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Summary
Let M beasurface with dM * 0 and N a n-manifold , also consider S a

embedded surfacein N . The problem treated in this thesis is the existence of a smooth
map <p:M-*N satisfying the following conditions :

(i) AMp + Nr(<p)(d<p,d<p) « 0 , AM- Laplace-Beltrami operator on (M,y)
Nr - Christoffel symbols of (N,h)

(ii)  Thereexista strictly positive function X:M-»R such that the pull-back
metric <p*h on each fiber of the pull-back vector bundle <p"(TN) over M satisfies
therelation 9 hm Xy

(iii)  9(9M)e S

(iv) [2(w) x T<p(w)S forall we 9M ; dtp.n where n is the normal

direction along 9M induced by the orientationon M.

The technique used is based on Critical Point Theory applied to Variational
Analysis . Instead of finding a solution <p, of the elliptic system in (i), as a solution

forthe Euler-Lagrange equations of the energy functional  E(«p) -

, the solution is found by considering 9 as the limitwhen o-»1 of solutions for the
Euler-Lagange equations associated with the a-energy functionals

Ea (<) - I\][1+ lgpl2 f1dM  for a > 1.

The condition in (ii) is proved assuming a condition known as Douglas
Condition, which statement guarantees that the minimal surface in the homotopy class
of 9 has the same number of boundaries components and the same genus (as a
topological space) as M.



CHAPTER 1.

Introduction

Let (M~.gjc) bea C°° compactsurface with genus g and connectivity k.
Let (NI) bea C°° n-manifold isometrically embedded in R” and h a
complete Riemannian metric defined on N . We assume that forall x e N and all

v e TxN there exist strictly positive constants k and K such that

n n

(1.0) k" vV EhXKv.V)EK .£VV
i-i

In this thesis we are interested in proving the existence of minimal surfaces
of genus g for certain homotopy classes of maps from M into N, such that the
image of the boundary of M lies onaclosed C°°-surface S embedded in N .

This is done by reducing to two problems;

1H: To prove the existence of solutions for an elliptic operator in an appropriate
space of maps.
2—: To prove that the minimal surface is topologically equivalent to a surface of

genus g.

Let a:Xj(M) -* Xj(N) , p:Jtj(9M) -* iij(S) be fixed homomorphisms and
assume XjiN) - 0. So, a homotopy class 9rap of continuous maps from M

into N is defined as the set of all maps f: M -¢ N, f(9M) ¢ S such that f* - o



and (fldM)* " P . where f*:Xj(M)-» Xj(N) and *j(S) are
the homomorphisms induced by f. If x2(N) * o then the homomorphisms a
and P do notdefine a class of homotopy . In fact, as proved in [191,if ~(N) ¢ 0
the non-trivial elements of ~(N) are an obstruction to prove the existence of an

harmonic map minimizing theenergy ineach class.

Acurve ¢ on S iscalled essential if the homotopy class of ¢ in Xj(S) is
not the identity , otherwise it is not essential . Unless S-S~ , we will avoid the
homotopy classes where p: Xj(9M) -» Xj(S) takes some boundary component of
M to a null homotopic curve on S . If the image of one components of the
boundary of M is not essential on S we have no methods to avoid the decrease of

k oreven the triviality of the solution in certain classes of maps.

The results obtained in this thesis are restricted to the following homotopy
classes where S is fixed , P is a class of homomorphisms satisfying some

condition and a is any possible homomorphism :

(1.1) Let S-S”~,s0 p istrivial.

(1.2) Let S be any closed surface and consider cj ,C2..... c” the boundary
components of M . Let p: Xj(9M) -» Xj(S) be an homomorphism such that

PtfqD”e (e-identity in Xj(S)) forall boundary components q (i-1,..., k) of M

(1.3) Let Sbeany closed surface and P asin (1.2) . Define 7 ap as aclass of

maps associated to a , p and satisfying the following property H :



(H) There exists a continuous curve p: 1-»y _ inducinga map p: IxdM -» S
such that [p(IxdM>] - p in ~(S.UiZ), where p isthe fundamental class and U

is a subspace of S such that ~(S.UjZ) isisomorphicto (*(SiZ) (see examples

in appendix 3).

The question which we pose in this thesis is the existence in each of the
homotopy classes defined in (1.1),(1.2) and (1.3) ofamap (p:M-*N satisfying

the following properties:

(1.5) AM<9p + Nr(<p)(d<p,d<p) - 0 , Am - Laplace-Beltramioperatoron (M.y)

NI . Christoffel symbols of (N,h)

(1.6) There exists a positive function X: M -» R such that the pull-back metric
<p*h on each fiber of the pull-back vector bundle <p"(TN) over M satisfies the
relation g>*h- X.y fora metric y definedon M, and such that <p is a critical
point for the energy and area functionals defined on (M,y).

(1.7) <pOM)cS

(1.8) d,<p(w) x To>(w)S forall we dM ; 9ngp- d<pn where n is the normal

direction along dM induced by the orientationon M.

Define the set - { -»(N,h) I > is non-trivial and harmonic }

The results which were obtained are the following:



1.9 - Theorem : Let y be a Riemannian metric on M and let S be a
compact surface without boundary , embedded in N and class C°°. If XjiN) m 0
.then:

(i) For the homotopy classes described in (1.2) there exists an harmonic map
¢ M >N satisfying the conditions (1.5), (1.7) and (1.8) and minimizing the
energy in its class.

(ii)  Assuming » 0 we have in the homotopy classes described by (1.1)
and (1.3) that there exists an harmonic map <p:M-» N satisfying the conditions

(1.5), (1.7) and (1.8) but not minimizing the energy in its class .

1.10 - Remark: The set of classes described by (1.3) are subsets of classes
described in (1.2); therefore the result in (1.9) claims that for the classes (1.3)
both (i) and (ii) aretrue.

By assuming an extra hypothesis called the Douglas Condition . which is

defined in (7.35), we are able to prove (1.6) forthemap 9 of (1.9).

111 - Theorem : Consider S c¢ N asin (1.9) . Assume the Douglas
Condition for the homotopy classes defined in (1.1),(1.2), (1.3) and ~(N) - 0.
Then in the homotopy classes defined in (1.2) there exists a map 9: M -» N
satisfying (1.5), (1.6), (1.7) and (1.8). If - 0 thensuch 9 alsoexistsin
the homotopy classes defined in (1.1) and (1.3). It follows that

(i) In (1.2) itminimize the energy and thearea,

(ii) In (1.1) and (1.3) itdoes not minimize the energy and the area,



Itfollows that gt M-» N isaminimal surface.

The results which are known for (1.11) can be summarized as follows;

(i) In the cases of homotopy classes in (1.2);

- R. Courant gives a proof in [3] for the situation where M m D2, N « R3 and
S-T2

- J.Jost provesin [201 the case when M is a surface of genus g. N is a three
manifold whose boundary 3N has non-negative mean curvature and S is a closed
subsetof N . His techniques relies on geometric measure theory and he assumes
that in the homotopy class of maps considered there exists an embedding in order to

obtain aembedded minimal surface of genus g .

(i) In the cases of homotopy classes in (1.1);
- M. Struwe gives a proofin [7] for the case when M - D2 ,N « R3and S -

S2 (D2 and R3with the standards euclidean metrics).

The method we used relies essentially on the techniques and ideas
developed by Sacks and Uhlenbeck in [4]. The result obtained by M.Struwe in r7]

was an encouragement to extend his result to surfaces in general.



The basic tool is the energy functional E(<p) - i JidtpPdM , from which it
M

is natural to introduce the Sobolev space L~(M ,N)S- {f:M-*N 1 f(dM)c S

,J (Ifi2 + 1dfIr )dM < 00} as the space of maps we use in the rest of the thesis.
M

However, L1 ‘Z(M,N)S fails to be a differentiable Banach manifold and the
Critical Point Theory cannot be used . One of the troubles is the impossibility to
verify a condition like the Palais-Smale (PS)-Condition (defined in 2.14) for the

energy functional .

In [4] Sacks-Uhlenbeck introduced a perturbed functional, which we call

the a-energy functional,defined as Ea (<p)-iJ (I+ld<pl2)adM . The interesting
M

properties of this functional are for the situation when a>1 , then it is naturally
defined on the space of maps L*"a (M,N)sc C®(M,N)S, which is a differentiable

Banach manifold and on itthe a-energy satisfies the Palais-Smale Condition.

So, to prove theorem (1.9) we first have to prove the existence of a critical
point for the a-energy functional when a>| and then we take the limit a -» 1 .
In this process we can guarantee a priori estimates over all except for a finite
number of points where the limit blows up . If J*iN) m 0 then we can manage to
avoid this by using a result, first proved in [4], that an harmonic map from the

punctured disk with finite energy can be extended to a harmonic map from the disk.



The regularity along the boundary was first proved in [8] by a different
approach to ours . The method we have used relies strongly on the fact that the
critical points of a-energy satisfy the condition (1.8) and S isembedded in N.

The interior regularity of critical points of a-energy is C°° and itis proved in [4).

As far as the conformality condition is concerned , all we need is to ensure
the convergence of a minimizing (energy) sequence in the moduli space associated
with ,once a sequence in C~(M,N)Swith finite energy is equicontinuous by
the Lebesgue-Courant Lemma . The ingredients to achieve such convergence are

the Douglas Condition (7.35) and Munford's Compactness Theorem (7.28).

The Theorems (1.9) and (1.11) can be extended to the cases below ,
where dim(S) >2, and for all homotopy classes if it satisfies the condition (H) in

the following form (H*):

(IT) There exists a continuous curve p: | -*7 inducing a map p: IxdM -» S
such that Ip(IxdM)l « p in Hp(S,U;Z), where p - dim(S),p is the fundamental
classand U isasubspace of S such that Hp(S,U;Z) is isomorphic to Hp(S;Z) .

- If S isacompact manifold embedded in N and for situations where S C 3M .

- For the case where S has more than one connected componentin N .
Possible results obtained from observation above are :

1.12 - Theorem : Let S- S*c N (p<n) be a embedded submanifold



diffeomorphic to the p-sphere . Assuming that ~(N) “ 0, ®m 0 (asin 1.9)
and the Douglas Condition , then there exists a map 9: (M.y.gJO -* (N,h)

satisfying (1.5), (1.6), (1.7) and (1.8), i.e. 9 isa minimal surface.

1.13 - Theorem : Let S - SjlJS2 be a embedded submanifold of N such
that SjDSj m 0 . Assuming ~(N) - 0 and the Douglas Condition , then for
each homotopy class of continuous maps in C®(M,N)S there exists a minimal
surface 9: (M.y.gJO -» (N,h) satisfying (1.5) , (1.6) , (1.7) and (1.8) and
minimizing the energy and the area among all maps in the same class. Furthermore
,if Sh- 0 andinthe homotopy class there is a curve satisfying the H'-condition
then there exists amap 9: (M,Y.gJ0 (N,h) satisfying (1.5), (1.6) , (1.7) and
(1.8).i.e. 9 isaminimal surface which is a saddle point for the energy and the area

functionals.



CHAPTER 2.
Preliminaries.

In this section the main point is to give a description of the main tools and the
fundamental facts for lateruse.

Consider (M,y) and (NJi), Nc Rk, as C°° Riemannian manifolds of
dimension m and n, define the vector bundle t] m M * and the fibre bundle
C=MxN, Ccti.

As is well known from Riemannian Geometry, the Riemannian structure on the
vector bundle TM over M induces a Riemannian structure on the bundles
(k*-tensor product) and (* - dual) over M.

Eachmap f:M -»N can be considered as a section f : M -» C in the bundle C
The (k+1)*-order derivative of f associated with the Riemannian structures on M
and N induce the sections Vk(df) : M -» ®&c+*T*M®f- I(TN) , - VooxVik

times), because
Vk(df)<x) E Hom(®k+1TxM,TfOON) - ®'=Tx, M®Tf(X)N .
The Riemannian metrics induced on these vector spaces let us define the norm
(2.0) IVK(df)Kx) - trace [(V«Kdf))*h)Kx) .

where the trace is taken relative to the metric on ®T*M , induced by the metric on

™.
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2.1. Definition: The LP-spaces associated with the maps from M into N ,

considering the element of volume as the measure, are defined as 1P(£) - (M -*£ If

is a section andj IfhKdM < 00} . Define the L~-norm as Iflp-1J KpdM]1/1\
M M

where | I- normin Rk.

As in the cases for domains in Rn these spaces are known as Sobolev spaces
and they are complete with respect to their natural norm. In general they are not Banach
spaces because of the non-linear character of N . Assuming the existence of a theory
for weak-derivatives of sections in the bundle £ (see [21), we give the following

definition:
2.2.  Definition: The Sobolev spaces associated with maps from M into N ,
considering the element of volume as the measure, are defined as Lr*P(£) - (f:M-»£1

fsL pffl and

Z f IVi<df)lp dM < o} . Define the norm BLr 2
1-0M
IVi<df)IPdM]l/p + 11%,,)

The fundamental fact about this space is contained in the theorem below; in the

reference ([101, pg.97) itisproved in general.

2.3. Theorem: (Sobolev's embedding theorem) Let (M,y) and (NJi) be C°°
Riemannian manifolds of dimension m and n. Let r be a non-negative integer and

p satisfy 1<p <oo. Then there exist the following embeddings:



Case A: Suppose rp<m, then

Lr>pffi->L4<0 forall pSqsJ2H -

Case B: Suppose rp « m, then

LrpfflL q(0 forall pEg<».

Case C: Suppose rp>m , then

Lr,p(0-»O>(0 forall OSjcr™ . where

CSffl- {f:M -. £ 1Vs~'(dfl exists pointwise and is continuous}.

Proof: See [10], pg.97. 0

Thecase C isofparticularinterest for later developments because estimates for

the normin Lr,p(Q gives theclass of pointwise differentiability.

Assuming N is isometrically embedded in IR* we have the following results

whicharevital for Critical PointTheory.

2.4. Theorem: Let T)m M xIR™ be avectorbundle . If rp>m then the Sobolev

spaces Lr,p(ii) are Banach spaces.

Proof: See[2 D

2.5.  Theorem: If we assume rp > m and N is isometrically embedded in

then the Sobolev spaces Lr,p(0 have a C°° differentiable structure as a Banach



submanifold of Lr*P(T]).

Proof: Sec (2), pg.49. m]

In the situation in which thiswork is developed, M is a surface,i.e.dimM - 2
and since the a-energy functional is the basic tool to be used, we are particularly
interested in the Sobolev spaces ,a > 1. Aswe are interested in situations
where M has non-empty boundary , consider the Sobolev space «{fe
1-1'2a(0 1f(9M) ¢ S}, where S isa closed C°°-embedded submanifold of N asin
(1.8). Then ,for a >1 LA COs hasa C°° differentiable structure as a submanifold

of 11720 i) and the theorems (2.3) and (2.5) are also true for this class of spaces .

2.6. Definition: The a-energy functional Ea :L1"ct(0s-*R is defined as

Ea(0 - if (L+Idfi2)adM - iJ dM ; Idfl2 - trace (f*h)
M M

If I<a<2 then *a:L~"iOs 7 is C~-differentiable. Because the 2°°

term is independent of f we consider on many occasions Ea (f) - i j (I+Idfl2)adM

It is useful to consider the a-energy above defined as a restriction of the

functional Ef*:L ~ a(ri)-*R ,given by the same expression in (2.6).

Considering that N is embedded in Rk, we can define local projections

P(x) : RA-*TXN which induce C°° sections P : N -» HorrKRA.TN) . Taking the
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orthogonal complement in Rk , we also have Q(x) - 1-P(x) : Rk ->(TXN)X inducing

a C°° section Q : N-» Hom(Rk, (TN)1) ((TN)1 - normal tangent bundle induced by

the Riemannian structure on RK) .

Likewise, we can define the morphisms Ps and Qs associated with the

embedded surface S in N.

The tangent space of L*"a(£)s at the point f can be described as
TjL120® , - {v M f(TN) Iv 6 L12“ (Os , Q(v) - 0 , Qs(vlaM> - O}1 .
Therefore differentiating the C2-functions Ea :L*2ct(Os-*R, for a > 1, we

define a section dEa : L1-2a ffls-»<TL1'2“ (C)s>* +

The nextsteps are concerned with introducing concepts to formulate a sufficient
condition for a general functional to ensure that the (PS)-Condition (defined in 2.14)

is satisfied by the functional.

2.7. Theorem: Let 1£p, q<oo andlet k and | be real numbers with

and k2 1. Then Lk,p((;)s€ L ~ O, and the inclusion map is

continuous. If k- (5 >t - (*) and k>1 then theinclusion map is completely

continuous.
Proof: See A.P. Calderon, VoL4. AMS, Symposia in Pure Mathematics,
“Lebesgue spaces of differentiable functions and distributions™. D

1—lts is important to note that if @« Li,2a(0i then the bundle <p*(TN) is of class L12" ,
la , it does make sense to talk about the space L12a (9»(TN))-{i:M -* <p»TN s isL, '2ointegrable }
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2.8. Proposition: If T € Hom(Lr,p(Ti), Lr,pOl)) then for rp >m T maps

bounded sets in Jr,p(T]) into bounded setsin Lr,pCn).

Proof: See 12],pg. 112.

2.9. Proposition: Given any sequence (<Pi)*j in Lr,p(Os. for rp>m , which
is bounded in Lr,p(q), by taking a subsequence we can suppose that

KK9iX<Pi-9j)*Lr,p(T1)-»0 as ij -¢00 (Q - Q by abuse of notation).

Proof: (See 121,19.15) The hypothesis that rp > m implies (by (2.3)) that
Lr,p(Q ¢ C°(0 and therefore C°°(Q isdensein Lr,p(0 . Choose a finite set of
smooth vector fieldson M , say Xi,..Xm , such thateach V(x) e TXM can be

written as a linearcombination of the X}(x), i - 1,....m.

(2.10)  »Q(g>)(9i-<Pj)iLr,p(n ) -»Q(9i)(<W-")«Lp(n)+ X IXi(Q(q>i)«Pi-<Pj))ILr-

1P

In the first term on the right hand side of e.q. (2.10) we know that
1QONWK'WOO-'PjWilpk S d~iw -fjC~pk . ¢ >0 « constant, because Q(g>i(x))

isaprojection, sointegrating

O<<PIXVVE<PIXL(TI) 5 ckW-4j'LP(n)

The embedding Lr’P(q)-»C°(q) is completely continuous, which implies that

we can consider the subsequence (<Pi)"| as a Cauchy sequencein C°0l).
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Hence, KX9i)(9i-9j)ILp(n) <£/2«

For the second term on the right hand side of (2.10), assume

(Wc.ccm(o. so
(2.11) X(QGn)«[>i-9j)) - X(Q(<pi))(<pi—<pi) + QK)X«Pi) - Q<Pi)X(<L.j).
Using the factthat Q - 1-P and P(q)X(<pj) - X(@i), we have

(2.12) X(Q(9i)(9i-9))) * X(P«Pi))«Pi-<pj) + (P«Pi)-P«Pj))X«pj) ,

but the bilinearmap X 0Q:C°°(0 * C°°(ti)-» C*°
(9.5) » X(Q(9)s)

is C°°, so by the factthat C°°(il) isdensein Lr,P(n), the bilinear map above can be

extended to XoQ :Lr,P(E) x Lr(T)) -» Lr“*P(Ti) , thus (2.12) can be extended to

(< ..d.rp(D.

Now choose 0<e < 1 sothat k-e> Consider (9i)” j ¢ Lr'P(£),then

by the Theorem (2.7) the inclusion Lr,P(0sc*” E”(Os is completely continuous,
so taking a subsequence we can suppose that 9i-»90 in L C*0 . Since the map
L ~(O into L ~(Homiq.q)) given by (9 -¢ P(9)) is C00 and hence

continuous. So it follows that IP(9j)-P(9j)I -*0 in Lr_e'p(Hom(q,q)) , and also

0.
W <FjLr-CP(O "
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Thus, from the second term on the right hand side of the eq. (2.10)

(2.13)  IX(QePi)<gri-<f>)XLr-1.p (ri) * IX(P«K»«Pi-15>+ (P«W-P«I>}))X(((Ij)I S
S IX(P«t4))ILr-1.p(n) m«<Pi-Pj"Lr-e.p(n) + IP«Pi)-P«Pj),Lr-e.p(T) K i~ r-
1-P('1) S

S KIP(9i)ILr-1.p(1)) kpi- |>Lr-e.P(T) + IP(9i)-P(«Pi

The result follows by (2.8), the hypothesis, observations above and inequality

(2.13). 0

Although the Sobolev spaces Lr,p(E)s » "OT rp>m , havea CO
differentiable structure as a Banach manifold, they are manifolds with infinite
dimension and are not locally compact. The (PS)-Condition is a sufficient condition

toreplace the lack of compactness.

2.14. Definition: A functional F:Lrp(T))-* R, rp >m, satisfies the (PS)-

Condition if for any sequence (9n)”_j . such that (F(<Pn))"_| “ bounded and

ldF(<pn)l -* 0 , there exists a subsequence (<Pnk) s° 11141 9nk -»9 in Lr,p(q) and
ldF(<p)l - 0, i.e.,9 isacritical pointfor the functional F.

2.15. Proposition: Consider the C~-functionals F : Lrp(£)s-*R and F:Lr,p(q)

-*R (F - F|jq),and a sequence (9n)".j ¢ Lr'P(0s boundedin Lr,p(ri) such that

IdF(9n)l-»0 (in Lr,p(0s) . Then passing to a subsequence we have that

«F<1>nK9n-'1>m)l- 0 in LrP(n).
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Proof: (Sec 121,19.17)

dF«Pn>«Pn-<M - dF(9n)(P(9n)(<Pn-«Pm)) + dF«Pn)(Q«Pn)(9n-<Pm)) -

- dFMJligin-qW + dF(<Pn) (Q(<Pn) (€n-<Pm)) *» *>

1dF(9n)«Pn-9m)* < >dF«Pn)l N>n-9mliLr,p(n) + IdF((Pn)I.1Q(cPn)(<Pn-<Pm)ILr,p(n)

and it then follows by (2.8) and (2.9).
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CHAPTER 3.
(PS)-Coiidition for the functional E«:L7"°(C)* ®*R . a > 1.
The proof of the (PS)-condition (as in [21) depends essentially on the properties

of the "density of a-energy" (Lagrangian) . In this section we do not consider the

general situation , for this see [21-Chapter 19.

3.0. Definition: Let Vj .., Vs be orthogonal vector spaces and let
£i- M xVj be the corresponding Riemannian vector bundles over M . If Aj isa
differential operator carrying sections of T)- M * to sections of Ci»*m 1.—s
then we say that {Aj} is an ample family of r*l-order linear operators for 7),

provided that there exist constants c¢j and C2 such that forall <pe Lr,P(T])

MLA(n)Sc*§ "AipLP(ti)+<:2M LP(n)

and we shall say that {Aj} is strongly ample if we can choose @ - 0.

3.1. Example: Aj- XiM e« Xi*e.. .o Xi". where aj +.+<%E£r

Xj - and X - Xe..eX (a times).

1t follows from the definition of 1«I|T ,p~ that (Aj) is ample.

We are really interested in the case dim M - 2 , because by (2.7) if a > 1 we have
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L12a <))<=c0(n).

Let (U.X) bealocal chartfor M, then the a-energy can be expressed as

(3.2) Ea() - }J [1+Mn)hij3r<pial)9ila<lU. dU - V?dxl A.Adxm

y - det (Yjj)

(summationinrepeated index).

From (3.1) the family of Ist-order differential operators 07~} , p - 1,2 is

ample.

The next definition are taken from 121 in a particular case which suit ours

purposes.

3.3. Definition  ([21,19.1): A la order lagrangian on i) - MxR” is an
element of D*(g,Rm) - (set of all differential operators of order 1 from 4 to the
bundle Rm “ MxR}. We denote the vector space of Is order lagrangian on r\ by

Lgldl).
3.4. Definition : Consider a functional F: LAP(ti) » R (f(9) < 00 if e

L1,p(ri)) defined by F(«p) « \]L(q>)dM ,where L e Lgj(ri). We say that L isthe

lagrangian associated with the functional F.

3.3.  Definition: Let L be a lagrangian associated to a functional

F: L1,pOi)- R asin 3.4 . Then we say that L is (strongly) p-coersive if there
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exists a (strongly) ample family {Aj} of 1S-order linear differential operators such

that for all <p, Ae C°°Cn)

N
PLEAA)2X TANAA T2,

3.6. Example: In thisexample we prove that the a-energy functional hasa p-
coersive Lagrangian according to (3.3). This example is fundamental to prove the

(PS)-Condition for the a-energy, a > 1. Itis divided in 3 steps.

Step 1: Because y is a Riemannian metric on a compact surface M , there

exist constants ¢ >0 and k>0 such that

(3.7) clvl*2 <mJ, < ldv”2,

where I-IR? - euclidean norm in R2

I*in ® normon M induced by the metric y .

Letusconsider A" - and Ea () - \] ea(<p)dM, then by (3.2)
Ca(<p) - i Il + YWhyA~9iAv4ik £i Il + CjlAjtpl2 + CjlAjtpl2]®.
We claim that there exists a constant ¢ > 0 such that

(3.8) [1+ CIA|(pJ2 + c2\A2< f]* > ~AflAjipl2« + IACpI2*) .

Toprove (3.8) considerthe function f:R -»R defined as ,



f(x) - (x+a)a - xa-aa , so f(0)- O
f(x) - al(x+a)a-*- xa-1l, if a£1 and a> Othenf(x)>0.

Hence, if x£0-> f(x) £0, thatmeans f isan increasing function in tO.00).

Take ¢ - miniCj.Cj) .

Step 2: Define la (9)(x) - }[(A,9A,<P)a + <MR<p.A2<)aXx), (...)- inner
2
productin IR

[dia «p).AKx) - y[(A1A.Al<p)IAlq2 (a- 1) + (A2A,A2)IA2 pl2 (a“ 1)Kx)
Step 3 ([2J,19.31):
d2ta(9)(AWXx) - MM>1A ,<pl2(a-2)(Al<pAIW)(Al<pAlA) +
+y | 1AI9)i2(a-1)(AIW.AIA)+ 1A2q2<* _2)(A29.A2W)(A2<p.A2A) +
+ylA2012<a* 1)(A2AN2W). So.
d2ia(9XAAXX) - IALgRa -4« A19ATA)2 + y 1AM 242 IAAI2 ++
2iMii|A 29122 4 (A29.A2A))2 + y 1A 2420-2 IAAI2 - - ylAitpl2« “28 A I

((ApA.A))2

o ylA2tHRa-2 IRAI2[1+(a-1) A y vV FLI'A /1-27 )
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Thus by (3.8) ea is 2a-coercivc.

3.9. Theorem (121,19.29): Let p22 and p>m andlet L bea p-coercive

Lagrangian . Let F: LMP(\)-» R bea  -functional given by F<p)- J L(«p)dM
M

such that dF: LACn) -» ATLA'P(ti))* maps bounded sets to bounded sets and let
F : L*'P(£)S -¢ R be the restriction . Then the functional F satisfies the

(PS)-Condition.

Proof: It is divided into 3 steps.
Step 1: L is p-coercive, so there exist c¢j >0 and cj > 0 such that for all

9r 92 £ C°°(TI) we have
dF«pl).(91-92)-<iF(92)<»1-'P2) 2 c119,-9 2ILI,p(tl)-c2191-92ILp(11) m

Proof: Take a- <Pj(x), b- »c:1-»Rk c(t) - b+ t(a-b)
[dL(91)-d L (92)] (91-92) - \]dZUc(t)).(Ql-QZ,Q1-92)dt'|'
0
f2
aj iLIAi(c)l>-21A(91-9 2)l2<Iti

2 .
(3.10) 2 (;.IAi<<p1-92|2.\] 1Ai(92) + t.Ai(91-92)I',- 2dt



Uttt be-iinet"df 1 @, 92)n310) itidovetat
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q @*dIPrPJIJF(ﬂ) N2l
i
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By taking a sequence (<n)“_j in L1,p(E), bounded in L1,p(n) (2.7 =+ (&h)~-i is

Cauchy in Lp(£)) and such that IdF<pn)l-*0 , it then follows by (3.11) that
(3.12) F(9n)-P(finHIlktnXtn- - c2«9n-9mlLp(n)

Now we have IP(n) - FH<pm)I->0, as n,m-*oo, because F: ,p(ri)-»IR
is continuous . Also IdF(@>n)(<pn-g>m)l-» 0 because

dFiA"X An-V -dFAAN-A+dFifK CKAN-2)) «s0

FrExAK |V * ] L1*<n>e

(by hypothesis IdF(@>n)l is bounded and by (2.9) 1Q(9nX-9m)*L1,p(TL) goes to
zero ). So in the expression (3.12) it follows that Hpn-”?nl ' \,qu) -*0 and by the

completeness of L7,p(rj) thereis 9 e L~,p(Tj) such that 9n“»<P in L*p(q).

Step 3: Let 9 =1lim9n in L1,p(q), then g6 L1,p(Qs and IdF(9)I- 0.
Proof: Since (9n)"«i ¢ L"p(E)s and L*,p(Qs is a closed submanifold of
L*,pOl) , itfollows that 9 6 L*,p(0s and by continuity IdF(9)I- 0. [m]

3.13. Corollary . The a-energy functional Ed :L*"a(Q -» IR satisfies the
(PS)-Condition for a > 1.



Proof: In example (3.6) we worked out the case for the a-energy's

Langrangian and it was proved that it is 2a-coercive. Inorder of applying Thm 3.9

1 20
we need to prove that dE« :L1®2o(t0 -» (TL1R“"))* - L * 2a-1 (g*) (2) takes
bounded sets into bounded sets . Taking 9 e L1%2ct(r|) then the we get a continuous

linear operator dEa (9): L*,2a (9*TRIc) -»C°°(M) whose norm is defined (see [22]) by

K fil ldEa (,)-Al

The explicit formulae is given by equation (5.3),

dEdQ) - a .E/I(l + 1d9R)a "V<d9,VA>dM . Applying the Holder inequality

(see 121) for 2 + 25’-‘1- - 1 we get

2ttty 2 2-1
1dE,.(9).AKa(d (I+kkpl2) 20 Kkpl20-AdM> 20 .(J IVARadM )1/2a
° M M

2a(a-t) 2« 2a(a-) f a
but J, (L+ldp2) 221 Jd»[2""d M s) (1+1dpR) 2L 2"'1dM - E (9)

2a-1
Then IdEa(9).Al S a.(Ea(g) 20 since A 6 L1-20(<pTRK) *
2a-1
s“.(Ea(9)) 20 . So,if <9,)n«l « » bounded sequence in

2- TI* - dual vector bundle associated with the vector bundle



L**2°(T|) it follows that IdEa (9n)IL12n_1 is bounded for all ne Z . Thus by the

Theorem above it follows that the a-energy E« : R satisfies the (PS)-

Condition. O

The geometric meaning of (PS)-Condition is that if there is no critical values in
the interval [ab] ¢ (-0000) for a functional F : Lr\(T\) -» R satisfying the
(PS)-Condition then the curves generated by the gradient flow (VF) are transverse to
the submanifolds F~*(ate) and F~*(b-e) for all sufficiently small e>0. Thisis
the main step to produce the deformations which leads to critical points for the
functional, because the deformation along such curves cannot pass through a critical

point.

3.14. Definition: Let 9- be afamily of subsets of a Banach manifold. We shall
say that 7 is isotopy invariant if there exists an isotopy {9 of M sothat VFe y
we have 9t(F)6 ? , Vt.

3.13. Definition: Let M be a differentiable manifold and f : M -*R . We define
the minimax of f relativeto f by
minimax (f,») - Inf sup If(x)l.
Fe? xeF
The next theorem is the main result to prove existence of critical points. It needs
the definitions of Finsler structure to replace the Riemannian structure in case the

dimension of M is 00 (see [1]).

3.16. Minimax Theorem: Let M be acomplete C”-Finsler manifold without
boundary and f: M-»R a -function satisfying (PS)-Condition. Let 9" be an

isotopy invariant family of subsets of M so that -00 < minimax(f,9r) < 00. Then
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eitherminimaxCf,?) is a critical value or there is a sequence of distinct values (c”), ke
Z with Cfc-* minimax(f,?) and such that f assumes the constant value ona

componentof M .

Proof: Seell] ,Thm5.18 [m]

3.17 - Theorem : Let M be acomplete Cp Finsler manifold without boundary
and f: M-*R a C* function satisfying condition (PS). If fisbounded below ona
componente Mg of M then flj~ assumes its greatest lower bound . If fis
bounded below then either f assumes its greatest lower bound or else there is a
sequence {M"} of componentsof M ,on each of which f isconstant, and such that

f(Mk) -» Inf{f(x) Ix e M}

Proof: See[l1, Thm 5.7
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CHAPTER 4.

Existence of critical points for the energy in L*’2(0s m

In this section we prove the existence of critical points for the energy functional
defined in the homotopy classes (1.1), (1.2) and (1.3) in L*,2(£)s . The strategy is to
prove the existence of these critical points for the a-energy by using the result in

(3.16) . Then we pass to the limit a -»1.

As enunciated in (1.9), the critical points in the classes (1.2) are minima for the

energy whilstin (1.1) and in (1.3) thecritical points are of saddle type.

In those homotopy classes in (1.2) the minimum can be degenerated into a

pointor aclosed curveon S . The closed curve turns out to be a geodesicon S .

4.0. Proposition: If g>M-*N, <p(5M) <=S, is a critical point for the energy
E:L*2(0s R and <p(M) isacurveon S, then <p(M) is a geodesic on S with
respect to the metric hjj - J y*1hjjdx2 defined on S, where (hjj) is the induced

metric from (N,h).

Proof: Once we have such degeneration we can assume that d2<p- 0 .

Therefore, locally we get

(4.1) E(@)- iffr113,fi31Visti<ixi«L2. } /ai4tol«ty'Y'lhydXjldx,



So by the hypothesis we can consider a variation ¢t: M -*N, qt(3M) ¢ S

d(E(91)
such that /- pand — — It Q-0

Having done this in (4.1) we get the geodesic equation. m]

4.2. Proposition:  For all homotopy classes defined by (1.2), the infimum of the

a-energy Ea :L*”a(C)s-»R is achieved in the class and it is non-trivial.

Proof: Since the (PS)-Conditon is verified by the a-energy , Theorem 3.17
claims that the infimum of this functional is achieved for all homotopy classes of maps
in L*"a(£)s . Since in the homotopy classes , defined by (1.2), the images of
the boundary components are essential on S none of them collapse to a point .
Therefore the a-energy of the minima is positive . Thus it follows that there exists

<Pac L*2a(Os such IhM Ea(9a) - inf Ea(f)>0.

4.3. Corollary: In all homotopy classes defined by (1.2) , the infimum of the

energy functional E:L*"(QS-*R is achieved and is non-trivial.

Proof: As 0<Ea'itpa') <Ea(qm) if a' <a ,the sequence («Pa)«" (given by
(4.2) )isin L ~(Q |. Itfollows from the weak compactness of the ball in L*"(£)s
that there exists a subsequence of OPa)?] such that ¢a ->9 in L*”(0s *
therefore E(<p) - inflim Ea (9a) as a-+ 1
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The next result proves the existence of a critical point of saddle type and the

method used is quite illustrative for the general situation.

4.4. Proposition:  There exists a critical point of saddle type for the a-energy

functional Ea:L*"a (£)s®R inthe homotopy class of maps defined by (1.1).

Proof: The ideais to use the minimax principle. In this homotopy class it is clear that
the infimum is achieved by the trivial maps . As we are looking for critical points of
saddle type consider the following construction (here the condition (H) defined in
(1.3) becomes clear to the problem). Assume k - 1 (the same construction can be

1 2

made for a general k) then a curve p:1 -* 9ap induces a map p: IXS™ -* S° .

. . e . _— IxM
Consider the identification given by the projection x:IxM -*------w---ts-wreeoe — , the

({03xS ) U (il>xS )

restriction to the boundary defines ft:IXS* -#-------- ———-----—- o

({O}xS ) U (il)xS )

» N be a continuous map inducing a map
(ioixs1) U ((1)xs1)

— »Sz and assume degree(q) - 1. Defineacurve p:l-»?
{0oIxs YU ({Nxs ) aP
by p - qoji. By degree(p) - 1 we mean degree(q) - 1

Claim: p isnotcontractible in L*"0t(£)s

If it were , then would exist a homotopy H:Ixl -* L”2a (0s such that
Hq(0 m p(t) and Hj(t) - *, * a trivial map . However , this would imply
degree(qox) - 0 but this is a contradiction with the fact that degree(q) - 1.



Thus the class of maps defined in (1.1) admit a family of subsets , namely
y - (p: 1> Ip - qoji and degree(p) - 1} , homotopic invariant by the gradient
flow of Ea and no subset of this family is homotopic to the subset of trivial maps in

L1,2a(0s. So , applying the Minimax Principle , there exists <m : M -» N,

ga (9M) ¢ SZ such that E~tpa) - inf sup *(p0)).
pe? te[0,]

4.5.  Proposition: There exists a critical point of saddle type for the a-energy

Ea :L12“© , ~ (<*>1), inthe homotopy classes defined by (1.3) .

Proof: The idea for proving this is the same as in (4.4). The condition (H) is
a generalization for the existence of map p with degree(p) - 1. The subspace U ¢S
is defined by a identification (~) on IxdM to obtain a space homeomorphicto S. If
jt: IXM -¢ (IxM )/~ defines the projection on the identified space and h: (IxdM)/— »S
is a homeomorphism then U m hojtfl{0}x9M] (J [(I}x3MI) , U - class defined by the

identification (see appendix 3).

Fix a homotopy class S7* and consider p :1-» S7* a continuous curve
satisfying condition H and such that p(0) - p(l) - g ,where g : M -*N achieves
the minimum for the a-energy in its class . The curve p induces a map

p: I X9M -»S .
Claim: p isnon-contractible in L ~ a(£)s
Suppose it is contractible , then there exists a homotopy H : 1 x I -» LI»2<*(£)s

such that Ho(t) - p(t) and Hj(t) - g,and there are two possibilities :

(i) Suppose g(M) is a closed curve on S and is homotopically equivalent to
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Sjv.-.vSf (v m wedge of curves) on S; 5j:S1-»S for i- 1.4 . Since we have
assumed condition H for p we have [p(IxdM)] - p in HjiS.Z) . However the
homotopy deforms p(IxdM) into g(dM) . But this is a contradiction because
H”S.Z) - Z and v..v8,z)- 0.

(ii) If g(M) is not a curve ,then p is homotopic to g(8M) , a set of curves and

therefore the same argument applied in (i) works here.

Consider 9r- (p: I-»”~ _Ipis continuous and satisfies condition HJ a family
of subsets in the homotopy class ~ ap ¢ So, using the Minimax Principle we get the

existence of a critical point of saddle type <m e satisfying

Ea(V - A X E“(P<)

Thus by the propositions above ((4.4) and (4.5)), there is a sequence of maps
«Ptx”~i . which are critical points of saddle type for the sequence of a-energy
functionals (Ea : 1*”®(£)s->11)"" . The next step is to pass the limit a -» 1 of
these sequences . Meanwhile for the homotopy classes in (1.1) it is interesting to
prove that the limitfor these critical points are non-trivial.

Observe that if a' < a then Ea'itpa’) < Ea(<pa) ; therefore by (2.7)

11.2x c L"Ma (M)s continuously .

As S is an embedded compact surface in N there exists a tubular

neighbourhood V$ and a number 8S>0 such thatif diam(Vs)-sup inf dist(x,y)
x.ye V,

is less than 8S then there exists a well defined projection projs : Vs-¢ S induced by

(NJi).
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4.6. Definition: Define diam(f.S) - sup  inf dist(f(w),s), forall fe C®(QS
wgM sgS

4.7. Lemma: Let (9a)(x>i he 3 sequence of critical points of saddle type for the
sequence of functionals (Ea : LA""fOs-* RJ™j . Then the sequence (9a)0t>]
convergesin L A ® j toamap g>M-»N, <p(OM)c S, which is a critical point for
the energy functional E: L~ (Q S R « Ifthe convergence takes place in C*(£)s f°r
the homotopy classes defined in (1.1) and (1.3), then there exists a constant ¢>0
such that E(<p) - limEa(qa)>c.

Proof: As 0 <Ea'(9a’) » Ea(pa) if a' £ a , it follows from the weak
compactness of the ball in L*"7(£)s, (4.4) & (4.5) that passing to the limit a -» 1 ata
subsequence of (tPa)~! there existsamap 9 e L"(£)s with the property that
E(<p) - inf sup Ea(9a) and being a critical point of saddle type to the energy
E:L*"(£)S-» R . In the classes (1.3) the homomorphisms p takes the boundary
components of S to essential curves on S, hence we have that E(<p) >0 . In the
homotopy classes in (1.1) assume that there exists a constant k >0 , independent on
a ,suchthat Ea(9a)>k>0 ;then passing to the limit we have E(<p)>0.

Claim: There exists a constant k > 0 independent of a such that Ea(9a) >k
V a > 1. From the regularity of ¢a (proved in (5.47)) we can consider a curve

p: I-*C*(Os with the following properties:

(i) The curve p satisfies condition H,
(i) P<i)-9a.
(iii)  Ea(p(t))SEa(9a) Vt.

Assume diam(p(t),S) £ 6S V t. If foreach t we have [projs(p(t)(M)I p in
(~(S.Z) then we can define a homotopy H:IxI-» S such that Hq(0 - projs(p(t)(M))
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and Hj(t) - A, where A is a subspace of S such that (*(A.Z) * Z. By
continuity we can extend this homotopy for all t, however, the factthat ~(A.Z) * Z
leads to a contradiction because by the condition H we have that [p(IxdM)] - p in
t"CS.Z) . Therefore there exists tQ such that Iprojs(p(tQ))] - [i or
diam(p(t0),S) >

1- If [projsipitQXM)] - \i then Ea (p(t())>c>0 + Ea(qmn)>c.

2- Let diam(p(tg),S) > 8S. Consider xQe M such that

diam(p(tQ>,S) - dist(p(tQ)(xa),S) and let Br(x0) be a ball such that
diam(p(t0)|Br(xa) , S) > 0 . Therefore Ba(p(")) > Ea (P(t0)|Br(xa )>- ca >0

by (iii) Ea(pa)>ca . However ca - ca(i>) mustto be greater than a constant
¢ >0, independent on a , otherwise we go back to the situation in (1) . If the
convergence <t -¢9 takesplacein C*(Os then follows that E(¢>)>c > 0.

[m]



CHAPTERS.

Regularity for the map* <m e L120(0* , 0 > 1, which are critical

points of the a-energy.

In the last chapter it was proved that for the homotopy classes of maps defined
in (1.1), (1.2) and (1.3) there exists a non-trivial map <pe L*"*(0S which is a critical
point for the energy functional E : L1,2(Qg-» IR. Now we are interested in proving
the C1-differentiability of ¢>m lim qm . According to theorem (2.3), to prove that9
is C1 itis sufficient to estimate the norm M 12»P(Qs is donc by estimating
kpalL2,p forthe sequence (9a)a>I| and passing to the limit a-»l . However, itis
not possible to obtain apriori bounds to the norm kpctl®.p . so the convergence
possibly does not take place in C*(Oi * In *is chapter we are concerned with
estimating {9072,p for sequence of critical points (9a)a>l ¢ L1 (Os «

The differentiability ofthe limitwill be handled in the nextchapter.

5.0. Lemma: Let 9a be a critical point of the a-energy functional

E~L12a(0s-*R « Then 9a isaweak solution for the system of P.D.E.

mce((Vdipa.d9a)d<pJ N
(5.1)  -AMIO + («-1) + 1 (9 )(di) -0
I+1d(p, /

where Aj” - Laplace-Beltrami operatoron (M,y) .

Nr - Christoffel symbol induced on the vector bundle 9_1(TN) by the

Riemannian structure on (NJi).
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Proof: Let V¢ intM beanopensetand Ae such that supp(A) ¢

d<p,
V . Consider a family of maps ot - exp A, then Q- 9 and 3[ It-D “ A . (For

more details about the proof see [14, pg. 14J).

Theindex a will be deleted to simplify the notation

Ea)- ij (1+IqtR)“dM .

. 4 \]W > -  «d9t,d9t It_odM-
t.o - i

(5.2) -aj atld<ptR)“-1<V3/atdtdpt>lt_0dM,

where An/dt % thc covarint derivative induced on the vector bundle

T*(MxR)®9 " (TN) over MxR .

Now for X ¢ TM, we have

T(MXR)
. M V0 mdk,tmVv3/3t
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Then (5.2) becomes

-ej (1+1dMN2)“-1.<VQ ) 497.0 dM -
(5.3) Sa] 1+ ldpl2)* ! 1-<VA d(p>dM -
M
. a \] <V*((1 + ldgpr)“ * 1d<p), A>dM - 0
M

where  V* : Ap(-1(TN)) -» AP_1(9~*(TN)) is the codifferential operator
(Ap(@ 1(TN)) - C(apT*M®9-1(TN)) C(V) - space of sections in the
bundle V).

So0,9 isaweak solution for the equation

(5.4) V(1 + 1d912)a_1d91 - 0 .

For the case when p € AL1(9~"(TN)), there exists an easy representation for

the codifferential operatoras V*p - - trace(Vp). So, (5.4) becomes
(5.5) V*[(I + 1df"2)“ - *dtp] - - trace (M(l + Upl2)a " 1dt(B - 0O
By Sobolev's Embedding Theorem in (2.3), 9a is of Holder class

cl™1/a(0* c C®0s . thus we can take the covariant derivative of the term

(I-tid9p)a - 1d9 . After this computation the expression obtained for the eq. (5.5) is
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(5.6) - trace [(a-1)(->-K<pl2)a_2(Vd<p.d<p)dep + (1-MKH2)®- 1Vdep] - 0
(a-1)(I+id<pl2)a - 2tracel(Vd<p,d<p)d9| + (I-Mdtpl2)“ -1 trace(Vd9) - 0

but  trace(Vd9) - -AM9 + ~r(«p)(d<pd<p) , therefore

tracel(Vd9 d9)do] A
-Am9 + (ot-1) TN YOI, 9y(d9.d9) O,

1+1ApI2
5.7.  Remark: (a) Thetracein eq. (5.1) is the trace defined by the metric induced
on each fibre of the tangent bundle TM over M.

5.8.  Corollary: The local expression for the eq. (5.1) is given by

A

tk i ou a v
S Y rVv *i* 3kxP Cvd<p),
(5.9) S tV *)? + -~

[ VZARY)
where (\’/d«p)laj - 3ﬁ<pOt - }(/ M‘"’K % X N Ran (Sj«p P.and
Ovyj-12 dv- k TP

Proof: (See 14),pgl4) Consider (A,(x%)) (i - 1,2) alocal chartof M and (B,(ua))

alocal chartof N . We denote by y- and Mrjk the components of the metric and

the Christoffel
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symbols of the Levi-Civita connectionon M, and use the notation ha p and

on N. Letthe Latin indices be few M and the Greek for N .

(5.10)

V<erjj*3s3 V “m,em.1.3 V «. r<TN) 3

v3/*id'i- - ?2 Mrk hk “d
-1 N

so that (5.10) becomes

o A i A snrh

-8 1A j-

Tal

Chm
3x* 3xJ



By applying the expression above in (5.1) we get the eq. (5.9) O

In (5.0) we have information about the differential behaviourof the critical point
4 of the a-energy functional in int M . Meanwhile the boundary of M is non-

empty and some behaviour is expected along the boundary 9M.

5.12. Proposition: Let qn be a critical point of the a-energy functional

Ea:L*"a (0g->R andconsider V ,a C00 vector field tangentto S, then
h(-g~(w).V(<pa (w))) -0, almosteverywherein 9M .
dpa.n, nisthe normal field along 9M , induced by the orientationon M)

Proof: Consider v asthe extension of V in TpL *a(Qs.

From eq. (5.3) we have

\AA (1 +1d~12)“"™* h(v,d<pa .n)dw - \]<V*((1 +U9al2x ' 1d9a).v>dM - o,
M

but by (5.0) the second expression is zero. Therefore

f (1+dg> R)“"' 1h(vd<pa.n)dw - O
dm
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and h(v,d<pa .n) - 0 ae. O

Let i:S-*N be the embedding of S in N and i-~(TN1) the pull back of
the normal vector bundle over S induced by the Riemannian structure on N . This
normal bundle has a natural inner product defined on each fibre coming from the inner
product induced on each fibre of TN by the Riemannian structure on N . Because of
the embedding of S in N, there exist a neighbourhood V of S in N and a well
defined projection projs : V -*S . Assume V m expsU , where U isa
neighbourhood of section zero in i"*CTN1) , then we can define projs through the
Riemannian structure on i-*(TNX and because i:S-»N is C°° we can also define

a C00 reflection R:V-»V throughout S .

The same construction is used to extend M throughout its boundary. Let C
bea Ce°°collarof 9M in M, i.e. C- dM x[0,5) forsome small 6>0, then define

a Ce° reflection r: C-»r(Q .

5.13. Definition. Using the notation above define the CO0 surface
M- M u r(Q, wheretheidentification isdone by id : 9M -»9M . For the maps
M

f ¢ C®C)S define an extended continuous map f:M -»N by

f(x), x6 M
Rof*r \x) , XE€ I<Q

In this way we define a C°° metricon M by
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5.14 wo (Y00 » M
14 i &.Q»O&dr X)) y(r ().(dr (X)), X € «

Woe call the attention that the reflection R:V -» R(V) is notan isometry in N .
Lets definea C°° metricon V UR(V) by

x>, xe V
s -l -1

() + (dR ) (x)-h().dR (x)

If £6 L1,2s(0s the extended f belongs to the extended space of maps
LU “(£)s-{f:M ->NIf€ L1'2(0s), (.M «N

Now the boundary of M isin int M and the study of the regularity along the

boundary becames simpler.

The extended map $a: M -* N has the property (w)"0 (3M) x

foralmostall we dM .

5.16. Proposition: A critical point for the extended functional Eq:L1,2a (Qs-»R

is a weak solution for the system of P.D.E. given by

(5.47) - Ajrgs + (0-1) " (VE9.9jd9j+NF(9)(d949). 0
1 4 1dgT
where - VjMf)~ k, Nf and Mf are the Levi-Civita connexions

associated with y and h.
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Proof: The local expression of i

(5.18) Idv2 - 1TVV cxe M
y8h&vliip'3<pvV , « M O

Let $ be a critical pointand consider Ae T q~”~iO s with supportin C;

then extending A to A by the same process asin (5.13), we get Ae T~ L*"a (E)s

with supportin CUr(Q . Assume Alg)m *0 «

Define as in (5.0) $t- exp"jtA . In order to prove (5.17) some care must be
taken to assure that the process of extending 9 does not introduce extra terms along

dM , i.e. there isno "comer”. The way to see this is considering the border terms of

both integrals in the expression (5.3).

By using the calculations in (5.0) and (5.12) we have

RifP-0_] AMuddpna ki avinm+

| (1+d<pt2)a’'1h(Ad<p.n)dw + J (1 + Idifi2)* “1h(A,dR.d(p.n)dw -
dM

-3 <v*[(l +ri(R.Ar™*)12)a “1d(R.<p.r_1)l, dR.A-dT1>dM -
>0

- - f<V[( +Id|I2)a’ ,d#1 A>dM - 0, 5. -n .
M



The second and third integral are zero, so, as in (5.0), we get that $a is a weak

solution for the system of P.D.E. defined in (5.17). O

Once the local behaviour of $a isequal to qm , the symbol will be

deleted and from now on we will always be dealing with the extended situation.

According to the Sobolev Embedding Theorem in (2.3), to prove that the critical
points <m e L*7a(C)s of the a-energy functional E~L ~"tO s -»R are in

CtO* (a>1) weneed to obtain an estimate for the norm tel ~_ ,p>2.
“1ap(Os

In this way the first result obtained is called Money's Growth Condition for

Ea , which tells us about the local growth of a-energy.

5.19. Lemma: Let ga be a critical point of the a-energy functional
Ea :L1-2a© s”IR. a > 1, i}y = injectivity radius of M and consider B"Xq) a
small ball with center at Xge int M and radius r < . Then there exist strictly

positive constants Cq(ol) and y(a) > 0 such that

f (1+1d712)“ dM < CO(a)r*a) .

Proof: Let t bea CO0 real valued function with support in B " xq) ,

identically 1 in Bf(XQ> and IW< 1/r in BAXq).

$=J ffidM (mean-value) and A:M -»Rk
B2 /Br
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A- (ga - ~.t2, then dA isasectionin T*M®<p- *(TRK) .

From eq. (5.3) we have

(5.20) \] (I+kkpl2)*“ - 1<VA,d9>dM - 0  (delete the index a) ,

M
where VA isasection in the vector bundle T*M®<p~*(TN) . In local coordinates
(5.21). <VA4<P>- |V (VA)[,3vp). ..3V--L..

Now consider the section in T*M®<p- ~(TN) given by VA(<p) - P(<p).dA(<p) , where
P isdefined asin Chapter 2. So, (5.21) becomes

<VA.,dg» - YIWijPii{A y + 2i«p-<w'atlT}3vg>i, i.e.

1 (1 Hdg>12)“- 1 YHIh P {T23 o'+ 2t«p-?)t3 t>a ¢>dM - 0.
»2a<\V

Thisimplies

(5.22) \] (I+tdipftA'ldililvdM S c, \] (I-dd<pl2)a “ 1M Ip<pl Id<pl Idd dM +
@r 82,



+ ¢ (M4%<fI2)* ¢ Iki<pftp-?h2 <iM, c,, @ are constants depending
Bar

onlyon y,h and P.

Because all functions y A\ h-j and P-», forall p,vV- 12 and ij,/ - 1,..,k are C°°

and bounded above and below we can consider the norms in eq. (S.22) as the norm in

Since 9 is uniformly continuous in B~Xq) (r- r(a)) we can take r insuch

a way that kp(x) - $(x)I < L forall x6 B~AXq), therefore

) (G TGS (B Il

by using the inequality ab £ >"-+8b", 8- 2¢*

J o (MWpR)a_tldpi't2dM s 11 <-Mikpl2)<x_Ix2idqi2dM +
Bj, B2,

+cd  (I+<pl2)a “1ldd2tp-$12dM
»,

then

(5.23) J (Md*12)* “1ld»tIT2dM Sc4]  (I4)d<pl2)a ~1ldtt2kp-$12dM s
B2, »2,



47

sc4j  (L4dopl2)" 1 dm
»2, r

) ) ) olo-Il a 1 o
by using Young's inequality ab £ a/a y + — —+ —

1.

The left-hand side of ineq. (5.23) becomes bounded by

] A
(5.24) sc.f (I+(dtpl2)* dM + c5 dm
Bj/B, Bi/B, T

Applying the Poincart inequality: \] kplhadx £ c.rra \] ldpitadx , V tp i

iV B Bj/ b,
LIt2o (Bjp.
the ineq. (5.24) becomes bounded by
(5.25) Scé| (1+ldpR2)* dM . ie.
»d*,
(5.26) f (I+ldgftr'ldtpPdM SCgl (I+khpl2)* dM
Bj, Bj/ b,

Define <I>s) -\] (I+1dtpl2)* dM .
w



(5.27) \] (MW<pl2)adM - | (I+4d<pl2)a ' 1kpl2dM + j(I+id<pi2’a " 1dM

by (5.26) and (5.27).

(5.28) L(W drdM SCi, \] (I+Id<p|2)adM+\](W drftr'dm
\ B,

- 1 n-1 2

J (+(d<p)a-1dM £ (J dM)“(j (I+tdepl2)“) ° Ec.rtt>())!, if a <2.

B Br Br

Theinequality above implies that

1 1
dKr) £ ¢6(dK2r)-0(r)) + c.ra[«Kr)]i £ c6(<B(2r)-<I>(r)) +c? ra

because <D()< E (<p)< 00 and a <2

oo~ <2r) + Cyra , dividing by

(5.29) Am+clya T. where and
T (2n7 Hci

27 - 1 m>7>0. defining V- ii27 and y(a) - S*IL .
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Then ineq. (5.29) implies that

sup (y(s))Ev sup (y(s))+v sup (yiswW +Gji-Q
0<s<r O<s<r r<s<2r
but

sup (v(s))- sup f (I1+W 2 _dMS_2~ . <k, k aconstant.
r<s<2r r<s<2r s r

Therefore sup (v(s))S— -. hence
O<s<r 1v
\] (~"1drdM iC N, and Y><>-
w

It is worth mentioning we are working with the extended situation , therefore

the estimate which is interesting is that of the norm in

17 P(C), - {fu L2P(£), IsuppiO c intM) .

The next proposition is a Sobolev type theorem where i*j is the injectivity

radiusof M .
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5.30. Proposition: The Sobolev space L &)‘2(05 is continuously embedded in

L~ (0S and forall f€ Lg”"Og with supp(fyjc V, V anopen setin intM and

diam(V) <iM , we get

(5.31) JIFAAM sIV dM JldfI2dM
\ \ \

Proof: The proof is carried in a simpler situation because M admits a local

chart (U,x") with x*e ¢” and x(V)c U.

Consider Q- ((Xj,x2)e ula(SX(Sbhj.. i- 1.2) anddefine
9(Xj:X2) - |fXjPCj) |

xX 2 2 2
g4(Xj.X2) - 92(x)j!2).g2<x1,x2) - J (Ix2)dt J -~-(x,j)dt
*1 *2
"1 2 » 2
J lg(x1x2)l4dxldx2 - J 1) ~-(t.x2)dt. J (x,.s)ds Idxjdxj S
Q <*1 2
Xt 2 *2 2
£ f (UMVIit11] -~-(Xj,s)ds 1]dxjdx2 £

Q a, *2

59 -<eskaid2s



*

j 2
s D 1 m-«r2wd2 3 i s

S[fldgnp S\]IgIZdM \]IngZdM.
Q Q Q

The result follows because Igj- Ifl, Idgl - 1dfl and U can be approximated by

small squares. D

In what follows we will be searching for estimates of the norm kpJL 2)2 ({/ s
s
; - ; ) 12 ) -
where qm is the critical pointof a-energy. Since qm e Lg (C)s *lwill be sufficient

toestimate IVdtpH 7 . Inlocal coordinates the expression obtained in (5.11)

for Vd9 is

(5.32) (Vd<p)* - 37** - i 3kqm + 3,97 3PP .

Because Vd<p is a section in the vector bundle T*M®T*M®<p (TN) over
M, the norm IVdtpl2 can be written in local coordinates as (notation - 9/dxj,

3.j. 32/3xj3xj)

(5.33) ivdpl2 - BapriV t3ij4i31kon - +

+ hap TUAiPASSA ST1 i,pY"j< 8™, >¢Pa,,”
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By using the inequalities

(5.34) a3 Sa2+a4

(5.35) abfel\}l +—1bz1
e

in (5.33), and the fact that M and N are compact Riemannian manifolds we have

(5.36) IVdpl2 £ clld242 + c2ldpi2 + cldipl4 , where d2¢> - Ojjtp0L)

and dtp - (97°), ie. assuming <pe LM2X(E)s and supp(tp) ¢ V we have

37 Lo(Os'

by (5.31) |d<;x<Hz)1(W £ \\/]quisz.\\/]IdVdM )
N

Then

5.38
( ) Ao, s (et + +E<r

5.39. - Proposition. If 1A. cpil% < k(g>), where k(@) > 0 depends on
4<0S

then there exists constants kj(<p)>0 and d >0 such that



ld242, £k, () + dHKil2, (Am - Laplacc-Bcltramioperator).
Li(Os 4® ,
Proof: Let V ¢ M be a open set contained in a local chart , then
(AM<p)jj = 9jj9a - rjj 3kqm locally . As AM< is a section in p_1(TN) we
have
mhotfST i \% i j A / +

Therefore, by applying (5.35) to the inequality IA"lpIyz <k(g>) we get
4® s

llha p YiiY,p31j3¢ 3jp<P(ll2 S k(<p) + e2|d2<pl2 + (1/e) 2ldtpl2 + cldtpll2
However, the left hand side of inequality above has a lower bound given by the
condition imposed on the metric h (see 1.0). So,taking v - (va)- (y"3jj9a) it
follows that there exists a constant k > 0 such that

K*Yij3ijTal2 £ kap) + e2ld29pl2 + (1/e)2fldpl2 + cldcpl2

The metric y has a lower bound cj >0 because it is a Riemannian metric and

M is compact. Thus .taking e>0 sufficiently small it follows that



12922 Sk,(<[>) +dlld<p2]
1JO0s 1 L0O's D

(5.40) Proposition: Let <& € L1,2a(0s. ot>1, be acritical point forthe a-
energy functional EO :L1,2a(0s"™ R .then there exists a constant k such thatin a

sufficiently small ball Bf(Xg)c M (r- r(a))

B;V dA w

Proof: (See [41,3.2) From (5.17) we know that g0 is a weak solution for the

equation

1race|(Vd(pa.titpa)d<paI+ "r(® Jdo p)- 0.

1+

Now, consider T : BACXq) *B a <f° cut-off function such that X - 1 in

B”Xq) , then (omit a)

Am (t<P) - xAM tp + 2dtp.dt+ AM t.<p, and (delete the index a)

AM(t»)-2d*dt-AMt.9 + (a-I)t. rr(<pKd<p,d<p) - 0.
M 1+ldtpT

Therefore
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(5.41) IAt<p)l < Cjldepl + c2M + c3(a-I)tIVd((J+c ~ fi2 . and
(5.42)  1Aixip)!2 < clkp2+c2bp24c3(a-1) t2IVd<p(24c4 Il +

K 2id(pl.I( ] Tidpl MoptHB A il3+k 4(a-1)d(pUVd< | *tk 5t Idpi2+
+ k6x2VaplId(il2 .

By using the inequalities (5.34) and (5.35), the right-hand side of ineq (5.42)

becomes:
(5.43) IAX<p)I2 <c2M 2 + clidql2 + c3(a-1)x 2IVd<pl2 + caldpld .

So. integrating on M . applying (5.38), (5.31) and the Poincar6 inequality we get

sk»E« W +k2<a-,* V L3®.

A A YR<1(0.AnLr. 20,

From (5.39) if we consider k(<p) - + 2(Qs+

k~1~0 .

(also using d2(x<) - xd2¢p+ 2dx.d«p+ d2x.tp) , we get

[ - (a-l)k2 -

Given c¢>0. assuming CO(a).r*a”<e in (5.19) and considering a~1 we get

(5.44)



5.45. - Remark: Itwill be a major problem to obtain a uniform bound to the energy
of c¢a in (5.44) because it is not clear that the sequences (CO(a))a>i and

(y(a))a>i are bounded above .

5.46. Corollary: If a > 1 the critical point ¢a of the a-energy functional

Ea:L12a(0s R hasabounded norm kpal jp forall p>2,ie. e L*P(0s
forall p>2.

Proof: Let (Ux) and (V,X) be C°° local charts , where U cM ,V ¢cN
and <p:x(U) -* X(V) is the local map. Define the curve o:1-»x(U) by o(t)- (y - x)t+
+x XYy € x(U)c R2,and let v:I -*x(U) bea C°°-vector field such that Vv - 0.

Finally define the curve c:1-»f 4(THn) by c(t) - d(<p«oXt).v(t), then we have

c'(t) - [VOxl«poo)Kt).v(t) - [(Va»d<p)(t).(y- x)].v(t)

dep(y).v(l) - J[(VOri<p)(t).(y -x)Lv()d t, and

hence ld<p(y)IP £ K IVd(pl™2 .diam(M)*

and finally integrating on y we have
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Iffil . S K.diam(M)P.vol(M).I<pl|P2
cC®, C ® . 0

5.47. Theorem: Let (a be a critical point of the a-energy functional

Ea :L12a(0s-» R - then ¢pa isa C1-differentiable map.

Proof: (See [4],2.3)Consider B fItf asmall ball and t : ¥R acut-off

function as in (5.40). From inequality (5.41) and Minkowski's inequality
(5.48) lu+valp < lulLp+ MLp .

It follows that there exist constants ¢->0 (i- 1,...,3) such that

(5.49) IA(t9alLp < cikPalLI,P+c2(a- 1)k, 0lL2.P + *

Let c(p) be the norm of A-* (see [41,2.3) as a map from Lg -* (L ~ n Lqg2)
on the disk.

Then from (5.43) we get

c(prH<[>alL2,p <ci'»0lLl,p + c2(a-1)|<PalL2,p+ C jlip~Up

[e(p) 1 - c2(o-1)»npalL2,p<sti<(alLl,p+c3l9alLl,2p

So, for a ~ 1 and by (5.44) & (5.46) we have



Ip| 2p <00, ie. <a £ Lgp(0s+ Therefore by Sobolev's Embedding

Theorem L”*,p©® sc,cj© s, hence (pa is Cl-differentiable.

5.50. Corollary: If ScN isa C°° surface embedded in N then the curve

9 (3M)c S isa Cl-differentiable curve.

Proof: This is a trivial consequence of (5.*47) once the boundary of M lies in
int(M). The class of differentiability of embedding i:S-»N appears in the method of
extension through the reflection R:V -» R(V) defined in (5.13) and decides which

class of differentiability we have along the boundary.
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CHAPTER 6.
Existence of a harmonic map, proof of (1.9).

In the last section the main result was the C*-differentiability of the critical
points @Pa)a>1 <=L 1,20 s of functionals (Ea:L1,2a(0s ->IR)a>1 «The bounds
for the norm lcpa | 2p A dependent on a because the bounds to the norm
kpal12,2 were obtained by using sufficiently small balls with radius r - r(a)
depending on the constants from lemma (5.19), therefore they are not apriori bounds .
So, when we pass to the limit (a -» 1) may be the bound to the norm kp(

<*12p !
tending to infinity

.6.0. Proposition: If foragiven e >0 there exists a finite cover of M by balls

Bnix.) (with centre in x- andradius r. ,i- 1....J) such that sup J 1d© ek<e,
11 1 1 isfIBAii) a

then as a -» 1 there exists a subsequence of (fa)ool such *at qu”-»c¢ in
c'(0,.

Proof: Wi ith this apriori bound on the energy, we can see from the main
estimates in (5.44) that there exists a constant k >0 , independentof a , such that
kpalL2,2 <* «hence (according to (5.46) and as in (5.47)) kpal”i.p also have a
bound independent of a forall p >0 and we get that there exists a constant ¢ >0,
independentof a , suchthat l$alL2,p <c e« Hence it follows after passing to the limit

thatwe have M 12,p<c andthus ¢>€ C*(0s *
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The assumption in (6.0) is too strong because it is known from 1211
(Eells-Wood) that does not exist any harmonic maps in C*(T~,S") of degree 1.
However , the assumption in (6.0) turns out to be true outside of a finite number of

small ballsin M .

In this section it is worth considering the extended situation asin (5.13). Here

the symbol " will still be omitted unless it is necessary.

6.1. Proposition:  Given a fixed e > 0 , there exists 0 such that for

1<a < <4 thereareonly a fmite number of small ballson M where

\] (L+1dfjv*dM>e if a <aQ.
Ball

Proof: (See [41,4.3)Consider (B.)?, a fmite cover of M with the property

that anypoint x e M belongs to at most n balls. Because the energy of maps in

L*~(0s *sfm‘tc followsthatforall 1<a <<9qg

£ J<l+I1d*/)“ dM<n.K. 6" (9") <K .
Bi

Therefore the number of balls Bj such that E(aljj.) > 6 (a < <) is bounded by

n.Kle.
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6.2.  Proposition: Given a sequence of critical points (€ct)a>i . therc cxists 8
subsequence of (®a)a>i a°d a finite subset of points {xj,...x"} ¢ M such that the
subsequence  converges in CANM\{X],...A,N)s to a harmonic map

@ M\{Xj,....x"}-»N as a-> 1.

Proof: (See [4],4.4)Consider a finite cover of M given by the balls B(x.,Tj)
(I£i£p) such that Bixjjj) H - 0 if iJ —1,...~. If we take for each i-

a small ball B(x.,8(a)) ¢ B(xi”i) such that lim 6(a) =0 as a-» 1, then from (6.1)
given e >0 we can assume that sup E(cPa Im \(JB(x-5))< e *Therefore passing to the
limit a-»l we get a harmonic map in CA(M\(xj,...,.x"},N)s as proved in (6.0).

O

The next lemma (first proved in [41) is fundamental for the purpose of extending

the harmonic map obtained in (6.2) to all M .

6.3 Lemma: Let 9:D”\{p)-»N be a harmonic map with finite energy, then <

extends to aharmonic map <>  -»N.

Proof: (See [41,3.6) In Appendix 1.

6.4. Theorem ([41,4.6): If a sequence of critical points admits a
subsequence converging in  CANM{Xj,..At"}, N)s but does not admit any

subsequence converging in N)s . as a -» 1, then there exists a

L . . . 2
non-trivial branched minimal immersion $: S -»N.

Proof: Define pa max ldga (x)l. From the compactness of M there exists
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Xg e M such that ug Idﬁb/‘(xa).l and Xg -»X} as a >1.

Let V(xa”a) - expx*B(0”a) be a neighbourhood of xa , where B(Oja)

isaballin TAM with centre at the origin and radius ra < ij~ « then, we can define

vV  B(°>Va>-BOra> *

V x>-»*0x

and the sequenceofmaps <a : B(0.Hara)-»N by

rta(x>- V ex',xa'Taoe™ *o(ex¢x0®@li Ix» =

This new sequence has the following properties:

(6.5) 1d$0 (x)I S1 forall . i B(0,naro).

Applying the chain rule we have d$0(x) - (p0)'ld(pa odexpx”(x) , hence

(6.6.) I (0)1- 1 .

(6.7) 6 isaweak solutionof the PDE given by
trace((Vdm,dm)dA )

(«m») AM*a + < - > e un 12 + T(« Xd$a.d(*>,)- 0.

once itisobserved that Mfa| -t* aJd*ol (»«eproofofnun 7.15)



(6.9) \] (1+1d$ )M - ¢ <1_a) J 0%, +l>iV W .
B(04iaro) “ a

We can assume as a -» 1that the sequence (ra) tendsto 0 and the sequence
(Hara) tends to infinity . Then it follows from 0 < E(<pa )< E(<P ) for a <a' and
(6.5) , that the sequence (#a) admits a subsequence convergingto $ e L12 (RZ,N),
since B(O,nara)-»R2 as a-* 1. Themetric Ya in Tx M isinduced by the metric
Y on M, infact yo0O - Y(*a)foraU x€ TAM . Hence the pair (B(0,"ara),

Ya - Y(*0)) convergesto (R2,Y- 7(*i)) . where Y is equivalent (as a quadratic

form) to the Euclidean metric on RZ.

2
So we can claim the following about $ :R -»N :

(6.10) $ :R2-»N isnon-trivial by (6.6).
(6.11) $ isharmonic by (6.8).
(6.12 E($) is finite because

E($> + E(<p(M-{Xj» S " {E«=B(0,nara)) + E(alM-B(xa.ra))} S

*5“ N« 1" >E("alB(x"0)) + E<PAM-B(W > s 7 E< V SEa<l>a)-

2(1-a;

(2>a>1* )-»Oaso-»l)

However , R2 with the Euclidean metric is conformally equivalent to the
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standard S~ip} (p isthe north pole) through the stereographic projection. Applying
(6.11), (6.12) and (6.3) we get a non-trivial harmonic map 9 : 52 -¢N , which turns
out to be a branched minimal immersion from the standard into N .

(]

6.13. Theorem: Let (V o j beasequence of critical points of the functionals
(Ea :L12a(0s-*IR)a>i * Theneither g -»9 in C~Os. orthere exists a non-

L . 2
trivial harmonicmap 9 :S™ -»N .

6.14. Remark: Describing the latest result with respect to <p instead of $ (the
extended map according to (5.13) ), the sphere which blew up at a point Xj e 3M

turns out to be adisk when restricted to M only.

6.15. Theorem: If j@2(N) m O then the sequence (9a)a>| of critical points given
by (4.2) admits a subsequence which converges in C*(©s to a non-trivial harmonic
map 9:M -»N satisfying (1.5), (1.7) and (1.8) and minimizing the energy for each

homotopy class defined in (1.2).

Proof: (See [417.1) Asin (6.4) consider the sequence (xa)c M such that
khPaiOl- *«P e lim lira(«0) -« and x -*Xj in M .
o xeM ar|

Let B(Xj”r) be asmall disk with centerin Xj, such that Xj is the only point where
the continuity of the derivative of the map 9 - lim 9a failsin B(Xj,2r). Let q bea
C00 function with supp (q)c B(Xj*r) and g m 1 in B(Xjj) . In (6.2) itwas
proved that there exists a harmonic map 9 : B(Xj,29\{xj}-* N with finite energy.

Then by (6.3) there exists an extension <D:B(Xj,2r)-»N and it is harmonic . Definea
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sequence of maps ya : B(Xj,2r)-*N as

(6.16) \Y - exPgr (X) h (M .exp” (X)«KD]m

That means
CKx), xe B(xj,r)

Ta« *{
< (x), x 6 B(xr 2r)

(6.17)

Therefore as a-» 1 we have limya - <& By (6.17) Va can be extended to
€ c'iO s » THeassumption that XjiN) - 0 implies that ¢ and yo arein the
same homotopy class because the induced homomorphism between the fundamental

groups are the same. However, a is a map which minimizes energy in its class, so

(6.18) Eaﬂg’éixjAr)%:EaMa 'JB(XI"r)? Vool , also

(6.19) tl)llTI Ea&/“% X, » )= I:{7\\II\IB(><‘,2r))' ’
Therefore,

(6.20) n5E«(90B(iii2r)) SE("B(I1" SO r*

So, giving e >0 we choose r such that (2r)"x K M <e and we obtain an apriori

estimate for the a-energy restricted to B(Xj,2r), i.e.



sup J (1+ldgpar) dM<c
B (x,»

By (6.0) o -+9 in C*(B(Xj,2r),N)s .hence <p-G>. By the same process, we can
prove the same result for the others points where the C* convergence fails. Therefore

9a »<P ClO,

For the homotopy classes defined in (1.1) and (1.3) ca is a saddle point for
the a-energy , soitis no longera minimum in its homotopy class and therefore more
care is necessary in using the inequality (6.18). In this case we need the assumption

that the set - {<S2 -*(N,h) I gis harmonic and non-trivial map } - 0

As in the last theorem, consider the sequence of maps in C*(C)S given by

< (x) . * 6 MXBriXj)
(6.21) va(x)- {

OP<Pa(x)ITI(IX) CXPa(x) *W | » x € B2r(xl)
6.22. l#mm«! Consider g e C*(0s * critical point of saddle type for the
a-energy functional and ya 6 C~(0s 88" (6.21) . Assuming *0, there exists
8> 0 sufficiently small such thatif r <8 in (6.21) then

(6.23) Ea (90 IB(xi* * E a(yo IB(x1>).

Proof: Let Xj 6 M be a point of discontinuity for the derivative of map



67
9- limqn ,a -+1,and B(X],S) beasmall ballin M with centerat Xj and radius
8>0. From the factthat 9a 6 (” (Os there exists e - e(a,8) >0 such that
(6.24) C«x,8) - Ea(9alB(xi g))<c(a,6).

Define da - sup dist (9a (x), <IKy)). Then there exists a constant k(o) >0

xe9a(B8)
ye<I>(B5)

depending also on the metric of N, such that k(a).d(a) >0 and assuming 8 >0
sufficiently small we get

(6.25) k<a>da <Ba (VOIB(xi8)> «

From theorem 6.4 if Xj is a point where the C* convergence fails for

9 - lim 9a then

(6.26) limC(a,S) - Area($,N) ,where -*N is harmonic
0-»|
8-0

(on 9 isharmonic ¢+ 9 isaminimal branched immersion).

However, the hypothesis that - 0 implies
(6.27) Area ($,N) - 0.

Therefore e(a,8)-»0 asa-» 1 and 8-*0.
Then for a ~ 1 and 8~ 0 we have e(a,S) $ k(a).da and therefore

E“0alB(x1,5)) S E«(V=IB(x1.5)) "



6.28. Theorem: If Sh -0 then the sequence of maps (a)a>l JPvcn by
(4.5) admits a subsequence which converges in C*(Os 10 a non-trivial map
¢>: M -»N ineach homotopy classes defined in (1.1) and (1.3). The limit is a critical
point of saddle type for the energy functional E: L~(O g-»R , therefore it does
satisfy (1.5),(1.7) and (1.8).

Proof: Asinthe proofof (6.15) definethe map ya € C*(£)s.

Then Ya in C*(£)s and by (6.24) it follows that

Ea <A IB(x15)) < E« (V* B(xi,5))

Because ¥,,-«> in c'ffi, we have Um g)- EC®" 8))
Therefore

E5- E(<pl iEE(<W £ j2KHI?

d-1 g E B (x,8/ ( B(x|,5)) ® 1

By choosing e >0 sufficiently smalland 8- | |——we get

sup J (I + Idtpa R)adM <e .
B(xj,6)

Then, by (6.0) it follows that ¢ -»  in C*(C)S~ D
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PB(x.1)

<IKB(x ,2r))
Fig 6.1:A(N) - 0

Fig 6.2 1 iCjiN) * 0
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CHAPTERT7.

Existence of a minimal surface, proof of (1.11).

The classical origin of the subject of minimal surface comes from the study of
surfaces in a Riemannian manifold whose area is a minimum between all surfaces in a
same homotopy class . It is natural to extend this notion defining minimal surfaces as

critical points to the functional area.

7.0. Definition: A minimal surface (M.y) in (N,h) isa map 9 € (?(C)S such

that the following conditions are satisfied:

(7.1%) Am9 +r(9)(d9,d9) - 0

(7.1b) There exist a Riemannian metric 'Y on M and a strictly positive
function X:M -*R such that
9%h - Xye

The class (5 is determined by the class of differentiability of the boundary

conditions, since solutionsto (7.1a) are C°° in int(M).

In order to define the area of a map in the general context of Riemannian
Geometry it is convenient for our purpose to follow the ideas in [15] for the case in

dimension 2.

Starting with the surface M and any smooth symmetric 2-covariant tensor

field a on M, we fix apoint 9 e M and consider the eigenvalues of a relative to
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the metric tensor y of M ; i.e. then real roots of the equation
(7.2) dedX.7(p) - a(p)] - 0.

Inthe case dim M - 2, which we are interested in, the equation (7.2) can be

written as:

C73) "2+trace(@X+"A-0,m ux (0)-2:/\atlv, I*" - (YDA o

Because a(y) is a symmetric matrix there exist two real solutions, counted

with multiplicity, forthe equation (7.2) and therefore

<7-4> S $.trace(a).

Now, foramap f : (M,y) =>(N,h) ofclass L1,2 consider the symmetric non-

degenerate 2-covariant tensor field f*h .

7.5. Definition: Given amap f:(M,y)-» (N,h) ofclass L1%2 , the area of f is

definedas:
d™m.
(7.6)
7.7 - Remark: For faster computation an equivalent definition for the area is given

by:
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A(f>. | -JEG-F2dM, where E - f*h(e,e,), G- f*h(e2,e2),
M

F m f*h(Cj,e2>and Cj.G arc vector fieldson M suchthatforall pe M the tangent
vector space TpM is spanned by (ej(p), e2(p)) .

7.8 - Definition: A map 9 : (M)y)* (N,h) is said to be conformal if there exists

a strictly positive function f: M -¢R such that

9*h - Xy, ie. h(9(x))(d9x.,d9x.) - X(X)y(x)(.,.) forall x€ M .

7.9 - Remark: The map 9 is said to be branched conformal if there exists a point

p 6 M such that X(p) - 0; then p isa critical pointof 9 and is called a branched

point.

The relation between the energy and the area is given by the following result
from [1S] :
7.10 - Proposition: Let M be a surface, then forany fe L*~(0S we have

A(f) £ E(f) and the equality holds if andonly if f is aconformal map.
Proof: Consider a - f*h in (7.3), then the inequality
al|) A(f) £ E(F)

comes out from (7.4).

Assume A(f) - E(f). Thisisequivalentto:



det(f*h)

(7.12) det(y) w - Jtrace(f*h).

By fixing a point p € M and looking at the equation (7.3) at p together with
equality (7.12) we have that:

From the diagonalization process described by (7.2) , we have that

f*h(p) - X(p).y(p) . From the C°° characterof Y and X:M-* R defined by (7.14),
itfollows that f*h - Xy on M and therefore f is conformal.
The converse follows by assuming f is conformal, i.e. f*h - Xy then
det(f*h) - X2 det(y) and trace(f*h) - 2X.
Hence the equality (7.12) is satisfied. D
As a consequence of proposition (7.10), the fundamental idea in this section is
to replace the functional area by the functional energy in order to obtain minimal
surfaces. However, that will succeed only if we can obtain a conformal map as a

critical point for the energy.

The next proposition from [151 is one of the fundamental facts about the
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energy forour purpose of proving existence of minimal surfaces.
7.15 - Proposition: Let < be any mapin L**"(£)g. Consider M a surface and
x 1 (MYj) -* aconformal diffeomorphism where Yj and Y2 arc Riemannian

metricson M . Then E(<pox) - E(<p).

Proof: According to the definition of energy, we get

EOpox)- jlejdfTKxViMj N
E«P)« jle 2(<()(x)dM2 M.T) M,Y2)
where ejitpXxd - 11" (x > ij(<p(x))3 (Igi(x")avgi(x) and

e,««Xx) - «~AV)hij(g>.T(x))ail (fi.t)(x)Sv(i»xXx)

but  ej(tp«x)(x) - 1"*v(x).3lIxP(x).avx, (x).hijep.x(x)).dpV (x(x)).311V (x(x)).

Note that (dx.Tj “.(dx),)(nl - |fvapxP.avx,>.

The hypothesis that x is conformal implies that AYj - x*Y2 » *c-

Wx).Y,(X) - (dx)“(x) r2(x(x)Xdx)(x)*Y -1(x(x)) - X* 1(x).(dxXx)Y1'(x).(dx)'(x).
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Therefore e,((I»x)(x) - X(t(x))."1""v(t(x)).hy(g»t(x)).ap VWI<)) *<|)i(t(x)) -

- iex"). Av(x%hij(1)(x).3pV (x).aTV(C") m

Hence ej(<p©x)(x) - X.ixOejitpX*") « The elements of area dMj and dM2 are related

by dMj - ydetldx 1dN~, butby the conformality detl(dx)- *) - . Thus

E«pox)-E«p). a

At this stage the concept of critical point for the energy will be extended by
considering variations of the critical map in the target and variations of the conformal
structure on M , i.e. variations on different Riemannian metrics such that there is no
conformal diffeomorphism between them . The right description of this discussion is

made by introducing the moduli space of conformal structures associated to a surface

M.

In order to give an accurate definition of the moduli space of conformal
structures we need some basic definitions. From the classification of surfaces we
known that the genus g classifies topologically a compact oriented surface without

boundary . From now on g means the genusof M.
7.16 - Definition: Consider M aclosed surface with genus g .
(i) Consider the C°° vector bundle Jt:(T*M#T*M)®R -* M ("«"-symetric

product) . Define the space of C00 symmetric and positive definite bilinear forms on

M as the space
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B(g) - {s:M -» (T*M#T*M)®R 1JCos - identity, s is C00 and s(pKv,v)>0 forall
peM andveTpM}.

(ii)  Definethe following equivalencerelationin ©(g):

Given Yj and Y2 “* ®(g) wc say that Yj ~ Y2 <m> cxist a
diffeomorphism f:M -» M and a strictly positive function X : M -* R such

>yl -t*y2 -

7.17 - Definition: The moduli space of conformal structures ©(g) on a surface of
genus g isdefined as ©(g) - ®(g)/~ . m the equivalent relation defined in
(7.16-4i)) .

7.18 - Remark:

(i) Another definition could be given by defining an action a : (C+(M)®Diff(M))
X ©(g) -»©(g) given by (X®f)(Y) - Xf*Y ; C+(M) - {XM-»R IX>0and X is
C°°} and Diff(M) « {x :M-» M1 x is a diffeomorphism}) . Then ©(g) is the orbit
space of action a .

(ii) ©(g) turns out to be a real differentiable non-compact manifold with
dimension 6g-6 if g £ 2 (see 1161). dimension 2 if g - 1 and dimension 0 if
g-0.

(iii)  Each point of ©(g) is a conformal structure on M .

7.19 - Proposition: If 9 is a critical map of energy related to variations of <p and

the conformal structure on (M.y), then tp is a minimal surface.
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Proof:
(i) By considering a variation of 9 asin (5.0) with a - 1 and the regularity in
(5.49 ), < satisfies the equation
AM <+ r(<p)(d<p,dtp) - 0, i.e. ¢ is a harmonic map.
(ii) A variation of conformal structure y e K(g) is given by a curve

o :(-e.e)-» K(g) with 0o(0) - y. Amap 9 e L1,2(QS is acritical point with respect

to the conformal structure y if

s EM -0 *1 <h]- ».

Consider (0)- A and o(t) - at .

+ hA<P'\t i (Al11Y2" A 22f11-2A12T12)]d,
2(det(y ))'
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nrv iA v

7 det(y ) 21det(r)[3/2
A (Ytvhijah<pavgi SY1L

V<i«(rl) + 2(dct(/"))3/2

I'v A g 2i}dx. 0,
Tfiet(y ) Ydetly 7

However, A isarbitrary , hence y11 2 te 722 A
(det(Y)) (det(Y))
A
and y12 [ ] ------1-2---t, therefore
(det(Y))
2«p*hel e2) 2«p*h(e2” 2) 2<p*h(el,e2)

- r~ My22 e -’ yi2 * L
trace(q) h) trace(«p h) trace((p h)

So \y - <p*h and X(x) - tracc(9 M*)) yhen according to (7.8) < is

conformal and by (i) and (ii) ¢> is a minimal surface.

7.20 - Remark: The proposition (7.19) justifies the definition of minimal surface

givenin (7.1). From (7.10) the Euler-Lagrange equations for the area functional is the



same as the Euler Lagrange equation o f the energy functional if 9 is conformal.

According to the result obtained in (7.19), we shall be searching for a pair

(Y.9) ,in each homotopy class (1.1), (1.2) and (1.3), such that

7.21 . inf inf  max£ (f)
( ) EO) yeR(g) Fey feF 7

where is the energy defined on the Sobolev space L*'*(£)s which is defined by
the metrics y on M and h on N andtake 7 as in (3.16). If we consider a
sequence (yn) <=fc(g), then Theorem (1.9) gives us a sequence of smooth harmonic

maps 9n : (M,yn) -» (NJi) , ¢n(3M) cr S such that (7.21) becomes

(7.22) EQ)- inf E (9)
Yk(g) Tn

We assume thatthe sequence (Yn>9n) minimizes the energy.

7.23 - Lemma (Courant-Lebesgue): Let fe CA(E)s and consider the set
Cr(x) - (y€M Idistj*(x.y) - r) . Let 6 beaconstant, 0 <5< 1. Then thereisan Tq
with 8<Tg < V5 and afunction t :(0,1)-*R, dependingonlyon K and M, such
that E(t)-*0 as t-» 0 and such that
length(f(C 0)) SE(5) .
(

Proof: Consider Bf(x) a small ball with center at x . If we consider Bf(x)
contained in a local chart (U,y) parametrized by polar coordinates then the energy of f

is given by



C7.24) Effl-i 1 M p s ) +l<» (p i) +

ty hS 'S )]~ " w9

where a, b,c :u->R are C°°-functions and c(r,0) - TU™*.2e + r22co.2e -

ry~sin20. So, considering r small enough there exists k'>0 such that c(r,0) >k ".

Therefore, there exists a constant k>0 such that

a25) kBJO7 h(w -§)rdrd9<K

The length of f(cp isgiven by

C7.2¢) Uf(cp)-J >h (§.~)de<A.[} h (~,])de]L/2
n n

»
Let 5 beaconstant, 0 <5< 1 suchthat 8 <r< V8 . Because of the

differentiability of f, the function H(r) - J h(dOf,d0f)(r,0)d0 achieves its minimum in

the interval [8,V8] at rmTg. So, integrating in (7.25) we obtain
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Then by (7.26) we have

L(f(c.» / N '

Therefore setting £(8) the result follows. O

7.27 - Corollary: Let (Yn)”,j beasequence in 2(g). Consider (<n)”,j a

sequence of harmonic maps obtained in (1.9), such that <m is acritical point to the

energy with respect to the conformal structure Yh defined on M. Then (n)n.j is

equicontinuous, whichever the conformal structureon M .

Proof: Themaps ¢n are smooth . Consider (JB(x"j”) acoveringof M by balls
of radius r™, where forall X€ A we have that r~ satisfies lemma (7.23) fora
constant 8(0< 8< 1). Therefore if Xj.XjC M and dist*Xj,") <r~ for some
Xe A then length of the geodesic of minimal length joining <p,,(Xj) to <h(*2) is less
than L(g>n(Cr*)) Vn>nQ. Since
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L(fB(Cp) < C(5) (by (7-23)) it follows that

distN (n(xi)* <E®%) * (9nC -1 iscquicontinuous.

Atthispoint it looks as if a sequence of harmonic maps which minimize energy
must admit a convergent subsequence. Meanwhile, it is not clear if the limit is a

conformal branched immersion. The reason for this doubt lies in the fact that we do not

have any information about the sequence of conformal structures (Yn)”_j <=X (g) .

For instance , it is easy to realise geometrically situations where the length of a curve
¢ , with respect to the metric Yh on M, can be approaching 0 as n-»o0o and at the
limit we get a surface topologically different . In this case the limit can not be a

conformal branched immersion.
From now on the problem is to look for conditions to achieve the convergence
of Vn-I * .

A characterization of compact subsets in 1R(g) is described by the next result

from[13L

7.28 - Theorem (Mumford's compactness): Let £(g) be the moduli space

of conformal structures on a surface of genus g . Forall e >0 the subset:

(Y€ ~(g) | *1Lclosed geodesicson (M,y) have length £ e}

iscompact
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Proof: Sec Appendix 2.

The Sobolev Space L***(QS depends on the Riemannian metrics defined on M
and N . If (Yn)isasequence in ©(g) ~7.16(i)j and h is afixed metricon N, we
use the notation L ~(~n)s when refering to the Sobolev Space associated to the
metrics yn and h LU <), - LU ((M,yn).(N,h))s .

It is important for our purposes to note that the definition of Sobolev Spaces

LU (Os is invariant by conformal transformation , i.e. if fe L***(Cj)g and fe

L AC ~s , then supposing [y m **f°Uows that IfI"L.27n A - IfINA(N)s
(Thm 7.15) . It is also easy to note that if Yn*eY in ©(g) then
Ifljrl2~r ~ *Mi1.2(~  (just look the local expression of , Where

L12® s-L 12«M,T),(N,h))

7.29 - Definition: Let (Yn)n«lc ©(g) be a sequence . If Yn-»Y in ©(g).

then we say that the sequence of Sobolev Spaces L ~ ~ * j convergeto L (© g.

7.30 - Theorem: Let M be asurface with genus g and Fap a homotopy class
of maps defined in (1.1), (1.2) or (1.3) . Assume Xj(N)# 0 and g£ 1. Ifthe
homomorphisms a: Xj(M)-> Xj(N) and [3: Xj(9M)-»Xj(S) are monomorphisms ,

then for each such class there exists a minimal surface of genus g .

Proof: Let (¥n.9,) j beapairofsequence where (Yn)’_jc ©(g). 9n isa

harmonic map given by (1.9) with respect to the conformal structure Yh on M and

(Yn<m”n- 1 nninimizes the energy.



Because a is a monomorphism , all classes in Xj(N) can be represented by
the image of geodesics representing the generators of Xj(M) and therefore the length
of geodesics on (M,yn) must be greater than £>0 forall ne Z . In this way , itis
impossible for the length of a geodesic representing a class in Xj(M) to approach 0
for a sequence of maps according to the hypothesis . 1f we look the situation on the
double of M , we can make the same analysis using the monomorphism ji and
conclude that no boundary component of (M,yn) has length less than e >0 .

Therefore by (7.26) the sequence (yn) convergeto y e K(g).

Then the sequence of spaces L ~(”~n)s (associated with y j converge to
L1,2(0s (associated with y) and by the lower semicontinuity of the energy functional

on L*2(Qs itfollows that cp,-Mp in L"2(Qs (weakly). By the equicontinuity of

sequence (<p,)”_j it follows that qm-»<p in C~(Qs - C~((M,y),(N,h)) and that ¢

isaminimal surface. ]

The assumption a : Xj(M) -» Xj(N) is a monomorphism is very particular in
the general context. However, a better sufficient condition to prove the convergence in
£(g) was described by J. Douglas in [11]. Before defining the Douglas condition it is

necessary to describe the notions involved.

In our context the surface M has k boundary components. The moduli space
£(g) has been defined for closed surfaces, so we define the double W of M by

W -m Um , identified by id :d-»d .
a
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Then M is a closed surface with genus g - 2g + k-1 and admits an isometric

involution o :R ->W (0" - id) . The locus of points fixed under o consist of k
closed curves, called curves of transition ; o(C.) « C. ,i- where

{C.li- 1.k }-8M.

Acurve C :1-¢M will be called a proper curve on M when it is not

contractible and either

(7.31)
(i) C isasimple closed curveon M, or

(ii) C is asimple arc with boundary on 9M .

Therefore a proper curve can either have 1 componentor 2 components on

7.32 - Definition: Let M be a surface with genus g and k boundary

components. Let EI be its double, i.e., asurface of genus g - 2g+k-I . A surface
M* is a primary reduction of M if it results from M by a process divided in two
stages:
- apropercurve 5 isidentified into a point pe M by a continuous map

s (e~{p))
- Thereexistsamap x: M/~ -¢M" such that it has only one discontinuity and it is at

p-

So M’ isa surface in one of the following cases:
(i) M'-MjUMj (2 components), g'- g| +gj. k'- kj+
g.*Il, kjfel. i- U.



00 M' has genus g'- g-1 and k'- k.
(iii) M hasgenus g'=g and k'- k-1.
Civ) M'hasgenus g'- g-1 and k'mk+ 1
(v) M' hasgenus g'- g- 1 and k'- k- 1

A general reduction is a transformation of M such that it decreases the genus
of M or the number of boundary components of M . The special case isin (iv), but
there the genus is decreased. All general reductions can be described by a sequence of

primaryreductions.

A map <p:M->N, <p(9M)c S can be considered as a map such
that - $00 and $(c.)cS, i- 1  k where c. arethe transition curves.
As mentioned before a homotopy class of maps fe C®(f)s (assuming

JCICN) - 0) is fixed by the induced homomorphisms a : Xj(M) -» JCj(N) and
P: Xj(dM) -» Xj(S), where f* - a and - P. In this way we define

(7.33) d(S, g.k,a, P)- inf E(f)

and for all possible general reductions M' of M we define

(7-34) d*(S,g,k,a, p)- infd(S,g\k,a, p).
M

If g- 0 and k - 1 define d*(S,0,1,a ,P)- co
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7.35 - Douglas Condition: Let 9~” be a homotopy class of continuous maps

from M into N with boundary lyingon S and induced by a and P, then

d(S, g,k ,a, P)<d*(S,g.k,a.p).

The description of a surface according to the Uniformization Theorem for

surfaces (see [171) will be useful for the next steps in order to prove (1.10).

7.36 - Theorem (Uniformisation):
(A) Let (M,y) bea simply connected surface and y ametricon M. Then M is

conformally equivalent to one and only one of the following surfaces:

o c
(i) Cu {3}
(i) H-(zg CIH<1> .

(B) Let (M,y) beaclosed surface of genus g and metric Y on M . Then itis

conformally equivalenttoone ofthe following cases:
(i) g-0* M~ <u {oo}
W g-i*m-~cl/r

(i) gi24 M -H/r,

where T in (ii) and (iii) is a freely acting group of Mobius transformations

on € (in (ii)) and H (in (iii)). Furthermore in both cases T a #j(M).

Proof: See[171
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7.37 - Remark:

(i) C {00} is topologically equivalent to

(ii) In (7.36-(iii) ) when g£ 2, the group T is usually called a Fuchsian
Group.

7.38 - Theorem: Let M be asurface with genus g and k boundary components.
If we assume the Douglas Condition in (7.34) for the homotopy classes of maps
defined by (1.1), (1.2) and (1.3), then there exists a minimal surface with genus g in

each of these homotopy classes.

Proof: The proof will be given for the case of surfaces of genus * 2 (see [12]) . For

thecases g - 0 and g - 1 theproofisexactly the same . Because the surfaces with

which we are working have boundaries, we will always be working with the double vl

, soin order to avoid confusion we mind ourselves that the bar will be deleted and M

and 9 means W and 9 ¢

By the Uniformization Theorem a sequence of conformal structures can be

considered as a sequence of Fuchsian Groups (Tn)j”j . Let (T,,9n)"mj bea

pair of sequences where 9n is a harmonic map given by (1.9) with respect to the

structure Tn on M and (Tn,9n)j”j minimize theenergy,i.e.,if

"I>n2 W <En2(V -

(7.39)  Suppose that the length of some closed geodesic of TQ approaches zero as

n-»00, then one of the following situations occurs (Fig 7.1):
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(i) The length of an interior geodesic in W approaches 0.
(ii)  The length of a transition curve C- in X? approaches 0.

(iii)  The length of ageodesic in M intersecting two different transition curves

approaches 0.

(iv)  The length of a geodesic in M intersecting one transition curve twice

approaches 0.

We need two results in order to prove that the Douglas Condition is sufficient in
achieving theorem (7.38).

Assume H-{x +iyeCly>0}.
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7.40 - Lemma: Let c be asimple closed geodesic of length | in H/r . Then
thereisacollarofarea sinh t/2 around Y. i-c. H/r contains an isometric copy of
theregion

tre'~e H Il £r<e*larctan sinh(1/2) < << Jt-arc tan sinh( t\2)}

where ¢ corresponds to {reix/2, 1£r £e*}; (r- 1} and {r- c1} are identified via

«-A .
Proof: See [18].

7.41 - Lemma: Suppose c: |-¢ M is a curve which is absolutely continuous on

dBfxQ.r) and

2k
Jic'(e)idesE.
0

Then there exists f e L*2n C°(B(x0,r)>1) with

2k

%B(x0s)-C «d Ic'(e)]2d9"

Proof: See ([19], Lemma9.4.8b).
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(7.44)  Since
~«Pfen)
NI 20V RN P
x4 1 rsinv

there exists y n*e (sBmey ) «i" 1*2. such that choosing y * yn*in (7.41) we get

2k
(7.45) J I"tPnil.0)?d0"kjén, (E(@n) isuniformly bounded).

If en is small enough then by (7.41) dQ: 1 ->N can be extended to a
continuous function dn : - {z6 Cl1 12 £ 1}-#N satisfying
(7.46) E(dn)~k2en (17 independentof n).

Now we make asurgery on (M,rn) by cutting off the collar [-w Ixcn on M
and pasting two disks Dj and D2 by identifying 9Dj to {-e} x cQ and dD2 to
(e) x cn . In this way we can define a new map

#:(M-(1-e,£]xcn})UD1UD2-»N by
<p(x), xe (M - fl-e,el xcn))
«*>- {

dnV ). x « D|

Throughout the surgery process we obtain a primary reduction of M where the

genusof M was decreased, also it follows that

(7.47) E($). EAIM - fl-eil x cn>) + EfdJtD,) + ECAjJIDj) S E(9n) + 2kj €.



Since en-»0 and E(pn) -*d(S, g, a, p) we conclude that

d*(s,g,a, p) £d(s, g, a, p) , acontradiction. °
7.39-(ii): In this case we can use the same details used in case 7.39-(i) by
supposing the length of a transition curve is approaching 0 . After the surgery we
obtain a primary reduction where the genus is maintained but the number of boundary
components is decreased. Then we get a inequality like (7.47) and a contradiction for

the assumption of Douglas Condition.

7.39— (iii): Assume that the length of a geodesic cn on (M, r*n) intersecting two

transaction curves tj and~ approaches 0.

By (7.38) cn admits a collar isometric to

As in case (7.39-(ii)) consider £(cn) - On and define the curve dQ:1-¢N



By (7.45)

jH-(e)R2d8<klen.

Thencutting M along cn wc can paste 2 disks d% :Dj »N dl’re: Dj->N

along each curve resulting from cn , where each disk satisfies Eid") < kj en .

Therefore

e ($iilM-(D|uD2)) + E(d *D,) + E(d*D2) S EOpn) + 2k, en .

Since en-»0 and E(<n) -#d(s, g, a, P) it follows that
d*(S,g.a, p)£d(S, g,a.p).

However, from the surgery it results a primary reduction of M by decreasing
the number of boundary components by 1 and keeping the same genus . Thus we get

acontradiction with the assumption of Douglas's Condition.

7.39-(iv): In this case the process is exactly the same. The contradiction comes
from the fact that the surgery leads to a primary reduction of M by decreasing the

genusof M by 1 and increasing the number of boundary components by 1.
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We conclude that the Douglas Condition implies that no closed geodesic on

(MJ*n) has length approaching 0 , therefore by Mumford's Theorem the sequence of

groups (rn)“_j convergesto T, which defines a conformal structure on 9J(g).

Then the sequence of Sobolev Spaces L*"(En)s defined on (MJ*n) .
converges to the Sobolev Space L ~(0g defined on (MX) , hence the lower
semicontinuity of the energy plus the equicondnuity of sequence (qm),€1 implies that
m-¢9 in C1(0Se Therefore ¢ (M.y.gjc)-» (N,h) is a minimal surface, completing
the proof of (7.38).
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8. Appendix 1 : Proof of Lemma 6.3.

Consider (NJi) a Riemannian manifold with metric h , isometrically

embedded in R*, and D2 m (x € R2 Ibd< 1} with the Euclidean metric.

Lemma 6.3: Let 9 : D2-{0) -»N bea harmonic map with finite energy, then 9

extends to a harmonic map <> D2-»N .

The proof given here follows the ideas as in (14), Theorem 3.6). The main idea
is to prove that if 9 : D2-{0) -* N is a harmonic map with E(9) < 00 then 9 e
L1,2a (D2,N)c C°(D2,N) for 0 > 1. Therefore 9 can be continuously extended
and is a weak solution for the Euler-Lagrange equation associated to the energy
E :L*2(D2,N)-» R . By the regularity of such weak solutions, it follows that 9 : D2

-»N is a harmonic map in the classical sense, i.e., 9 is smooth.

Letus fix Xge D2-{0} and remember that for all points Xq ¢ D2-{0) and
C>0 there exists a ball B"Xq) - {xe D2-{0) I k-Xql<r}

E(,'B I<x0))<" “ in(6.3)).

The proof is divided into 3 steps.

8.1. - Step 1: There exists a constant ¢ >0 such that

@©.1) bal < CE{PIBM (x0)) "1 «0« D2-®) .
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Proof: By a conformal transformation wc identify Br(x) with B2(0) , then
E(<plB2(0)) < e * Define the transformation T :Bj(0) -» B[x"|(x0) * x0 G

themap "B ~"O "N by #(x) - +1x7),s0, $:Bj(0)-*N isalso harmonic
and E($)<e.

By (5.30), (5.41) and (2.3) there exists aconstant k>0 such that

max |d$(x) 1£ K.E($) ,

x<B|(0)
therefore
1dtfiXolIxQl - WOl Sk-E~b”™-0)) m
[m]
8.2. - Step 2: Let g:D2-{0} -* N be a smooth harmonic map such that

E(<p)< 00, then

2k 2k

(8.3) | Be**#2<19-121 B~z)12d0

Proof: Let T|(z) - w(z)dz2 be the holomorphic quadratic differential form

where w(z) - (K'cpl2 - Bygll2) + 2i(9x<p, 3y<p).

From (8.1) we get:



(8.4) Kv(z)1S2ld<p<z)Pscllzl'2 .

By (8.4) and the fact that J Iw(z)ldtl £ ZJ ldpl2 dp < 0o, (p the Lebesgue

measure in D2) , the orderofthepoleinz - 0 isatmostone.

From Cauchy's theorem

2x 2x
f Re(w(z)z2)d0 - | [Be(p(r,8)I2 - r 2Br<p(r,8)I2]de = 0.
-lztr 0

So (8.3) follows from above.

8.5. - Step 3: Let 9 :D2-{0) -» N be a harmonic map with E(<p) < 00, then
9e Ll,2a(D2,N) for a > 1.

Proof: Assume \] 192 <e. We approximate 9 by a function g which
B2(0)

is piecewise linear in log r , depending only on the radial coordinate and

f(2-m) - TQ(Z“m,O)dO . Then f is harmonic for 2-m <r<2-m+* m~ 1.

Now for 2mSrS2'mM

lq(r) - <pr,8) £ 19(2_m) - q(2*m+1)l + kptr.8) - q(2_,n+1)I.
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Since

maxOp-<pb)l 12“M S balyt£ 2 M1} £ 2'm+3 maxOdptol, 2-m £ W £ 2 mll

S C 23(J lgit2 dix)* .
‘We can assume
Iq() - PEOJE24C( 1 Idip2 dfi)d £ 24.e].
WE2" » *

An estimate to the L*™2 norm of the difference between g and o> is made as

(8.6) \] Idg-d<pl2 du - r\] (a(r)-<p(r.6), 3r<p(r,0) - g'(r))do |

- J (9-9. A(g-9)) dn .

On the right side of (8.6) the boundary integral vanishes because the terms
containing q'(r) disappears ; this is because q is the average of 9 at 2 m, and the
terms with 3r<p(r,0) cancel with succeeding and proceeding terms because 3r<p(r,0) is

continuouslydefined.

The estimate of (8.6) is then :
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(8.7) 1 IdardipPdn - -J(-0>). APl » ] (@<p, rtjoiidpdn S
SIH, 1q-" IdILO2SHI,,, 24cVeldqiLo2.

Let U'lgm 24 c>/e<S. Then we get

2x 2x

8.8) B;‘(]W Idep-9)2d | is[r_if< kp-quel*leg Q. ¥ixie)l + 85§ kip2dlt

From (8.3) we get:

8.9) L‘(O\)] Idp2cA - J in-dn.

Bj(0) r2

Applying (8.9) to the right-hand side in (8.8) we get:

(8.10, J 1d(9-g)12 dll - J —i-d 1l -} J Idtpi2 d i
B,(0) B,(0) Bt(0)

Because q is die average value of <p:

8.11) [ j kp-grdBpsi Joogzaop ) \]Idede)*

So, inserting (8.9), (8.10) and (8.11) in (8.8) we get:
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Ct-28) | ld~diis J ldpl2ae:
BjCO) r-1

By translating the expression above (by expansion and contraction) into a disk

of any radius, we get for r£ 1 :

(8]3 (1-25) \] Idtp~dnSr
B/0)

\]ld:plzdo.
-1

r

Now integrating (8.12) as in tf4], Theorem 3.6) and applying (8.1) for
0 < Ixgl< } we get

1-28 -
(8.13) IpOELDOIE cazxal 2 ( Ildgrdn)* forsl] xqe a2-») .

Then

\]IdQ(x)IZad|i Sk.| bd"(1+25)adn < oo for 2>a > 1

and 9e LIt2a(D2,N)c C®D2,N)+ 9 isaharmonic map from D2 into N .
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9. Appendix 2 : Proof of Theorem 7.26.

For a complete proof of Mumford's compactness theorem ((131), it would be
necessary to go into the Lie Group Theory, which is too far from our aim. Therefore
the proof is based on strong results (without proof) adapted for our concern. The ideas

are the same as used in [13].

By the Uniformization Theorem (7.33), the only classes of simply connected
spaces up to conformal equivalence are C, £ u {oo} and H, and all closed surface
are conformaly equivalentto M /T, where M isone of those simply connected space
(according to the genus (M)) and T is a discrete subgroup of the group of Conformal

Automorphisms of M acting freely and discontinuously on M .

The group of Conformal Automorphisms of M is a Lie Group , in fact:

(9.0) (i)  Aut(Cu {oo})a PL(2, C) * SL<2, C)/2I

(i) Aut(C)a PA(Q2,C)- {(* £)e SL(2 C)lac* 0}/+I.

(i) Aut(H)a PL(2, R) a SL(2, R)/%1.

So, the Uniformization Theorem reduces the problem of studying conformal
structures on M to studying discrete subgroups of groups of Conformal
Automorphisms of M |m m universal cover of M according to (7.33)) acting freely

and discontinuously on M .

Because all surfaces of genus g - 0 are conformally equivalentto Cu {oo},



we are particularly interested in describing the situation for surfaces with genus g£ 1.
From now on G - Aut(M), r - discrete subgroup of G acting freely and

discontinuously on M . Define the action 0:G*M -»M by a(g,rii) - g(m). Let p

1 0
be the standard metricon M, ie. if M- C, p(xy) m o 1 Vz«xtiye C, if

1 0
M- H, p(xy) - V (x,y) € H. Define a function d on G by
0 1y
(9.1) d(g) - inf p(z.9(2))
zcM

Forall e >0, define an open subsetof G by

Uc- (ge ld(g)<e}.

A subgroup r acts freely and discontinuously on M if and only if it is

discreteand T n Ug - {e} forsome ¢>0.

Fora general Lie Group G , define the subsets

Xgqg - (Tc GIr isadiscrete subgroup}

Mg - {TcGITc Xq ,G/T iscompact} .

The following are general results for Lie Groups which are not too pathological;

see [13]for furtherreferences.
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9.2. - Theorem: Let U be an open neighbourhood of e, C a positive number.

Then {T€ XG ITn U- (e) and measure (G/O SO iscompact.

9.3. - Theorem: Assumethat G isa Lie Group (connected). Suppose a sequence

(T.)” jczMqg convergesto Tc Xq . Thenfor i sufficiently large there

exist isomorphisms of groups ¢>j: T4 T., such thatforall ye T, g>(y)e G and
converges to y . Moreover, there is a compact set K ¢ G and an open neighbourhood
U cG of e (identity in G) suchthat KX - G, KX.- G, Uo T- {e and
Ur*r. - {e} if i issufficiently large.

9.4. - Lemma: Let M - M/r beaclosed surface with genus g~ 1. Then

there is a constant k such that

(9.5) diam(M).1 £ k area(M)
where | - length of smallest closed geodesicon M .
Proof: From the uniformization theorem M - C or H . As a real surface

M - C ithas curvature K(x,y)- 0 V z - x+iy e C and M - H has curvature

K(x,y) « - 1 V (x,y) € M. Therefore M has sectional curvature K £0 .

Let d - diam(X), x,y e X such that dist(x,y) - d and o :1-»M ageodesic

from x to y oflength d. Consider atubular neighbourhood of a defined as
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T - fexpo(t)s.v(t)lv(t)s TO()M, tv<t>l- 1, O SsSj}

There are two possibilities:

(i) No two geodesics 8j , 82 perpendicularto o of length » meet themselves,

or

(ii)  somepair 5j,82 do meet.

In the first case the exponential map from the normal bundle N to o in M

mapsan  -tube Tq around the 0-sectionin N injectivelyto M .Then

(9.6) area(M)"area(T)2area(TQ)"-".d .

In the second case suppose two geodesics 5j and 82 meet themselves , where
8j(s) - expz/(s.v(tj)) and 82(s)- exp~s.v”"), Zj - o(tj) and Let e
be the distance from Zj to 22 along o . Then we can go from x to y by going

from x to Zj on Oj following 8j , then following 82 and going from Zj to y on

o . Thispath haslength $ d-e +y , and since a is the shortest path from x to y,

dEd-e +-j, ie. e But then 5j,82 andpartof o, between Zj and Zj, isa

closed path t : 1 »M of length at most | . Because g£ 1, x is certainly not
homotopic to 0 sinceon the universal covering space M of M, the exponential from
the cover of N into M is injective. Moreover, x has comers and so is not a geodesic

itself. Therefore there is a closed geodesic freely homotopic to x of length <t . This
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contradicts the definition of | and so the possibility in (i) is the only correct one and

(9.4) follows from (9.5).

9.7. - Theorem: Letrc MQ, e>0 and Tu UE- {e . Then there isa

constant k and a compact set KC , with radius C - jL_easuere <G /r> suchthat

r.Kc-G . Hence forall positive D, the subset S- CTe Xq | Tu Ug- {e},

measure (G/T) £ D} is compact (g - Aut(M)J.

Proof: Consider the metricon M » M /r induced by the metric p on M.
The closed geodesics of X/T are all images of geodesics in M joining two points, x
and g(x), where x« M and ge T. Since Tn UE - (e), these all have length at

least e . It follows from lemma (9.3) that

di,m(M) S k'm *(M) - km“ *"*<°/r> | ¢
e e

Hence, the ball Bc(x) with centre at x (V x ¢ M) and radius ¢ is mapped
onto M by the covering map it: M -*M . Thus the action a:T * Bc(x) -» M is
onto, i.e. r(Bc)- M.

(i) r(Bc) - M -»there exists a compact set Kc such that r.Kc - G.

To prove (i) consider the compact set Kc(x) - (g e Gldist(x,g(x))i c}. Ut
x»y e M and g e G such that g(x) - y . By hypothesis there is y e T and
z« Be(x) such that y(z) - y . Ut he Kc(x) and h(x) - z . Then
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g«Yh+r.Kc«G.

(ii) r.Kc- Ge¢ G/r iscompact

Otherwise G/T ¢ Kc would be open, but this cannot happen because G is

path-connected.

So, to prove S is compact itis sufficient to prove that if a sequence (T.)* j c

S convergesto T 6 (this is assured by (9.2)) then G/T iscompact,Le. T e
S . From (i) we have ~(B” - M . Therefore by (ii) we have I"JJKC- G and
passing to the limit we get I\KC- G . Then by the same argument in (ii), it follows

that G /r iscompact. By (9.3), r » Tj for i sufficiendy large.

It must be checked that measure (G/T) < oo forall M - M /r, butthis comes

from the following arguments:

(9.8) If genus (M )22 then M - H2. O - PSL(2.1t) and T » ttj(M) .

From Gauss-Bonnet Theorem:

measuie(G/r) - area(H/r) - 4it(g-1) (g - genus).
9.9) Ifgenus (M) - 1 then M- C, G- PAQ2,C) and T - ZOZ . Inthis
case the generators of T can be represented by the translations z-»z + Zj .z-tz + Zj,

where 0 <Re(Zj)<oo and 0<Re”) <o00. Inthiscasewe have

measure(G/0 - aiea(C/r) - Re(z1).Im(z2) .



108

9.10. Corollary: Letgenus g> 1 and let $(g) be the moduli space of compact

surfaces of genus g. Forall e>0, the subset

{ye K(g) lall geodesics in (M,y) have length £ )

iscompact

Proof: Itfollows from (9.7); from (9.3) we have that the limit has

genus g .
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Example 2 : S- T2 and M - Ixs!

U- HcloU”

| aa. uv.i4  »(T.WoM V AV ~.1)

Example 3: S- s\|S2 and M. IxSl

~U.usAl
c*iz)
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