̂ ot(£)s

If it were , then would exist a homotopy H:IxI -* L^,2a ( 0 s such that 

Hq(0  ■ p(t) and H j(t)  -  * , * a trivial map . However , this would imply 

degree(qox) -  0 but this is a contradiction with the fact that degree(q) -  1 .



Thus the class of maps defined in (1.1) admit a family of subsets , namely 

y  -  (p: I -» I p -  qoji and degree(p) - 1 } , homotopic invariant by the gradient 

flow o f Ea  and no subset o f this family is homotopic to the subset o f trivial maps in 

L 1 ,2a ( 0 s . So , applying the Minimax Principle , there exists <pa  : M -» N ,

q>a (9M) c  SZ such that E ^ tp a )  -  inf sup ^ ( p O ) ) .
p e ?  te[0 ,l]

4.5. Proposition: There exists a critical point o f saddle type for the a-energy

Ea  : L 1*2“ © ,  ^  (<* > 1 ), in the homotopy classes defined by (1.3) .

Proof: The idea for proving this is the same as in (4.4). The condition (H) is

a generalization for the existence o f map p with degree(p) -  1 . The subspace U c S  

is defined by a identification (~) on IxdM to  obtain a space homeomorphic to S . If 

jt: IxM -♦ (IxM )/~  defines the projection on the identified space and h: (IxdM )/— ► S 

is a homeomorphism then U ■ hojtfl{0}x9M] (J [(l}x3Ml) , U -  class defined by the 

identification (see appendix 3).

Fix a homotopy class S7̂  and consider p : I -» S7̂  a continuous curve 

satisfying condition H and such that p(0) -  p ( l)  -  g , where g : M -* N achieves 

the minimum for the a-energy in its class . The curve p induces a map 

p: I x 9M -» S .

Claim: p is non-contractible in L ^ a (£)s

Suppose it is contractible , then there exists a homotopy H : I x I  -» Ll»2<*(£)s 

such that Ho(t) -  p(t) and H j(t) -  g , and there are two possibilities :

(i) Suppose g(M) is a closed curve on S and is homotopically equivalent to
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Sjv.-.vSf (v  ■ wedge o f curves) on S ; 5 j : S1 -» S for i -  1....4 . Since we have 

assumed condition H for p we have [p(IxdM)] -  p  in H jiS .Z ) . However the 

homotopy deforms p(IxdM) into g(dM) . But this is a contradiction because 

H ^S .Z ) -  Z and v...v  8j,Z) -  0  .

(ii) If g(M) is not a curve , then p  is homotopic to g(8M) , a set o f curves and 

therefore the same argument applied in (i) works here.

Consider 9r -  (p: I -» ^  _ I p is continuous and satisfies condition HJ a family 

of subsets in the homotopy class ^ a p  • So, using the Minimax Principle we get the 

existence o f a critical point of saddle type <pa  e  satisfying

Ea (V - ^ X ]E“ (P<t>)'

Thus by the propositions above ((4.4) and (4.5)), there is a sequence of maps 

« P t x ^ i  . which are critical points o f saddle type for the sequence o f a-energy 

functionals (Ea  : l *’̂ ®(£)s -> 1 1 )^^  . The next step is to pass the lim it a  -» 1 of 

these sequences . Meanwhile for the homotopy classes in (1.1) it is  interesting to 

prove that the limit for these critical points are non-trivial.

Observe that if  a '  < a  then E a 'itpa ') < Ea(<pa ) ; therefore by (2.7) 

l 1 .2<x c  L^’̂ a (^)s continuously .

As S is an embedded compact surface in N there exists a tubular

neighbourhood V$ and a number 8S> 0  such that if diam (Vs)-sup inf dist(x,y)
x .y e  V,

is less than 8S then there exists a well defined projection projs : V s -♦ S induced by 

(N Ji).
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4.6. Definition: Define diam(f.S) -  sup inf dist(f(w),s) , for all f  e  C®(QS
w gM sgS

4.7. Lem ma: Let (9a)(x>i he 3 sequence of critical points o f saddle type for the 

sequence o f  functionals (E a  : L ^ ^ f O s - *  R J ^ j  . Then the sequence (9 a)0t>j 

converges in L ^ ® j  to a map q>: M -» N , <p(9M) c  S , which is a critical point for 

the energy functional E : L ^ ( Q S R • If the convergence takes place in C*(£)s f°r 

the homotopy classes defined in (1.1) and (1 .3), then there exists a  constant c > 0  

such that E(<p) -  lim Ea (cpa ) > c  .

Proof: As 0  < Ea '(9a ') ^  Ea (q>a ) if  a '  £  a  , it follows from the weak

compactness o f the ball in L*’̂ (£)s , (4.4) & (4.5) that passing to the limit a  -» 1 at a 

subsequence o f  ( tP a ) ^ !  there exists a map 9  e L ^ ( £ ) s with the property that 

E(<p) -  in f sup Ea (9a ) and being a critical point of saddle type to the energy 

E:L*^(£)S -» R . In the classes (1.3) the homomorphisms p takes the boundary 

components o f S to essential curves on S , hence we have that E(<p) > 0  . In the 

homotopy classes in (1 .1 ) assume that there exists a  constant k  > 0 , independent on 

a  , such that Ea (9a ) > k > 0  ; then passing to the limit we have E(<p)>0.

Claim: There exists a constant k  > 0  independent of a  such that Ea (9a ) > k 

V a  > 1 . From the regularity o f q>a  (proved in (5.47)) we can consider a curve 

p: I -* C*(Os with the following properties:

(i) The curve p satisfies condition H ,

(ii) P < i ) - 9 a .

(iii) Ea (p (t))S E a (9a) V t .

Assume diam(p(t),S) £  6S V t . If for each t we have [projs(p(t)(M)l p  in 

(^ (S .Z ) then we can define a  homotopy H:IxI -» S such that Hq(0  -  projs(p(t)(M))



34

and Hj(t) -  A , where A is a subspace of S such that (^ (A .Z ) *  Z . By 

continuity we can extend this homotopy for all t , how ever, the fact that ^ (A .Z )  *  Z 

leads to a contradiction because by the condition H  we have that [p(IxdM)] -  p  in 

t^CS.Z) . Therefore there exists tQ such that Iprojs(p(tQ))] -  [i or 

diam(p(t0),S) >

1 -  If [projsipitQXM)] -  \i  then Ea (p(t())) > c >  0  +  Ea (<pa ) > c .

2 -  Let diam(p(tg),S) > 8S . Consider xQ e  M such that

diam(p(tQ>,S) -  dist(p(tQ)(xa ),S) and let Br(x0 ) be a ball such that 

diam(p(t0)|Br(xa ) , S) > 0  . Therefore Ba (p (^ )) > Ea (P(t0)|Br(xa )> -  ca  > 0 

by (iii) Ea (q>a ) > ca  . However ca  -  ca (i>s) must to be greater than a constant 

c > 0 , independent on a  , otherwise we go back to the situation in (1) . If the 

convergence <Pa  -♦ 9  takes place in C*(Os then follows that E(q>) > c > 0 .

□
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CHAPTERS.

Regularity for the map* <pa  e  L 1 ,2o (0 *  , o  >  1 ,  which are critical 

points o f  the a -energy .

In the last chapter it was proved that for the homotopy classes of maps defined 

in (1.1), (1.2) and (1.3) there exists a non-trivial map <pe L*’̂ ( 0 S which is a critical 

point for the energy functional E : L1 ,2 (Q g -» IR . Now we are interested in proving 

the C1-differentiability o f q> ■ lim <pa  . According to theorem (2.3), to prove that 9 

is C 1 it is sufficient to estimate the norm M l 2»P(Qs is donc by estimating

kpa lL2 ,p for the sequence (9 a )a > l and passing to the lim it a-»l . How ever, it is 

not possible to obtain apriori bounds to the norm k p c tl^ .p  . so the convergence 

possibly does not take place in C*(Oi • In * is  chapter we are concerned with 

estimating ¡9 0 ^ 2 ,p for sequence of critical points (9 a )a > l  c  L1' (O s • 

The differentiability of the limit will be handled in the next chap ter.

5.0. Lemma: Let 9a  be a critical point of the a-energy  functional 

E ^ L 1 ,2a ( 0 s  -* R  • Then 9a  is a weak solution for the system o f P.D.E.

(5.1) -AM90 + (« -!)
mce((Vdipa .d9a )d<pJ N

l+ld(p, /
+ r (9  )(di|) -  0

where Aj^ -  Laplace-Beltrami operator on (M,y) .

Nr  -  Christoff el symbol induced on the vector bundle 9_ 1 (TN) by the 

Riemannian structure on (N Ji).
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Proof: Let V c  int M be an open set and A e

V . Consider a family of maps q>t -  exp^tA , then <pQ -  9  and 

more details about the proof see [14, pg. 14J).

The index a  will be deleted to simplify the notation

Ea «f>,) -  i  j  (1 + ld<ptl2)“ dM .

^ t . o - 4 J W > a- -  j ,

(5.2) - a j  a+ld<ptl2)“ - 1 <V3/atd<(>t,d(pt>lt_0 dM ,

where ^ ^ /d t  *s thc covar“int derivative induced on 

T*(MxR)® 9 “ ’ (TN) over MxR .

Now for X c  TM , we have

■ M V 0  ■ d<,,t ■ V3 /3 t
,T(MxR)

such that supp(A) c  

d<p,
■. I “  A . (For 
dt t- 0

« d 9 t,d9 t» l t_ odM -

the vector bundle
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Then (5.2) becomes

- e j  (1 + Id^l2)“ - 1 . <V Q )  4 9 ^ . 0  dM -

(5.3) -  a  |  (1 +  Idcpl2)“ ' 1 -<VA,d(p>dM -
M

.  a  J <V*((1 + ld<pt2)“ ' 1d<p), A > dM -  0
M

where V* : Ap(<p- 1 (TN)) -» AP_1 (9 ~*(TN)) is the codifferential operator 

(Ap(<p- 1 (TN)) -  C(ap T*M®9 - 1 (TN)) C(V) -  space of sections in the 

bundle V ) .

S o , 9  is a weak solution fo r the equation

(5.4) V*[(l + Id9l2)a_ 1 d9l -  0  .

For the case when p  € A 1 (9 ~^(TN)) , there exists an easy representation for 

the codifferential operator as V*p -  -  trace(Vp). S o , (5.4) becomes

(5.5) V*[(l + Idf^2)“ - ’dtp] -  -  trace (M(l + U<pl2)a " 1dt(iB -  0

By Sobolev's Embedding Theorem in (2.3), 9a  is of Holder class 

c l" l / a (0* c  C®(0 s . thus we can take the covariant derivative of the term 

(l-tid9p )a - 1d9 . After this computation the expression obtained for the eq. (5.5) is



(5.6) -  trace [ (a -1 )(l-»-kl<pl2)a _ 2 (Vd<p.d<p)d«p + (1 -MdKpl2 )® - 1 Vdcp] -  0

(a-l)(l+id<pl2)a - 2 tracel(Vd<p,d<p)d9 l +  (l-Mdtpl2)“ - 1  trace(Vd9 ) -  0 

but trace(Vd9 ) - -A M 9  + ^r(«p)(d<p,d<p) , therefore

38

-A m 9  + (ot-1)
traceI(Vd9 ,d9 )d9]  ̂ n  

l+IApI2
r(9 )(d9 ,d9) 0 .

□

5.7. Remark: (a) The trace in eq. (5.1) is the trace defined by the metric induced 

on each fibre of the tangent bundle TM over M .

5.8. Corollary: The local expression for the eq. (5.1) is  given by 

t k  ij

(5.9) S tV * ) ?  +
S tk ii u  a  v 

Y r V * i *  3k>P CVd<p)„ 
X.V ^ _________________ _

■J41.V

„ .  a  2 ot V  M_k <x V N _ a  .  ( ,  P
where (Vd«p)jj -  3jj<p - X  T ^  + X  r ^ a ^  3j«p .and

O y j -  1.2  d .v -  k T'P

Proof: (See I4),pgl4) Consider (A,(x‘)) (i -  1,2) a local chart of M and (B,(ua )) 

a local chart of N . We denote by y -  and Mr j k the components of the metric and

the Christoffel
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symbols o f  the Levi-Civita connection on M , and use the notation ha p and 

on N . L e t the Latin indices be few M and the Greek for N .

(5.10)

V ,<** j .  j  * 3 V  “  ■ , „ t. m  . 1 . 3  V “  • ,  „r'<TN) 3

v 3 / * i d ' i - - ? M r k h k  “ d

-1 TN

so that (5.10) becomes

* ° i  ^  i  A  $  Nr  h

- §  I A j -

tT a J
c , „ ,

3x‘ 3xJ
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By applying the expression above in (5.1) we get the eq. (5.9) □

In (5.0) we have information about the differential behaviour o f the critical point 

<pa  of the a-energy functional in int M . Meanwhile the boundary o f M is non­

empty and some behaviour is expected along the boundary 9M .

5.12. Proposition: Let <pa  be a critical point o f the a -energy  functional 

Ea :L*’̂ a ( 0 g ->R and consider V , a  C00 vector field tangent to S ,  then

h( - g ^ ( w ) . V(<pa (w)) ) - 0 ,  almost everywhere in 9M .

dq>a .n , n is the normal field along 9 M , induced by the orientation on M )

Proof: Consider v  as the extension of V in T(p L ^ a (Q s . 

From eq. (5.3) we have

J (1 + I d ^ l 2)“ '*  h(v,d<pa .n)dw -  J <V*((1 + U9al2 >a ' 1d9a ).v>dM -  o ,
9M M

but by (5.0) the second expression is zero. Therefore

f  (1 +ldq> I2)“ ' 1
dM

h(v,d<pa .n)dw -  0



and
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h(v,d<pa .n) -  0 a.e. □

Let i :S - * N  be the embedding o f S in N and i - ^(TN‘L) the pull back of

the normal vector bundle over S induced by the Riemannian structure on N . This 

normal bundle has a  natural inner product defined on each fibre coming from the inner 

product induced on each fibre o f TN by the Riemannian structure on N . Because of 

the embedding of S in N , there exist a neighbourhood V of S in N and a well 

defined projection projs : V -* S . Assume V ■ expsU , where U is a 

neighbourhood of section zero in i'^CTN1) , then we can define projs through the

Riemannian structure on i- *(TNX) and because i :S - » N  is  C°° we can also define 

a C00 reflection R : V -» V throughout S .

The same construction is used to extend M throughout its boundary. Let C 

be a C°° collar of 9M in M , i.e. C  -  dM x [0,5) for some small 6 > 0 ,  then define 

a C°° reflection r  : C-» r ( Q .

5.13. Definition. Using the notation above define the C00 surface 

M -  M u  r (Q  , where the identification is done by id  : 9M -» 9M . For the maps
9M

f c  C®(Ç)S define an extended continuous map f  : M -» N  by

f(x) -
f(x ) , x 6 M 

Rof*r \ x )  , X €  I<Q

In this way we define a C°° metric on M by
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( yOO . » M
(5.14) WO -  {  „

\ .Y » 0 -< d r  (x)) ,y(r (x)).(dr (x)), x € «

Wc call the attention that the reflection R:V -» R(V) is not an isometry in N . 

Lets define a C°° metric on V U R(V) by

{h(x> , x e  V 
/vs -I .  -1

h(x) •  (dR ) (x).h(x).dR (x)

If f  6 L 1 ,2<x( 0 s the extended f  belongs to the extended space o f  maps 

L U “ ( £ ) s - { f : M - > N l f €  L 1 '2“ ( 0 s) , ( . M « N

Now the boundary o f M is in int M and the study o f the regularity along the 

boundary becames sim pler.

The extended map $ a : M -* N has the property (w)^0 (3M) x 

for almost all w e  dM .

5.16. Proposition: A critical point for the extended functional Eq : L 1 ,2a (Q s -» R 

is a weak solution for the system of P.D.E. given by

(5.17) -  Aj^q> +  ( o - l ) " ^ (V £ 9 .d 9 jd 9 j+ N f( 9 ) ( d 9 4 9 ) . 0 

1 4- IdqjT

where -  Vj (M f ) ^ k , Nf  and M f  are the Levi-Civita connexions

associated with y  and h .
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Proof: The local expression o f i

(5.18) Id^(x)!2  - l ‘‘ V v  • x e  M

y8h§v9iip',3j<pV , « M O

Let $  be a critical point and consider A e  T q ^ ^ i O s  with support in C  ; 

then extending A to A by the same process as in (5 .13), we get A e  T ^  L *^a (£)s

with support in C U r (Q  . Assume A|¿)m  * 0  •

Defíne as in (5.0) $ t -  exp^j tA . In order to prove (5.17) some care must be 

taken to assure that the process o f extending 9  does not introduce extra terms along 

dM , i.e. there is no "comer". The way to see this is considering the border terms of 

both integrals in the expression (5.3).

By using the calculations in (5.0) and (5.12) we have

dE (<B) f  .HirH-o “ _ J <V*I(1+ld<pna'ld<p]. a>im+
M

j  (1 +ld<pt2)a ' 1 h(A,d<p.n)dw + J  (1 + ldift2)“ “1h(A,dR.d(p.n)dw -
3M dM

-  J  < v * [(l + r i(R .^ .r '* ) l2)a “ 1 d(R.<p.r_1)l, d R .A -d T 1>dM -
><C)

-  -  f  < V [ ( I  + ld|l2)a ' , d # l  A>dM -  0 ,  5 .  -  n .
M



The second and third integral are zero, so, as in (5.0), we get that $ a  is a weak 

solution for the system o f  P.D.E. defined in (5.17). □

Once the local behaviour of $ a  is equal to <pa  , the symbol will be 

deleted and from now on we will always be dealing with the extended situation.

According to the Sobolev Embedding Theorem in (2.3), to prove that the critical 

points <pa  e  L*'^a (C)s of the a -energy  functional E ^ L ^ t O s  -» R are in 

C tO *  ( a  > 1) we need to obtain an estimate for the norm t e l  ~ _ , p > 2 .
“  l a p (O s

In this way the first result obtained is called Money's Growth Condition for 

Ea  , which tells us about the local growth of a-energy .

5.19. Lemma: Let <pa  be a critical point of the a-en erg y  functional 

Ea : L 1 -2a © s ^ lR .  a  > 1 , ij^j = injectivity radius of M and consider B^Xq) a 

small ball with center at Xq e  int M and radius r  < . Then there exist strictly

positive constants Cq(ol) and y(a) > 0 such that

f  ( 1 +  Id ^ l2)“  dM < C0( a ) r * a )  .

w

Proof: Let t  be a C00 real valued function with support in B ^ xq) ,

identically 1 in Bf(XQ> and IVxl < 1 / r  in B ^ X q) .

$  = J  ffidM  (mean-value) and A : M -» Rk
B2 / Br
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A -  (<pa  -  ^ . t 2 , then dA is a section in T*M®<p- *(TRk) .

From eq. (5.3) we have

(5.20) J (l+kkpl2)“ -  1<VA,d9 >dM -  0 (delete the index a )  ,
M

where VA is a section in the vector bundle T*M®<p~*(TN) . In local coordinates

(5.21) . <VA4<P> -  / V ( V A ) [ ,  3vp ) . ... 3V -  - L .  .

Now consider the section in T*M®<p- ^(TN) given by VA(<p) -  P(<p).dA(<p) , where 

P is defined as in Chapter 2 . So, (5.21) becomes

<V A ,dq» -  Y,1VhijPii{ A y  +  2i«p-<w'atlT }3vq>i, i.e.

I  (1 +ldq>l2)“ - 1 YH'Jh P ,{T23 o '  + 2 t« p -?)t3 t>a q>> dM  -  0 .
»2r<V

This implies

(5.22) J (l+ td ip ft '^ 'ld ililV d M  S c ,  J (l-dd<pl2)a “ 1M l<p-<pl ld<pl Idd dM +
®2r 82,
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. + c j  (14*J<fl2)“ ‘ 1ki<pftp-?h2 <iM, c , ,  C2 are constants depending 
Bar

only on y,h and P .

Because all functions y ^ \  h-j and P-^, for all p,V -  1,2 and i j , /  -  1,..., k  , are C°° 

and bounded above and below we can consider the norms in eq. (S.22) as the norm in

Since 9  is uniformly continuous in B^Xq) (r -  r(a)) we can take r  in such 

1a way that kp(x) -  $(x)l < - —  for all x 6 B ^ X q) , therefore

J (l+kl9l2)a'1ld9l2T2dMSc3J (1-Md9l2)a kp-fl ld<pl Idtl dM
B2r  *2r

by using the inequality ab £  >^-+ 8b^ , 8 -  2c^

J  (l+W<pt2 )a _ 1ld(pl2 't2dM s  1 1  <l-Md<pl2 )<x_lx21d<pl2dM +
B j ,  B2,

+ c4|  (l+«<pl2 )a “ 1 ld'd2tp-$l2dM
»2,

then

J  (M d*l2)“ ‘ 1 ld»tl T2d M S c 4 J  (l+)d<pl2)a ~1 ldtt2kp-$l2dM s
B2,  »2,

(5.23)
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s c 4 j  (1+kfcpl2 )“ ' 1
»2 , r

dM 

o /o - l  . aB b 1 CX-1 ,
by using Young's inequality a.b £  a / a _y  + —  — + —  -  1 •

The left-hand side of ineq. (5.23) becomes bounded by

(5.24) S c . f  (l+(dtpl2)“ dM + c5 J  ̂^  dM
B j/B ,  Bj / B ,  r

Applying the Poincart inequality: J kpl^a dx £  C .r ^ a  J ld(pi^a dx , V tp i
¡ V B,  Bj / b ,

Llt2o (B jp .

the ineq. (5.24) becomes bounded by

(5.25) S c 6 |  (1 + Idipt2)“  d M . i.e.
»2/ * ,

(5.26) f  ( l+ ld q f t ^ 'l d tp P d M S C g l  (l+khpl2)“  dM
B j, Bj/ b ,

.J (l+ldtpl2)“  

w

Define <I>(s) dM .
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(5.27) J (l+W<pl2)a dM -  |  (l+4d<pl2 )a ' 1ki<pl2d M +  j ’(l+id<pi2',a " 1dM

by (5.26) and (5.27).

(5.28) |  ( W d ^ d M S C i ,  J (l+ld<pl2)a dM +  J ( W d ^ f t^ 'd M
B, B,

1  n - 1  2
j (l+(d<p(2)a - 1 dM £  ( J  dM )“ ( j  (l+td«pl2)“ ) °  £ c.r“ t<t>(r)|! , if  a  < 2 .  
B, Br Br

The inequality above implies that

1  1
dKr) £  c6(dK 2r)-0(r)) +  c .ra [«Kr)]i  £  c6(<B(2r)-<I>(r)) + c ? r a

because <D(r)< E (<p)< oo and a < 2

0 ( 0  ^  <I>(2r) + Cy r a  , dividing by

(5.29) ^ ^ ■ + c 1 y a  T . where and
rT (2r)7  H c i

27  -  1 ■> 7  > 0 . defining V -  ii27  and y(a) -  S^IL  .
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Then ineq. (5.29) implies that

sup (y (s ) )£ v  sup (y(s)) +  v  sup (yisW + G ji-01 
0<s<r 0<s<r r<s<2 r

but

sup ( v ( s ) ) -  sup f ( l+ W 2) _d M S _ 2 ^ . < k , k a constant. 
r<s<2r  r<s<2r  s“  r

Therefore sup (v (s ) )S — - . hcncc 
0<s<r 1_v

J ( ^ I d ^ d M i C ^ ,  and Y><>-
W

It is worth mentioning we are working with the extended situation , therefore

the estimate which is interesting is that of the norm in

l ^ ,P(C), -  {f u L2’p(£), I suppiO c  int M) .

The next proposition is a Sobolev type theorem where i^ j is the injectivity

radius of M .
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1 25.30. Proposition: The Sobolev space L  Q’ (Os is continuously embedded in

L ^ (0 S and for all f €  L g ^ O g  with supp(f) c  V , V an open set in in tM  and 

diam(V) < iM , we get

(5.31) J l f ^ d M s J V d M  J ld f l2 dM .
V V V

Proof: The proof is carried in  a  simpler situation because M admits a local

chart (U,x') with x* e  c ”  and x(V) c  U .

Consider Q -  ((Xj,x2) e  u  I a( S X( S b j .. i -  1.2) and define

g(Xj,X2) -  | ffXjPCj) I

X‘ 2 ,2  2
g4(Xj.X2 ) -  g2(x) j!2).g2<x1,x2) -  J  (l,x2)dt J  - ^ - ( x , j ) d t  

*1 *2

”1 2 »2 2

J  lg(x1.x2)l4dxIdx2 -  J  I J  ^ - ( t . x 2)dt. J  (x ,.s)ds I d x jdx j S 
Q <2*1 »2

X1 2 *2 2
£  J [l f  (U^Vit 11J -^ -(X j,s )d s  I ]dxjdx2 £

Q a, *2

80 2 80 _ 25 J[ |  J l^ -<xrs>k,s]dxidj'2s
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* j  2

s  5 1  l% -« -*2 W 'd *2  J  i  s

S [ f  I d g ^ P  S J lgl2dM J Idgl2 dM .
Q Q Q

The result follows because Igj -  Ifl, Idgl -  Idfl and U can be approximated by 

small squares. D

In what follows we will be searching for estimates of the norm kp JL  22  r ,
M) (Vs

12
where <pa  is the critical point of a-energy. Since <pa  e  Lq (C)s *1 will be sufficient 

to estimate IVdtpH 7 . In local coordinates the expression obtained in (5.11)

for Vd9  is

(5.32) (Vd<p)“  -  3^*“  -  r i  3k<pa  + 3,9^ 3j<PP •

Because Vd<p is a  section in the vector bundle T*M®T*M®<p (TN) over 

M , the norm IVdtpl2  can be written in local coordinates as (notation -  9 /d x j , 

3.j .  32 /3 x j3xj )

(5.33) ivd.pl2 -  i>a priV t3ij<p“3Ik9^ -  +

-  + ha p TU f̂iP^5s^ »T1̂ i,pY ĵ<,,8^ ,̂,>ê Pq,,’
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By using the inequalities 

(5 .34) a3 S a 2 + a 4

1 1  1 1
(5.35) a b £ e V  + — bz

e

in (5.33), and the fact that M and N  are compact Riemannian manifolds we have

(5.36) IVdtpl2  £  c 1 ld2<pl2  +  c2ld<pl2  +  c-jldtpl4 , where d2q> -  Ojjtp01) 

and dtp -  ( 9 ^ ° ) ,  i.e. assuming <p e  L^’2(X(£)s and supp(tp) c  V we have

(5.37)

by (5.31) 

Then

(5.38)

ld<p« 4 £  J Idcpl2dM. J I d V d M .
H )(W s V  V

^ ( o , s  (c‘ + + E<^ '

L o (O s '

5.39. -  Proposition. If IA. .cpi 1% < k(q>), where k(q>) > 0  depends on <p,
4 < 0 S

then there exists constants kj(<p) > 0  and d > 0  such that
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ld2<pl|2 ,  £  k , (<p) + d.Hd<|i| 2 ,  (Am  -  Laplacc-Bcltrami operator).
Li(O s 4 ® ,

Proof: Let V c  M be a open set contained in a local chart , then

(AM<p)jj ■ 9jj9a  -  r j j  3k<pa  locally . As AM<p is a section in <p_ 1 (TN) we 

have

■ hotfS T i V i j A /  +

y
Therefore, by applying (5.35) to the inequality lA ^tp l 2 <k(q>) we get

4 ® s

llha p YiiY,p3lj>(>“ 3jp<P(1l 2 S  k(<p) +  e2|d2<pl2 +  ( l / e ) 2ldtpl2  + cldtpll2

However, the left hand side o f inequality above has a lower bound given by the 

condition imposed on the metric h (see 1.0) . So , taking v -  (va ) -  (y^3jj9a ) it 

follows that there exists a constant k  > 0 such that

k.*Yij3ij1>a l2  £  k«p) + e2ld2<pl2  + ( l / e ) 2fld<pl2  +  c.ldcpl2

The metric y  has a lower bound c j > 0 because it is a Riemannian metric and 

M is compact. Thus .taking e > 0  sufficiently small it follows that
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ld2<p#2 2 Sk,(<|>) +d.lld<p«2 j
lJ(Os  1 L0© s  D

(5.40) Proposition: Let <Pa  € L 1,2a( 0 s . o t > l ,  be a critical point for the a -  

energy functional E0  : L 1,2a( 0 s "* R . then there exists a constant k such that in a 

sufficiently small ball Bf(Xg) c  M ( r  -  r ( a ) )

Bi; V dM<̂ w
Proof: (See [41,3.2) From (5.17) we know that cp0  is a  weak solution for the

equation

traceI(Vd(pa .titpa )d<pa l „

1 +
+  " r (®  )(do ,d<p ) - 0 .

Now, consider T : B^CXq) -* B  a < f°  cut-off function such that X - 1 in  

B^Xq) , then (om it a )

A m (t<P) - xAM tp +  2dtp.dt + AM t.<p, and (delete the index a )

AM(t» ) -2 d * d t-A Mt .9  +  ( a - l ) t .  rr(<pKd<p,d<p) -  0 .
M 1+ldtpT

Therefore
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(5.41) IA(t<p)l <  Cjldcpl +  c2M + c3(a-l)tlV d((J + c ^ f i 2 . and

(5.42) lAixip)!2 < c,ld<|>l2+c2l>pl24c3(a -l)'t2IVd<p(24c4'C2ld<|il4+ 

k1ld(pl.l(|*fk2Tld(pl.lVd<pt+k3'dd(|il3+k4(a-l)d(pUVd<|*tk5tl((>l.ld(pl2+

+ k6x2IVd<pl.ld((il2.

B y using the inequalities (5.34) and (5.35), the right-hand side of ineq (5.42) 

becomes:

(5.43) lA(x<p)l2 < c 2M 2 +  c1ld<pl2 +  c3(a -l)x 2lVd<pl2 +  c4ld<pl4 .

So. integrating on M . applying (5.38), (5.31) and the Poincar6 inequality we get

s  k»E« W +k2<a- ,* V L  3 ® .

+ ̂ ^ )U2<1(0.+ k ^ L * . 2® .

From (5.39) if  we consider k(<p) -  + 2(Q s +

k ^ l ^ O .

(also using d2 (x<p) -  xd2q> +  2dx.d«p + d2x.tp ) , we get 

[1 -  ( a - l)k 2 -

Given c > 0 .  assuming C0(a ) .r^ a ^ < e  in (5.19) and considering a ~ l  we get 

(5 .44)
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5.45. -  Remark: It will be a major problem to obtain a uniform bound to the energy 

of q>a  in (5.44) because it is not clear that the sequences (C0(a ))a > i  and 

(y(a))a> i are bounded above .

5.46. Corollary: If a  >  1 the critical point q>a  of the a-energy functional

for all p > 2 .

Proof: Let (U,x) and (V,X) be C°° local charts , where U c M , V c N

and <p:x(U) -* X(V) is the local m ap . Define the curve o:I -» x(U) by o ( t) -  (y -  x)t + 

+  x ,x,y € x(U) c  R2, and let v:I -* x(U) be a C°°-vector field such that V ^ v  -  0. 

Finally define the curve c :I -» f 4(THn) by c(t) -  d(<p«oXt).v(t), then we have

c'(t) -  [V0 xl«poo)Kt).v(t) -  [ (Va »d<p)(t).(y -  x) ].v(t)

Ea :L 1 ,2a (0 s R has a  bounded norm kpa l j p  for all p > 2 , i.e. <Pa  e  L*’P(0 s

1

d<p(y).v(l) -  J[(V0 ri<p)(t).(y - x)Lv(t) d t , andd«p(y).v(l)

hence ld<p(y)|P £  K IVd(pl^2 .diam(M)^

and finally integrating on y  we have
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Iffil . S K.diam(M)P.vol(M).l<pl|P2 ,
C ® ,  C ® .  0

5.47. Theorem: Let (pa  be a critical point o f the a-energy functional 

Ea  : L 1 ,2a (0s-»  R - then q>a  is a C1-differentiable map.

Proof : (See [4],2.3)Consider B f l t f  a small ball and t : ■* R a cut-off

function as in (5.40). From inequality (5.41) and Minkowski's inequality

(5.48) lu + v«Lp < lulLp + M Lp .

It follows that there exist constants c -> 0  (i -  1,...,3) such that

(5.49) lA(t9a lLp < c i kPa lL l,P + c2( a - 1 )lk,,o lL2.P + *

Let c(p) be the norm of A- * (see [41,2.3) as a map from Lq  -* ( L ^  n  Lq’2) 

on the disk.

Then from (5.43) we get

c(pr'H<|>a lL2,p < c i '» 0 lLl,p  +  c 2 ( a - l ) |<PalL2,p + C j l i p ^ U p  

[c(p) ' 1 -  c2(o -l)» n p a lL2,p < <;1 l<('a lL l,p  + c3l9a lL l,2 p  •

So, for a  ~  1 and by (5.44) & (5.46) we have
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|<p |  2  p  < 00 , i.e. <Pa  £ L q’p ( 0 s • Therefore by Sobolev 's Embedding
“ Lo’

Theorem L^,p© s c , c j © s , hence (pa  is C 1 -differentiable.

5.50. Corollary: If S c N  is a C°° surface embedded in N  then the curve 

<pa (3M) c  S is a C 1 -differentiable curve.

Proof: This is a trivial consequence of (5.*47) once the boundary of M lies in

int(M ). The class o f differentiability of embedding i:S -»N appears in the method of 

extension through the reflection R:V -» R(V) defined in (5.13) and decides which 

class of differentiability we have along the boundary.

□
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CHAPTER 6 .

Existence o f a harmonic m ap, p roof o f (1.9).

In the last section the main result was the C* -differentiability o f  the critical 

points (■Pa )a > 1  <= L 1,2© s of functionals ( Ea : L1 ,2a ( 0 s  ->IR )a > 1  • The bounds 

for the norm lcpa l 2 p ^  dependent on a  because the bounds to the norm 

kpa ll 2,2 were obtained by using sufficiently small balls with radius r  -  r(a ) 

depending on the constants from lemma (5.19), therefore they are not apriori bounds .

So, when we pass to the limit ( a  -» 1) may be the bound to the norm kp( 

tending to infinity
<* l 2-p  '

.6.0. P roposition: If for a given e  > 0  there exists a finite cover o f M  by balls

Bnix.) (with centre  in x- and radius r. , i -  1 . . . .J ) such that sup J Id© I2  < e ,  
1 1  1 1 is f lB ^ ii )  a

then as a  -» 1 there exists a subsequence o f (<Pa )o o l  such * a t  <pa ^ -» q> in

c ' ( 0 , .

Proof: W ith  this apriori bound on the energy, we can see from  the main

estimates in (5.44) that there exists a constant k > 0  , independent o f a  , such that 

kpa lL2,2 < * • hence (according to (5.46) and as in (5.47) ) kpa l^ i  .p also have a 

bound independent o f  a  for all p > 0  and we get that there exists a constant c > 0 , 

independent o f a  , such that l<|>a lL2,p < c • Hence it follows after passing to  the limit 

that we have M l 2 , p  < c  and thus q> € C*(0 s •

□



60

The assumption in (6.0) is too strong because it is known from 1211 

(Eells-W ood) that does not exist any harmonic maps in C*(T^,S^) of degree 1 . 

However , the assumption in (6.0) turns out to be true outside of a finite number of 

small balls in M .

In this section it is worth considering the extended situation as in (5.13). Here 

the symbol " will still be omitted unless it is necessary.

6.1. Proposition: Given a fixed e  > 0  , there exists 0Cq such that for 

1 < a  < <Xq there are only a fmite num ber of small balls on M where

J (1 +  I d f j V *  dM >  e if  a  < a Q.
Ball

Proof: (See [41,4.3)Consider ( B . ) ? ,  a fmite cover o f M with the property

that anypoint x e  M belongs to at m ost n balls. Because the energy of maps in 

L*’̂ (0 s *s f"m‘tc follows that for all 1 < a  < <Xq

£  J <1 + I d * / ) “  dM  < n .K . 6 ^ ( 9^ )  < K  .
Bi

Therefore the number of balls Bj such that E(<pa ljj.) >  6 ( a  < <Xq )  is bounded by

n .K /e .
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6.2. Proposition: Given a sequence of critical points (<Pct)a > i  . therc cxists 8 

subsequence of (<Pa )a > i  a°d a finite subset o f points {xj,...,x^} c  M such that the 

subsequence converges in C ^ (M \{ X j,...^ ,N )s to a harmonic map 

<p: M \{xj,...,x^}-»N  as a->  1 .

Proof: (See [4],4.4)Consider a finite cover o f  M given by the balls B(x.,Tj)

(l£ i£p) such that B ix jjj) H -  0  if i J  — 1 ,...^ . If we take for each i -

a small ball B(x.,8(a)) c  B(xi^i) such that lim 6(a )  = 0  as a -»  1 , then from (6.1) 

given e  > 0  we can assume that sup E(q>a l m \(JB (x- 5 ))< e • Therefore passing to the

limit a -» l we get a harmonic map in C^(M\(xj,...,x^},N)s as proved in (6.0).

□

The next lemma (first proved in [41) is fundamental for the purpose of extending 

the harmonic map obtained in (6.2) to all M .

6.3 Lemma: Let <p : D^\{p) -» N  be a harmonic map with finite energy, then <p 

extends to a harmonic map <I>: -» N .

Proof: (See [41,3.6) In Appendix 1.

6.4. Theorem  ([41,4.6): If a sequence o f  critical points admits a

subsequence converging in C^(M\{Xj,...^t^}, N)s but does not admit any 

subsequence converging in N)s . as a  -» 1 , then there exists a
2

non-trivial branched minimal immersion $: S -» N .

Define pa max ld<pa (x)l. From the compactness o f M there existsProof:
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x„  e  M  such that u  ■ ldtp^(x_)l and x „  -»x, as a  -> 1 . a  ci To  a ' a  l

Let V(xa ^a ) -  expx^ B (0 ^a ) be a neighbourhood of xa  , where B(Oja ) 

is a  ball in T ^ M  with centre at the origin and radius ra  < ij^  • then, we can define

V B ( ° ’> V a > - B<0-ra> *

V x> -» * o x

and the sequence o f maps <pa  : B(0.Ha ra ) -»N  by

♦ a (x> -  V ex',xa 'T a <x> * *o(ex«,x0 ®li lx »  •

This new sequence has the following properties:

(6.5) ld$0 (x)l S I  for all . i  B(0,na ro ) .

Applying the chain rule we have d$0 (x) -  (p0 )'ld(pa odexpx^(x) , hence

(6.6.)

(6.7)

once it is observed that M fa | - t * a Jd * o l  (»«e proof of n u n  7.15)

Id4>a (0 )l-  1 .

6  is a weak solution of the PDE given by

AM * a  + <“ - ‘ > --------r
trace((Vdm ,dm )dA )

IUrn. I2
+  T («  Xd$a .d(!>„) -  0  .(«■»)
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(6.9) J (1 +  ld$ l2)<XdM -  ¿ <1_a) J  0*„ + ldc|> i V W .
B(04ia ro) “  a  B(0, „ )

We can assume as a  -» 1 that the sequence (ra ) tends to 0 and the sequence 

(Ha ra )  tends to infinity . Then it follows from 0  < E(<pa ) < E(<P )  for a  < a '  and

1 2  2(6.5) , that the sequence (#a ) admits a  subsequence converging to $  e L ’ (R ,N ), 

since B(0,na ra ) -» R2  as a -*  1 . The metric Ya  in T x M is induced by the metric

Y on M , in fact yo 0 0  -  Y(*a ) for aU x € T ^ M  . Hence the pair (B(0,^a ra ), 

Ya  -  Y(*0 )) converges to (R2  , Y -  7(*i)) . where Y is equivalent (as a quadratic 
2form) to the Euclidean metric on R  .

2
So we can claim the following about $  : R -» N  :

$  : R2  -» N  is non-trivial by (6.6).

$  is harmonic by (6.8).

E($) is finite because

E($> + E(<p(M-{Xj» S ^  {E« 1a lB(0,na ra )) +  E(q>a IM-B(xa .ra ))} S

* 5“  ^ « 1" >E(’ a lB ( x ^ 0 ))  +  E<'Pa M - B( W > s  ^ E< V S E a<1>a)- 

2(1-a)
( 2  > a  > 1 *  - » O a s o - » 1 )

However , R 2  with the Euclidean metric is conformally equivalent to the

(6.10)
(6.11)

( 6.12)
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standard S ^ ip }  (p is the north pole) through the stereographic projection. Applying
2(6.11), (6.12) and (6.3) we get a non-trivial harmonic map 9  : S -♦ N  , which turns 

out to be a branched minimal immersion from the standard into N .

□

6.13. Theorem: Let (V ^ q̂ j  be a  sequence o f critical points of the functionals

( Ea  : L 1 ,2a ( 0 s -* IR )a > i  • Then either <pa  -» 9  in C ^ O s . or there exists a non- 
2

trivial harmonic map 9 : S -»N .

6.14. Remark: Describing the latest result with respect to <p instead of $  (the 

extended map according to (5.13) ), the sphere which blew up at a point Xj e  3M 

turns out to be a disk when restricted to M only.

6.15. Theorem: If jc2 (N) ■ 0 then the sequence (9a )a> l of critical points given 

by (4.2) admits a subsequence which converges in C*(©s to a non-trivial harmonic 

map <p : M -» N  satisfying (1 .5), (1.7) and (1.8) and minimizing the energy for each 

homotopy class defined in (1 .2) .

P roof: (See [41^.1) As in (6.4) consider the sequence (xa ) c  M such that

k h P a iO l -  *«P • lim l i» a («0 ) l - «  and x -*Xj in M .
“  “  xeM  ar»l

Let B(Xj^r) be a small disk with center in Xj , such that Xj is the only point where 

the continuity o f the derivative of the m ap 9  -  lim 9 a  fails in B(Xj,2r). Let q  be a 

C00 function with supp (q )c  B(X j^r) and q  ■ 1 in B(Xj j )  . In (6.2) it was 

proved that there exists a harmonic map 9  : B(Xj ,2t)\{ x j} -* N with finite energy. 

Then by (6.3) there exists an extension <D : B(Xj,2r) -» N and it is harmonic . Define a
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(6.16) V  -  cxP<pa (x) h ( M .e x p ^ (x)«KD] ■

That means
CKx) , x e  B(x j,r)

(6.17) 7 a «  *  {
<Pa (x ) , x  6 B(xr 2r)

Therefore as a -»  1 we have lim y a  -  <X>. By (6.17) Va  can be extended to 

€ c ' i O s  • T*ie assumption that XjiN) -  0 implies that <pa  and y o  are in the 

same homotopy class because the induced homomorphism between the fundamental 

groups are the same. However, <pa  is a map which minimizes energy in its class, so

(6.18) E (m 1 ) € E (w 1 ) V o o l , also 
a ^ a 'B i x j ^ r /  a ^ a ' B(x l^ r);

(6.19) lim E (V 1 ) = E(<W ) . 
t)Ul a ( ¥ “ ^ x , » '  W B(x,,2r)'

Therefore,

(6.20) n 5 E « ( 9 o lB (iii2 r)) S E ( ^ B(I1 ̂  S O r *  .

So, giving e > 0 we choose r  such that (2r)^x K  M < e  and we obtain an apriori 

estimate for the a-energy  restricted to B(Xj,2r), i.e.



sup J (1 + ld<pa r )  dM  < c 
B ( x , »

By (6.0) <po -+ 9  in C*(B(Xj,2r),N)s .hence <p-G>. By the same process , we can 

prove the same result for the others points where the C* convergence fa ils . Therefore

9 a -»<P C 1© ,  .

a

For the homotopy classes defined in (1.1) and (1.3) q>a  is a saddle point for 

the a-energy  , so it is no longer a minimum in its homotopy class and therefore more 

care is necessary in using the inequality (6.18). In this case we need the assumption 

that the set -  { <p:S2  -* (N,h) I <p is harmonic and non-trivial map } -  0

As in the last theorem, consider the sequence of maps in C*(C)S given by 

<Pa (x) . * 6 MXB^iXj)

(6 .2 1 ) v a (x) -  {

CXP<Pa(x)lTl(lxI) CXP 9a(x) • W l • x € B2r(xl )

6.22. I#m m «! Consider <pa  e  C *(0s * critical point o f saddle type for the 

a -en e rg y  functional and y a  6 C ^ (0 s  88 *n (6.21) . Assuming * 0 ,  there exists 

8 >  0  sufficiently small such that i f  r  < 8 in (6.2 1 ) then

(6.23) Ea (90 l B (xi^ ^ E a (y o l B(x1>r)) .

Proof: Let Xj 6 M be a point of discontinuity for the derivative o f map



67

9  -  lim  <pa  , a  -♦ 1 , and B(Xj,S) be a small ball in M with center at Xj and radius 

8 > 0 .  From the fact that 9a  6 ( ” (Os there exists e -  e (a ,8) > 0 such that

(6.24) C«x,8) -  Ea (9 a lB(xi g)) < c (a ,6 ) .

Define da  -  sup dist (9a (x), <IKy)). Then there exists a constant k(o) > 0

x e 9 a (B8)
ye<I>(B5 )

depending also on the metric of N , such that k(a).d (a) > 0 and assuming 8 > 0 

sufficiently small we get

(6.25) k<a>da < B a (V0 lB (x i8 )> •

From theorem 6.4 if  Xj is a point where the C* convergence fails for 

9  -  lim  9 a  then

(6.26) lim C(a,S) -  Area($,N) , where -* N  is harmonic 
o-»l
8-»0

(on 9  is harmonic ♦ ♦  9  is a minimal branched immersion).

However, the hypothesis that -  0  implies

(6.27) Area ($,N) -  0 .

Therefore e(a ,8) -»0  as a -»  1 and 8 -* 0 .

Then for a  ~  1 and 8 ~  0  we have e(a,S) $  k(a).da  and therefore

E“ <9a lB(x1 ,S)) S  E« (V=IB(x1 .5)) '
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6.28. Theorem: If Sh  - 0  then the sequence o f maps (<Pa )a> l JPvcn by

(4.5) admits a subsequence which converges in C*(Os 10 a non-trivial map 

q>: M -» N in each homotopy c lasses defined in (1.1) and (1.3). The limit is a critical 

point of saddle type for the energy functional E: L ^ ( O g - » R  , therefore it does 

satisfy (1.5),(1 .7) and (1.8).

Proof: As in the proof o f  (6.15) define the m ap y a  € C*(£)s .

Then Ya  in C*(£)s  and by (6.24) it follows that

Ea <<Pa lB(x1,5)) <  E« (V“ IB(x i,5))

Because ¥ „ - « >  in c ' f f i ,  w e have Um g)) -  E C ® ^  8))

Therefore

E 5 - E ( <p l  i£E(<W ) £ jc62KHI? .
d -1  a a B ( x ,8/  B (x |,5 )  1.“

By choosing e  > 0  sufficiently sm all and 8 -  | ^ | ---- we get

sup J ( l  +  ldtpa l2)a d M < e  .
B(xj,6)

Then, by (6.0) it follows that <pa  -» in C*(C)S • D
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<p (B (x , r))

<IKB(x ,2r))

Fig 6.1 : ^ ( N )  -  0

Fig 6.2 : iCjiN) *  0
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CHAPTER 7.

Existence o f  a  minimal surface, proof o f  (1 .11).

The classical origin o f the subject o f minimal surface com es from the study of 

surfaces in a Riemannian manifold whose area is a  minimum between all surfaces in a 

same homotopy class . It is natural to extend this notion defining minimal surfaces as 

critical points to the functional area.

7.0. D efin ition: A minimal surface (M.y) in (N,h) is a  m ap 9  € (?(C)S such 

that the following conditions are satisfied:

(7.1*) Am 9  + r ( 9 )(d9 , d9) -  0

(7.1b) There exist a Riemannian metric Y on M and a strictly positive

function X : M -* R such that 

9*h -  X y•

The class (5  is determined by the class of differentiability of the boundary 

conditions, since solutions to (7.1a) are C°° in int(M).

In order to define the area of a map in the general context of Riemannian 

Geometry i t  is convenient for our purpose to follow the ideas in [15] for the case in 

dimension 2 .

Starting with the surface M and any smooth symmetric 2-covariant tensor 

field a  on M  , we fix a point 9  e  M and consider the eigenvalues of a  relative to
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the metric tensor y  o f M ; i.e. the n real roots of the equation

(7.2) dedX.7(p) -  a(p)] -  0 .

In the case dim M  -  2 , which we are interested in, the equation (7.2) can be 

written as:

C7.3) ^2 + trace(a).X + ̂ ^ - 0 , m u x ( o ) - 2 : / Vatlv, I*" -  (Y'1) ^  •

Because a (y)  is a symmetric matrix there exist two real solutions, counted 

with multiplicity, for the equation (7.2) and therefore

<7-4> S  $.trace(a).

Now, for a map f : (M,y) -> (N,h) o f class L 1,2  consider the symmetric non­

degenerate 2 -covariant tensor field f*h .

7 .5 . Definition: Given a map f  :(M,y) -» (N,h) of class L 1 *2  , the area o f  f  is 

defined as:

(7.6)
dM .

7 .7  -  Remark: For faster computation an equivalent definition for the area is given 

by:
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A(f> .  |  - J EG -F2 d M , where E -  f* h (e ,,e ,) , G -  f*h(e2 ,e2) ,
M

F ■ f*h(Cj,e2> and Cj .Cj  arc vector fields on  M such that for all p e  M the tangent 

vector space TpM is spanned by (ej(p), e2 (p)) .

7.8 -  Definition: A map 9  : (M,y) •* (N,h) is said to be conformal if there exists 

a strictly positive function f : M -♦ R such that

9*h -  X y , i.e. h(9 (x))(d9 x., d9x .) -  X(x)y(x)(.,.) for all x € M .

7.9 -  Remark: The map 9  is said to be branched conformal if there exists a point 

p  6 M such that X(p) -  0  ; then p is a critical point o f 9  and is called a branched 

point.

The relation between the energy and the area is given by the following result 

from [IS] :

7.10 -  Proposition: Let M be a surface, then for any f  e  L * ^ (0 S we have 

A(f) £  E(f) and the equality holds if and only i f  f  is a conformal map.

Proof: Consider a  -  f*h in (7.3), then the inequality 

ail) A(f) £  E(f)

comes out from (7.4).

Assume A(f) -  E (f). This is equivalent to:
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(7.12)
dct(f*h)
det(y) ■]̂  -  J trace(f*h).

By fixing a point p € M and looking at the equation (7.3) at p together with 

equality (7.12) we have that:

From the diagonalization process described by (7.2) , we have that 

f*h(p) -  X(p).y(p) . From the C°° character o f Y and X : M -* R  defined by (7.14), 

it follows that f*h -  Xy on M and therefore f  is conformal.

Hence the equality (7.12) is satisfied. D

As a consequence of proposition (7.10), the fundamental idea in this section is 

to replace the functional area by the functional energy in order to obtain minimal 

surfaces. However, that will succeed only if  we can obtain a  conformal map as a 

critical point for the energy.

The converse follows by assuming f  is conformal, i.e. f*h  -  Xy then

det(f*h) -  X2  det(y) and trace(f*h) -  2X .

The next proposition from [151 is one of the fundamental facts about the
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energy for our purpose o f proving existence o f minimal surfaces.

7.15 -  Proposition: Let <p be any map in L**^(£)g . Consider M  a surface and 

x : (M,Yj ) -* a conformal diffeomorphism where Yj and Y2  arc Riemannian

metrics on M . Then E(<pox) -  E(<p).

Proof: According to the definition of energy, w e get

EOpox)- j /e jd fT K x V iM j N

E «P )«  j / e 2(<(.)(x')dM2  (M.T,) (M,Y2)

where ejitpXx1)  -  1^ ' ' ( x > ij(<p(x'))3 (I<pi(x')avq>i(x') and

e ,« « X x )  -  • ^ V )h ij(q>.T(x))ai l (<pi .t)(x)Sv(9i»xXx)

but ej(tp«x)(x) -  l^‘v(x).3llxP(x).avx, '(x).hij«p.x(x)).dpV(x(x)).311V (x (x )) .

Note that (dx.Tj ‘ .(dx),)(nl -  l f va p xP.avx,>.

The hypothesis that x is conformal implies that A-Yj  -  x*Y2  » * c -

Wx).Y,(x) -  (dx)‘(x) r 2(x(x)Xdx)(x)*Y-1 (x(x)) -  X‘ 1 (x).(dxXx)Y1 '(x).(dx)'(x).
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Therefore e,((|»x)(x) -  X(t(x)).'l^'v(t(x)).hy(q»t(x)).ap VWJ<)) ^< |)i(t(x)) -

-  i« x ') .^ v(x%hij(1|)(x')).3pV (x ’).aT1V(>‘') ■

Hence ej(<p©x)(x) -  X.ixOejitpX*') • The elements of area dM j and dM2  are related 

by dM j -  ydetldx 'l d N ^ , but by the conformality detl(dx)- )̂ -  . Thus

E «pox)-E «p). a

At this stage the concept o f critical point for the energy will be extended by 

considering variations o f the critical map in the target and variations o f  the conformal 

structure on M , i.e. variations on different Riemannian metrics such that there is no 

conformal diffeomorphism between them . The right description o f this discussion is 

made by introducing the moduli space o f conformal structures associated to a surface 

M .

In order to give an accurate definition of the moduli space o f conformal 

structures we need some basic definitions. From the classification o f surfaces we 

known that the genus g classifies topologically a compact oriented surface without 

boundary . From now on g means the genus o f M .

7.16 -  Definition: Consider M a closed surface with genus g .

(i) Consider the C°° vector bundle Jt:(T*M#T*M)®R -* M ("«"-symetric 

product) . Define the space of C00 symmetric and positive definite bilinear forms on 

M as the space
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B(g) -  {s:M -» (T*M#T*M)®R I JCos -  identity, s is C00 and s(pKv,v) > 0  for all 

p eM  and v eT p M } .

(ii) Define the following equivalence relation in ©(g):

Given Yj and Y2  “* ® (g) wc say that Yj ~  Y2  <m> cxist a 

diffeomorphism f:M -» M and a strictly positive function X : M -* R such

>-yl  - t * y 2 -

7.17  -  Definition: The moduli space of conformal structures ©(g) on a surface of

genus g is defined as ©(g) -  ® (g )/~  . ■ the equivalent relation defined in

(7.16—(ii)) .

7 .18  -  Remark:

(i) Another definition could be given by defining an action a  : (C+ (M)®Diff(M)) 

x ©(g) -»©(g) given by (X®f)(Y) -  Xf*Y ; C+(M) -  {X:M -» R  I X > 0 and X is 

C°°} and Diff(M) •  {x : M -» M I x is a  diffeomorphism}) . Then ©(g) is the orbit 

space o f action a .

(ii)  ©(g) turns out to be a real differentiable non-com pact manifold with 

dimension 6g-6  if g £  2  (see 1161). dimension 2  if  g -  1 and dimension 0 if 

g - 0 .

(iii) Each point of ©(g) is a conformal structure on M .

7 .19  -  Proposition: If 9  is a critical map of energy related to variations of <p and 

the conformal structure on (M.y) , then tp is a minimal surface.
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Proof:

(i) By considering a variation of 9  as in (5.0) with a  -  1 and the regularity in 

(5.49 ), <p satisfies the equation

AM<p + r(<p)(d<p, dtp) -  0 , i.e. q> is a harmonic map.

(ii) A variation o f conformal structure y  e  K(g) is given by a curve 

o  : (-e,e) -» K(g) with o(0) -  y . A map 9  e  L 1 ,2(QS is a critical point with respect 

to the conformal structure y  if

s EM - o  * 1  <h] -  » .

Consider (0) -  A and o(t) -  a t .

+ hA<P' ' Vt i (A 1 1 Y2^ A 22f 1 1 - 2A 12T12 ) ]d ,
2 (det(y ))'
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n r  V i A v

7 det(y ) 21det(r')|3/2

^  (Yt*vhija^<p'av<pi>Y11

V <J«(r_1) +  2 (dct( / ' ) ) 3/2

/ v A g 2. i } d x . 0 ,
/ ( 2/ rfet fv ^dct(y ) 2 (dct(y ) ) '

11 *22 2 2  ' l lHow ever, A is arbitrary , hence y  --------------- t • 7  ---------------r
(det(Y)) (det(Y))

12  ^12and y ■ ----------t , therefore
(det(Y))

2«p*h(e1 ,e2) 2«p*h(e2^ 2) 2<p*h(e1,e2)
Yn ------------- r ~ ■ y2 2 ------------- r - ’ y i 2  * .  •

trace(q) h) trace(«p h) trace((p h)

*

So \ y  -  <p*h and X(x) -  tracc(9 M*)) yhen according to (7.8) <p is 

conformal and by (i) and (ii) q> is a minimal surface.

□

7.20 -  Remark: The proposition (7.19) justifies the definition of minimal surface 

given in (7.1). From (7.10) the Euler-Lagrange equations for the area functional is the
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same as the Euler Lagrange equation o f  the energy functional if 9  is conformal.

According to the result obtained in (7.19), we shall be searching for a pair 

(Y.9 ) , in each homotopy class (1.1), (1.2) and (1.3), such that

(7.21) E(9) . inf in f max £  (f) 
yeR(g) F e y  feF  7

where is  the  energy defined on the Sobolev space L*’^(£)s which is defined by 

the metrics y  on M and h on N and take 7  as in (3.16). I f  we consider a 

sequence (yn)  <= fc(g), then Theorem (1.9) gives us a sequence o f smooth harmonic 

maps 9n : (M ,yn) -» (NJi) , q>n(3M) cr S such that (7.21) becomes

(7.22) E(9 ) -  inf E (9  ) .
Yn«*(g) Tn

We assum e that the sequence (Yn>9n) minimizes the energy.

7.23 -  L em m a (Courant-Lebesgue): Let f  e  C^(£)s and consider the set

Cr(x) -  (y € M  I distj^(x.y) -  r) . Let 6 be a constant, 0  < 5  < 1 . Then there is an Tq

with 8 < Tq  <  V5 and a function t  : (0,1) -* R , depending only on K and M , such

that E(t) -* 0  a s  t-» 0 and such that

length(f(C )) S E(5) . 
r0

Proof: Consider Bf(x) a small ball with center a t x . If we consider Bf(x)

contained in a  local chart (U,y) parametrized by polar coordinates then the energy of f 

is given by
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C7.24) E f f l - i  1  M p s )  + l<,» ( p i )  +

t y hS ’ S ) ] ^ " W 9

where a, b, c  : u -> R are C°°-functions and c(r,0) -  TU * .2e  +  r 22co .2e -  

ry ^ s in 2 0 . So, considering r sm all enough there exists k ' > 0  such that c(r,0) > k ' .

Therefore, there exists a constant k > 0  such that

a 2 5 )  k B| 0 7 h( w - § ) rdrd9< K  ■

The length of f(cp  is given by

C7.2«) U f ( c p ) - J  >/ h ( § . ^ ) d e < ^ . [ }  h ( ^ , | ) de ] 1/2
n » n

Let 5 be a constant, 0  <  5  < 1 such that 8 < r  < V8 . Because of the

differentiability of f , the function H(r) -  J h(d0f,d0f)(r,0)d0 achieves its minimum in 

the interval [ 8 , V8 ] at r  ■ Tq  . S o , integrating in (7.25) we obtain
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k-fc (^) K !?• ̂ ) dê(ro>< K* |h( ^ ^ ) d9<r  - t,n<7r*
Then by (7.26) we have

L(f(c,. ))< /  2Xf . 
0

Therefore setting £(8) the result follows. □

7 .2 7  -  Corollary: Let (Yn) ^ , j  be a sequence in  2 ( g ) . Consider (<Pn)” „ j  a 

sequence of harmonic maps obtained in (1.9), such that <pn is a critical point to the

energy with respect to the conformal structure Yn defined on M . Then (<Pn)n. j  is 

equicontinuous, whichever the conformal structure on  M .

P ro o f: The maps q>n are smooth . Consider (JB(x^ j ^ ) a covering o f M by balls 

o f  radius r^  , where for all X € A we have that r ^  satisfies lemma (7.23) for a 

constant 8 ( 0 < 8 < 1) . Therefore if  X j.X jC  M and d i s t ^ X j ,^ )  < r ^  for some 

X e  A  then length o f the geodesic of minimal length joining <p„(Xj) to <Pn(*2 ) is less 

than L(q>n(Cr^)) Vn>nQ. Since
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L (fB(Cp) < C(5) (by (7-23)) it follows that

distN (<Pn(x i)* < E<5) *  (9nC - l  iscquicontinuous.

□

At this point it looks as if a sequence o f harmonic maps which minimize energy 

must admit a convergent subsequence. Meanwhile, it is not clear if the lim it is a 

conformal branched immersion. The reason for this doubt lies in the fact that we d o  not

have any information about the sequence of conformal structures (Yn)” _ j <= X (g) . 

For instance , it is easy to  realise geometrically situations where the length o f a  curve 

c , with respect to the metric Yn on M , can be approaching 0  as n-»oo and a t  the 

limit we get a surface topologically different . In this case the limit can not be a 

conformal branched im m ersion.

From now on the problem is to look for conditions to achieve the convergence 

of (V n - l  *“  •

A characterization of compact subsets in 1R(g) is described by the next result 

from[13L

7.28 -  Theorem  (M um ford's compactness): Let £ (g ) be the moduli space 

o f conformal structures on a surface of genus g . For all e  > 0  the subset:

(Y € ^ (g ) I *11 closed geodesics on (M ,y)  have length £  e}

is compact
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Proof: Sec Appendix 2.

The Sobolev Space L**^(QS depends on the Riemannian metrics defined on M 

and N . If (Yn) is a sequence in ©(g) ^7.16(i)j and h is a fixed metric on N , we 

use the notation L ^ ( ^ n)s when refering to  the Sobolev Space associated to the 

metrics yn and h L U < ^ ) ,  -  L U ((M,yn).(N,h))s .

It is important for our purposes to note that the definition o f Sobolev Spaces 

L U (O s is invariant by conformal transformation , i.e. if f  e  L***(Cj)g and f  e 

L ^ C ^ s  , then supposing [y^l ■ ** f ° Uows that lfl^ l.2^  ^  -  Ifl^ l ̂ ( ^ ) s

(Thm 7.15) . It is also easy to note that if  Yn *♦ Y in © (g) then 

lflj^l.2^ ^  -* Ml 1 ,2 ( ^  (just look the local expression of , where

L 1 >2® s - L 1 ,2«M,T),(N,h))

7.29 -  Definition: Let (Yn)n«I c  ©(g) be a sequence . If Yn -» Y in © (g). 

then we say that the sequence of Sobolev Spaces L ^ ^ ^ j  converge to L ^ ( © g .

7.30 -  Theorem: Let M be a surface w ith genus g and Fa p a homotopy class 

of maps defined in (1.1), (1.2) or (1.3) . Assume Xj(N) #  0  and g £  1 . If the 

homomorphisms a :  Xj(M)-> Xj(N) and |3: X j(9M )-► Xj(S) are monomorphisms , 

then for each such class there exists a minimal surface of genus g .

Proof: Let (Yn.9„) j be a pair o f sequence where (Yn)” _ j c  © (g). 9 n is a  

harmonic map given by (1.9) with respect to the conformal structure Yn on M and

(Yn.<Pn^n- 1 nninimizes the energy.
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Because a  is a monomorphism , all classes in Xj(N) can b e  represented by 

the image of geodesics representing the generators o f Xj(M) and therefore the length 

o f geodesics on (M,yn) must be greater than £ > 0 for all n e  Z . In  this way , it is 

impossible for the length o f a geodesic representing a class in X j(M ) to approach 0 

for a sequence of maps according to the hypothesis . If  we look the situation on the 

double of M , we can make the same analysis using the monomorphism ji and 

conclude that no boundary component of (M,yn) has length less than e > 0 . 

Therefore by (7.26) the sequence (yn) converge to y  e  K (g).

Then the sequence o f spaces L ^ ( ^ n)s (associated with y j  converge to 

L 1 ,2 ( 0 s (associated with y) and by the lower semicontinuity of the energy functional 

on L*,2 (Q s it follows that cp„ -Mp in L^’2 (Q s (weakly). By the equicontinuity of

sequence (<p„)”_ j  it follows that <pn -► <p in C^(Qs -  C^((M,y),(N,h)) and that <p 

is a minimal surface. □

The assumption a  : Xj(M) -» Xj(N) is a monomorphism is very particular in 

the general context. However, a better sufficient condition to prove the  convergence in 

£ (g) was described by J. Douglas in [11]. Before defining the D ouglas condition it is 

necessary to describe the notions involved.

In our context the surface M has k boundary components. T h e  moduli space 

£ (g ) has been defined for closed surfaces, so we define the double W  o f M by 

W - m U m , identified by id : d-» d .
a
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Then M is a closed surface with genus g -  2g +  k -1  and admits an isometric

involution o  : R  -> W (o^  -  id) . The locus o f points fixed under o  consist of k 

closed curves, called curves o f transition ; o(C .) «  C. , i -  where

{ C . | i -  1......k } - 8M .

A curve C  : I -♦ M will be called a proper curve on M when it is not 

contractible and either

(7.31)
(i) C  is a simple closed curve on M , or

(ii) C  is a simple arc with boundary on 9M .

Therefore a proper curve can either have 1 component or 2 components on

U .

7.32 -  Definition: Let M be a surface with genus g and k boundary

components. Let El be its double , i .e . , a surface o f genus g -  2g+k-l . A surface 

M ' is a primary reduction of M if  it results from  M by a process divided in two 

stages:

-  a proper curve 5 is identified into a point p e  M by a continuous map

, (c~ { p ))

-  There exists a  map x: M /~  -♦ M ' such that it has only one discontinuity and it is at 

P-

So M' is a surface in one of the following cases:

(i) M ' - M j U M j  (2 components), g' -  g |  + g j  . k ' -  k j + ,

g . * l ,  k j f c l .  i -  U .
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0 0 M' has genus g' -  g - 1  and k ' -  k .

(iii) M ' has genus g' = g and k ' -  k - 1 .

Civ) M ' has genus g' -  g -  1 and k ' ■ k  + 1

(v) M' has genus g' -  g -  1 and k' -  k -  1

A general reduction is a transformation of M such that it decreases the genus 

of M or the number of boundary components of M . The special case is in (iv) , but 

there the genus is decreased. All general reductions can be described by a sequence of 

primary reductions.

A map <p : M- >N,  <p(9M) c  S can be considered as a map such

that <p -  $o o  and $(c.) c S ,  i -  1 k where c. are the transition curves.

As mentioned before a homotopy class of maps f  e C®(£)s (assuming 

JCjCN) -  0) is fixed by the induced homomorphisms a  : Xj(M) -» JCj(N) and 

P : Xj(dM) -» X j(S ), where f* -  a  and -  P . In this way we define

(7.33) d(S, g, k, a ,  P) -  inf E(f)

and for all possible general reductions M' of M we define

(7-34) d*(S, g, k, a ,  p) -  inf d(S, g \  k, a ,  p ) .
M '

If g -  0  and k  -  1 define d*(S, 0 , 1, a , P) -  co .
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7.35 -  Douglas Condition: Let 9 ^ ^  be a homotopy class of continuous maps 

from M into N with boundary lying on S and induced by a  and P , then

d(S, g, k, a , P) < d*(S, g, k, a . p ) .

The description of a surface according to the Uniformization Theorem for 

surfaces (see [171) will be useful for the next steps in order to prove (1.10).

7.36 -  Theorem  (Uniformisation):

(A) Let (M ,y) be a simply connected surface and y  a metric on M . Then M is 

conformally equivalent to one and only one o f the following surfaces:

(0  C

(ii) C u  {«*>}

(iii) H - ( z g  C IH < 1 >  .

(B) Let (M,y) be a closed surface o f genus g and metric Y on M . Then it is 

conformally equivalent to one of the following cases:

(i) g -  0  *  M ~  <C u  {oo}

(U) g -  i *  m  ~  c / r

(iii) g i 2  4 M - H / r ,

where T  in (ii) and (iii) is a freely acting group of Mobius transformations 

on €  ( in (ii)) and H (in (iii)). Furthermore in both cases T a  7t j(M ).

Proof: See [171
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7.37 -  Remark:

(i) C {00} is topologically equivalent to .

(ii) In (7.36-(iii) ) when g £  2 , the group T is usually called a Fuchsian 

Group.

7.38 -  Theorem : Let M be a surface with genus g and k boundary components. 

If we assume the Douglas Condition in (7.34) for the homotopy classes of maps 

defined by (1.1), (1.2) and (1.3), then there exists a minimal surface with genus g in 

each of these homotopy classes.

Proof: The proof will be given for the case of surfaces o f genus ^  2 (see [12]) . For 

the cases g -  0  and g -  1 the proof is exactly the same . Because the surfaces with

which we are working have boundaries, we will always be working with the double lvl 

, so in order to avoid confusion we mind ourselves that the bar will be deleted and M

and 9  means W and 9  •

By the Uniformization Theorem a sequence of conformal structures can be

considered as a sequence o f Fuchsian Groups (Tn) j^  j . Let (T„,9n)” m j  be a 

pair of sequences where 9n is a harmonic map given by (1.9) with respect to the

structure Tn on M and (Tn,9n) j^  j minimize the energy, i .e . , if

" l > n 2  ■* W < E n2(V -

(7.39) Suppose that the length of some closed geodesic o f TCI approaches zero as 

n -» 00, then one of the following situations occurs (Fig 7.1):
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(i) The length o f an interior geodesic in W  approaches 0 .

(ii) The length o f a transition curve C- in X? approaches 0 .

(iii) The length of a geodesic in M intersecting two different transition curves 

approaches 0 .

(iv) The length of a geodesic in M  intersecting one transition curve twice 

approaches 0 .

W e need two results in order to prove that the Douglas Condition is sufficient in 

achieving theorem (7.38).

Assume H - { x  + i y e C l y > 0 } .
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7.40 -  Lemma: Let c be a simple closed geodesic of length l  in H /r  . Then

there is a collar o f area  . , ,  around Y . i-c. H /r  contains an isometric copy ofsmh t / 2

the region

tre '^  e  H l l  £  r  < e* I arc tan sinh( 1/2) < <p < Jt-arc tan sinh( t\2)} 

where c corresponds to {reix /2 , 1 £  r  £  e*} ; (r -  1} and {r -  c1} are identified via

« - A .

Proof: See [18].

7.41 -  Lemma: Suppose c: I -♦ M is a curve which is absolutely continuous on 

dBfxQ.r) and

2k

J ic'(e)ides£.
0

Then there exists f  e  L *’2 n  C°(B(x0,r)> l)  with

2k

% B ( x o s ) - C “ d  l c ' ( e ) | 2 d 9 '

Proof: See ([19], Lemma 9.4.8b).
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(7.44) Since

^ « P fc n )

J i  l|r<P„<'.¥),2- ^ 4  2 E<»n) .
x/4 1 r  sin v

there exists y n* e  (■£■ • y ) • i "  1*2. such that choosing y  *  y n* in (7.41) we get 

2k

(7.45) J l ^ tP n i l .O ) ?  d0 ^ k j 6n , (E(q>n) is uniformly bounded).

I f  en is small enough then by (7.41) dQ : I  -> N can be extended to a 

continuous function dn : -  {z 6 CI Izl £  1} -♦ N  satisfying

(7.46) E(dn) ^  k2  en (1^ independent of n).

Now we make a surgery on (M ,rn) by cutting o ff the collar [ - w lx c n  on M 

and pasting two disks D j and D2  by identifying 9D j to {-e} x cQ and dD2 to 

(e) x  cn  . In this way we can define a new map 

# : (M - ( I - e ,£ ]x c n} )U D 1 U D 2 -»N by 

<p(x), x e  (M -  fl-e,el x cn))

« * > -  {

dnV ) . x «  D|

Throughout the surgery process we obtain a primary reduction o f M where the 

genus o f  M was decreased, also it follows that

(7.47) E ($) .  E ^ I M  -  fl-e il x cn>) + EfdJtD ,) + ECdjJlDj) S E(9n) + 2 k j  e , .
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Since en -»0  and E(q>n) -* d(S, g, a ,  p) we conclude that

d*(s, g, a ,  p) £  d(s, g, a ,  p) , a contradiction. °

7 .3 9 - (ii): In this case we can use the same details used in case 7.39-(i) by 

supposing the length of a transition curve is approaching 0 . After the surgery we 

obtain a primary reduction where the genus is maintained but the number o f boundary 

components is decreased. Then w e get a inequality like (7.47) and a contradiction for 

the assumption o f Douglas Condition.

7.39— (iii): Assume that the length o f a geodesic cn on (M, r*n) intersecting two 

transaction curves t j  and ^  approaches 0 .

By (7.38) cn admits a collar isometric to

As in case (7.39-(ii)) consider £(cn) -  Cn and define the curve dQ : I -♦ N
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By (7.45)

jH - ( e ) l2 d8 < k 1 en .

1 2Then cutting M along cn wc can paste 2 disks dn : D j -» N  , dR : D j -> N

along each curve resulting from cn , where each disk satisfies Eid^) < k j en . 

Therefore

e (<piiIM-(D| u D2)) +  E(d * D ,)  +  E(d^lD2) S E0pn) +  2 k , en .

Since en-» 0 and E(<pn) -♦ d(s, g, a ,  P) it follows that 

d*(S, g, a ,  p) £  d(S, g, a , p ) .

However, from the surgery it results a primary reduction o f M by decreasing 

the number of boundary components by 1 and keeping the same genus . Thus we get 

a contradiction with the assumption o f Douglas's Condition.

7 .39-(iv ): In this case the process is exactly the same. The contradiction comes

from the fact that the surgery leads to a primary reduction o f M by decreasing the 

genus o f M by 1 and increasing the number of boundary components by 1 .
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We conclude that the Douglas Condition implies that no closed geodesic on 

(MJ*n) has length approaching 0 , therefore by Mumford's Theorem the sequence of

groups ( r n)“ _ j converges to T , which defines a conformal structure on 9J(g).

Then the sequence of Sobolev Spaces L*’̂ (£n)s defined on (MJ*n) . 

converges to the Sobolev Space L ^ ( 0 g defined on (M X ) , hence the lower 

semicontinuity of the energy plus the equicondnuity of sequence (<pn)„€ l  implies that 

<pn -♦ 9  in C 1( 0 S • Therefore q>: (M.y.gjc) -» (N,h) is a m inimal surface, completing 

the proof of (7.38).

□
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8. Appendix 1 : Proof o f  Lemma 6.3.

Consider (NJi) a Riemannian manifold with metric h , i some tricall y 

embedded in R^ , and D2  ■ (x €  R 2 I bd < 1} with the Euclidean metric.

Lem ma 6.3: Let 9  : D2 -{0) -» N  b e a  harmonic map with finite energy, then 9 

extends to a harmonic map <I>: D2  -» N .

The proof given here follows the ideas as in (14), Theorem 3.6). The main idea 

is to prove that if  9  : D2 -{0) -* N is a harmonic map with E(9 ) < 00 then 9  e  

L 1 ,2a (D2 ,N) c  C°(D2 ,N) for 0  > 1 . Therefore 9  can be continuously extended 

and is a weak solution for the Euler-Lagrange equation associated to the energy 

E : L*’2 (D2,N) -» R  . By the regularity of such weak solutions, it follows that 9  : D2  

-» N is a harmonic map in the classical sense, i.e., 9  is smooth.

Let us fix Xq e  D2 -{0} and remember that for all points Xq  c D2 -{0) and 

C > 0  there exists a ball B^Xq) -  {x e D2 -{0) I Ix-XqI < r}

E(, 'B I<xo))< '  “ in (6.3)).

The proof is divided into 3 steps.

8.1. -  Step 1: There exists a constant c >  0 such that

(8.1) IxqI < c-E{ ,PlBM (x0)) "11 «0  «  D2-® ) .
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Proof: By a conformal transformation wc identify Br(x) with B2(0) , then

E(<plB2 (0)) < e  • Define the transformation T : B j(0) -» B|x^|(xo) • xo  G 

the map ^ B ^ O ^ N  by #(x) -  + I x ^ ) , s o , $ :B j(0 ) -* N  is also harmonic

and E($) < e .

By (5.30), (5.41) and (2.3) there exists a constant k > 0  such that

max | d$(x) I £  k.E($) , 
x< B |(0)

therefore

IdtfXolJxQl -  W<f(0)l S k -E ^b ^ -o )) ■

□

8.2. -  Step 2: Let <p : D2 -{0} -* N  be a smooth harmonic map such that 

E(<p) < oo , then

2k  2k

(8.3) |  B e * *# 2 <19-12 1  B ^ z )!2 d0

Proof: Let T|(z) -  w(z)dz2  be the holomorphic quadratic differential form

where w(z) -  (K^cpl2  -  ByqJl2) +  2i(9x<p, 3y<p).

From (8.1) we get:



(8.4) Kv(z)IS2ld<p<z)PscI lzl'2 .

By (8.4) and the fact that J lw(z)ldtl £  2  J Idtpl2  d p  < oo, (p  the Lebesgue 

measure in D2) , the order of the pole in z -  0  is at most one.

From Cauchy's theorem

2x 2x

f  Re(w(z)z2)d0 -  |  [Be(p(r,8)l2 - r 2Br<p(r,8)l2]d e  = 0 .
- Iz t r  0

So (8.3) follows from above.

□

8.5. -  Step 3: Let 9  : D2 -{0) -» N be a harmonic map with E(<p) < 00 , then 

9  e L 1 ,2a (D2 ,N) for a  > 1 .

Proof: Assume J Id9l2 < e .  W e approximate 9  by a function g which
B2(0)

is piecewise linear in log r  , depending only on the radial coordinate and 

2x
f(2 -m ) -  J 9 (2 “m ,0)d0 . Then f  is harmonic for 2 -m  < r  < 2 -m + * , m ^  1 . 

Now for 2 ‘ m S r S 2 'mM

lq(r) -  <p(r,8)l £  lq(2_m) -  q(2*m+1)l + kptr.8) -  q(2 _,n+1 ) l .
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Since

maxO(p<x)-<p(y)l I 2“m S bdjyt £ 2“ m+1} £ 2 'm+3 maxOdptol, 2~m £ Ixl £ 2‘ m+1l 

S C  23( J  Idqit2 dix)* .

we can assume

lq(r) -  <p(r,0)l £  24C (  J  Idipl2  d |i)J £  24 .eJ .

W£2" » '

An estimate to the L **2  norm of the difference between q and q> is made as

(8.6) J ldq-d<pl2  du  -  r  J (q(r)-<p(r,6), 3r<p(r,0) -  q'(r))d0 I

-  J  (q -9 . A(q-9 )) d n  .

On the right side o f (8.6) the boundary integral vanishes because the terms 

containing q'(r) disappears ; this is because q  is the average o f 9  at 2  m , and the 

terms with 3r<p(r,0) cancel with succeeding and proceeding terms because 3r<p(r,0) is 

continuously defined.

The estimate of (8.6) is then :
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(8.7) | Idq-dipPdn -  -J((q-q>). A(q-q>))d|i • j  (q-<p, r(tp)(d<fi.d<p))dn S 

S IH „ I q - ^  ld9lL0 2 S HI,, „  24.c.Ve ldqilL0 2 .

Let U'Iq  m  24  c.>/e < S . Then we get

2 x  2x

(8.8) J Id(ep-q)!2 d|is[ i  kp-qPdel* I f  0 <pl2de]! + 8 j  Idcpl2 d|t.B.rm .  « v .  * J B.rmBj(0)

From (8.3) we get:

r- 1  r- 1

(8.9) i  J Idtpl2«^ -  J i\ -d n .
B t (0) B j(0) r2

Applying (8.9) to the right-hand side in (8.8) we get:

(8. 10) J ld(9-q)l2 dll -  J - ¿ - d l l  - } J Idtpl2 d ii.
B ,(0) B ,(0)

Because q is die average value of <p:

B t (0)

(8.11) [ j  kp-q^dBpsI J 00<pl2 d0]l -  () J Idtpt2 de)*

So, inserting (8.9), (8.10) and (8.11) in (8.8) we get:
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Ct - 2 8 )  |  I d ^ d i i s  J  ld.pl2  a e :
BjCO) r - 1

By translating the expression above (by expansion and contraction) into a disk 

o f  any radius, we get for r  £  1 :

(8.12) (1 -2 5 )  J Idtp^dnSr J Id<pl2 d0.
B /0 )  r - 1

Now integrating (8.12) as in tf4], Theorem 3.6) and applying (8.1) for 

0  < IxqI < } we get

1-2S -
(8.13) ld<p(x(>)l.lx0l £ cJ2xqI 2 ( Jldq^dn)*  for»l] xq e a 2- » )  .

Then

J Id9(x)l2a d |i S k . |  bd"(1+25) a dn  <  oo for 2  > a  >  1 

and 9  e L lt2a (D2 ,N) c  C®(D2 ,N) +  9  is a harmonic map from D2  into N .

□
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9. Appendix 2  : Proof o f  Theorem  7.26.

For a complete proof of Mumford's compactness theorem ((13I), it would be 

necessary to go into the Lie Group Theory, which is too far from our aim. Therefore 

the proof is based on strong results (without proof) adapted for our concern. The ideas 

are the same as used in [13].

By the Uniformization Theorem (7.33), the only classes o f  simply connected 

spaces up to conformal equivalence are C ,  £ u  {oo} and H , and all closed surface 

are conformaly equivalent to M /T , where M is one o f those simply connected space 

(according to the genus (M)) and T is a discrete subgroup of the group of Conformal 

Automorphisms o f M  acting freely and discontinuously on M .

The group o f  Conformal Automorphisms of M  is a Lie Group , in fact:

(9.0) (i) Aut(C u  {oo}) a  PL(2, C) *  SL<2, C )/±I

(ii) Aut(C) a  PA(2, C) -  {(* £) e  SL(2, C) I a.c *  0 } /± I .

(iii) Aut(H) a  PL(2, R) a  SL(2, R ) /± I .

So, the Uniformization Theorem reduces the problem o f studying conformal 

structures on M  to studying discrete subgroups o f groups of Conformal 

Automorphisms o f  M  |m  ■ universal cover of M according to (7.33)) acting freely 

and discontinuously on M .

Because all surfaces o f genus g -  0  are conformally equivalent to C u  {oo} ,



we are particularly interested in describing the situation for surfaces with genus g £  1 .

From now on G -  Aut(M) , r  -  discrete subgroup of G acting freely and 

discontinuously on M . Define the action o :G * M - » M  by a(g,rii) -  g(m) . Let p

be the standard metric on M , i.e. i f  M -  C , p(x,y) ■ 

1 0

1 0 

0 1
V z «  x+iy e  C , if

M -  H , p(x,y) -
0 1 /y

V (x,y) €  H . Define a function d on G by

(9.1) d(g) -  ¡nf p(z,g(z))
zcM

For all e > 0 ,  define an open subset of G by

Uc -  (g e  I d(g) <  e} .

A subgroup r  acts freely and discontinuously on M if and only if  it is 

discrete and T  n  Ug -  {e} for some c  > 0 .

For a general Lie Group G  , define the subsets

X q  -  (T c  G I r  is a discrete subgroup}

M q  -  { T c G l T c  X q  , G /T  is compact} .

The following are general results for Lie Groups which are not too pathological;

see [13] for further references.
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9.2. -  Theorem: Let U be an open neighbourhood of e , C  a positive number.

Then {T € X _  IT n  U -  (e) and measure ( G /O  S O  is compact.
G

9.3. -  Theorem: Assume that G is a Lie Group (connected). Suppose a sequence

(T.) ”  j  cz M q  converges to T c  X q  . Then fo r i sufficiently large there 

exist isomorphisms of groups q>j: T 4  T . , such that for all y  e  T  , q>-(y) e G and 

converges to y . Moreover, there is a compact set K  c  G and an open neighbourhood 

U c G  of e (identity in G) such that K X  -  G  , KX . -  G , U o  T  -  {e} and 

U r* r .  -  {e} if  i is sufficiently large.

□

9.4. -  Lemma: Let M -  M /r  be a closed surface with genus g ^  1 . Then

there is a  constant k such that

(9.5) diam(M).l £  k area(M)

where l  -  length of smallest closed geodesic on M  .

Proof: From the uniformization theorem M  -  C or H . As a real surface

M -  C it has curvature K(x,y) -  0  V z  -  x+iy e  C and M -  H has curvature 

K(x,y) « - I V  (x,y) € M . Therefore M has sectional curvature K £  0  .

Let d -  diam(X), x,y e X such that dist(x,y) -  d and o  : I -» M a geodesic 

from x to y of length d . Consider a tubular neighbourhood of a  defined as
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T -  fexpo(t)s.v (t)Iv (t)s  T0 (l)M , tv<t>l-  1 ,  O S s S j }

There are two possibilities:

(i) No two geodesics 8 j , 82 perpendicular to o  of length ^  m eet themselves, 

or

(ii) some pair 5 j , 82 do meet.

In the first case the exponential map from the normal bundle N  to o  in M 

maps an -tube Tq around the 0-section in N injectively to M .Then 

(9.6) area(M )^area(T )2area(TQ )^-^.d  .

In the second case suppose two geodesics 5 j and 82  meet themselves , where 

8j(s) -  expz^(s.v(tj)) and 82 (s) -  e x p ^ s . v ^ ) , Zj -  o ( tj)  and Let e

be the distance from Zj to Z2  along o  . Then we can go from x  to  y  by going 

from x to Zj on Oj following 8j , then following 82  and going from  Z j to y on

o . This path has length $  d -e  + y , and since a  is the shortest path from  x to y ,

d £ d - e  +  - j ,  i.e. e But then 5 j , 82  and part of o ,  between Zj and Z j ,  is a

closed path t  : I -» M o f length at most l . Because g £  1 , x is certainly not 

homotopic to 0  since on the universal covering space M of M , the exponential from 

the cover o f N into M is injective. Moreover, x has comers and so is not a geodesic 

itself. Therefore there is a closed geodesic freely homotopic to x o f length < t . This
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contradicts the definition o f l  and so the possibility in (i) is the only correct one and

(9.4) follows from (9.5).

□

9.7. -  Theorem: Let r  c  M.Q , e  > 0 and T  u  U£ -  {e} . Then there is a

constant k  and a compact set K , with radius C  -  jL _ easure <G / r > suchthat 
c e

r.Kc - G .  Hence for all positive D , the subset S -  CT e  X q  | T u  Ug -  {e} , 

measure (G /T) £  D} is compact (g  -  Aut(M)J .

Proof: Consider the metric on M »  M  / r  induced by the metric p on M .

The closed geodesics o f X /T  are all images o f  geodesics in M joining two points, x 

and g (x ), where x « M and g e  T . Since T  n  U£ -  (e) , these all have length at 

least e . It follows from lemma (9.3) that

di,m(M ) S k'm *(M) -  k  m“ * " * < ° /r >  .  c 
e  e

Hence, the ball Bc(x) with centre at x (V x c  M) and radius c is mapped 

onto M by the covering map i t : M -* M . Thus the action a : T *  Bc(x) -» M is 

onto, i.e. r(Bc) -  M .

(i) r (B c) -  M -► there exists a compact set Kc such that r .K c -  G .

To prove (i) consider the compact set Kc(x) -  (g e  G I dist(x,g(x)) i  c} . U t  

x»y e  M and g e  G such that g(x) -  y . By hypothesis there is y e  T and 

z « Bc(x) such that y(z) -  y  . U t  h e  Kc(x) and h(x) -  z . Then
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g « Y h  + r.Kc « G .

(ii) r.Kc -  G ♦  G / r  is compact

Otherwise G /T  c  Kc would be open, but this cannot happen because G is 

path-connected.

So, to prove S is compact it is sufficient to prove that if a sequence (T.)“ j  c  

S converges to T 6 (this is assured by (9.2)) then G /T  is compact, Le. T  e 

S . From (i) we have ^ ( B ^  -  M . Therefore by (ii) we have I*jJKC -  G and 

passing to the limit we get I \K C -  G . Then by the same argument in ( ii ) , it follows 

that G /r  is compact. By (9.3), r  »  Tj for i sufficiendy large.

□

It must be checked that measure (G /T ) < oo for all M -  M / r , but this comes 

from the following arguments:

(9.8) If  genus (M ) 2 2  then M -  H2  . O -  PSL(2. It) and T »  ttj(M ) . 

From Gauss-Bonnet Theorem:

m easuie(G /r) -  a rea(H /r) -  4 it(g -l) (g -  genus).

(9.9) If genus (M) -  1 then M -  C , G -  PA(2, C) and T -  Z©Z . In this 

case the generators o f  T  can be represented by the translations z-»z + Zj . z - t z  + Zj, 

where 0  < Re(Zj) < oo and 0  < R e ^ )  < oo . In this case we have

m easure(G /0  -  a iea(C /r) -  Re(z1).Im(z2) .
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9.10. Corollary: Let genus g > 1 and let $ (g) be the moduli space of compact 

surfaces o f  genus g .  For all e > 0 ,  the subset

{ye  K(g) I all geodesics in (M,y) have length £  e)

is com pact

Proof: It follows from (9.7); from (9.3) we have that the limit has

genus g .
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Example 2 : S -  T2 and M -  IxS1

I aa . u v . i 4

U- Hc \ o U^

» .(T .W oM V ^ V ^ . î )

Example 3 : S -  s \ |S 2 and M .  IxS1

C*iZ)
,-U .uS^I
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