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Phase Relationships in Stereoscopic C om putation
by

Keith Langley

S U M M A R Y
We apply the notion that phase differences can be used to interpret disparity be­

tween a pair o f  stereoscopic images. Indeed, phase relationships can also be used to obtain 
orientation and probabilistic measures from both edges and comers, as well as the directional 

instantaneous frequency o f an image field. The method o f phase differences is shown to be 
equivalent to a Newton-Raphson root finding iteration through the resolutions o f band-pass fil­

tering. The method does, however, suffer from stability problems, and in particular stationary 
phase.

The stability problems associated with this technique are implicitly derived from the 

mechanism used to interpet disparity, which in general requires an assumption o f  linear phase 
and the local instantaneous frequency. We present two techniques. Firstly, we use the centre 
frequency o f the applied band-pass filter to interpret disparity. This interpretation, however, 
suffers heavily from phase error and requires considerable damping prior to convergence. Sec­

ondly, we use the derivative o f phase to obtain the instantaneous frequency from an image, 

which is then used to improve the disparity estimate. The second measure is implicitly sen­

sitive to regions that exhibit stationary phase. We prove that stationary phase is a form of 

aliasing. To maintain stability with this technique, it is essential to smooth the disparity 

signal at each resolution o f  filtering.

These ideas are extended into 2-D where it is possible to extract both vertical and 

horizontal disparities. Unfortunately, extension into 2-D also introduces a similar form o f the 

motion aperture problem. The best image regions to disambiguate both horizontal and vertical 

disparities lie in the presence o f comers. Fortunately, we introduce a measure for identifying 

orthogonal image signals based upon the same filters that we use to interpret disparity. We 
find that in the presence o f  dominant edge energy, there is an error in horizontal disparity 

interpretation that varies as a cosine function. This error can be reduced by iteration or 

resolving the horizontal component o f the disparity signal.

These ideas are also applied towards the computation o f  deformation, which is related 
to the magnitude and direction o f surface slant. This is a natural application to the ideas 

presented in this thesis.
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CHAPTER 1. CONTEXT O F THE RESEARCH

1.1 Fundam ental Issues

Let us consider the way with which man negotiates with the environment. Typically, naviga­
tion requires many sensing devices which are coordinated in a homogeneous manner. Vital 
to our navigational capabilities lie the optical passive sensors from which we glean our local 

and distant environment in some meaningful way. In general, we can regard visual processing 

as providing three main functions that are essential for navigation:

• Object recognition.

• Motion Analysis.

• Range finding.

The distinct advantage of visual processing lies with its passive nature. We might 

consider sonar as an active sensor for depth measurement. Such a sensor has indeed found 
wide uses from Polaroid cameras to submarine warfare. Yet there are many instances under 

which active sensing fails. In particular, at non frontoparallel planes. Under these condi­
tions, the sonar beam is specularly reflected at an obtuse angle to the observer. Only minor 
quantities o f sound are reflected back to the observer, while the main bulk of the signal is 

transmitted into space. Should such a signal return to the receiver, then the travelled path 
would be arbitrary and difficult to interpret. Vision does not have these problems. Naturally 

one needs light. But light waves come in many guises and can traverse across an abundance of 

media. There is only one drawback. We cannot yet merge visual processing into the natural 
environment as we might like. One approach is to emulate the type o f processing that natural 

organisms utilise.

This introduces the concept o f stereopsis as a biological solution to passive depth 
perception. Accordingly, this work, will draw heavily on the classical theory of Signal Anal­

ysis, and attempt a merger with what we currently understand by biological vision systems. 

One could not possibly be so bold as to claim that the developed theories of this work are 
truly biological. Nonetheless, a considerable proportion of the findings in this work bear 

striking similarities to the observed perceptual effects in our own optical system.
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1.2 Stereoscopic depth perception

Have you ever wondered why with two eyes we rarely see double? Why a predator has 

two eyes placed at the front of the face, while his prey has lateral-viewing gaze? Why a 
camouflaged insect appear invisible in his natural terrain when viewed monocularly, only to 

leap out of the background environment when viewed binocularly. These issues form the 
evolutionary motivation for stereopsis.

It may be succinctly abbreviated as precision in depth discrimination. Addition­

ally, stereopsis increases the the signal to noise ratio by comparison to monocular viewing. 
Bishop[5] found that the binocular luminance threshold is at least \/2 lower than monocular 

viewing. Because of the visual acuity o f humans, we can in theory discriminate objects with 
respect to depth up to 500m using stereoscopic processing.

The eyes are positioned about 7 cm apart with approximately horizontal separation 
relative to the ground during normal posture. The two independent views of the immediate 

space changes the retinal location o f similar image features relative to an identical displaced 
reference in each retina. These disparities possess a functional relationship between objects 
and their distances from the observer. Intrinsic to the problem, is the recovery of these 

retinal displacements to yield depth discrimination. Psychophysically, the merging of two 
disparate images is referred to as fusion; The process of binocular stereoscopic vision is 
termed stereopsis. The purpose of this thesis is to recover stereopsis by artificial means.

1.3 C om pu ter V ision

The primary interest of Computer Scientists and Engineers in visual processing is to control an 
autonomous system such as an AGV (Automated Guided Vehicle) or a Robotic manipulator. 

Vision serves to enhance the flexibility o f Automation in the same manner that it aids natural 

animals. Recently, the access to fast massively parallel computers enhances the possibilities 
of vision as a realistic goal. In view o f the massive architecture, and neural inter-connections 

of the mammalian visual cortex, it is not surprising that vision has been slow to develop as 
a unified theory with the previous limitations of computational hardware. The situation is 
equally frustrating because of the ease with which we use our visual skills at almost every 

instance.
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1.4 Binocular Space

It is worth reviewing the space of the problem that is to be solved. Lunneberg[62] provided 
a generalised theory o f binocular space based upon the angular disparity o f objects in space. 
His work, was a detailed analysis concluding that binocular space was based upon hyper­
bolic geometry. His theory was able to account for many psychophysical observations. In 

particular:

• The psychophysical deviation from the Vieth-Muller circle.

• The inability of human observers to distinguish rectangular rooms from rooms with 

hyperbolic curvature.

The Vieth-Muller circle can be seen in figure 1.1. Point objects that subtend an equal 

angle to the retina should by Euclidian space, be perceived to be equi-distant. In practice, 

this is not observed. IIillebrand[79] showed that the Vieth-Muller percept only occurs at a 
unique distance. Psychophysically, the horopter (the locus o f world coordinate points that 

project zero binocular disparity onto a stereo pair of sensors) is convex at far distances, 

and concave close to the observer (fig. 1.2). The second finding relates to the ambiguity 
of stereopsis and has subsequently been extended by several authors[61). The importance in 
representing disparity space in hyperbolic geometry is to my knowledge unexplored, probably 
because the correspondence problem has yet to be adequately solved. The second point is 

equally as important, and probably questions the use of stereopsis as a single tool for an 

autonomous system.

1.5 Disparity gradient limit

Burt and Julesz[14] introduced the concept of the disparity gradient into vision community. 

However, Koenderink and Van Doorn(49] had previously discussed the same topic in terms 
of differential invariants of stereoscopic image transformations. Burt and Julesz found that 

disparities alone were not sufficient to dictate the perception of fusion within a stimulus. 
In particular, they found that the disparity gradient, (defined as the difference between the 
disparities of neighbouring objects divided by their Euclidian separation) could not exceed 

a critical value and still retain binocular fusion. Since this applied to features with small
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Figure 1.1: Vieth-Muller circle, showing theoretical points that subtend equal visual angle to 
an observer fixating at a point F  in the visual world.
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Figure 1.2: Psychophysically observed deviation from the Vieth-Muller circle observed by 
Hillebrand, and predicted by Lunneberg in Hyperbolic space.

disparity differences, the classical notions of Panum’s fusional areas[79] and his limiting case 

were re-interpreted in the context of disparity gradient.

Burt and Julesz suggested that there could exist a critical angular difference between 

line segments, which viewed stereoscopically prevented fusion. This was seen as a direct 
consequence of orientationally selective filtering. Such a mechanism will be intrinsic to the 

later theories developed in this report. Trivedi and Lloyd[94] showed that a disparity gradient 

of less than |2| preserves the topology of matched image features. Thus, a disparity gradient 
greater than |2| implies that corresponding points do not lie on the same surface. An example 

of a stimulus that violates the disparity gradient limit occurs with points on a surface normally 

invisible monocularly, but still observable because a particular surface is transparent. The 
disparity gradient limit is therefore a statement concerning the surface structure o f a scene 

such that surfaces are assumed opaque.

1.6 Prim ary and Secondary cues for stereopsis

There are several hypotheses that can be combined for models o f human stereopsis. Ulti­

mately, these models are based upon both monocular and binocular cues. Primary cues in 

human stereopsis is defined as the mechanism used by the visual sensors to simultaneously
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provide local depth information that is independent on monocular vision. This stage is of­

ten referred to by low-level vision because the process appears to function prior to the high 

cortical levels, of cognitive influence. Primary cues therefore operate oretinal disparities. 

Complementary to this notion it is proposed that a higher level o f cognitive depth perception 

operates to matches features independently and subsequently merge monocular sensations. 
Gibson[28] proposed that secondary cues such as:

• Object occlusion or overlay.

• Texture density.

• Relative size.

• Brightness and shading.

that are inferred monocularly can influence depth perception, and in some instances dom­
inate the primary cues for stereopsis. There exist important differences between the two 

mechanisms. First, primary stereopsis can function effectively in the absence o f monocular 
cues. We know this from the psychophysical fusion of the random dot stereogram (RDS)[44] 
where there are no visible monocular features but there are binocular disparities. Since the 
perception of depth is still apparent, it is supposed the low level vision uses primary cues 
for stereopsis which must rely on the signals present in a stereoscopic pair. In contrast, 

it is likely that secondary cues rely on the globality or consistency of image in the form of 

monocular cues. This would hold the advantage of ensuring that correct correspondences 

have indeed been established from the low level process and further disambiguating false 
matching sensations.

1.6.1 Primary and secondary cues in machine vision

Ultimately, we would like to consider utilising both primary and secondary cues to obtain 
stereoscopic depth perception. However, within machine vision the primary cues for stereo­

scopic computation are particularly attractive because it is an intrinsically autonomous pro­

cess. In contrast, secondary cues rely heavily on learned behavioural patterns from past 

experiences and an influence from pattern recognition. We are, however, still short of these 
secondary perceptual goals.
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We therefore argue that machine vision should be predominantly influenced by a 

primary mechanism for computing stereoscopic disparities. Thus, a computer algorithm 
whose goal is to emulate a low-level vision process in its implementation should be:

• Autonomous.

• Process disparities where available that is independent o f  the structure of the scene.

• Able to construct a depth map from the field of view o f two cameras.

• Robust in its practical implementation (e.g not rely heavily on the epipolar constraint *).

• Processed in parallel (speed) providing parallelism is economic.

• Understood in terms of its weaknesses and strengths.

The fundamental goals of this thesis are to indeed implement such a system by 

artificial means.

1 .6 .2  Basic Principles

The theoretical motivation for the approach presented in this work, is succinctly summarised 
by the title of Granlund’s[31] early publication:” 7n search o f a general picture processing oper­

a t o r This work has subsequently been extended by two particular authors: R.G.Wilson[98, 

100] and T.J.Atherton[2] who have been guiding influences in the development o f  this work. 

Granlund, idealised that there existed a generalised representation of an image function that 
may be linearly combined to extract the information that we might require from an image 

function. Within this approach, there exist important basic principles:

• Contrast independence.

• Scale Invariance.

• Linearity.

That the human visual system functions under contrast independency was discussed 

theoretically by Wilson and Knuttson[99] as inference in the human visual system, and indeed 

'H ere epipolar constraint refers to parallel camera geometry such that disparities are assumed to  lie along 

horizontal image raster lines
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forms the basis for much o f  the feature based analysis within image processing. The essential 
point identifies that correspondence or decisions regarding image data should not be influ­
enced by mean intensity changes. An obvious example lies with the variation in background 

illumination that typically occurs under artificial lighting conditions. The second principle 
is perhaps easier to comprehend in the context of pattern recognition. Thus, the operations 

required to recognise an object should be invariant to the solid angle projected onto the image 
sensor. This statement is in fact equivalent to the requirement that the operations applied at 

any given resolution of filtering should all be equivalent. The final principle is also associated 
with the method of solution, but in any case states that the types of operations, and deci­
sions obtained from image interpretation are based upon linear approximations. Within the 

context of this approach, it is not important that other algorithms may yield more accurate 
disparity information. The importance of this work is derived from its implicit generality to 

include these goals of image processing in a single representation.

1.7 U nderlying prem ises used

The principle that we will use to attempt to gain retinal disparities, will be based upon the 
differences in phase between a pair of analytic signals formed by the Hilbert transform. We 
will refer to this technique as the method o f phase difference^3, 90, 100, 42]. Granlund and 
Larcombe (personal communication) have also independently conceived the notion. There are 
a number o f fundamental constraints that we implicitly introduce by applying this technique. 

These assumptions follow directly from Marr[67] in the form of: •

• Compatibility: Image signals can only be matched with zero-phase differences, and both 

similar orientations and spatial frequencies.

• Uniqueness: Correspondence involves one-to-one matching.

• Continuity. The disparity field varies smoothly almost everywhere.

These are the basic principles that are involved with the method o f phase differences. 

The presence of measurement noise adds the restriction that phase differences should be 
minimised. Because we use phase differences to measure disparity, we are not constrained to
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the monotonicity constraint 2 and can measure different signs o f disparity without difficulty. 
At one point in this work, we do define a minimum disparity of zero with parallel camera 
geometry, which does not appear unreasonable.

1.7.1 Advantages o f  the phase representation

There are a number of advantages that a phase descriptor through bandpass filtering holds 
within the context of signal processing. The list presented is by no means exhaustive:

• The division between odd and even filter pairs removes the filter envelope from analysis, 

leaving a descriptor based purely on signal symmetry.

• Reduced number of bits required to encode a signal[80].

• The instantaneous frequency can be extracted via the derivative of phase.

• Reconstruction is possible to within a constant that is considerably improved in com­

parison to the magnitude only reconstruction[92].

• Improved restoration o f noise blurred images (blind deconvolution).

• The auto-correlation of a phase only function is always an impulse[80].

• Stability through Scale-Space filtering[41].

1.8 Current P roblem s in  Low-level M achine V ision

Without referring to specific algorithms, it is worthwhile reviewing the major problems within 

stereo correspondence algorithms:

• Large disparities.

• False matching.

• Discontinuities in the disparity field.

• Illumination.
3The monotonicity constraint refers to parallel epipolar camera geometry such that disparities are con­

strained in sign
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• Sensor noise.

Large disparity differences are partially dealt with by coarse to fine resolutions of filtering. 

This method implicitly contains restrictions on the image signals. In the presence of noise, 

image detail with fine spatial extent are difficult to fuse because of aliasing. However, near 
objects subtend a larger visual angle on the image sensor, and even though disparities also 

increase proportionally, the detection of close features is enhanced because of the spatial 
representation on the retina relative to other features. False matching is particularly prob­
lematic for edge based approaches, since edges themselves are difficult to distinguish. Within 

the contxt of this work, we apply spatial frequency, and orientation constraints to reduce 
the possibility of false matching. Discontinuities in the disparity field involve marked image 
intensity differences between image pairs typified by occluded features and surfaces. An ap­

proach which is based upon linerity will be unlikely to char, acterise such regions. In the 

same manner as sensor noise, and illumination differences we deal with these artifacts by 
smoothing, thus attempting to reduce the accuracy of results by these factors.
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2.1 Background to M achine C orrespondence algorithm s

The evolution o f microprocessor technology has heralded several new possibilities for research. 

In particular, it has enabled large quantities of numerical data to be evaluated with increased 
speed and resolution. Attempts to replicate human visual functions has been an area of 

considerable interest for over twenty years. With the prospects of image interpretation moving 
into the real-time environment, and the immense industrial and military applications of this 
technology, it is not surprising that the area of image understanding has become a highly 

competitive environment.

Interest in the perception of the three dimensional world can be traced back to the 
early work of both Helmholtz and Wheatstone[35, 96] in the late 19th century. However, repli­

cating these mammalian functions can be traced only relatively recently with some early work 

on road tracking vehicles in the 1960’s. There are several approaches to the correspondence 
problem which may be neatly divided into the categories of area based and feature based 

matching, with newer approaches that combine both techniques into a single representation.

2.2 A rea based m ethods

Two-dimensional windowing operators are used to measure the similarity in structure be­
tween two local areas in a number of images. Typically, cross-correlation would be the 

normal method applied to these techniques. To provide some measure o f illumination invari­
ance to the matching criterion, normalised cross-correlation has some notable advantages in 

that compensation to mean changes in illumination can be permitted[34]. Area based corre­

spondence has been applied successfully to the analysis o f rolling terrain, but it does degrade 

rapidly when the image is not smoothly varying or continuous. Inherent to the problem, 
is deciding the shape and size o f correlation windows in the general case. In addition, the 

uncertainty problem plays a predominant role in these techniques. In brief, the uncertainty 

lies in large window areas, that are essential for statistical significance with an associated 

loss in resolution and accuracy in the image domain. Levine et al, and Mori[59, 76] have ad­
dressed this problem, and vary their correlation window sizes with the local surface intensity 
variance. They make the assumption that high local variance implies high local texture and 
therefore requires smaller correlation windows. In contrast, low variance suggests surface 

uniformity and the need for larger correlation windows. Gennery[26] criticises area based
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correspondence because the process is essentially serially driven, with finer correspondence 

based upon the larger window operations. In the case where false matches occur, it is clear 
that these methods can become unstable which will lead to large errors in the estimation 
o f disparity. In particular, a complex image will contain many ’local minima’ of potential 

false matches. It is therefore essential for an algorithm to detect a false match. In brief, 

area based methods assume a one-to-one matching constraint, but can break down severely 
at depth discontinuities. Psychophysics, has shown us that human subjects deal with sur­

face discontinuities by binocular rivalry. Machine Vision has to date limited scope for such 
phenomena.

2.2 .1  G im el’farb, Marchenko and Rybak

Gimel’farb[30] proposed a stereo correspondence algorithm using a linear line by line epipolar 
constraint. They also used known disparity constraints to limit the correspondence search. 

They optimised a cost function based upon dynamic programming and normalised cross- 
correlation. To reduce the computation time, they suggested using previously matched lines 
to guide the matching constraint on the current epipolar lines of interest. They also per­
formed a crude coarse to fine matching strategy, which has subsequently been used by many 

additional authors. Presentation of their results was restricted to single line segments and 
therefore it is not possible to evaluate their work.

2 .2 .2  Levine and O ’Handley Algorithm

Levine and 0 ’ IIandley[59] describe a proposal for the Mars Rover Vehicle’s autonomous nav­

igation. They used intensity cross-correlation techniques, and collinear epipolar imaging to 

limit the correspondence search. The matching constraint was achieved via intensity cross- 
correlation , with an adaptive window based upon the statistical variance o f the neighbour­

hood of interest. Thus the algorithm proposed a crude coarse to fine matching constraint. 

Since their algorithm was intended for natural terrain, they proposed to limit their search 
constraints based upon the upper, and lower lines o f their stereo pair o f images. They pre­
supposed that the scene always extended towards the horizon on the upper lines of the images. 

Therefore disparity would increase from the top to bottom of the camera images. On the 
basis of this matching constraint, they set local maximum and minimum disparity ranges. 
They assigned "tie points”  to areas with large variance values, and proceeded to iterate their
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coarse to fine matching process. More expensive correlation was then applied to refine their 

disparity estimates. Cross-correlation was also limited to image segments o f similar variances. 
Their algorithm assumed that occluded features and edge reversals were not present in the 

image pictures. The results presented were smooth disparity maps, with the false matches 

removed.

2 .2 .3  Hannah Algorithm

IIannah[34] placed considerable emphasis on techniques to increase the efficiency of area- 
based correlators. Her work suggests improvements by:

• Correlating over a sample of the image and refine the match based upon a correlation 
over the whole of the image. Points with maximum correlation coefficients therefore 
define matches.

• Correlating over reduced resolutions and then refine the matches at increased resolutions 

o f examination.

• Extracting statistical image characteristics as a guide for limiting correlation (Levine 
and Handley) window sizes.

• Using the known camera geometry to limit the search (epipolar analysis).

Hannah implemented her algorithm by expanding correspondences from matched pairs into 

larger regions. She assumed surface continuity, and by the use of the autocorrelation function, 

she assessed the quality of matches.

2 .2 .4  Moravec’s A lgorithm

Moravec[75] aimed his research towards autonomous vehicle guidance by visual sensing. His 
technique reduced the computational load, by analysing regions with high local variance 
which he used to provide cues for motion calibration and obstacle avoidance. There were 

3 main contributions to the vision community from his work. Moravec’s interest operator 
was a filtering technique primarily aimed at locating corners and other distinguishable image 
features of high local variance. These regions of interest were then processed by a binary 

correlator. The binary correlator functioned in a coarse to fine strategy, where each feature
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found by the interest operator was represented at different sampling resolutions. The algo­

rithm begins from the coarsest scale of filtering. The pair of images are then cross-correlated, 
and the largest cross-correlation coefficient is taken as the correct match. The window from 
the next highest resolution of sampling, is then used to improve on the estimate from the 

previous resolution of filtering. Here the region which is considered at the next level o f cross- 
correlation is defined by the window size of the previous resolution. The algorithm terminates 

at the finest scale of filtering. Moravec claims a 10% error rate with this method. The final 

part o f his algorithm :slider stereo involved moving the camera along a horizontal track, and 
taking 9 equally spaced , horizontally separated images from the same vehicle position rel­

ative to the scene. Correlations from the 36 possible permutations of stereo pairs provided 
a series o f depth estimates which were represented assuming a Gaussian distribution. By 
weighting each depth estimate by the correlation coefficient from the binary correlator, the 

weighted mean was taken as the correct depth estimate. For Navigation purposes, Moravec 

also incorporated a predictor/corrector driven search based upon the known movements of 
the vehicle, and the previous depth estimates taken from the cross-correlation procedure.

2 .2 .5  G ennery Algorithm

Gennery[26] proposed a system specific to autonomous navigation for vehicles. The algorithm 
used cross-correlation to position points in space. The system incorporated the Moravec 

interest operator and binary correlator. These techniques were used to estimate a ground 
plane in the scene. It was then assumed that most image features would lie above the ground 

plane. This assumption was applied to estimate the relative orientations of the camera 

sensing devices. The assumptions made by Gennery permitted the epipolar constraint to 

be applied and analysis was then restricted to a 1-D search. Having gained estimates of 
the scene noise characteristics (variance, gain and bias between the image data) he defined a 

correlation measure to provide sub-pixel positioning of corresponding windows and accuracies 

of correspondences. The algorithm progressed from left to right in raster fashion, and local 
depth estimates were used to predict future match sites. In the case of ambiguous matches, 
the epipolar constraint was also used to provide further suggestions for correspondence based 

on the parallel camera epipolar constraint. Because of the last assumption the algorithm 

began the correspondence search from zero disparity and continued until either a match was 

found, or a previously matched window located. Within the vicinity of a selected area, the
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maximisation o f a local correlation coefficient was set to determine the best match. The novel 
feature of Gennery’s work, lay with the notion of fitting ellipses around detected obstacles, 
which he contended were an appropriate shape representation for obstacle avoidance and 

scene matching.

2.3 Feature Based Analysis

We criticised area based methods in view of the poor definition of window sizes, and also 
because the methods assume that the photometric properties of a scene are invariant to image 
position. This is of course not the case. Feature based analysis avoids much of the problem by 

working on the premise that a local measure on the intensity function is representative o f the 
physical change in the underlying scene. By the physical change in the underlying scene, we 

refer to depth discontinuities, textural differences, luminance changes, shadows etc. Feature 
analysis implicitly uses the semantics of intensity variations to infer the physical change in 

2-D image data, which are then used to obtain the 3-D structure o f a scene. Probably the 
most widely known feature based algorithm is that o f Marr and Poggio:

2.3 .1  M arr and Poggio Algorithm

The approach of Marr and Poggio[67], was primarily based on the Psychophysical and Neuro­
physiological data that was then available. Their work may therefore be seen the first serious 

attempt to merge the fields of Image Processing and Psychophysics. In its raw form, they 

implemented an algorithm primarily based upon the uniqueness and continuity constraints, 
and implemented a matching algorithm based upon the zero-crossings obtained by convolving 

an image with the V2G operator. The algorithm was implemented on real image data by 

Grimson[32] as follows:

• Four stereo planes are assigned with zero-crossing values and orientations corresponding 

to 4 different spatial frequency tuned band-pass filters.

• Set the initial vergence values for the eyes.

• Match zero-crossings with similar gradients and and orientation preferences. Matches 
were assigned as positive, negative and zero disparity relative to the vergence angle.

• Mark ambiguous or "no matches” as such.
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• Check unmatched points in regions and where unmatched points exceed 30 %: delete 

all matches.

• On the basis o f low frequency filter matches, make various positive or negative vergence 
movements to bring unmatched (high spatial frequency) elements into correspondence, 

and iterate on the matching process.

After the matching with zero-crossings has been achieved, a subsequent process in­

terpolates a smooth surface to the sparse depth map to obtain a richer depth description. The 
results published include random dot stereograms composed of 4x4 elements with disparity 

ranges from 2 to 6 dots width. They also present some real data from the Mars Viking Vehi­
cle. This particular algorithm has been criticised by several authors. Baker[3] and Frisby[24], 

both believed that coarse to fine matching is an inadequate model for human stereopsis. How­

ever, it is proven in Psychophysics that depth cues are dependent on both the image spatial 
frequency elements present, and retinal eccentricity[85]. Retinal eccentricity provides indirect 

evidence. It is well accepted that cortical cells that receive inputs from the retinal periphery 
are predominantly tuned to lower spatial frequencies than from the fovea. Experimentally, it 
is also accepted that Panum’s fusional areas also increase with retinal eccentricity. These fac­
tors are all consistent with the expected effects of spatial-frequency analysis and large retinal 
disparities (which cannot occur simultaneously in the fovea). Therefore, coarse to fine match­

ing cannot be dismissed. Baker also criticised the absence of monocular stimulus in the Marr 
and Poggio algorithm. However, the theory developed by Marr and Poggio was essentially 

a low-level vision hypothesis. Thus while Baker’s criticisms may be correct, monocular cues 

were not an issue considered by the Marr and Poggio algorithm. Baker further criticises the 

Marr and Poggio algorithm on the basis that the implementation does not define the precise 
nature of the vergence mechanism but relies on chance for large disparities. The biological 

vision system also functions with saccades which could serve the same purpose. Mayhew 
and Frisby[72] also raised the objection that the human visual system appears to use the 

local energy peaks as well as the zero-crossings from bandpass filtering. Such a criticism is 

consistent with the approach considered in this thesis.

There are two criticisms that might be added to this work. First it is established 
that a considerable portion o f cortical processing relies heavily on orientationally selective 

filtering. Indeed Hubel[38], points out that all the binocularly tuned cells he studied exhibited



20 CHAPTER 2. BACKGROUND TO MACHINE STEREO VISION

orientation preferences. The V 2G operator is not orientationally selective, and does not 

respond to image corners. In addition, cells in the LGN and striate cortex appear to conform 
with both even and odd symmetric profiles with orientation preferences[18]. No efTort is 

made to comply with these findings. Therefore, the stereoscopic aperture problem[54] cannot 
be solved by Marr’s ideas. We suggest that Marr and Poggio’s work appears too early in 
the hierarchy of mammalian visual processing. Marr and Ullman[68] did, however, provide 
a  theory for orientation selection based upon the time derivative of the response to zero- 

crossings in addition to logical operations to constrain velocity. This theory, however, is not 
strictly applicable to stereopsis as an instantaneous evaluation.

2 .3 .2  Baker Algorithm

Baker[3] as an extension to IIenderson[37], describes an edge based algorithm for correspon­

dence. Using epipolar geometry and the continuity constraint, he applies these factors to 

limit matches and remove the edge reversal problem that can occur with converged cam­
era sensors. While recognising the limitation of sparse disparity maps in obtaining a rich 

description of the scene, Baker additionally matches intensity values defined between edge 

segments to obtain an improved depth map of the viewed scene. Baker thereby attempts 
to draw on the advantages of both area based and edge based correspondence. To optimise 
the edge matching strategy, he employs a modified version of a Viterbi algorithm which is a 

recursive optimal solution to the problem of estimating the state sequence of a discrete time 

finite state Markov process. The process is Markov because the probability o f correspondence 
was defined as dependent only on the present state and time of search. This aspect of the 

algorithm is implemented by dynamic programming.

Baker also proposes a probabilistic weighting based upon orientation differences 

between matched segments, but it is not clear from his work, exactly how edge orientation 

is obtained. Fundamental to his approach lies the computational savings achieved by image 
subsampling, which is also used to reduce the noise between stereo pairs of images to less 

than one intensity measurement. The edges obtained from the reduced resolutions, are then 
tracked to the highest resolution image (subject to the noise constraint) at which point, the 

processes is repeated and constrained by the coarse to fine resolutions of matching.

In short, Baker’s work combines the best features from the available algorithms at 
the time. Results are presented for synthetic and for natural terrain data. In the case of
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the natural terrain data, the final depth surfaces required median filtering which implies that 

the algorithm still contains local instability in depth estimation. This is not surprising with 
natural image data.

The results presented by Baker are clear, impressive and require no manual interven­

tion, which had been a previous limitation to many of the stereoscopic algorithms previous 

to his work.
Baker’s work may be criticised on two fundamental issues. First, he implemented 

the Sobel operator which is not optimal for edge detection[16]. Second, Baker did not have 
a mechanism to deal with the spatial migration and bifurcation of edge based data through 

Scale-Space (e.g [17]). This behaviour of "edges” through Scale-Space introduces a further 

Scale-Space correspondence problem.

2 .3 .3  P o rr ill e t al A lg o r ith m

Porrill et al[84] have recently proposed an algorithm based upon edge extraction by applying 

the Canny edge operator. This algorithm was seen as an extension to the PMF algorithm[83] 
which has been successfully applied to many stereo image pairs. Their main contribution to 

knowledge applies the disparity gradient limit to constrain possible matches.
The PMF algorithm was recently updated and renamed S M M  . This new algorithm 

may be summarised as follows;

• A feature is chosen that is in focus

• The S closest features greater than a length L are identified.

• Potential matches are identified.

• Consistent matches with similar geometrical relationships are established (disparity 

gradient hypothesis).

• Clusters of potential matches are grouped together with similar disparity measurements. 

The transformation o f image data is recorded.

• Inconsistencies with the matching are searched and isolated from the matching process.

• The goodness of match is ranked on the basis of the numbers and length of all members 

in a cluster.
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Figure 2.1: The PMF algorithm applied to our test stereo pair presented in figure B .l. In­

tensity o f edges proportional to disparity.

• A sparse disparity map is then created on the basis of the inverse disparity transforma­
tion.

Results from the sparse disparity map are unclear. No error measurements are pre­
sented. Images represented "block worlds” and were relatively featureless. Their method may 

survive in the restricted environment of a controlled industrial workplace, but would pose 

numerous difficulties in a general application. This point is stressed in figure 2.1 where the 
algorithm has been tested to our own raster test sequence presented in figure B.l. The algo­

rithm has managed to match a considerable number o f edges, however, it has failed to match 

the lamp feature in the central region of the image because of the large disparity difference. 
Typically, the main areas area of concern would be false matching and ambiguity owing to a 

high density o f  edge information. Consequently, the uncertainty problem imposes a difficult 
constraint on the algorithm. Additionally, it is not clear how a depth map reconstruction 

would function in the event that a high proportion of surface edges were not matched. We 
would anticipate, that either a coarse to fine matching strategy or further intensity based 

correlation between edges would considerably improve their algorithm.



2.3. FEATURE BASED ANALYSIS 2 3

2.3 .4  Bolles et al A lgorithm

Recently, Bolles et al[9] proposed a solution to many of the stereoscopic and motion corre­

spondence problems by forming a spatio-temporal solid. By taking up to 100 pictures from 
a single camera in rapid succession, they form a "solid” which represents the 3-D scene of 

the world. In essence, they take the epipolar-plane analysis to the limit. By knowing the 

camera motion characteristics, they analyse their data along horizontal rasters. Of particular 
interest is the location occluded boundaries between subjects, and the ability to build a 3-D 
map of "free space” . Fundamental to their approach lies the fact that edges can be tracked 
by their small displacements between image pictures. Occluded boundaries appear as a locus 

of crossed edges along their time slice of an epipolar plane, which occurs because of motion 
parallax. Their method resolves considerable ambiguity in image understanding. However, 

by restricting their use to epipolar geometry, they cannot interpret image orientation. There­

fore, their method will be highly suspect when faced with the Motion Aperture problem in 

the General case.

2.3 .5  Terzopoulos, W itkin  and Kass Algorithm

As an alternative to traditional feature and area based methods, Terzopoulos et al[93] pro­
posed a paradigm for both shape and correspondence based on dynamic energy constraints. 

They proposed to  model image features as deformable elastic bodies which are subject to 
external forces owing to the constraint being imposed on the image data. Their approach 

seeks to define a minimum energy constraint based upon the deformation required to map a 
motion, or stereoscopic sequence of images into correspondence. They also track deformations 

through coarse to fine resolutions of filtering, to reduce the possibilities of their algorithm 
becoming trapped in local minima. The minimisation is taken over the spatial derivative of 

the energy function. Since the amplitude and derivative o f a spatial convolution is also closely 

related to the spatial frequencies detected by a filter (within a constant), their methods hold 
a similarity to the work presented in this thesis, although via different roots. Their advantage 
over the methods presented in this thesis lies with the stability of an energy response over 

a phase calculation which is particularly true over low-energy regions of a complex image 
function. Unfortunately, their algorithm cannot claim to deal with contrast independence 

which is one of the advantages o f the methods proposed in this thesis.
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They also claim that their method can compute 3-D object models directly without 
requiring a 2\ -D sketch, as originally proposed by Marr[66]. Their methods present impres­

sive results from a simple motion sequence. However, their stereoscopic image data has been 
largely restricted to simple data, with small disparity differences.

2.3 .6  Brint and B rady Algorithm

Recent extensions to the feature based analysis lies with the work o f Brint and Brady[12]. 
They form and use the premise, that regions of high image curvature occur infrequently 
within natural image data, and therefore can be used to reduce the correspondence problem. 

Although their work does not make claim to solve the correspondence problem they do outline 

methods from which corresponding curves from stereoscopic data can be matched. Ironically, 

their published work applies the Canny edge detector to their natural image data, which in 
itself fails to isolate regions with high curvature (i.e corners). They are at present, rectifying 
this flaw in their processing by the application of improved edge detecting algorithms (per­
sonal communication). Fundamental to their approach lies the representation of an edge 
contour by an elastic string, in which knots are located at regular intervals which serves to 
minimise a cost function based upon the measured curvature and a defined energy required to 
deform one curve into a stereoscopic pair for correspondence. Stereoscopic matching is then 
obtained by identifying corresponding knots from the stereoscopic pair (in their case trinoc- 
ular), subject to a minimisation of the deformation between stereoscopic edge contours, and 

the disparity gradient hypothesis. Their work is still under development, and therefore it is 
difficult to fully appraise their notions. We can, however, suggest that they could improve 

their algorithm by obtaining an orientation field based upon coarse to fine strategies of di­

rectional filtering. The result of this type of processing would not be restricted to edges, but 

would enable meaningful orientational descriptions throughout the image providing a signal 

exists within the receptive field of the filters. Such an approach would be less noise sensitive 
and also readily implemented on a coarse to fine mechanism.

2.4 A  critical overview

We have discussed several algorithms that have been applied towards the computation of dis­

parities. In chapter 3, we will discuss the role of uncertainty in Image Processing[25, 98, 99]
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which forms its basis in the simultaneous representation of a signal in both space, and fre­
quency. From the words of Marr[65]: The role of vision is to find out what is where. Unfor­

tunately, both edge and area based techniques sufier from similar forms of the uncertainty 
principle[25]. With edge based stereoscopic algorithms, the presence of edge information 

alone yields considerable ambiguity since edges themselves are difficult to distinguish and 
can also occur spuriously within an image owing to the presence of noise, and the complex­
ity of natural image data. In terms o f  the uncertainty principle we know where but not 

what. Recent attempts (e.g [12]) have attempted to relieve the ambiguity by classifying edges 
by orientation and curvature, with the premise that curvature and orientation differences 

between image functions are sufficient not only to reduce the correspondence problem but 

also yield unambiguous matches. However, the sparse disparity map that results from these 
approaches also requires further interpretation, which relies heavily on the assumption that 

correct matches have been established.

In contrast, area based correspondence algorithms usually apply normalised cross- 
correlation techniques to obtain measures of similarity between image functions. These tech­
niques suffer from poor definition of window sizes that are used during the cross-correlation 

procedure. Cross-correlation mechanisms are also unable to define a what to the signal. We 
form the premise that at the lowest level of vision processing, what refers to both the local 
spectral properties (instantaneous frequency) and orientation of our image data and where is 
obtained through the resolutions of band-pass filtering. Thus we serve to combine both the 

benefits from feature based, and area based algorithms, in a single concurrent representation 

that may be subsequently applied for both motion analysis and pattern recognition.

2.5 A rea and Feature based  analysis

More recent techniques are now being proposed that combine the approaches of area and 

feature based analysis. Although these techniques can be viewed as general extensions to the 
Marr and Poggio algorithm reviewed earlier, the techniques retain the advantage o f permitting 

a greater density of information to consider. This is achieved by the creation of an analytic 
form of the image signal by forming its Hilbert Transform. Within these techniques, edge 
and bar (lines) features are represented by the phase of the analytic signal. Within the phase 
circle, edges correspond to odd symmetry and the line refers to even symmtery. Transitions
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between edges and bars are merely represented by a local measure of symmetry.

2.5 .1  M iller Algorithm

Miller[73] suggested a method of stereoscopic correspondence based upon a hardware imple­

mented version of a phase locked loop (fig. 2.2). His methods, are conceptually the same as 

proposed in this thesis, however, the method is not able to utilise the true dimensionality of 
Image Processing, since the analysis was restricted to the single dimension. Ilis techniques 

are therefore prone to labelling false matching from orientation differences that cannot be 
resolved in 1-D.

The basic technique employed by Miller is shown in figure 2.2. He proposed that 
pixels recorded from the the right CCD array (S R (t)) are clocked out in raster lines at a fixed 

rate using an analogue shift register. The image data in the second stereo image is similarly 

clocked out but at a rate determined by the disparity buffer. The two signals are then 
fed into the phase detector which emits an amplitude proportional signal phase difference 

(SP(t)). The phase signal is low-pass filtered and then added to the disparity buffer and the 
process repeated. Miller based his system for phase detection on simulation of the Motorola 
MC14568 digital phase detector. His method was also limited to binary threshold image 
data, and by his own admission, took no account of edge reversal or occluded boundaries. 

The limitation to binary thresholded data serves to enforce a constant envelope present in 
the information bearing signal. The application o f  limiters in the demodualtion of frequency 

modulated signals in well known in Telecommunication theory[9l]. However, with image data 

it is difficult to see why Miller chose to threshold image data at such an early stage. Miller 

did not give a rigid description of the technique that he employed although it is clear that 
his system incorporated many of the ideas that have subsequently been applied in this thesis. 

The Phase-locked loop technique, produced a smooth disparity map. Therefore, occluded 

boundaries which may be considered with frequency characteristics similar to broadband noise 
(assuming that they are of small spatial extent) were effectively removed by smoothing. A 
similar effect can be observed by the methods proposed in this thesis, but restricting analysis 

to single channel o f Gabor filter tuned to low spatial frequency. Miller does, however, suggest 
that improvements could be made by applying the phase-locked loop technique in parallel. 

This aspect will be investigated later.
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Figure 2.2: Block diagram o f the hardware system proposed by Miller. Image raster lines 
SL(t) and SR(t) are fed in at video rate with an output voltage (SP(t)J proportional to the 

phase difference. The phase differences are used to control a disparity buffer which introduces 

a time delay proportional to the estimate o f disparity, which is used to alter the reading of 

the second stereo image.

2.5 .2  Sanger Algorithm

Sanger[90] was the first to apply the method o f phase differences towards disparity compu­
tation. He applied Gabor filters and interpreted disparity using the center frequency o f the 

filter. Interestingly, the largest disparity that Sanger considered was a seven pixel shift in 
a 512x512 image. However, Sanger did show that the technique of phase differences could 
operate over relative disparities as small as 1/32 pixel.

His basic method employed a coarse to fine strategy of filtering, followed by a simple 
weighted estimate:

, _ SjgSpfed (2.1,
Ew r»(w)

where d refers to the mean disparity, ri(u>) refers to an energy weighting at each resolution, 

and A X U refers to the disparity estimated through each resolution o f bandpass filtering. This 
was the first scheme considered during the progress o f  this thesis. However, it was felt that 

the technique relied too heavily on the coarse resolutions of filtering and therefore did not
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Figure 2.3: Implementation of Sanger’s algorithm to (a) figure B.S, r =  0.88 , 1 =  -0.96, 
an =  0.19 and (b) figure B.S, r =  0.65, i  =  -6.8 on =  0.67. Gabor filters at the coarsest 
scale were 7.8125xlO-3 cpp up to 0.25 cpp sampled at 0.5 octave intervals in the frequency 
domain. The measured edge based disparity values are shown superimposed.

fully utilise bandpass filters at higher spatial scales of resolution. This is particularly true in 

the case of large local shifts in the image. The technique is therefore extremely susceptable 
to phase wrap-around at coarse resolutions of filtering, which will result in large errors in 
disparity measurement. We present results of the technique in figure 2.3, which should be 

compared to figures B.6a and B.6b.

Sanger also proposed a disparity gradient limit based upon local differences in the 
pre-envelope obtained by convolution between quadrature filters and the stereo images. How­

ever, it is not clear how such a notion was implemented from his paper.

While Sanger dealt with a number of important issues, he did not consider the two- 

dimensional extension of the technique to obtain both vertical and horizontal disparities. He 
also did not realise that the spatial phase gradient can be interpreted as an instantaneous 

frequency and hence provide a natural mechanism for describing a disparity gradient limit. 
The local phase gradient may also be applied to indicate regions that are not analytic by the 
technique, and also improve disparity measurement.

Sanger presented results to random dot stereograms, and natural image data. Re­

sults were impressive and a suitable acknowledgement should be registered.



2.5. AREA AND FEATURE BASED ANALYSIS 2 9

2 .5 .3  W ilson  and Knutsson Algorithm

Wilson and Knutsson[lOO] have recently proposed an algorithm based upon phase differences. 

Their algorithm, also used Gabor filters, however, they limited their theoretical analysis to 
white noise and random dot stereograms. Since the Fourier transform of white noise is 
constant, they assumed that the spatial gradient of quadrature phase may be represented 

by the center frequency of the quadrature Gabor filter. They did not, however, consider the 

variance of phase behaviour, nor did they consider the error in disparity interpretation from 
their assumption.

Some of their ideas will be used in this thesis. In particular, they proposed using 
Willsky’s[97] error measure on a circle:

i ( l  +  cos 0d)

to reduce the possibilities of phase instability when phase differences approach the aliasing 

limit of i  it radians. This damping term is, however, especially required when the inter­
pretation o f disparity is taken from the center frequency of the filter. In the general case, 
phase extracted from a dominant spectral component will behave in harmony with the signal 
frequency and not the filter. Unfortunately, we will show that the magnitude of the disparity 
error is proportional to the phase difference measured from a pair of images, and the error 

in image frequency interpretation. Therefore, we would also expect severe errors in disparity 
measurement as phase differences approach phase wrap around. The application of Willsky’s 

error measure is then appropriate under these assumptions. Their algorithm also propsed 

applying Gabor filters in the form of a Phase-locked loop, however, they also suggested that 
several iterations of the phase differencing technique might be employed at each scale. We 

present two 1-d sequences based on their technique in figure 2.4. It should be stressed that 
each resolution was iterated 3 times to obtain convergence. T o  be fair we point out, that 

successive iterations at a given resolution based upon local disparity estimates contributed 

significantly to the instability. In addition, they also used filter pairs with 2-D spatial extent, 
which we would expect to decrease the noise sensitivity considerably. In any case, the Willsky 

error measure provides significant improvements in stability, at the expense of resolution loss 
at each bandpass resolution.

The method proposed by Wilson and Knutsson for obtaining the argument of phase 
was based upon the sums and differences of squared responses from filter pairs. However, by
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Figure 2.4: Example o f Wilson and Knutsson algorithm applied to : (a) figure B.2, r=  0,1,6; 
1 =  3.37; <rn =  1.14 and (b) figure B.f., r =  0.0f ;  i  -  -1.99; o n =  1.97.

expanding their expression we see that the equivalent form may be represented by:

tan <(>d = < Zl,Zr± >
( 2 .2 )

<  Z l,Z r >

where z / and zr represent the convolution between quadrature filter pairs in the correspond­
ing images. This form, although considered was not used in this thesis because it was felt 
potentially unstable (personal communication from M.H.Larcombe:1987). This can becomes 

apparent in the presence of phase singularities[41], where a quadrature pair of filters un­

der convolution simultaneously return a zero amplitude response. The above equation then 

reduces to an indeterminate form. However, our techninque for disparity interpretation as­
sumes a definition of zero phase is the absence of an energy response from quadrature filter 
pairs.

2 .5 .4  J e p so n  an d  Jenkin  A lg o r ith m

Jepson and Jenkin[42] have also proposed an algorithm based upon phase differences. Their 
earlier work also extensively applied phase analysis to stereoscopic computation which they 

expressed as a complex solution to non-linear differential equations. They have only recently 

appreciated the significance of phase subtraction. Their work follows a similar pattern to the 

work presented in this thesis, but they have not fully understood the significance o f phase 

as the integral of spatial frequency. While recognising that it is essential to take an average 
spatial frequency to interpret disparity, they write ” where wi and wr is nearly the peak
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band-pass frequency o f the Gabor pair ” which is unclear and imprecise.

Jepson and Fleet also applied Gabor filters with a spatial frequency domain band­
width of 0.8 octaves. The Gaussian envelope employed by Jepson and Fleet was unnecessarily 

broad in the spatial domain, by the criterion proposed in this thesis (we apply Gabor filters 
at 1.3 octaves which borders the quadrature behaviour for Gabor filters). We have also ob­
served that filters with excessive spatial extent are also unstable in their representation of 
phase contours in Scale-Space in comparison to filters with larger bandwidths. This could 
then account for the instability present in their algorithm. They also proposed a disparity 
gradient limit, however, their actual expression merely restricts the local disparity gradient 
to within the upper and lower cut-off frequency of the applied band-pass signal, which bears 

no relationship to the actual disparity gradient hypothesis used by Pollard et al[83]. From 
their paper, it is clear that they have not fully understood the method of phase differences 

although they did appreciate the biological plausibility and power with this form o f algo­
rithm. They also restricted their analysis to 1-D while at the same time inferring that 2-D 
extensions were straight forward. This is not true.

Results were presented to several random dot stereograms, and natural image data. 
The results were not impressive, and the phase locking technique that they implemented was 

highly unstable even after local averaging of .disparity values.

2.6 G oals o f  this research

The goals of this research may be considered as an extension and improvement of the tech­
niques that aim to combine the benefits from area and feature based stereo matching. This 

technique we will refer to as the method o f phase differences.

While we have reviewed several existing techniques for the method of phase differ­
ences, we will:

• Consider the improvement of existing one dimensional techniques.

• Extend the one dimensional technique into two dimensions.

• Consider an application of the technique towards the computation of deformation.

Chapter 7 also considers some experimental work towards the detection o f edges and corners 

with directionally selective filtering. While this section can be considered as a review of
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previous work (e.g [48]), we include some new ideas on corner detection. While only some of 
these ideas are applied in this thesis, we contend that local symbolic descriptions of image 
data[99] may be useful to verify that correct stereo matching has occured by a higher level 
of processing.
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3.1 In trodu ction

Prior to developing a complete theory for 2-Dimensional stereoscopic correspondence, it is 

useful from both an experimental and understanding viewpoint to study the problem in the 

single dimension. Indeed, several algorithms rely heavily on the epipolar constraint in 1-D for 
correspondence[3]. However, several authors (e.g [60, 29]) have indicated the role of vertical 
disparity in stereoscopic computation. The biological application of this source of information 

remains an open question. However, the presence of any vertical disparity clearly indicates 
that stereoscopic matching in keeping with motion analysis, cannot be restricted to a single 
dimension in image understanding.

The fundamental hypothesis that forms the basis for the work presented in this 

thesis was first proposed by Gabor in 1946[25].

3.2 G a b or ’ s U ncertainty Principle

The problem that Gabor addressed, was the simultaneous representation of a signal in both 

its own space, and frequency in the context of information transmission. He also proposed, 
that the principle could be applied to any linear system. Since stereopsis primarily involves 
the correspondence between image pairs at any single instance, it is useful to discuss the con­
ceptual properties o f stereopsis in signal space as a wavelength or spatial frequency in cycles 
per pixel (cpp). It is worth looking at Gabor’s work in some depth, since his uncertainty 
principle is fundamental to Image Processing[98, 99]. Gabor was first interested in repre­

senting a real signal s(z) in a different form comprising two rotating vectors in quadrature. 

Since image data is recorded by an intensity measurement from a camera sensor then this 

last statement bears significance. Gabor was interested in representing a real signal of the 

form:

s(x) =  acosuiz + bsiaufz (3.1)

by the complex form:

•H‘ )  =  . ( . ) + ; » ( . )  = (<■ -  jb )t—  (3.2)

The function <r(x) =  asinuiz -  bcosux  is formed from s(z) which:

"represents the signal in quadrature to s(x) which added to it, transforms the oscil­

lating into a rotating vector"
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In more simple terms Gabor expressed this transformation by the instruction ” 

Suppress the amplitudes belonging negative frequencies and multiply the amplitudes of positive 
frequencies by two” .

The uncertainty principle is of paramount importance in the context of signal pro­

cessing. Wilson and Granlund[98] provide a well defined insight into the problem. They 
argue: ” one o f the key tasks facing a ” vision” system is to move from  a pointwise image 

description: ”the pixel at location X  has magnitude m” to a description in terms of elemen­

tary events: ”an event o f  class C is located at position X ”. They argued that it was the 
relative distribution o f  energy among the classes of events that should be used. From this 
standpoint they further argued that relative classes of events could not have arbitrary wide 
bandwidths since there would be no descrimination of events while an arbitraily large spatial 
extent would not permit spatial localisation. Thus there exists a physical restriction in the 

simulataneous representation of classes o f events and spatial position. This restriction was 

formalised by Gabor:

3 .2 .1  Classical definition of Uncertainty

The measure of duration that Gabor used to formulate his Uncertainty hypothesis was based 
upon a minimisation o f the second moment of a signal represented in both space and fre­
quency:

=  i  y "  z ’ i /(* )ij  dx (3.3)

(3.4)

By Parseval’s formulae:

E = JO « **  = IF M 1 (3.5)

He showed that providing ■/xf(x) —► 0 as |x| —» oo then:

D d >  j (3.6)

This equation became an equality when:

/ ( * )  =  A exp [-a x7) (3.7)

or more generally:

♦(x,w) = exp(—a*(x -  x„)2] cw(wx + <t>) (3.8)
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Gabor, proposed to call the function of minimum area/bandwidth product an elementary 
signal. Gabor then proposed that an arbitrary signal could be expanded in terms of the 
elementary signals. To summarise briefly, Gabor’s uncertainty principle states that a signal 
cannot be arbitrarily described in both space and frequency. This result, which is a conse­

quence of the Fourier scaling theorem /(o x )  —* states that if / ( x )  and F(io) form a
Fourier transform pair, then they cannot both be of short duration. G abor’s work, was pri­
marily related to the to the Hilbert Transform. The properties of the Hilbert Transform are 

fundamental to the work in this thesis. We will therefore, review the definition and properties 
of the Hilbert Transform as a foundation for the remainder of this thesis.

3 .2 .2  Hilbert Transforms

Fundamental to theory o f signal processing, and bandpass filtering lies the concepts associated 
with the Hilbert Transform. These functions are frequently used in signal analysis problems 

to create a complex signal Zh(x), which is referred to as the analytic signal or pre-envelope. 
This function holds the important property of having its Fourier Spectra ” one-sided” , with 

the remainder of the information of the signal incorporated as a phase. The principle has 
formed the basis for much of the signal processing within RADAR(22]. We will review the 

important properties that we intend to consider in this thesis.

3 .2 .3  Fundamental Theorems

These follow from Papoulis[81] and Franks[22], and are useful properties o f  Hilbert Transform 

pairs (h (x ,u )  +  jh (x ,u t)).  We define:

$ (x,u>) * I (x ) =  /i(x,ui) +  jh (x ,u )  (3-9)

as the convolution between a complex bandpass filter (V (x ,u ))  and real image intensity 

function ( /(x )) .  Thus h(x,u>) and h(x,u>) are also bandpass functions.

Definition

We consider a real function (h(x,u>)):
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we form:

Z .(w ) = 2 H {u)U(u) 

with its inverse transform:

U(u,) =
1
0

u> > 0 

w < 0

1 f°°
2h(x,uj) =  — I H(u})exp[jivx]du 

*  Jo

Zh(x,u>) is complex with real part /i(x,u>) because:

1 f°°h(x,u>) =  — Tie I //(u>)exp[7'u>x]da; (3.10)

The imaginary part o f z/,(x,w) denoted by h(x,w) is complex, and is known as the Hilbert 
transform of /t(x,u;).

The frequency domain definition of Hilbert Transform pairs is perhaps the most 
pleasing to consider:

//(u>) =  -j'sgnu; H(u)

and

//(<*>) = jsgnu>/f(u;)

from which the following properties are based:

Orthogonality

|h(x,u>)| = |fc(x,w)| (3.11)

< h(x,w),h(x,w) > =  0 (3.12)

Differentiation

(.("H i, u )  a  (3.i3)

dx dx

3 .2 .4  M odulus-Argum ent form  

P re- envelope

£ (i,w ) = + h(x,u y (3.15)
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$(x,ur) =  tan- i  k x <“ )
h(x,u )

Instantaneous Frequency

(3.16)

/•(*) =  in zfc(*»w)i
_  1̂ [A(g,w)h(x^J-A(x,u»)A(x,u-)l

with the condition that the four quadrature filters are independent if:

W(x,u>) = det 

where W (x,w ) is the Wronskian of E (x ,u )  evaluated at x.

h(x,u ) h (x ,u ) 
h(x,u ) A(x,u>)

*  0

(3.17)

(3.18)

P re-envelope weighted Instantaneous Frequency
^!.,dct|VF(s -  x,ui)|

f ia v (x ,w )  =  -
E(S -  x ,u )

Correlation

< h j,h 2  >cos 9 = ------ :------ j—
|hf|i|h2|i

(3.19)

(3.20)

where h i and I1 2  are Hilbert Transform pairs which we have in this case represented by a 

vector.

3.3 B iologica l evidence

Marcclja[64] was the first to recognise the similarity between the receptive field profiles of 
simple cells in the mammalian striate cortex, and the even or odd elementary signals of Ga  ̂

bor (fig. 3.1). The interest of these particular functions in the context o f  Image Processing 

is two fold[3l]. First, theoretical analysis suggests that these functions are ideally suited for 
obtaining the best compromise between the position of a signal in space and for identifying 
the frequency component of the signal. Secondly, the Gabor function conveniently provides 

a mechanism for describing a spatial filter in spatial frequency, phase and envelope. Many 
experimentalists have confirmed Marcelja’s observation that there is at least "first approxi­
mation” to the Gabor function and receptive field profile of simple cells.



3.3. BIOLOGICAL EVIDENCE 39

Figure 3.1: Receptive field properties o f (a) Imaginary part (b)  Real Gabor function. ox = £

Field and Tolhurst[20], however, expressed some doubt to the notions that simple 
cells generally fit into even and odd symmetric catagories. However, this is not an important 

property. It suffices that the phase difference between filter pairs is in quadrature. This we 
will discuss in chapter 5. Daugman[18] showed that the error between the receptive field 

profiles of orientated complex cells and Gabor functions was less than would be expected 
from experimental error. However, the parameters that Daugman used to describe the Gabor 
function in his comparison, showed no appreciable sidelobes and we can conjecture that the 
parameters that Daugman used may not have described the Gabor function under linear 

phase conditions. In this case, the imaginary part of the Gabor function and its Hilbert 
transform becomes very similar to the Hilbert pair of the 1st derivative o f the Gaussian 
distribution. This can be seen by the polynomial expansion of the imaginary part of the 

Gabor (9 (x ,u ,o ) )  function:

This leaves some uncertainty regarding the appropriateness of the G abor function 

as a true biological model.

where ignoring second and higher terms because £  > >  o:

(3.22)
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3.4 Summary

We have discussed briefly the role of the Uncertainty Principle in Image Processing, and the 
properties o f Hilbert Transform Pairs. We have also discussed the presence of these operators 

in Biological systems. We will now formulate the principles that we have discussed into a 
mechanism for the measurement of disparity.
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4.1 Introduction

The essence of the approach, is based primarily upon the the Fourier shift theorem:

/ ( *  -  d) -+ / ,(w)expL;'dw] (4.1)

Where d represents the displacement in one signal domain relative to the other, and 
is therefore representative as a disparity. However, because we are adding a complex signal 
in our representation of an image by convolution with a quadrature pair of filters, a proper 
and more general representation of the equations that require a solution are:

z/(x,u>) =  Ei(z,u>) expjj<j>i(x,u)] (4.2)

and

zr(x,u>) =  Er(x,u>)expti4>r(x,u>)\ (4.3)

Where z(x,u>) implies the spatial convolution between the quadrature filter ’J*(x,t»j) and a 
1-D image signal I(x) i.e (z(x,u>) =  i(z ,u »)*  /(z ) ) .  Since * (z ,w ) is complex, then z(x,u>) 
is also complex and we may represent the outcome of the convolution in modulus-Argument 
form, where E(z,u>) represents the pre-envelope, and tf>{x,u) the argument of the left (1) and 

right (r) image respectively. We define a phase difference (<f>j(x,u)) equation by:

<Mz,u») =  ^ ,(z,w ) -  <h(x,u) (4.4)

Where ^¿{x,u>) is the measure used to obtain disparities between two signals separated by 

spatial position.
The notion that phase might be used to calculate disparity is not new. Larcombe 

[58] and Wilson[lOO] have previously used phase differences to estimate image disparities. 

Indeed, as early as 1967, Lange [51] wrote:
” if  it is possible to allot a mean frequency, with defined phase position to a narrow 

spectrum o f  a fluctuating process, then it is also possible to allocate a certain reciprocal phase 
position to two fluctuating processes o f the same frequency band. ” His method, an extension 
of Montgomery [74] was based upon the cross-correlation of two narrow band filtered random 

processes z i ( i )  and z j(i) :

1 [T
<t> 12 = J  r *i(0*a(* + T)dr (4.5)
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For which the maximum correlation for a value r which he called was equated 
to the time delay difference of the correlated time functions. Since the two signals were 

band-passed filtered then:

which therefore retrieves the phase difference. He failed to appreciate, however, that a  quadra­

ture pair of filters can directly compute the phase difference. In the proposed algorithm, phase 
differences are used to estimate the displacement of a pair of similar signals in the signal space, 

a subtle difference from the work of Lange.

4.2 Evidence from  Psychophysics

There is considerable evidence from neurophysiological data that bipolar cells in the visual 

cortex are both orientational and phase sensitive (e.g [63]). Thus it is possible that the 

visual system is sensitive to phase differences which can be used to measure disparity. Such a 
mechanism would be a low-level process. Mayhew and Frisby[71] argued against this notion.

In their experiment, they used a2-D circularly symmetric band pass filter and intro­
duced a disparity difference greater than the Nyquist limit of the filtered image. Since they 
observed no difference in depth perception, they concluded that the human visual system did 

not utilise spatial frequency analysis to obtain depth perception. A 2-D circularly symmetric 
filter, however, will not remove all the low frequency signal components since in the 2-D 

Fourier plane F (u ,v ), a spatial frequency |u;(,| can be resolved into:

and io0 can still comprise o f low spatial frequency elements along the horizontal axis which is 

the primary orientation that we would expect to extract disparity information. T he results 
of Mayhew and Frisby do not exclude, but may be reinterpreted to support the mechanisms 
of the type proposed. While it is possible, that feature based stereopsis is an integral part 
of human depth perception, such a mechanism would not be a low-level vision process under 

our definition.

A 4> =  2 xfoTopt (4.6)

u , =  ( UJ +  » J) i (4.7)
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4.3 Phase from  G abor filters

First let us consider two sinusoidal signals, with equal frequency but a constant phase dif­
ference. This may be perceived as a rotation of the original signal by an angle that contains 
the phase difference. By obtaining an estimate of both the spatial-frequency and the phase 

difference between the signals it is possible to compute the displacement of the second signal.
Consider a pair of quadrature Gabor filters centered at a pre determined spatial 

frequency and similarly positioned in a pair of images. Consider the convolution of this op­
erator with a sinusoid grating. Interpreting the convolution in the spatial-frequency domain, 
the result will be an impulse with a corresponding magnitude related to the displacement 

of the sine grating from the center frequency of the Gabor function. In the shifted image, 

there will be a response that incorporates the phase displacement of the signal, and an as­
sociated energy response which is not necessarily linear with respect to the first image. To 
extract the phase difference between the two image functions, it is necessary to solve four 

con volution8[52]:

/ . ( * , « . , « „ o )  =  t cos2xu ,(r — X ) I (X )  dX (4.8)

here x  refers to image position and ug refers to the center frequency of the Gabor filter.

■ » .» ) =  f  ~ « P i  ^ ^  1 « 1 . -  X ) I (X )  dX  (4.9)

=  / “  e «p [~ (r4~,'y)a ] CO,2wug(x — X )  I (X  4- d) dX  (4.10)

/ . . ( x , « „ ,« „ < t) =  /_ ”  -  X )/ (X  + J) JX (4.11)

Let I (X )  =  cos2xu0X  and / ( i  +  d) =  cos2jtu0(A’ +  d) =  cos2xu0x + <f> represent 
our 1-D pair of image functions. Here the disparity introduced is d pixels with the phase 

difference <f>. Expanding equations (4.10) and (4.11) , we find:

/«¿ (x ,u0, Ug,a) =  cos<t> It(x ,u 0,ug,a ) — sin^ I i(x ,u 0,ua,a ) (4.12)
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where /i (x ,  u<>, Up,<r) is:

/ . (

and

(x ,uo ,tig,a) =  J -— exp[—^  2^ " - ] cos2irug(x — X )  sin2jru0X  dX (4.13)

/„¿(x ,u 0, Up,o) = sin</> l 2(x ,u oyUg,a) — costt>(x,u0,ug,a ) Ia{x ,u 0,Ug,<T) (4.14)

L2(.x , u0, Ug,a) =  J -----H"T 4 a ^ —  ̂ sin2xup(x — X )  sin2iru0X  dX  (4.15)

By taking the Fourier transform of I, and observing that

F (i ) . G ( i ) S  F («)C (u) 

we arrive at the following equation:

F(u) =  (8jr<r2) i  (exp(—4jt2<72(u -  Up)2] +  exp[-4jr2a2(u + ue)2]) i($ (u  -  u„) +  ¿(u +  u0))

(4.16)
The inverse Fourier transform of the above equation effectively provides a solution to the 
integral in (4.8):

It(x ,u 0,Ug,a) =  (8x<r2) i  (exp[-4jr2<T2(u„ -  Up)2] +  exp[-4x2<r2(u,, +  Up)2]) cos2*u„x

(4.17)

By applying the same technique to equations (4.9),(4.13) and (4.15) then we arrive at the 

following expressions:

Ja( i , t i „ i i ( ,a )  =  (8xa2)^ (exp[-4îr2cr2(u0 -  u ,)2] -  exp[-4x2a2(u0 + t*y)2J) sin2xu0x

(4.18)

/i(x , v0, tig, o ) =  (8x<t2)< (exp[—4t 2<t2( u0 — Up)2] +  exp[-4x2a2(u0 + ufl)2]) sin 2xu0x

(4.19)
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l 2(x ,u 0,ug,a ) =  (8jrtr2) i  ( —exp[-4jr2<r2(uc — Uy)2] + exp[-4jr2cr2(u0 +  uff)2]) c o s2 jtu 0x

(4.20)
By forming the simple ratio and simplifying then:

» V u .t t . l  -4- ovni—I i(x ,u 0,ug,a ) _  exp[8jr2<r2u«,ui ] +  exp[—8jr2a2«,,ufl] 
Ia(x ,u 0,ug,a )  exp[8jr2<72ti0ua] — exp[—8jr2a2u0ufl]

i.e
x h(x ,U 0,Ug,<T)

Using a similar method it can also be shown that:

¡2  ( x , u 0,Ug,<r) =  —/ #(x ,u0,uJ7,<T)tanh[8x2«T2u0Up]

(4.21)

(4.22)

(4.23)

We may now substitute the above two equations into equations (4.12) and (4.14) 

from which the phase may be represented in terms of a normal rotation matrix Rf( where 

(  =  tanh[8jr2<r2u<)ua] i.e

ti_ iti rosrh — *‘1 ft U x -u -.u -.a }
(4.24)

Here, we notice that the non-linearity in phase incorporates a shearing of the trans­
formation matrix. Improvements in computational stability may be achieved by removing £ 

from the rotation matrix. The concise solution to the equation becomes:

I,4,(x,UoyUg,<7) c o s t / , ( ! , « „ ,  Ug,cr)

Im4(x ,u otu „a ) sin <f>(, cos <f> Ia(x,Uo,Ug,(T)

uf.g) sin <f> cos <f>

/  /.+ (*,Up. U,.o]
1 - <

cos <f> — sin<£ IM(x,u0,ug,a ) 
/.(g,u0,u„g)

/  u y d  V )

With the disparity estimate (Dett) given by: 

________* - -d  pixels
2  irxig

If we make a further examination of the tanh correction factor then we see that:

(425)

(4.26)

(4.27)

8x3u0iig<72 =  8.0 (4.28)
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and

(4.29)

then:
tanhJSji^UotifCr2] as 1.00 (4.30)

If we consider these conditions in the frequency domain then:

4<tu (4.31)

where au =  ua represents the standard deviation of the filter in frequency space. 

4 .3 .1  F ilte r  B a n d w id th

Consider a Gaussian function G (u,au) centered at the origin of the frequency domain:

thus the Gabor function is effectively a Gaussian envelope centered at ug in the frequency 
domain. The bandwidth in octaves (f?oci) is then defined by:

Clearly, if (  «  1.0 then the Gabor function may be considered as a linear phase 

filter. The bandwidth of a Gabor filter constrained by this limit of linearity is equal to 1.28 
Octaves. Several authors [19] who studied cat cortical simple cells, showed that they had a 

mean bandwidth of 1.2 to 1.47 octaves. Therefore, the visual system may apply Gabor filters 
at the limits o f phase linearity. It is noticeable, that if £ < 1 then Gabor filters are not in 
quadrature. This is represented by equations (4.17) and (4.18).

(4.32)

its half height is found from:

= 1.665ctu
1.665ug

4
by the Fourier shift theorem:

<7(x,£Tx)cos ugx —  [G(U -  Ug,(Tu) +  G(u +  ua,<Tu)]

(4.33)
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4.4 Instantaneous Frequency

We now consider the estimation of instantaneous frequency using Gabor functions. First, 
consider the ratio of Ia(x ,u 0,ug,o)/Ia(x ,u 0,ug,a )  from equations (4.17) and (4.18), which 
may be defined as the instantaneous phase o f a signal. We may express this as:

(4.34)

Since the right hand side of the above equation is independent of the center frequency 

from the Gabor filter (assuming £ = k). It can easily shown that:

■W «)!
dx

2jtu0 (4.35)+ (co,l[2 ,Ucl|

which follows from equation (3.17). Providing £ = 1.0 then the spatial derivative of the phase 
response may be considered as an estimate o f the instantaneous frequency of a signal. Notice 
that in this case, the condition £ ^ 1 introduces oscillatory behaviour into the estimation of 

instantaneous frequency, whose magnitude is determined by £.

4 .4 .1  Local measurement o f Instantaneous frequency

From equations (3.17) and (3.14) we observe that the local instantaneous frequency can be 
numerically calculated using the spatial derivatives o f the Gabor function (Grj(x ,u g,cr)) and 

Gid(x,ug,o ):

Gid(x,ug,o )
_1

co» 2' “ .*  +  2' “ .  ' in 2' « . 1 ) (4.36)

and

G rj ( x , u „ x )  m j — ^ e x p ( ^ - ) ( ^ i > i i . 2 T « , i  +  2 . i i , c o s 2 » « , I  ) (4.37)

by:

, ,  , _  1 [f.(x.n< ..n .,»)/l(*,ti< .,» „< > ) -  f a . * : “ . , » ) / . ( » .
M  ’  ~  2 .  / J ( i , ) + i J ( i , « . , « „ » )

where / i (x ,u 0,u,,<r) =  Gtlt(x ,u g,a ) * I (x )  end tl( x luo lut ,a ) =  Gr.(x ,u f ,n ) * 7(x).

(4.38)
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4.5 Error in Disparity m easurem ent

An examination o f equation (4.27), indicates that the phase shift of a signal in pixel units, 
is a function o f the signal frequency. Therefore, to be exact in terms of the pixel shift, we 
require the fundamental frequency of the signal under analysis.

One method to find the fundamental signal under analysis would be to apply a range 
of filters at the same location in the image space, but tuned to different spatial frequencies(8l). 

The filters which then lie in closest proximity to the fundamental frequency of the signal will 
provide the greatest accuracy in disparity interpretation and also respond with the largest 

energy.

In general, there will be an error in the calculated phase shift that will be related 

to the difference between the Gabor center frequency and the examined image frequencies. 

This is because we are subsampling in both the spatial and frequency domains. The criterion 
for subsampling follows from the theoretical work of Gabor and Bastians [25, 4). We propose 

subsampling in the spatial frequency domain by y/2nug, where ug is the coarsest filter applied. 
By applying the filters in a geometric progression in the manner prescribed, filters are localised 

in the spatial frequency spectrum at low spatial frequencies and less selective at higher spatial 
frequencies. The sampling in the frequency domain can be seen in figure 4.1. Here, the Fourier 
Transform of each filter has been superimposed to indicate the sampling of the frequency 

domian. It is apparent that filters tuned to the lower spatial frequencies are far more selective 
than the filters tuned to higher spatial frequencies.

If disparity was interpreted using a local energy peak from a series of filters similarly 
applied to a point in the image, the greatest error will occur when the image fundamental 
frequency lies at the mid point between an adjacent pair of filters in the frequency domain. 
By using the fundamental frequency of the filter to interpret the phase difference we expect 

that the filter tuned to a slightly lower spatial frequency will over estimate the disparity 

measurement, while the filter tuned to a higher spatial frequency will accordingly under 
estimate the image displacement.

An estimation of the maximum error from equation (4.27) indicates that in this case, 
there will be an upper and lower frequency error o f 21% and 15% o f the actual disparity this 

follows from equation (4.46).

However, since the magnitude of error is dependent upon the phase displacement,
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Figure 4.1: Fourier Spectrum o f Gabor filters separated by s/2nug in the frequency domain. 
Here ug =  1.0/64-0 cpp. Each filter was chosen to approximate a quadrature filter from 

equation (4-81). y-axis shows the filter amplitude against frequency (x-axis).

by iteration we would expect to converge to a better estimate in a coarse to fine strategy. 

At high spatial frequencies large shifts in the image are also restricted by aliasing. Hence, 

low spatial frequency filters can tolerate large disparities with high spatial uncertainty, while 

high spatial frequency filters must be localised to correctly interpret disparity. The previous 
argument, suggests that filters should be ordered with low frequency channels providing coarse 
estimates of disparity, with higher frequency channels giving progressively finer estimates. 
Such a process may well be the mechanism underlying the control o f convergence of objects 
near to the observer.

It is interesting to note that for loci of zero disparity that lie on the notional 
horopter[79], zero disparity (in the absence o f noise) may be detected by any spatial filter 

without error.

In the same manner as Wilson and Knutsson[100] we have assumed that the in­

stantaneous frequency o f the stereoscopic image pairs are similar. Such a generality cannot 

possibly be maintained without serious error, particularly when considering the complexity 
of natural image data. A similar aspect of stereopsis follows from Clark and Lawrence [17] 

who studied the error involved with different spatial frequency elements in the image domain. 
They restricted their analysis to zero-crossings of Marr’s Laplacian. They came to the conclu­
sion that there was no error in disparity estimation providing spatial frequency components 

were equal and fused. We have already reported similar findings at zero disparity. Consider 

the interpretation of disparity from signals with different spatial frequencies. By assigning a
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phase difference as before we can write:

<t>d(x) =  +  d i ) - u r(x  +  dr) <t>d € [ - * , * ]  (4.39)

It is obvious that in the case where u;/ =  ur then interpretation of disparity (d =  d¡ — dr) 

is simple. When this condition is not met, interpretation can be difficult.

Consider a complex stereo signal, with a partially sighted surface in one image A 

set o f phase sensitive filters might respond with a complete phase wrap around cycle caused 
by this feature. If a process merely responded to phase differences in an exact and precise 
manner by using equation (4.27) for instance, then tracking the difference could lead gross 
error. This is because it would be difficult to separate classical diffrequency[7] (diffrequency 
refers to the local differences in spatial frequency between stereoscopic views of the world, 

which implies a disparity gradient) from depth discontinuities.

Let us re-define the phase difference at a position (x) as the roots of:

M * )  -  M * o )  =  0 (4.40)

Suppose that x is the exact root that we require. Expanding the above equation as a Taylor 
series with x =  xa +  d as an exact solution we have:

M * o  +  d) — </>r(x0) =  0 (4.41)

= M xo) -  4>t(*o) +  d<t>\(x0) +

let us then make d\ an approximation to d in which case we have:

, _  -W i(i . )  -  » .( » . ) !
* !(* .)

from which we iterate to find the root o f our initial equation by:

(4.42)

(4.43)

which is in fact Newton-Raphson convergence with dn as our current disparity estimate. 

Thus we can can also interpret disparity using the local derivative of phase (instantaneous 
frequency)[55]. We can immediately state[40] that convergence from this method can only 
be expected providing the new estimation of the root xn lies between the previous estimate 

z n_ i and the exact solution x.
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It would be expected that the inverse rotational phase transformation from equation 
(4.42) will also give the same disparity measurement independently o f  whether we choose 
to match the left and right image. However, this would only be correct assuming that 

$ (x )  =  # ( z )  . We can add the constraint that the derivative of phase or instantaneous 
frequencies from both image pairs must at least be of the same sign for convergence to 
be established. One advantage of a Newton-Raphson iteration lies with its convergence 

properties. If instead of considering sinusoidal signals we were to consider a phase function 
Arg[yi(x\ua) * W(x)] where N (x) is broadband Gaussian noise[10] (note: 2nut =  u>p), then:

<f>l(x,u) =  u>gx +  $ (x ) (4.44)

with the constant disparity displacement in the corresponding stereo pair given by:

<f>r(x,u>) = Ug[x -  d) +  $ (x  -  d)

the phase difference at x„ becomes:

<M*o) = M xo) -  4>t(x0 - d )  =  ojgd +  $ (x„) -  * ( z 0 -  d) (4.45)

thus the disparity error (c) in interpreting disparity from the center frequency of the filter 

becomes:

itjg

Taylor expanding the above equation at x0 we have:

(4.46)

t =  —  [d*'(x„) +  +  ... ]
U)g

If we now substitute the local phase gradient by its numerical determination from equation 

(4.38), then the error in disparity measurement (assuming convergence) becomes:

(4.47)

which is indicative of the quadratic convergence o f the Newton-Raphson iteration.

By observing that there should exist an equivalent inverse rotation between our 
vector pairs, we immediately introduce an ambiguity should we wish to use the derivative 

of phase to interpret disparity. This is because we may use the instantaneous frequency 

properties from either image as the Newton-Raphson method informs us. By the established
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theories o f Continuum Mechanics, this is equivalent to considering the Eulerian and Lan- 

grangian description of a deformation field. Assuming small deformations we can consider a 

simple mean ( / ov(z)):

/oti(*) — /<(«) +  M ?1  
2 (4.48)

were / / (* )  and f r(x )  refer to the local instantaneous frequency of both image pairs.
Indeed, Eric Grimson (cited in Marr[65]) pointed out that matching can be achieved 

from either or both eyes. Interestingly, because of the ambiguity, one might consider the 
implications of this result with regard to eye dominance in human vision, since we would in 

principle only require the instantaneous frequency properties from a single image to interpret 

disparity. To reduce the error in disparity estimation, we propose taking a weighted average 
between the instantaneous frequency estimates. Our improved interpretive frequency is thus 
defined as:

/ ” ( l )  “  — £ ,(* ) +  a ( . ) —  <4'49)
from which we weight the frequency for disparity interpretation to the dominant energy 
response (£7(x)) from either image pair. Here fi(x ) and / r(x ), refer to the instantaneous 
frequencies of the left and right image pair. We also note that it is possible to apply the 

weighted pre-envelope definition of instantaneous frequency ( /« « (* ))  from equation (3.19) to 
reduce noise sensitivity in the estimation of the local phase behaviour:

/«« (* ) =
1 E-.det|W r(s -  x,t>>)| +  E -«det|W j(j _  I|U,)| 
2X £ ! .  +  E - .  E i ( s - x , u )

(4.50)

4.6 T h e  Pre-envelope

The pre-envelope response may be calculated as:

E7(x , u0,ut ,a )  =  I7(x ,u 0,ug,a ) +  /* (* ,« „ ,  u„,<r) (4.51)

=  (8z<r2)l(exp(-8)r2tr2(u0- u s)a)+exp(-8)r2<7i (u0+up)a)+ 2exp (—4xj<72( u„+Uj ) ) cos4tu0x]
(4.52)

An examination of the above equation indicates that the energy response is influenced by 
three factors:

• The separation of Gabor center frequency and signal frequency.
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• The displacement o f Gabor and signal frequency from the d.c level.

• The phase of the signal at the sampled point.

Thus, the pre-envelope will have maxima when:

(4.53)

and u0 =  ug, this gives us a maximum energy response (Emax(x,u0,ug,o )) :

^m«*(*»uoi “*»<0 =  (8x<ra) i [ l  +  exp(—32t2<t2u*) +  2exp(—16x2aau*)] (4.54)

Therefore, the pre-envelope maximum is approximately proportional to a. In this 

representation low frequency signals will respond with greater energy than higher frequencies. 
This is a convenient condition, in the respect that an image will in general contain a broad 
range of instantaneous frequencies. Thus low frequency signals, which can tolerate the largest 
pixel shifts without aliasing have the greatest probability o f maximal response.

We observe that the derivative of the pre-envelope response with respect to displace­
ment is equal to:

Which has a corresponding maximum and minimum dependent on whether sin4xu0z  = 0. 

We should also consider the d.c sensitivity of the filter. Indeed, this is a special case which can 
be particularly troublesome. FYom equations (4.17) and (4.18) we observe that the imaginary 

component (i.e /„(x , u0, ug,a ))  is not sensitive to d.c. However, the real part o f the Gabor 

function holds a d.c bias explained by equation (4.17)[46):

where A represents the amplitude o f the d.c bias.

Naturally, this expression must be included in both our definitions of phase and 
energy response as :

/«;uo=o(x»uo,u0,<r) =  2A(8x<r2)^ exp[—4t2<t2uJ) (4.56)

Arg[*(x) * I(x)] = sinh[8x2g2u0Uj) sin[2xu0j]
(4.57)cosh(8xa2u0up] cos(2jru„z] +  2A exp[-4x5t7Ju2)



thus an image function with d.c bias will not necessarily respond with linear phase. With 

regard to the energy response, we should merely note the addition o f the extra terms /*;Uo=o 

and:

4 A exp[—4iratr3uJ) cosh^xtr2« ,,^ ] cos[2jtu0i ] 

which one would expect to oscillate in phase with the signal under view.

4.6 .1  Instantaneous Frequency analysis from the Energy response.

Papoulis[81] suggests that localised instantaneous frequency estimation can be obtained by 

applying multiple bandpass filters, and estimating a mean spatial frequency based upon the 
energy response from each filter. Unfortunately, this method also requires a suitable scaling 

factor to compensate for the energy differences that we might expect through the resolutions 
of bandpass filtering. Because of the uncertainty regarding a suitable weighting measure, this 

particular approach was not considered in this thesis.

We now clarify what we interpret by energy. We see from the Gabor function, that 
the magnitude of the energy response is determined by the phase of the signal under view, 

and its departure from the preferred frequency of the applied filter. The former term being 

the dominant parameter that is observed under spatial convolution, i.e:

dE = -^ -dx  +  ^ - d u 0 (4.58)
ox  OU)0

The above equation is rather unusual. Traditionally, spatial derivatives of energy[93, 12] are 

not separated into these two components. We will later show a method for obtaining this 

term from the first derivatives of a convolution operator.

4.7 Designing the Quadrature filter

From equation (4.17) we notice that the Gabor function retains some sensitivity at d.c (illu­
minance sensitivity). By choosing the bandwidth of the Gabor function at 1.28 octaves, we 
have assumed that the d.c sensitivity is negligible. To enforce this condition, we make the 
observation that imaginary part (sinusoidal modulation of a Gaussian) is not sensitive to d.c. 

Therefore, by creating the Hilbert transform pair o f the imaginary part we can ensure that the 
Gabor function is a quadrature filter with no sensitivity at d.c. The loss in quadrature can be 

seen by comparing equations (4.17) and (4.18) where |/t(x)| |/>(x)| but < h (x),h (x ) > =  0.

4.7. DESIGNING THE QUADRATURE FILTER 5 5
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Figure 4.2: (a) Gabor filter characteristics chosen for linear phase, i.e oK — Left :

Hilbert Transform o f imaginary component, Center: Real part o f Gabor, Right: difference, 

(b) Gabor filter characteristics chosen under non-linear phase conditions for ox =  A-.

Graphs show amplitude (y-axis) against spatial position (x-axis).

Clearly in the Gabor representation this first condition is not exactly satisfied because of the 

energy differences involved with sinusoidal and cosinusoidal modulation. Naturally, when the 
filter pairs are tuned to the image signal’s fundamental form, the Gabor filter pairs may be 
assumed to exhibit the properties o f a Hilbert pair, but this is not generally applicable over all 
the possible range of spatial frequencies. Gabor did not point this out in his original paper. 
When the parameters of the Gabor filter are designed to operate towards linear phase, we 

would expect there to be a small difference between the Hilbert Transform o f the imaginary 

part of the Gabor function, and the real part o f the Gabor. When this condition is not met, 
we expect marked differences as indeed is the case (fig. 4.2). The differences are primarily 

caused by a d.c component which we notice from the Gaussian distribution of the difference, 
which we would predict from equations (4.17) and (4.18).

4.8 C om pression /E xpan sion  Transform ations

Within the 1-D framework we are able to discuss the compression/expansion transformations 
o f a vertically slanted smooth surface (wallplane). In the spatial domain this transformation 
can be represented by frequency modulation. Let us consider our original sinusoid signal 

sin2xu0x. Let the displacement of a second sinusoidal signal be proportional to the square
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o f the displacement relative to some arbitrary fixed point at x = 0 .  Then:

//(x ) =  sin2xu0x. (4.59)

and

/r (x ) =  sin2xx(u0 + /3x) (4.60)

Let:

ti(x) =  u0 +  2 fix (4.61)

where ti(x) is the instantaneous frequency o f the FM signal linear in x.

It suffices to note that a linear FM signal has monotonie increasing phase and that 
it is possible to assign a phase difference based upon the instantaneous phase o f the linear 

FM signal, and a stationary sinusoidal grating:

M * )  =  (4-62)

General analysis of the above equations is difficult, however, the Fourier transform 
of equations o f the type:

/ ( * )  =  r(x)exp[j/?x2] (4.63)

can be approximated by [81]:

* V )  = \\ĵ  “  > 0 (4-w)

The phase can be 6hown to be parabolic centered at u»0, providing there is little overlap 
between F(u;/ — u>0) and F (— u» — u»„). It is therefore clear, that we may assign an appropriate 

spatial phase difference:

<t>d{x) =  /  2jtu(s) — 2jtu„ ds (4.65)

4.9 M eth ods

To highlight the principles that we have discussed, we will present some experimental results 

to some simple, and real image data.
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4.9 .1  M ethods o f Evaluation

In figures B.2 to B.4 we have produced graphical displays of the grey level pixel values 
corresponding to a selection of stereo raster lines. These sequences will be used as a control 

to enable a quantitative evaluation o f  the methods outlined whenever real image data is used. 
Accordingly, an edge based interpolation (manual) was employed to provide the idealised 

disparity response between the pairs of raster lines (fig. B.6). The edge based disparity 

measurements are shown superimposed on experimental work to provide an indication of the 
accuracy of results.

With each technique employed, the mean (*), normalised correlation (r), and stan­

dard deviation (<r„) of disparity error was calculated based upon the measured response and 
those of the algorithms employed in this thesis. These results are formally presented in 
tabular form in Appendix A, and also given in the appropriate figure captions.

4.9 .2  Disparity measurement 

Experiment 1

In the first experiment a uniform shift of 20 pixels was induced into one of a pair o f gratings. 
The estimates of disparity were obtained from a series of filters tuned to different spatial 
frequencies. Disparity measurements, were based upon the center frequency for each filter.

Experiment 2

We repeat experiment 1, however, we have used a priori knowledge o f the sine grating as 

the parameter to interpret disparity from equation (4.27). We also examine the error that is 

implicitly included within the phase correction factor (.

Experiment 3

We examine the error in the interpretation of disparity by applying sinusoidal gratings of 
different spatial frequencies to both images with constant (pixel) shift, and apply the same 

Gabor function in both images to estimate disparity. Disparity is interpreted by the center 

frequency of the filter.
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Experiment 4

We apply equation (4.35), towards the estimation of instantaneous frequency for a static 
sinusoidal grating. We also apply the local estimate o f instantaneous frequency to interpret 
disparity to  several images, each comprising of a stationary pair of sinusoidal gratings with 
a constant pixel shift.

Experiment 5

Here we consider the estimation of disparity applied to raster lines taken from real stereo data. 

We will only consider the direct interpretation of disparity from a selected number of scales 
to indicate the error and difficulties that are associated within the technique. We will also 

examine qualitatively the estimation of instantaneous frequency by both the spatial derivative 
of phase, and the application of quadrature filters and their derivatives. We also consider 
thresholding the local phase gradient defined by equation (4.49) to restrict the interpretation 

of disparity from image regions that are not analytic.

Experiment 6

We examine the pre-envelope defined by equation (4.51) with the purpose of examining the 
response o f  a single filter to different spatial frequency stimuli and also the response of different 

filters through spatial scales that operate on sine gratings tuned to the center frequency of 

the filter. We will also examine the spatial variation of the pre-envelope to a sinusoidal 

function with a mean intensity level (d.c component) and also the spatial behaviour of the 

pre-envelope that is not tuned to the frequency present in the image.

Experiment 7

This experiment refers to the diffrequency hypothesis proposed by Blakemore[7). We consider 
the phase differences taken from a simple sine grating stimulus with respect to a second 
sinusoidal signal that is frequency modulated. Here, frequency modulation can be interpreted 

to infer a smooth change in the local disparity (i.e depth modulation) which can still be 

interpreted by phase differences.
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Figure 4.3: Disparity estimates for different filters applied at the same location to a sinusoidal 
grating of 1.5625xl0-a cpp (cycles per pixel). Preferred filter center frequencies varied from 

7.8xl0-3  cpp to 0.125 cpp. A Disparity o f 20 pixels was introduced between each grating. 

Graph shows disparity (y-axis) v filter center frequency (x-axis).

4.10 Results

4 .10 .1  Disparity Measurem ents 

Experiment 1

By maintaining the image grating constant and varying the center frequency o f  the filter, 
the disparity measurements were overestimated for the case o f filters tuned to lower spatial 
frequencies than the grating and underestimated for filters tuned to higher spatial frequencies. 

The function of the variation o f disparity is a hyperbolic curve which follows from equation 
(4.27) since Dett(ug) — <t>/ug, where ug is the center angular frequency of the filter and the 

phase difference <j> is a constant. Notice that the correct disparity of 20 pixels is only available 

in this case when the center frequency of the filter, and image frequency coincide (fig.4.3).

Experiment 2

We have repeated experiment 1, however we have used the center frequency o f the grating to 

interpret disparity. The actual shift of 20 pixels is now apparent. Disparity measurements 
taken from equation (4.27) are considerably improved incomparison to experiment 1, with a 

disparity error of ±  0.5 pixels for filters within 2.5 octaves of the fundamental frequency of 

the signal. Operating under the non-linear phase region of the filter can be seen comparing 

figures 4.4a and b. In figure 4.4b the (  term was also introduced into the phase estimates for
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Figure 4.4: (a)Disparity estimates (y-axis) to the same stimuli pair as fig. j.3  for different 

sinusoidal image functions (x-axis). Disparity interpreted from the fundamental form o f the 
signal (b) Improved disparity estimates obtained fo r  the same stimuli as (a) but also estimating 
the shear in rotation from the correction term

measuring disparity. Notice that improvements owing to this term only arise for filters with 
higher spatial frequency preferences than the image signal. This is because the correction 
factor is influences by o * and u0 for a fixed grating. Since there exists an inverse relationship 
between the filter’s standard deviation and fundamental frequency to the first order, then 
forces the filter to respond linearly. This does not apply when the filter is tuned to a higher 
spatial frequency than it receives. Under these conditions, there will be a rotational correction 

that is required. This rotation correction can in general, only be found by local instantaneous 

frequency examination. We note that it is in principle possible to gain considerable accuracy 

from pure signals and any filter we choose. Real data does not permit such luxuries. In 
particular, band-pass filters have a weighted preference for their own fundamental frequency. 
Thus it would be unreasonable to expect a single resolution of filtering to unambiguously 

measure disparities in a complex image signal.

Experiment 3

In figure 4.5, we have used a single Gabor function to interpret disparity while altering the 
spatial frequency of the grating stimulus for a constant shift. In this case, the error in 
disparity measurement is linear which follows from equation (4.27) since Det( = ui„k where 
u0 is the frequency of the grating, and the constant k = d/u>g which is the actual disparity
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Figure 4.5: Variation in disparity measurement (y-axis) for gratings o f  different spatial fre­

quency (x-axis). A constant 2 pixel shift was induced into the stimulus. Center frequency of 

Gabor at 0.125 cpp.

divided by the center angular frequency of the Gabor filter.

Experiment 4

Figure 4.6 shows the instantaneous frequency calculated from the phase gradient. For a
sinusoidal image tuned to the center frequency of the Gabor filter there was a numerical error
of ±  0.2 cpp. For a signal differing by 25% in spatial frequency, the error in instantaneous
frequency was ±  0.892 cpp. We can substitute the instantaneous frequency into the disparity
estimate, to improve our accuracy in disparity measurement. The potential improvement in

disparity estimates by the local instantaneous frequency is presented in figures 4.7a and 4.7b.

Unfortunately, should the phase from Gabor filters operate under the non-linear region, we

also introduce oscillatory behaviour into the disparity estimate (fig. 4.7c).

We note that in this case, the separation between image and filter signals is greater

than we would normally permit. An interesting point to observe in figure 4.7c, is with the
center frequency of the filter at 6.25xl0-2 cpp with the image grating at 1.5xl0-2 cpp. The
disparity was 20 pixels. Although the associated error with this filter was ±  4.0 pixels, the

filter measured a disparity difference in excess o f its own wavelength. We should also observe
that the oscillatory nature o f the disparity estimate can be entirely predicted by:

8in2[2xu0i l  . 2. ,
-------+  Ccos2[2jtu 0x ]

Which is recognised as a cyclic function. It is not possible to correct for phase non-linearity
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Figure 4.6: (a) Instantaneous frequency (y-azis) estimates against position (x-azis) for image 

grating o f  3.125xl0-2 cpp. Filter tuned to grating, (b) Instantaneous frequency estimates 
from the same filter pairs in (a) but image signal now 0.025 cpp.

by this method since it has in itself implied that the correction term was already close to 

unity.

Experim ent 5

We will now consider the application of the theory that we have developed to real image 
data. Figure 4.8 shows the instantaneous frequency estimates for a real image scan line 

based upon equations (4.35) and (3.17). Filters were tuned to 1.5xl0“ 3 and 0.0625 cpp. 

The instantaneous frequency response shows the interesting property of negative frequency 

response and stationary phase (stationary phase refers to a zero phase gradient). Since the 

oscillatory term owing to filter non-linearity is always positive, we can only assume that the 

change in gradient is caused by negative frequencies. In the words of Gabor(25]: "negative 
frequencies are suppressed” , but we add that they are not removed. The exact nature of 

the negative phase gradient can be shown by the examination o f the quadrature phase as a 
function of image position. This we present in figure 4.9 for two stereo raster sequences. The 

disparity interpretations from these phase functions can be seen in figures 4.10c and 4.11b. 
Notice that the differences in the image intensity functions from figure D.2 has introduced 

negative frequency and stationary phase behaviour in only one phase function. Thus the 
phase differencing technique is not analytic because of this local behaviour. The restriction 

of stationary phase to a single image sequence is owing to the difference in local instantaneous



CHAPTER 4. DISPARITY MEASUREMENT

Figure 4.7: Disparity estimates (y-axis) interpreted from the derivative o f phase against posi­

tion (x-axis). Initial disparity o f 10 pixels introduced to a pair o f filters centered at 3.125xl0-2 
cpp. (a) Grating o f  3.125xlO-2 cpp. (b) Grating o f  0.025 cpp. (c) Filter tuned to 6.25xlO-J 
CPP, grating 1.5xl0-3 cpp and disparity o f  20 pixels introduced.

frequency owing to stereoscopic transformation. We will show in the next chapter that this 

behaviour is due to interference. The measured disparity functions for these raster pairs is 

shown in figure B.6.

At the lowest resolution (fig 4.10a), using the center frequency o f the filter to inter­
pret disparity has resulted in an under estimation o f  the disparity. This is because of the error 

in the interpretation of the local phase gradient which we can see by comparing figures 4.10a 
and 4.11a with B.6. From figure 4.9 we also observe that two turning points have occurred in 
the phase advance and that the presence of negative frequency components has been detected. 

During the transition from positive to negative frequency, the instantaneous frequency must 

pass through stationary phase i.e d.c. We are therefore trying to apply phase differences to 
markedly different frequency components o f the two images at this point. More seriously, 

the turning point also yields an ambiguity since there are effectively two points that could
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Figure 4.8: Instantaneous frequency (y-axis) estimates obtained from figure B.2b as a function 
o f position (x-axis). (a ) From the spatial derivative o f phase (b) From Gabor filters and their 
first derivatives. Filters were tuned to 1.5xl0-2 cpp. (c) Spatial derivative o f phase from 

Gabor function, (d) Instantaneous frequency obtained from Gabor filters and their derivatives. 

Center frequency o f Gabor function at 0.0625 cpp.

be potentially matched. This is contrary to the one to one correspondence constraint. Under 

these conditions, the method of phase differences is not converegent and we expect instability. 

The phase function obtained by convolution with the Gabor filter will always respond to the 
local frequency content of the image stimulus. In complex image data, where there exist 
many local Fourier energies, we would expect the local phase gradient to lie within the upper 

and lower cut-off bounds of the bandpass filter. Stationary phase and negative frequency is 

a clear indication that these assumptions are insufficient and arise because of a non-linearity 
that has been introduced into the system.

To prevent a phase difference to be taken at image regions that exhibit these non- 

linearities, it is proposed to apply a threshold based upon an upper and lower cut-off of one
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Figure 4.9: Phase function (y-azis) response against position (x-axis)  obtained by convolving 

with filters tuned to 1.5xl0“ a cpp, from figure B.2. (a) Left image (b) Right image

octave with respect to the center frequency o f the filter. The threshold is based upon the 

local phase gradient. Some results for disparity interpretation using this technique are shown 
in figure 4.12 where we have not examined a phase difference within regions of the image 

which violate this criterion. Thresholds are applied based upon equation (4.49).

Experiment 0

We show that maximal energy from each filter occurs at the spatial frequency of interest 
(fig. 4.13). Here the image signal remains stationary, and we alter the center frequency of 

the filter. Notice the rapid exponential decay that is predicted, from equation (4.52). We 

also notice the skew that is introduced from the energy response. Figure 4.13b shows the 

weighted preference that the selected Gabor filters hold for d.c signals. Each filter was tuned 
to the signal frequency of preference. The graph shows the energy response for different 

gratings with equal contrast. The prediction that the energy response is dependent on the 
spatial location of the filter is also an important aspect to consider. Because of this, it is 

diflicult to obtain information exclusively from energy derivatives with respect to spatial 
location (fig. 4.13c). It is important to observe, that the cyclic oscillation of energy response, 

is twice the fundamental frequency of the input grating and that the magnitude o f these 
oscillations become more pronounced, when the signal and image filter differ. This can be 
seen in fig. 4.13d where the image signal and filter center frequency differ by an octave. Notice 

that the oscillations increase relative to the amplitude of the response. In figure 4.13e we
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Figure 4.10: Disparity estimates (y-axis) from phase differences against position (x-axis) for 
the image raster in B.2. (a) Filters tuned to 7.8xl0-3  cpp. (b) 1.09xl0-2 cpp. (c) 1.5xl0-2 

cpp (d) 2.2xl0_a cpp.

show the d.c bias of the Gabor filter to a sinusoidal signal with non-zero mean intensity. The 

energy response now appreciably oscillates at the fundamental frequency of the image signal. 

These energy oscillations are particularly concerning should we wish to use the pre-envelope 

as a probabilistic weighting.

Experiment 7

Figure 4.14 shows the phase difference between two sinusoidal signals, one of which is linearly 

frequency modulated. However, the increase in phase differences has lead to wrap-around. 
The diffrequency paradigm[7] hypothesised that surface slant can be predicted from local 
differences in horizontal spatial frequency. Blakemore’s main driving theory was based upon 
a frequency modulated grating that was stereoscopically fused relative to a constant grating 

to provide the perception of surface slant. Because of the frequency modulation, his right
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Figure 4.11: Instantaneous frequency applied to figure B.2 and used to interpret disparity 
(y-axis) against position (x-axis). Filters tuned to (a) 7.8xl0-3 cpp. (b) 1.5xl0-2 cpp.

image contained an additional cycle of intensity stimulus. Since stereopsis was possible, and 

he observed no difference in stimulus owing to the additional cycle, he argued that this mech­
anism was indeed used to provide cues for surface slant. Our results indicate that the method 
o f phase differences is also consistent with this representation. In figure 4.15 we observe a 
sinusoidal modulation. Since the derivative of a sinusoidal phase is also an oscillatory func­

tion, we know that the first derivative of phase can pass through stationary values. Under 
these conditions we would expect difficulty in disparity interpretation since the test grating 
is a static sinusoid. Therefore the local differences in instantaneous frequency must change 
markedly between the two stimuli. A phase difference between a static (constant phase ad­

vance) grating and sinusoidally modulated phase grating would be expected to produce a 

sinusoidal depth modulation. Results to this stereo pair by applying equation (4.49) indicate 

the error in disparity interpretation was 40%. However, we have not iterated to obtain better 

estimates.
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Figure 4.12: Upper and lower cut-off o f 1 octave applied to disparity estimates (y-axis)  against 
position (z-axis) using the derivative o f phase to interpret disparity from figure D.2. Filters 

preferred frequencies were (a) 7.8xl0-3 cpp. (b) 1.5xl0~2 cpp.
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Figure 4.13: Pre-envelope response (y-azis) against position (x-axis) presented for ideal si­

nusoidal signals, (a ) Energy response for different bandpass filters to a grating of 1.5xl0-2 

cpp applied at the same location in the image domain, (b) Change in energy response from 

quadrature sets o f  filters applied to gratings with mutual preference, (c )  Energy response to 
a grating o f  6.25xl0-2  cpp convolved with a pair o f Gabor functions tuned to 6.25xl0-2 cpp. 
(d) Energy response as (c) but filter preference at 3.125xl0-2 cpp and image grating 1.5xl0-2 

cpp. (e) As (c) but the sinusoidal grating has a d.c bias introduced, ( f )  Energy response from 
raster line B.2. Filter with center frequency at 1.5xl0-2 cpp.
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Figure 4.14: Pair of sinusoidally based stereo rasters, (a) Grating with instantanlaneous 

frequency linear in spatial position (f3 =  0.001). (b) Reference grating (c ) disparity estimate. 
Center frequency of filter and reference grating 1.5xl0-a  cpp.
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Figure 4.15: Pair of sinusoidally based stereo rasters with a disparity frequency o f  10 pix­

els peak to peak and 1.56xl0-2 cpp. Carrier frequency was 3.125xl0-2 cpp. Filter center 

frequency 3.125x10“ 2 cpp. (a) Reference (b) Modulated grating, (c) Depth estimate.
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5.1 A pproxim ations t o  added Gaussian N oise

The study o f noise within phase sensitive systems has previously found motivation with the 
study of frequency modulated communication theory and Phase-locked loop tracking systems. 

From this point of view we are fortunate, since many questions and solutions have already 

been provided. We therefore extract the relevant information, and apply the results to our 
own needs. We began using a model proposed by Foschini et al[21], which we will modify 
to our own notation. Here we note that the use of bold type will indicate that the function 

obtained by (¥(z,<<;) * / ( * ) )  will be represented as a vector as opposed to the modulus- 
Argument form. We have:

z/ =  Rszr +  n (5.1)

where the vectors are given by:

/ .
=  zr V

Tie
n

and is the normal rotation matrix, and n is a quadrature component of Gaussian noise 

added to the signal, whose elements nc and n, are both independent stationary wideband 

Gaussian processes with one-sided spectral density (N a).

5.1.1 P re lim in a ry  a p p r o x im a tio n s

We begin by assuming that nc(x ) and n ,(x ) can be considered as Hilbert pairs after bandpass 

filtering and assume that each noise element has similar statistics, with the same power 

spectrum and autocorrelation function:

and

n(z) =  nc(x)co8Wpx + ti, ( x ) sin

E (x) =  Jn\  +  nj , $ (x ) =  tan *[— ] 
Y nc

which can be re-written as:

n (x ) =  £(x)cos[u»ffx +  $(x)]

which derives the physical interpretation of a slowly varying amplitude, while the phase 

oscillates with an expected frequency related to the center angular frequency of the bandpass
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filter (u>t ). As we have already observed with the Gabor function, the spectral components 
present in the image function are proportional to the change in the envelope through bandpass 
filtering, which is also the case with a random noise input. It is fairly simple to show that for 

bandpass noise[10] the probability density for E (z) is described by a Rayleigh distribution:

It is important to note, that the processes E (x )  and $ (z ) are not statistically in­

dependent from each other, but the statistical samples of phase and envelope at any one 

instance are indeed independent.

5 .1 .2  A d d e d  noise

For noise that can be considered additive, it is possible to draw straight forward conclusions 
regarding the behaviour of a phase sensitive process. We have(90]:

where Nr(z )  refers to an added noise term. The affects of additive noise may be described 

by a circle of uncertainty (fig. 5.1). The largest angular displacement (phase error) owing to 

the noise term (^max) will clearly be when :

or more precisely, when the noise and signal are orthogonal in the complex plane. If we 
assume that the noise can be represented with respect to one image only then if zr(x,w,<r) >>  
nr(x,u>,<r) we have:

which implies that the loss in accuracy with respect to noise increases linearly in the presence 

of a dominant image signal. Naturally should |xr(x,c>;,a)| < |nr(x,w,a)| then <t>maK € ( - » ,# ] .

and the corresponding phase distribution is uniform:

M<t>) =
^  , if 0 <  <£ < 2x 
0 , otherwise

*(x,u>,«r) * ( / r(x) +  Nr(x )) =  z r(z,u>,<r) +  nr(x,a>,tr) (5.2)
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Im(x)

I

I so

Figure 5.1: The consequence o f added noise into the circle o f  phase differences showing the 

uncertainty o f disparity interpretation formed from a circle with radius equal to the magnitude 
o f  the noise, but with unknown phase.
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5 .1 .3  M e c h a n ism s  fo r  re d u cin g  n oise se n s it iv ity

A least squares estimate for the phase angle <p is not generally possible to obtain from a single 

measurement. However, for small <f> using equation (5.8):

nT n «  [(z/ -  z r) -  </>zrx]r [(z/ -  z r) -  4>zrl)  (5.4)

we can now take the derivative o f the above equation with respect to <p and set to

zero:
dnTn

dtp
«  2<pzJx ZT±, -  (z, -  Zr)TZrx -  z j± (z, -  Zr) (5.5)

< ZrJ.,Z; > _____________< Zrx,Z / >_________
I < ZrX.ZrX > | | < Zrx,Zrx >  |̂ | < Zfx,Z<x > I*

(5.6)

This function then represents a least squares measure o f phase differences for small <p. Within
the 1-D framework, the only alternative we can propose to obtain a true least squares measure 
would be to add filter coefficients that are not in strict quadrature. Thus we might consider

adding 4 sets of filters who phase angle of separation is J radians. This topic has been dealt 
with by Lange[51] who quotes an improved signal to noise ratio of 17% using this method.

5 .1 .4  S te e ra b le  p r o p e r ty  o f  q u a d ra tu re  filte rs

The steerable properties of 2-D Gaussian derivative operators has been discussed in the 

orientation domain by Freeman and Adelson[23). We make the observation that it is also 
possible to interpolate a quadrature filter with arbitrary phase from any pair of quadrature 

filters with orthogonal phase differences. This follows from the orthogonality property of 

quadrature phase and the linearity o f convolution[lO]. Consider the complex modulated 

quadrature Gabor filter 4l(z;u;,a) convolved with an image function (J(x)):

z(x\u ,o) =  9(x\u +  tp,a) * I (x )  (5.7)

where <p refers to the phase of the modulating sin and cosine part relative to the envelope of 

the filter. Referring to the Gaussian envelope of the Gabor function by G0t(x;<r) we have:

9(x-,u> +  tp,<r) =  Gat(x ;a)exp (jw z +  <P] 

expanding equation (5.7) we have for the real part:

T le9(x;u  +  tp,a) * / ( z )  =  cos^ Ga&(*;a)cos[u;x] * I (x )  -  sin^ Gai,(x’,a )  sin[u»z) * 7(x)
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and the complex part:

lm ^ !(x;u> +  <f>, a) * / ( x) =  sin^ G„t(x; a )  cos[u;x] * J(x) +  cos <f> Gai(x\o) sin[wx] * J(x)

thus we can interpolate the response from a quadrature pair of Gabor filters to another Gabor 
filter with similar envelope characteristics but arbitrary phase.

Therefore, it is sufficient to sample with a pair of quadrature filters with phase 

modulation of 0 and jt/ 2. It would, however, be possible to apply several quadrature filter 
pairs with the same center frequency but different spatial envelopes to obtain a least squares 
estimation of phase differences.

5.2 T he presence o f  noise in  correlated signals

Within the previous section, we have assumed that the statistical parameters that describe 

the quadrature components of band-pass noise are independent. These parameters can there­
fore be described by a bivariate Gaussian density function with zero correlation coefficient. 
However, consider two processes such as our stereoscopic signal pairs. In this case, the joint 
probability distribution functions are not necessarily independent i.e:

P(Z,,ZT) Ji P{z,)P{Zr)

Under these conditions, the describing joint probability density (JPD) for these two functions 

([xi,y,]T and [xr,yr]r ) becomes[36]:

P ( / . , / . ,  W * ) (2.<7î ) - ’ (1 -  r1) - 1 e x p [ -
t ;  -  2rI.I.t  +  /£ , +  I ’  -  2 r / „ / . ,  +  />„, 

2<71( l - r » )  1

where r is the correlation coefficient between the two pairs o f variables that is related to the 

bandwidth of the bandpass filter such that for small bandwidth, r -»  1. Converting the above 

JPD into polar coordinates, which to our usual notation, requires the Jacobian matrix:

d(Elt* ltEr ,* r )
ErE,

which may used to obtain the probability density function for the phase differences between 

the two dependent processes {<f> =  4>i — <f>r)’

M * )  = r2 cos2 +  r cos <f> +  sin-1 (r  cos ̂ ))]
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Interestingly, with this density function the mode refers to the correlation coefficient r. It is 

easily verified that when r =  0 the probability density function (P D F) reduces to that of a 
uniform PDF (all phase difference angles are equally likely). The density function is also real 

and even (/* ($ ) =  /* (—<J>))- This function is indeed similar to the Tichonov PDF, which 
we will also review.

5 .2 .1  P h a se -lo ck e d  lo o p  w ith  a d d ed  noise

Foschini et al[2l] were primarily interested in high speed communications efficiency encoded 
by pairs of quadrature components. Of interest to us, was their application of the Ti­
chonov/Vi terbi probability density to combined phase jitter and added Gaussian noise. The 

consequence of phase jitter rotates the vector z by an angle <f>. The effects of phase jitter 
for our purposes may complement small perturbations in the camera system from robotic 
considerations of camera hardware, while Gaussian noise can be used to model the sensing 

noise from a physical device. Discontinuity in the disparity field appears at present to be 
a particularly difficult parameter to consider, and will therefore not be considered in this 
analysis. For noise that adds small increments of phase we have:

z, -  z r R^zr — I z T +  n «  <t> - I , +  n (5.8)

since cos <f> «  1 and sin <f> as tf>. Notice the last term on the right represents the normal vector 
(zrj.) to z r Averaging the norm square we have:

£ | | «,-«r||J = N . + aJH.,111 (5.9)

where <rj is the variance o f <f> and £ denotes the statistical average.

5 .2 .2  T ic h o n o v  P ro b a b il ity  D en sity  F u n ction

We also require the probability density function of the phase error. A general closed form 

solution for such a PDF has yet to be found. Approximations based on the input to a 
first-order Phase-locked loop whose input is white Gaussian noise and a sinusoid was found 

by Viterbi[95]. He proposed that the phase advance could be described by a first order 
Markov process, whose instantaneous probability density ) must satisfy the Fokker- 

Plank diffusion equation:

¿OK».«) =  _ ±
dt d<f>;[A(*)p(*,l)] +  i ^ [ B ( # ) p ( * . ‘ )l
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where A(4>) and B{4>) represent the change in phase (A</> (̂_ 0) and variance of phase (A <f>2) 
as initial conditions. The solutions to this equation could only be found for the steady state 
distribution which was shown to be:

.. 1 exp [oco»fl , ,, . _
PW “ /„(«) ’ W <= '

Where /„  is the modified Bessel of the first kind and a is a positive number representing the 
ratios of signal to noise power. Viterbi, also noted the useful relationship that for a  >  100, 

a j  =  The reader, is referred to the cited literature for more information. The proofs are 
long, but the work of Foschini et al[21] holds important implications for this thesis. They 
derived two important equations. The first, described the PDF for signal transmission:

where d(z/, z) referred to the distance between z/ and zr. The second equation is an interesting 

expression for this ’distance’ as:

d2 «  ||z f -  z r ||a +  2 <  z / ,z r  >  + 2 a N 0 -  2 |^ | |z / | |J ||zr ||2 +  2 a N „  <  z / ,z r >  + ( a N 0) 2|

We are interested in a ’distance’ obtained from the unit circle, which is interpreted 

from the phase angle difference. Their measure incorporates the actual ’distance’ from the 
transmitted and received quadrature signals. Naturally, if we could adequately represent
noise, we could also use this expression as a formulation for the probability of correct corre-

C
spondence. Foshini et al, also point out that for closely packed signal constellations, equation 

(5.9) shows that signal points located further from the origin are subjected to a larger mean- 

square error. A similar error occurs with our method of disparity interpretation since i f  we 

consider a phase error owing to noise (c). Then our interpretive disparity error is:

=  -

Clearly, the lower the spatial frequency, the larger the disparity error for a given phase error 

attributable to noise alone. In this way, the lowest spatial frequencies, which are capable 

of estimating the largest disparity differences without aliasing, also hold the disadvantage of 
providing the greatest potential error in disparity measurement. Unfortunately, it would also 

be difficult to extract the noise term in practice. Even the variation o f energy associated with 
bandpass noise would be difficult to isolate, since we would have to separate the potential 

variation of energy with spatial position, which can occur with both frequency gratings and 

impulse image functions that are spatially separated owing to disparities.
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5.2 .3  E x p e r im e n ta l re su lts  from  a d d e d  G aussian  N oise

To study the behaviour of noise, we have chosen to consider the simple situation of a static 
unit amplitude frequency grating with added zero-mean Gaussian noise using a standard 

noise generating package. In figure 5.2a, we present a polar plot of energy verses phase 
angle from a single sinusoid without added noise. Some specular noise exists from the image 
boundaries as we might expect. From this figure, we observe a constant energy response and 

equal probability of phase as we would expect.

Figure 5.2b shows the same plot but with zero-mean Gaussian noise added to the 
signal (N0 =  3). In this case, we observe markedly different results, which are indeed
similar to the drunkards walk, which is predicted from the Rayleigh distribution. This is 
indeed confirmed in figure 5.3, where we show the PDF for the energy response to a static 
sinusoid (peak to peak amplitude equal to 3 image intensity units) with varying amounts of 
added Gaussian noise. Here, the consequence of added noise increases the variance of the 

energy response.

The distribution of phase error for zero-mean added noise is presented in figure 5.4. 
An examination of the distributions revealed that the best model to describe the phase error 
was the Tichonov probability density function. The closest fitting function was superimposed 
(crosses) onto the experimental data. The density function obtained from the Bivariate 

Gaussian distribution was found to decay too rapidly near to the expected phase (mean), 

and too little close to the aliasing limit. The difference is indicated in figure 5.4g where 

the Tichonov density is presented as crosses. We therefore conclude, that phase locked-loop 

dynamics can describe the phase error in the presence of Gaussian noise. In addition, the 

more noise, the greater the phase error which is hardly a surprising result. From figure 5.5b, 

we observe that the phase response still oscillates between ±  ir with a uniform probability 
distribution.

In figure 5.6 we show the local instantaneous frequency which as we have already 

discussed, bears a relationship to the magnitude o f energy oscillations. We might expect this 

response profile to also represent a Rayleigh distribution. However, because of stationary 
phase and the presence of negative frequency elements within the image domain this is not 

the case.
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Figure 5.2: Polar plot o f  Magnitude and phase angle fo r  512 points; (a) grating and filter 
tuned to 1/16 cpp. (b) Zero-mean Gaussian noise added with N0 =  3.0.

Figure 5.3: Probability density function obtained from the energy response to zero-mean Gaus­

sian noise added to a stationary grating (1/16 cpp). Filter preferred center frequency also 
1/16 cpp. (a) N0 =  2.0 (b) Na =  3.0 (c) N„ =  6.0.
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Figure 5.4: Experimentally determined PD F  for phase with zero-mean added Gaussian noise 
(filter and grating centered at 1/16 cpp). The best fitting Tichonov PDF shown superimposed 

(crosses), (a) N0 =  1.0 a  =  10 (b) N a =  2.0 a  =  2.3 (c) N0 =  3.0a = 1.1 (d) As 
(b) smoothed by the truncated parabola (e )  Na = 6 a  =  .3 (f) The Bivariate Gaussian and 
Tichonov PDF for a  =  2.3 and r =  0.77.
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Figure 5.5: Energy and phase plots as a function o f position fo r  the stationary grating used in 
figure 5.2 with zero-mean added Gaussian noise and (a) & (b) Na =  3.0 (c ) & (d) N0 =  6.0.

Figure 5.6: Instantaneous frequency versus position from the data presented in figure 5.5. 

(a) N0 =  3.0 (b) N0 =  6.0.
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5.3 Interference

We will now discuss stationary phase and negative frequency within the context of bandpass 

filtering.

5 .3 .1  S ta tio n a ry  P hase  an d  N e g a tiv e  F req u en cy

Stationary phase and negative frequency is a property not considered in the method o f  phase 

differences. It is therefore essential to understand the nature of this response. This is partic­
ularly true, since the Hilbert transform is by definition "onesided”  in its Fourier spectrum. 
The physical occurrence of stationary phase and negative frequency holds a direct analogy to 

the staircase stimulus that is well recognised with the Marr Laplacian[86]. Indeed, the Gabor 
function also exhibits these unwanted properties within these image regions. Under this type 
of image stimulus, the Gabor function is no longer in strict quadrature. Let us reconsider 

our phase non-linearity £(x) which is now a function of image position and represents the 

deviation from strict quadrature. With the Gabor function, this could easily occur under 
the convolution with a frequency modulated signal, but in practice, may be due to rounding 

errors, digitization or other artifacts including the complexity of natural image data. If we 
assume that £(x) only affects the imaginary part of the Hilbert transform as in equation 
(4.25), we have:

/ . =
1 d—— — tan' 2 x dx 1 M *) 1

(5.10)

which is an equivalent form to equation(3.17). Expressing this equation in terms of 

the previous definition for instantaneous frequency we have a new measured value ( / , m):

(5.11)

In this case, tu2(z) =  h(x)7 +  h2(x )  also includes the non-linearity. In the case where C(x) 
is a constant, there will be a constant error in the measurement of instantaneous frequency. 
However, where the first and higher derivatives of £(z) exist, we have an additional term 

including the product of the magnitudes of the Hilbert pair. Since C(x) has not been specified, 

there is no guarantee that / ,m will now always be positive. Interestingly, even this form of 
equation justifies the edge based approach, since at both the locations of real and imaginary 

edges the term on the right of the above equation is zero.
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Now consider when h (x )  +  jh (x )  is formed from the linear sum of several sinusoidal 

signals (which is quite justified because of the linearity of the Fourier expansion) formed by 
bandpass filtering a complex signal i.e:

/ . ( * )  +  jh (x )  =  [* , ( x ) +  * ,(* )+ • •  - M * ) l  +  i[A .(x )  +  A a(*) +  ... M i l l  (5.12)

we now calculate the Wronskian for the above equation and obtain:

W (z) = F (x )+ M (x )  (5.13)

where:

F(*) = [hi(x)A,(x) -  A ,(x)*,(x)] +  [ft2(x)i,(x) -  Aj(x)M x)]... +  ['■»(x)i.(x) -  A„(*)M*)1

It is easily verified by comparison with equation (3.17), that the above terms enclosed in 

squared brackets are weighted instantaneous frequency terms. This is a method of describing 
the spatial frequency selectivity o f  a bandpass filter as an expansion of frequencies that the 
filter is sensitive to. Each term in F (x ) will be positive in sign, which we know from the 
action o f the Hilbert transform. However, in this particular case, we have also included an 
additional term (M (z)):

M (x) =  l*j(x)Ai(i)-Mx)A>(»)] + [Mi)Ai(x)-A>(x)A1(x)| +   = 0 . . . » , i  *  j.

which contains permutations mixed frequencies between h\(x) ... hn(x). It follows from 

equations (4.18) and (4.17), that we can write:

h i(x ) +  jh i(x )  =  Ei(cos u),x +  j  sinw.z)

If we consider the first pair o f terms from our expansion of M (x ) then we can re-write this 
function as:

[M i A ( x) - M x)M »)l + (M x)A ,(x)-M x)M x)|  = Ei£i((*+u>i )coe[(w.-w,)x + * i - * >)
(5.14)

Thus we observe that the Hilbert transform in this case is also sensitive to the differences of 
fundamental frequency elements. Consider the action of fdtering a signal, which is complex 

but with fundamental frequency components placed to both the upper and lower cut-ofT 
regions of a given bandpass filter. We would expect a lower energy response in comparison 

to a signal with the preferred frequency of the filter. However, from the above equation
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Figure 5.7: Beats observed from the instantaneous frequency plot o f  a single filter (0.0625 

cpp) and an image signal consisting o f two spatial frequencies 0.0441 CPP and 0.0884 CPP- 
(a) Instantaneous frequency (y-axis) (b) Energy response (y-axis) against position (x-axis).

we can observe, that it is possible in this case for the difference o f individual frequencies to 
still lie close to the center frequency o f the filter. The filter, which would have a weighted 
preference for such a signal would also be responding to the mixed frequencies and the mean 
fundamental components o f the image signal. From equation (5.14), we observe that this type 

of interference would be a function of image position and the phase of the signals. The energy 

of the inferference frequency is also based upon the product of the energies from the individual 
components, which could be a greater weighting than many o f the individual signal elements. 

This term may also assume both positive and negative values. To indicate this result, we 

consider the instantaneous frequency from a stimulus comprising of the addition of two sine 
gratings separated by one octave from which the instantaneous frequency is calculated using 

equation (3.17). The center frequency of the filter was chosen at the mid-point (in octaves) 
between the two gratings. The result is presented in figure 5.7. Here we should notice that 

the periodicity of the beat frequency is approximately 1/22 cpp, which we would predict from 
the differences o f the frequency elements. T he spatial frequency selectivity at the maxima of 

figure 5.7 is also 1/15.98 cpp which is the center frequency of the applied bandpass filter as 
we would expect from a mean weighting o f these two particular spatial frequencies. We also 

notice that the beat frequencies have also tended toward -1/16 cpp.
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5.4 P re-envelope m odulation

Equation (3.11) indicates that for Hilbert transform pairs to remain in quadrature, the pre- 

envelope should be approximately constant across spatial convolution. Figure 5.7b clearly 
shows that this is not a rigorous assumption. Here the pre-envelope is itself modulated. A 

similar result is well known in Telecommunication theory[13]. I f  we consider a simple model 
of an AM (amplitude modulated) signal where u>c and ujm refer to  the carrier and modulation 

signals with amplitudes A c and Am:

which may be interpreted in the frequency domain as a carrier signal centered at wc with a 

pair of sidebands centered at u/c +  wm and cje — u m. Difficulties arise when Ac < Am since the 
physical interpretation o f  such a signal includes a ” negative enve/ope” [l3]. This introduces 
considerable phase and amplitude distortion into the signal an example of which is observed 

in figure 5.7. Clearly if u m < <  uc then the sideband frequencies are distant (in the Fourier 
domain) from the passband of interest. They may therefore be neglected.

Within Telecommunication theory it is usual to overcome this problem by applying 
a narrow band filter to extract the carrier signal and to amplify the carrier signal to an extent 

that when recombined with the sidebands: Ac > Am which relieves the problem. One way 

to achieve this task would be to subtract the Laplacian[89] which is often applied to enhance 

image data. Such an operator is both real and bandpass, and would serve to enhance the 

frequency content in the passband of interest.
Another method that can be used to reduce the occurrence of stationary phase 

behaviour involves weighting both frequency and phase difference measurements through 3 
separate scales of bandpass filtering. Since frequency and phase differences do not retain 

the implict discontinuity in phase (between [±7r]) they are useful parameter spaces to apply 
weighting techniques. In this latter case, we would be working on the premise that interference 
occurs because of the presence of two dominant sidebands in the frequency domain with 
respect to the center frequency of interest. This corresponds to  the simultaneous detection of 
two or more features at different frequencies in Scale-Space by a  filter that bisects the scales

I (x )  =  i4e[l +  Am coswmz] cosu>ca: (5.15)

expanding gives:

(5.16)
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Figure 5.8: Weighted instantaneous frequency (y-axis) against position. Image comprising of 

the summation o f two sine gratings (a) Center frequency of filters at 0.0441 CPP> 0.0625 cpp 

and 0.0884 CPP- (b) Center frequency o f  filters at 0.125 cpp, 0.0884 CPP an(I 0.0625 cpp.

of the features[33]. Such a weighting might be described by:

E f f i - i  E ijztUi,Oi)fi(x)favSs(x)
E im j - t  E .(X ,U „ 0 .)

(5.17)

where favss(z) refers to the weighted average o f instantanous frequencies ( /¿ (x ))  taken at 
the jth  scale and the adjacent sampled scales (j  +  1 , j  — 1) in the frequency domain. A 
similar expression can be formed for the phase differences between a stereo pair through 
Scale-Space. Such a scheme would then work on the premise, that a pre-envelope with a low 
magnitude in comparison to its frequency domain neighbours provides an indication that a 

given scale of filtering should not be considered. We have applied this technique to  the two 

sine gratings considered previously in figure 5.7. In figure 5.8a we have taken the weighting 

from the instantaneous frequency of three filters with center frequencies 0.0441 cpp, 0.0625 
cpp and 0.0884 cpp. In figure 5.8b we have center frequencies of 0.125 cpp, 0.0884 cpp and 
0.0625 cpp. The smoothing of negative frequencies can be seen in comparison to figure 5.7.
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6.1 Introduction

Having detailed the method for disparity interpretation, and examined the behaviour of the 

technique in the presence of added noise, we will now implement the method and explore 
some of the possible algorithms that we have applied using the method of phase differences.

It should be highlighted that in this section, we restrict our examination to 1-D 
filters. We will first detail the principles that we will apply in the implementation of each 

algorithm, and then indicate the exact methods and results as appropriate. We will begin by 
considering a mechanism for eye or camera vergence.

6.2 A  m echanism  for  eye vergence

From our discussions so far, we are in a position to propose a simple method for eye vergence. 
The role of eye vergence towards the perception of depth is currently an area of debate. 

However, for our purposes, eye vergence holds some interesting properties. By verging the 
eyes, we bring features of small spatial extent into closer correspondence, so that they may 

then be detected by filters o f finer resolutions. The benefits from bringing features closer 
into correspondence lies with the reduced possibility of aliasing, and also minimising the 
disparity error from the interpretation of frequency. This is because the error in disparity 
measurement grows proportionally owing to the difference between the form of the image 
signal and the frequency used to interpet disparity. The algorithm proceeds from coarse to 

the finest resolution filter applied to the image, where at each resolution we:

• Obtain the weighted mean disparity estimate at each resolution of filtering by convolving 

an image function with quadrature Gabor filters and weighting the disparity estimate 

at each resolution by the pre-envelope product from both image pairs.

• From the disparity estimate at each resolution, induce a vergence mechanism by shifting 

the images based upon the current mean disparity measurement.

At the finest resolution we would anticipate that vergence has indeed been completed.

Our measured mean disparity is therefore taken from:

£ (« .* .  -  -  *) 
e ; : ? «  -  *)

( 6 .1)
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Where E(<r,x) =  y/Ei(a,x)ET(cr,x) represents the product of energy from the left and 
right image image pairs respectively at the scale indicated by a, and d(tr,x) refers to the 

disparity estimate at each pixel position. At each resolution we have obtained a weighted 
mean disparity estimate at each pixel position by applying equation (4.27) centered at the 

optical center (x0) and extending -N to N pixels at a given resolution from the optical center. 
By progressively reducing N  from coarse to fine resolutions of filtering, we therefore facilitate 

image features with small spatial extent towards correspondence.

A useful indication for the choice of N is the spatial standard deviation o f the applied 

filter (TV =  2<t) taken from the central point o f  the image. From our stereo examples this 
algorithm, gave final vergence estimates of 24, 9 and 20 pixels to the nearest integer. The 

measured disparity values where 25, 9, and 22, pixels for figures B.2, B.3 and B.4 respectively.

Equation (6.1) requires some modification should the local instantaneous frequency 

be used to measure a mean disparity for vergence. This is because of the presence of stationary 

phase. In this case we would have to modify equation (6.1) to the pre-envelope weighted form: 

~ x )  +  E t(<t , x 0 -  x)] 4>d(<7,X0 -  x )
.»(*) H t= - n [Ei(^ ,x0 ~ x ) / / (a ,x 0 -  x) +  Er(a ,x0 -  x) f r{a ,x 0 -  x)]

( 6 .2 )

This filter scheme may well be the process that underlies the mechanism for con­
vergence in binocularly driven mammals. Convergence is therefore achieved by reducing the 
disparity at some central position in the two images to zero. Providing that stereoscopic 
signals containing similar frequencies and contrast are present in both images, and that the 

disparity is less than half the wavelength o f  the lowest frequency component present, the 

disparity can be evaluated and a linear pixel shift induced. One method in which this may 

be achieved, is by taking the product of the pre-envelope from the image pair and obtain a 

weighted mean disparity at each resolution o f filtering.

6.3 T h e  Phase-Locked loop

There are two alternatives that we might propose to reduce the problems o f disparity esti­

mation by spatially tuned filters.

• Elastic stretching/compression of the image based upon local disparity estimates.

• Altering the spatial location of filters as a simulated phase locked loop.
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The first notion, although extensively applied in speech processing as time warping 

holds limited possibilities in this approach (this approach is also the mechanism of Miller’s(73] 
Phase-locked loop). This is a direct consequence of the uncertainty principle. Since we are 

applying multiresolution filters, we could anticipate warping the image from coarse to fine 

filtering. However, by warping the image we would expect to significantly alter the spectral 
properties o f  the original image. This was considered undesirable because of the pixelation 

of the original image and uncertainty in where to warp the image data. The second notion is 
interesting. Let us consider a pair of filters placed at corresponding retinal locations in both 

the left and right image. After convolution at a low resolution, we have a disparity estimate 
of deat pixels. Let us induce a movement in the spatial location of each filter pair by ¡n

both images. We have therefore reduced the disparity accordingly. We could then consider 
improving the disparity estimation, by convolving with the image again until a stable state is 

reached where there is zero-disparity from the filters response. This mechanism is similar to 

the initial proposal for binocular fusion. However, instead of initiating a vergence mechanism, 
we alter the spatial location of our filters based upon previous estimates at coarse resolutions. 

By coarse to fine matching, it is intended that spatial frequency estimates should converge 

to a stable ’fused’ state, as we move to higher spatial frequencies (here we define a ’’ fused 
state”  as zero phase difference). For this reason, we might consider the proposal as locking 
in on the phase differences. We present results of this method in figure 6.1. Here, a single 

band-pass filter tuned to low spatial frequencies was convolved with a pair of images. Results 

are presented for two such image sequences. Stabilisation occurred after three iterations 

of the algorithm. Where a stable state was defined as no increments in disparity estimates 
greater than unity. The smooth disparity fields from the scan lines are also shown accordingly. 

However, the results indicate that phase wrap around and phase instability cause considerable 
problems. The phase wrap around problem is not only constrained to high spatial frequencies. 

This is apparent in figure 6.1b where the filter applied can in principle measure disparity to 

±32 pixels. The largest disparity present in the image was approximately 24 pixels.
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Figure 6.1: Consequence o f  S iterations at the same resolution o f bandpass filtering. Filters in 
both cases were tuned to 1/6J cpp with spatial position altered based upon previous estimates, 

(a) Figure B.S. (b) Figure B.2

6.4 A lgorithm  1

6 .4 .1  M e th o d

The first algorithm that we have considered employs a local energy maxima constraint (taken 
from the pre-envelope product between stereo pairs). This algorithm works on the premise, 
that a large pre-envelope product at a given scale (in comparison to neighbouring scales 
o f bandpass filtering) is indicative of a confident disparity measurement we store the local 

disparity estimate in a buiTer. At finer scales, disparity estimates are then taken from filters 
with positions displaced by the current estimate of disparity. Updates of local disparity 

estimation are then constrained to a local energy constraint.

6 .4 .2  L o ca l en e rg y  m a xim a

The algorithm is explained below in a Pseudo-code. The subscript <7,- will indicate the resolu­

tion o f filtering with i =  0 indicating the coarsest and i =  last-scale the finest scale of filtering. 
Z?t(] will refer to a disparity buffer. More complex mathematical operations are defined within 

the Pseudo-code that cannot otherwise be made more explicit. The Pseudo-code is written 
in a way so that the ideas incorporated into the algorithm are concise. The Pseudo-code is 
not intended to be a rigid implementation of the algorithm details. For instance, to reduce 

machine storage it is not necessary to retain all the convolution coefficients throughout the
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program execution. 

P seudo-code

Defi ne_Con vol ve( )

For i =  all_scales 

For x = every_pixel_position 

(
/* Create two dimensional arrays containing the modulus-Argument representation 
o f  both images convolved with a quadrature filter at each pixel and scale. * /

<£/[*][*'] =  Arg[It(x )  ♦ » ( « r , x ) ] ;
=  Arg[Ir(x) ♦

£/(*][*') =  |//(x)* 4'(<t, ,u>„x )|;

£»■[*][*'] =  |/r(* ) ♦ *(<r„w„x)|;

}

Begi n .program 

ReadJmage();
Convolve();

c . [ ]  = =  0;
For i =  second_scale to last^scale -1 step 1

<
For x = first.pixel to last_pixel step 1

{
d =  (int)£)fc[x]; /*  integer disparity estimate */

4>d =  <!>t[*][*] — <t>i[x — d][i] ; /*  Phase differences from displaced filter positions */

/* Local energy maxima test +/

if ( E,[x -  d][i -  l]£ r(x][» -  l j  < E,[x -  d][i]£;(x][t] >  E,[x -  d][i +  l]£ r[x][. +  lj)

Dt[x) +  =  ; /*  update disparity buffer if true * /

}
Median _filter();
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}
Printjout /?*[); 

End .program

Thus we anticipate that convergence will be obtained at the highest resolution of
filtering.

6 .4 .3  R esu lts

We present the iterated disparity measurements as the central position of the filters are 
changed, and the phase estimate from each filter pair at the locked state (fig. 6.2). The 

results from two separate image rasters are shown. The disparity estimates correlate very 

poorly with the measured disparities. The magnitude o f the disparity responses are of the 

correct order, but we notice that we have oscillatory effects prior to disparate discontinuities 
and marked instability.

6.5 C onclusion

Their are many problems with this algorithm. In cases where phase advance is neither 
linear or monotonically increasing or decreasing, the phase difference will be in error, this 
is particularly true at disparity discontinuities where the spatial frequencies in both image 

planes are markedly different. A phase subtraction at such points would be unpredictable. 
We must therefore improve on our local knowledge o f  phase behaviour to reduce the noise 
present in our disparity estimates.

An early proposal for post-processing the phase response was based upon median 
filtering the disparity estimates after each resolution of bandpass filtering. Since median 

filtering holds the important property o f removing spurious noise spikes, reducing oscillations, 

while preserving ramp and step edges, it seemed an appropriate operation to introduce into 

our algorithm. Figure (6.3) presents the results from a single raster sequence based upon 

3 iterations o f median filtering added to our algorithm. Disparity estimates were quantised 

to the nearest pixel. Median filtering has improved stability, and is effective in reducing the 
noise sensitivity of the phase locking iterations. However, the algorithm still appears unstable 

with potentially large disparity errors. Pursuing the notion of maxima] energy response to
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Figure 6.2: (a ) Phase locking based on local energy constraints from Figure B.2, r =  0.59; 

I  =  —6.3; an =  0.96 and (b) Same technique applied to Figure B.3, r =  0.83; t  =  — 1.7; 
<r„ =  0.284.

justify the selection of spatial frequency channels for ’correctness’ ceased to be of interest 

from this point hence. This is because of the inaccuracy of disparity interpretation and the 

poor representation of the local signal. We have already shown that quantising the spatial 
frequency components towards the center frequency of the filter causes a considerable error 

of 15-21% in disparity estimates. In complex data, this error is sufficient for higher resolution 
filters to lock on to incorrect signals in the image domain. This contributes a significant error 
to the method, which is also compounded by the inefficient use of bandpass filtering because 
we are only examining local energy maxima.

6.6 A lg orith m  2

6 .6 .1  I n t r o d u c t io n

To implement our next algorithm, we incorporate two added features into the basic technique 
of phase subtraction. First, we consider smoothing disparity estimates at each resolution of 
bandpass filtering and second, we introduce one method of recursively weighting disparity 
estimates between resolutions o f filtering.
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Figure 6.3: Consequences o f adding median filtering to the Phase Locking algorithm to Fig­

ure B.2. r=0.599; £ =  -7 .08 ; on =  1.03.

Sm oothing

We know from Papoulis[8l] that if we have a signal:

g (x ) =  9 f (x )  +  9n(x)

where gn(.x) is the output from a linear system, whose input n(x) is white noise, then for a 
constant g j{x )  signal, the variance of g(x) is given by:

«5 =  ¿{ffnOO}

The minimum mean-square estimation error of g j smoothed with a window w(ar), 

is obtained if w (x) is the truncated parabola given by:

”<(*) =  -  ( * X z° )2]px(x -  X.) (6.3)

where px(.x—x0) is a  pulse of width 2X. The operator referred to in equation (6.3) was derived 

from continuous mathematics and must be modified should X  <  4 since the window loses 
the property o f unit area. We argue that this measure is a suitable smoothing function to 

apply, because we have already shown that compression/expansion transformations between 
image pairs severely alters the instantaneous frequency between corresponding stereo pairs. 
This leaves correspondence by the method of phase differences difficult to interpret. We 

have also assumed that surfaces are opaque, and have therefore not considered transparent 
surfaces. Because o f  this, we are only interested in the local computation o f a single disparity 

estimate. An optimal filter for the estimation of a constant parameter would then appear to 
be appropriate.
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Recursive filtering

To implement a recursive filter implies that we have available to us a local parameter that 
can be applied to estimate the strength or confidence of correspondence. We have chosen to 
apply the square of the Willsky error measure:

as the confidence measurent. We have chosen this function because the phasewidth (measured 

in the same proportional manner as bandwidth) is 0.695 radians and concentrated near to the 
origin on the phase circle. This function is then intended to retain a lock in phase differences 
during the progression from coarse to fine resolutions of filtering. We implement the recursive 
filter by defining our measured disparity by:

Where the measure k refers to the fcth resolution of bandpass filtering, and Dk+ i(x ) refers 

to the measurement of disparity from the recent update measured by Dk(x). Thus we are 
updating our measurements based on the goodness o f fit, at successive resolutions. In keeping 
with recursive filter operations, which effectively incorporate information from all previous 
operations, we re-arrange and modify the above expression to obtain:

which we propose holds the properties that we require. Here Qk+x(z) refers to the 
measure of correspondence which is averaged with the previous value. Thus, if our disparity 

measurement at the current resolution gives a poor measure of correspondence i.e Q *+i(*) =  0 
then the disparity measurement does not change significantly. The converse naturally applies 
should the new weighting be close to unity. This measure has the advantages of incorporating 

resistance to the adverse affects of noise within a single bandpass channel because o f the 
higher order weighting. Within resolutions o f filtering, we have also applied the Willsky 
error measure to reduce the risk of phase wrap-around in the interpretation of disparity. 

By applying both a recursive filter, damping of disparity estimates and smoothing we run

Q(x ) =  ^ l1 +  cos * (* ) !» (6.4)

D k+i(x) = Qk(z)D k(x) +  Qk+l{x)(D k+l(x ) +  P k(x )) 
Qk+i(,x) +  Qk(x) (6.5)

A k + i(* ) =  Dk(x) +

where we redefine Q k+i to function recursively as:
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Figure 6.4: (a) Instantaneous frequency response (y-axis) from a Gabor filter tuned to

1.5xl0-2 cpp against position (x-axis) convolved with the intensity function in figure D.2a. 

(a) Original image (b) Mean intensity removed.

the risk of overdamping the phase difference process so that a phase lock is never actually 

achieved. To compensate for this we propose to combine the camera vergence mechanism 
into our algorithm.

An additional feature o f this algorithm lies with the subtraction of the mean image 
intensity from the image data. We have already seen in chapter 4, that d.c sensitivity does 

introduce difficulties in the representation of a linear phase response. Reducing the mean 

d.c from the image serves two purposes. First, it reduces the large pre-envelope response 
from filtering at the extremes o f the image data. In this case, the phase responses are not 

biased by the edge effects of the image data as otherwise could be the case. Second, we 
have observed that the mean intensity levels can bias the phase response of filters tuned to 

very low spatial frequencies. For these reasons, we have removed the mean d.c level. This is 

highlighted in figure 6.4b, where the instantaneous frequency response is now positive from 
the removal of the mean image intensity level. Because we have removed the mean d.c, we 

have also inhibited the stationary phase behaviour that has been observed in figure 4.9a. 

This is because stationary phase is defined as a local sensitivity to d.c. We have in this 
case reduced the sensitivity to d.c for the Gabor filter tuned to 1.5xl0-a  cpp, which is a low 

spatial frequency.
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6 .6 .2  M ethods

The 1-D algorithm based upon the measurement of disparity from the center frequency of 
the Gabor function is as follows:

• Subtract the mean intensity level from each pair of stereoscopic images.

• Convolve each image with the lowest resolution quadrature filters, and extract the mean 
disparity from equation (6.1). Store the weighting measures Q (x) and increment the 

disparity buffer by the smoothed estimate o f disparity.

• * Proceed to the next resolution and again extract phase differences, with filter locations 
at position l(x) displaced by the values stored in the disparity buffer at x).

• Weight the new increments in the disparity buffer by disparity estimates obtained locally 

from phase differences interpreted from the center frequency of the filter, which are 
weighted by both the Willsky error measure and equation (6.4).

• Smooth the disparity buffer with the truncated unit area parabola from equation (6.3).

• Repeat from (*) until the filter centered at the the highest spatial frequency (0.25 cpp) 

has been applied.

Pseudo-code

Define.Con vol ve()

For i =  all_scales 
For x =  every.pixeLposition 

<
/*  Create two dimensional arrays containing the modulus-Argument representation 

of both images convolved with a quadrature filter at each pixel and scale. * /

¿iM (') =  -4r9[h {x) * *(<*.,w ,,x)];
¿ ,N I > )  =  -Arg[Ir(x )  •

« m m  • (« ,< « , Xft 
Sr[x][>| =  IM *) •

}
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Begin_program

ReadJmage();
Subtract_d.c_fromJmage();

Convolve();
/* Camera vergence mechanism returning D mean as a mean vergence * /
Estimate Jnitial_vergence(Dmeon);

/* Initialise recursive weighting with mean phase difference at the coarsest scale */

Q[l][0] =  0.25[1 +  COs(w0Z?mean)]2 ;

A l l  = =  Aneani /*  Set disparity buffer to mean vergence value * /
For i =  first_scale to last-scale step 1

(
For x = first-pixel to last-pixel step 1

(
d =  (in t)A [z]; /* integer disparity estimate */

<t>d =  ^r[*][*] — 4>i[x — d][t] ; /*  Phase differences from displaced filter positions */ 
Q[x][t] =  0.25(1 + cos^ j)2 ; /*  Willsky error measure */

/*  Update disparity buffer with recursive weighting * /

Db[x\ =  Db[x\ + Q[*][*']/(Q[x][»'J +  Q[x][i -  l ] ) ^ M i  /*  Update disparity buffer * / 
Q[x][t] =  Q[x](tJ/2 +  Q[x][i — 1J/2 ; /* Recursively define weighting through scales */

}
Smooth-disparity _buffer.with-truncated_parabola();

}
Print.out A []i 
End-program

6.6 .3  R e su lts

We present some results based upon figure B.4. We have chosen this particular sequence 
because experimental work has showed from this stereo pair it is difficult to obtain stable 

depth estimates. This is because of the differences in image intensity recordings from the 
camera displacements. We also present some disparity measurements from other control data. 

It is apparent, that best results were obtained by initiating the final disparity measurements
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after the mean disparity measurements had been taken over all resolutions (fig. 6.5d). A full 

depth intensity surface is presented in figure 6.6.

6.6 .4  Conclusion

Algorithm 2 has increased in stability by comparison with the similar data for Algorithm 
1. However, the results are heavily damped in terms of the final depth estimates because of 

the heavy constraints from smoothing between scales of filtering, and also between scales of 
filtering. It is apparent with a 1-D filter, that the measurement of disparity using the center 
frequency of the filter is difficult because of phase error and local instability. We will now 
review the final 1-D algorithm which we have found to be the most successful for the 1-D 

approaches considered.

6.7 A lgorithm  3

In this algorithm, we include the notion that the local instantaneous frequency can be used to 

interpret disparity. We also introduce the Compact Gaussian pyramid, which is a technique 
for subsampling image data. The primary advantage of subsamphng image data lies with the 

efficient reduction in numerical computations. The technique also possess the advantage that 

fewer filter masks need to retained in computer storage because the same filters are applied 

through successive resolutions of filtering. However, the technique of interpreting disparity 

using the local instantaneous frequency also adds numerical difficulties because of stationary 
phase (i.e when the local phase gradient is zero). Under these conditions, the equations 

for interpreting disparity are undefined since there is no phase gradient. At present, we 
have applied two thresholds to prevent the interpretation of disparity within resolutions of 

bandpass filtering where the phase gradient is either zero or negative. The first threshold 

is based upon the disparity gradient limit[83] while the second threshold simply restricts all 

local phase gradients to lie within one octave o f the center frequency of the filter. This is to 

prevent disparity estimation from instability because of the negative phase gradient which is 

not permissable within the Newton-Raphson iteration.



6.7. ALGORITHM 3 1 0 5

6 .7 .1  The Com pact Pyramid

We have chosen to implement a method of image compression proposed by Burt and Adelson[15]. 
The technique takes an C0 = Mc2N +  1 by Ra =  Mr2n  +  1 image array o f pixels and creates 

a subsampled image with new dimensions at the higher level (/) given by C/ =  M c2N~‘  +  1 
and R-i =  Mr2n~1. Here C/ and Ri refer to the dimensions of the subsampled image, and 

M c, M r,N  are constants. Using this method, there are 0 <  l <  N possible levels of subsam­
pled image. The method of subsampling is based on convolution i.e:

2 2
/| ( i,j)  =  ^2  X* u>(m,n)//_j(2i +  m ,2 j  +  n) for i , j  0 < i < C; , 0 <  j  < Ri (6.6)

m =—2 n = —2

where refers to the subsampled image function at level /, and //_ i(2 i +  m ,2j +  m) the

unsampled image. The filter w(m, n) is polar separable and can be described by:

w(m,n) = iii(m)w(n) (6.7)

with:
2

T .  *h(m) = 1 and tv(i) =  u>(—»)
m=—2

Burt and Adelson[l5] also suggested an equal contribution constraint which enforces each 

pixel to contribute the same weight towards each scale o f  subsampled image. They suggest:

ti»(0) =  a th(l) =  0.25 and u>(2) =  0.25 -  ^ (6.8)

with a =  0.4 as the best approximation to a digitised Gaussian. This technique has been used 

to compress image data in one-dimension in this chapter, and in two-dimensions in chapter 8.

6 .7 .2  The Disparity gradient

A geometrical constraint, which also has implications within the filter profiles lies with the 

disparity gradient hypothesis. The constraints that this principle implies allow a natural 
thresholding from phase differences applied to stereoscopic correspondence. To recap, the 

disparity gradient hypothesis, assumes that image data is obtained from opaque surfaces. 
Under these constraints, it is not possible for the disparity gradient to exceed |2|. A disparity 

gradient limit of |1| is found to be both biologically and theoretically acceptable[83].
Consider the implications of this constraint in terms of phase differences and local 

instantaneous frequency analysis. First we consider an average disparity. This we define as
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K v(*))=
(6.9)

The disparity gradient (r)[14], which is the spatial derivative o f disparity becomes:

Letting T =  1 and solving as a quadratic equation, we arrive at the simple relationship:

—  = l ±  i/5

The positive root, states that for the disparity gradient constraint to be satisfied, the ratio 
of matched frequency elements must not differ by more than 1.25 octaves. Precisely the rela­

tionship found by Julesz[45] with added bandpass noise to a pair o f random dot stereograms.

6 .7 .3  Interpretation o f disparity

Interpreting disparity from the local phase gradient[55] can be achieved by either the spatial 
derivative o f  phase, or by applying a quadrature pair of filters and their derivatives. In the 

latter case, it is also possible to obtain a least squares estimate of disparity by:

Here W j, W r refer to the 2x2 matrices of the Wronskian (W (x,u> ,a )) in left and right image 

and Rg contains the least squares phase difference. One possible advantage of this technique 
lies in the presence of phase singularities^ 1] in Scale-Space, which do not necessarily occur 

at the same scale because the derivatives of Gabor function have a different spatial envelope.

W 1W rr (W rW rT|-> = R ,  

W rW lT[W 1W ,T) - 1 =  R ,T

(6. 11)

( 6 . 12)

with:

(6.13)

as the least squares phase difference ($ j), with coefficients taken from:

Ry -  R gT =  2sin0j
0 - 1

(6.14)
1 0

and

Ry +  =  2cos<t>j I (6.15)
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6.7 .4  M eth od

The basic algorithm that we now suggest is summarised as follows:

• subtract the mean image intensity from each image.

• Compress image data using the Compact Pyramid code.

• Obtain the mean disparity difference as an initial vergence mechanism stored in the 

disparity buffer using the vergence mechanism.

• * Calculate disparity estimates using the differences in local phase and weighted instan­
taneous frequency with filter pairs displaced by the current local estimate of disparity.

• Apply thresholds based upon the upper and lower cut-off frequency of the bandpass 

filter and the disparity gradient hypothesis.

• Smooth disparity estimates at a given resolution.

• Increment the disparity buffer based upon the curent disparity estimates and repeat 

from (*) at the next resolution until the highest spatial frequency.

P seudo-code

Define_Convolve()

For i =  allocates
For j  =  N umber.of_filtersJat_each_scale 

For x =  every_pixel_position_at_eachjscale 

{
/*  Create three dimensional arrays containing the modulus-Argument representation 

of both images convolved with a quadrature filter at each pixel and scale. */

• • (» ) ."» .* )] ;
=  ■¿’ ’» M * . ')  *

-  |/<*.0 * ♦(■’ / . " i . *)l;

det_WronBki.n(Wi[i][i][;'],lVr[*][i][j)); /*  Returns det|Wronskianl for both images * /
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/»¿Iz ][*][i] =  ¿Wi[x](*]l;]/-£/[*][»]l7 ] ; /*  Instantaneous frequency calculation */
/ir[*][*'][i] =  faWT[x)[i]\j]/Er[x][i]\j\ ; /*  Instantaneous frequency calculation */

)
Begin .program 
Read Jmage();

Subtract_d.c_fromJmage();

=  0 ;

Compres8_iinage_with_Compact_Pyramid(//(x,t), Jr(x,t))i /*  Returns compressed image data 
Convolve();
For i =  ftrst_scale to lastjscale step 1

{
For j =  first_in_each_scale to last _injeach_scale step 1

<
Forx =  first.pixel to last-pixel step 1

{
d =  (int)£>6[x]; /* integer disparity estimate */
<f>d =  <£r[z][i] — <f>i[x — d][i] ; /*  Phase differences from displaced filter postions * / 

/* Average Instantaneous frequency */

U  = W [<]|j] + il/(«MMli] + fVMWI»);
if ( All thresholds satisfied? )

/*  Disparity estimation from instantaneous frequency with Willsky error weighting (t;) */

Db[x]+ = V<t>dlfav\

}
Smooth-disparity _buffer_with_truncated_parabola();

)
Expand^disparity_buffer(); /*  Inverse of compress */

£)(,[] =  Z?s(] *2  ; /* Mutiply disparity estimates by 2 * /

)
Printout Z?j[];

End-program
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we have also implemented this algorithm on our control data by applying the Hilbert 

transform pair o f the first derivative of the Gauusian. This we define by:

which we expect to respond with linear phase when applied as a quadrature pair with:

which requires an inverse Fourier Transform to define the filter weights.

6 .7 .5  R esults

We present results of our current algorithm shown in in figures 6.8 to 6.10. We can see that 

our results have improved considerably, particularly in comparison to our previous sets of 
data (Appendix A). It is particularly apparent that the Hilbert transform of the derivative 

o f the Gaussian has in this case given improved results. To suggest the optimal filter for 
disparity interpretation is out o f the scope of this thesis, however, we present the results to 

verify that the technique can be applied to several quadrature filter pairs. We also at this 

point present an intensity surface o f disparity in figure 6.10. Intensity varies proportionally 
to disparity. The lamp in the foreground, window background and room walls have been 
separated. However, the algorithm still retains local instability, which is not surprising when 

considering that only a 1-D filter has been applied.

6 .7 .6  Conclusion

We have formally stated our algorithm for a phase based mechanism toward solving the 

correspondence problem. Implicit to the solution lies the notion o f  eye vergence to bring 
features into close correspondence. Although not absolutely necessary for all image data 

studied, we use it to reduce the error involved with disparity interpretation from phase 
differences.

There are four influential parameters that we can apply to reduce instability from 

the method o f  phase differences. First, Willsky’s error measure on a circle reduces the risk 

of gross error from phase wrap-around which is highly possible, not only from large disparity 

differences between image data, but from phase subtractions taken from markedly different 

spatial frequency image signals. This application was of course suggested by Wilson and

(6.16)

(6.17)
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Knutsson. Fundamental to stability, lies the notion of smoothing the disparity measurements 

based upon optimal smoothing filters. This notion is the key causal factor to the interpre­
tation of disparity. To assist with stability, we proposed removing the d.c component from 

our image data, and inducing a weighted vergence mechanism based upon the mean disparity 
estimates. We could equally begin phase subtraction from a known predetermined vergence. 
In either case the end result increases the relative disparity obtained from finer resolutions of 

filtering. This is because each filter can measure both positive and negative disparities. By 

initiating a vergence mechanism, we effectively double the potential range o f disparities that 

each filter can measure since we are not then restricting our search to the measurement of 
positive disparities. This process is applied prior to any disparity interpretation at any given 
resolution of filtering. This mechanism, we have found necessary to avoid overdamping our 
disparity interpretations because of the heavy constraints placed upon phase extraction.

6.8 A  critica l view o f  the m ethod o f  Phase differences

From our results, it is clear that the method of phase differences is particularly suited for ob­
taining stereoscopic correspondence from large image features, or constant disparities across 

an image field. Under these conditions, good results can be obtained for very large dispar­
ities which are limited only by aliasing. In the presence of noise, disparity error can only 

be minimised because Gaussian noise affects the response of a phase sensitive process. Even 

with noiseless image data, the method o f phase differences also has difficulty should the local 

instantaneous frequency properties between image pairs differ significantly. We have showed 

that the method of phase differences is analogous to that of the Newton-Raphson iteration. 

The limitations o f this method are clearly defined. To reduce the divergence of this method, 

it is not desirable to iterate at a given resolution, unless the system is heavily constrained. 

Disparity averaging, recursive weighting and the Willsky error measure all serve to assist 
in the stabilisation of the process, in particular when progressing to the highest frequency 

elements o f filtering. In addition, the methods presented here rely heavily on coarse filters 

initiating the correct vergence mechanism and that they themselves are not subject to phase 

wrap around. This is the fundamental weakness of the technique at present.
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6.9 Future work

We have dealt with considerable work in this chapter. A 1-D theory of stereopsis has been 

developed based upon phase differences, with some encouraging results. The application of 

phase itself, however, is far from exploited. There are several issues still to consider. In par­
ticular, we might consider weighting our disparity estimates at a given resolution based upon 
the responses from bandpass filters centered at the next higher and lower spatial frequen­

cies than the resolution of interest. Thereby reducing the probability o f analysing regions 

with negative frequency responses, which from the method of phase differences are not ana­
lytic. Because o f  the nature of the stationary phase problem applying filters in triplets will 

undoubtably reduce this source of error. We have also inferred that there may be distinct 
advantages in applying multiple bandpass filters whose phase differences are in quadrature 
but have different spatial envelopes for a given modulation frequency. This may also possess 

improved signal to noise ratio.
Additionally, we might consider the application of phase unwrapping. The advan­

tages of phase unwrapping (which primarily involves integrating over the differential of phase) 
lies with the recursive nature of this process, which effectively removes the phase aliasing prob­

lem. This approach is theoretically constrained by the assumption that the point from which 
unwrapping commences has itself not wrapped around. Coarse to fine vergence again re­
duces this risk. Although phase unwrapping showed considerable promise, stationary phase 
and negative frequency regions once again proved to be difficult to cope with in practice. 

Wilson (personal communication) also points out that phase unwrapping is difficult in two 

dimensions. In chapter 6, however, we will argue that useful phase information primarily lies 

in parallel to the alignment of the eyes.

We have, however, shown that the method of phase differences can provide accurate 
results on real image data.
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Figure 6.5: Disparity from fig. B .j interpreted from the filter center frequency, (a) With­

out recursive weighting, r=0.82; £ =  —2.23; an — 0.49 (b) Mean image intensity included, 
r=0.88; £ =  —5.05; on =  0.67 (c ) Mean intensity subtracted, r=0.92; £ =  —2.32; an =  0.40. 

(d) Mean vergence o f 12 pixels obtained from successive coarse to fine filtering introduced as 

an the initial vergence, r=0.9S; £ =  —1.75; <r„ =  0.34.(e) As (b) but applied to Figure B.8, 
r=0.95; £ =  —5.59; on =  0.83. (f) As (b) but applied to Figure B.2, r=0.88; £ =  -3.03; 

<7n =  0.52.
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Figure 6.6: Intensity disparity image produced from figure B. 1 using the center frequency of 
the Gabor function to interpret disparity.

Figure 6.7: The receptive field o f the Hilbert pairs from the 1st derivative of the Gaussian, 
(a) Real part (b) Imaginary part.
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i

Figure 6.8: Disparity interpreted using the local instantaneous frequency with Gabor filters and 
the Compact Pyramid. Center frequency o f the Gabor function at 1/8 cpp and ^  cpp. (a) 

Figure B.3, r=0.89; £ = —0.41; an =  0.18. (b) Figure B.2, r=0.95; £ =  —1.41; on =  0.28. 

(c) Figure B.5, r=0.96; £ =  -2 .23; <t„  =  0.35. (d) Figure B.f, r= 0 .93; £ =  -2.60; on =  0.41.
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Figure 6.9: Stereoscopic depth estimates using pyramidal subsampling and the Hilbert Trans­

form pairs o f  the 1st derivative o f the Gaussian. Center frequency at 1/8 and ^  cpp. 

Disparity interpreted by incorporating the stereoscopic continuity constraint and the trun­

cated parabola for smoothing, (a) Figure B.8, r=0.9t; X =  0.45; on — 0.15. (b) Figure B.2, 

r=0.93; X =  -1 .5 3 ; on =  0.33. (c ) Figure B.5, r=0.96; X =  -0 .65 ; o n =  0.20. (d) Fig­

ure B.f, r=0.93; X =  —3.00; on =  0.46.
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Figure 6.10: Intensity disparity image produced from figure B .l using the local instantaneous 

frequency from Gabor filters to interpret disparity.
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7.1 In trodu ction

The method o f phase differences, has been extensively applied in Chapter 5 towards the 
goal of stereoscopic correspondence. We have discussed the benefits, and limitations of this 

particular approach. Before progressing directly into 2-D filtering, it is worthwhile reviewing 
some work undertaken with regard to orientationally selective filtering. In particular, we will 
discuss methods for both corner and edge detection. We will also discuss curvature. Although 
curvature differences are not directly applied in our work concerning stereopsis at present, 

it is appropriate to include this type of computation for completeness, while identifying that 
the use of curvature may be included in future work.

7.2 O rientational Selective M echanisms

We have so far only considered 1-D stereo matching. Thus we have completely omitted 
orientation from the work so far. That neurons in the visual cortex appear to  respond to ori­

entation preferences has been known since the early pioneering work of Hubei and Wiesel[39], 

Blakemore et al[8] using single cell recording techniques, searched for other cues that might 
be utilised by the visual system for depth discrimination. As opposed to  horizontal dispar­
ities, they were particularly interested in other geometrical transformations that might be 
used to disambiguate the perceived world. They found binocular cells, which when monoc- 
ularly stimulated showed orientation preferences that differed by up to 15 degrees. They 

also showed that maximum response from each binocular neuron occurred with each recep­

tive field stimulated by its optimal orientation. They concluded that certain binocular cells 

respond specifically to tilted objects in 3-D space. Early psychophysical evidence, comes 
from Braddick[ll], who showed that lines with orientational separation o f  up to 15 degrees 

could be fused irrespective of their length. These results, were subsequently interpreted in 

terms of the disparity gradient hypothesis by Burt and Julesz[14]. Braddick interpreted his 

results by suggesting that stereopsis is dependent on orientation differences and not point 
by point disparity, a notion that complies with the known architecture o f  the visual cortex. 

Indeed, orientation can be a useful mechanism for disambiguating possible false matches, a 
notion known to physiologists almost a decade before computational vision workers applied 

the principle to computer algorithms.
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7.3 2-D F ilter Design

Physiological evidence for the relationships between orientation and spatial frequency tuning 

show considerable variation. There is evidence, however, that simple cells show preferences 
for orientation tuning[43] over spatial frequency. Typically, physiological data suggests that 
simple cells have elliptical profiles with width/length aspect ratios §*■ =  A ranging from 1/4 

to 1 in favour of orientation selectivity. Here av and au refer to the principle axes defining 
the standard deviation of an elliptical Gaussian envelope .

Movshon[77] found that orientation and spatial frequency selectivity were well cor­

related: orientation half-bandwidths increased by about 10 degrees for each octave increase 

in spatial frequency, which is consistent with a fixed filter envelope aspect ratio (§*). Thus, 
Daugman[18] concluded that while the ratio remained relatively stable, the product <rvtru 
corresponded to at least 1000:1 range of receptive field areas. In view of these observations, 

we will for the purpose of this thesis constrain ourself to an aspect ratio A =  0.65 as a con­
venient mean o f observed psychophysical responses. This is a limitation of our investigation. 
Thus, by fixing the aspect ratio, and implementing the conditions for linear phase quadrature 
Gabor filters from equation (8.8), we have sufficiently described the practical implementation 

o f  our filters.
To retain continuity with the previous chapters, we shall sample the 2-D frequency 

plane radially as in the 1-D case so we place filters centered at y/2nr intervals where:

refers to the modulus of the center frequency of the applied filters.

7.4 C orner and edge detection

Recent attention has been given to the detection of corners in low-level picture processing. 

Indeed, observations by Noble[78] have pointed out that conventional edge detecting opera­

tions fail to locate corners, and intersections of local image properties. While some measure 

o f  "cornerness”  may have important applications in many aspects of image processing (e.g 

pattern recognition), the motivation for this work is derived as an extension o f  the work in 

the stereoscopic and motion aperture problem.

In particular, we wish to isolate image regions where the aperture problem might
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arise. Therefore, we are particularly interested in the location of edges, but we will also 

consider corners. It is shown experimentally in chapter 8 for a sine plaid that the best 
unbiased estimates for horizontal disparity occur with image signals separated by ^ radians. 
We propose that measures o f cornerness or by inverse logic finding a measure to describe an 
absence o f edge information, provides an unambiguous confidence measure o f precise motion 
and in particular, disparity vectors in an image plane.

7.5 C orn er d etection

Corner detection has previously involved the product of both edgeness, and curvature (rate 
of change o f  gradient direction with gradient magnitude)[78]. However, these techniques have 
primarily involved edge extraction followed by differential operators, which are noise sensitive 
and often require smoothing prior to picture processing. Clearly, any smoothing o f an image, 
will also reduce the magnitude o f gradient direction, and hence the possibilities o f detecting 
corners. We propose a new method for locating corners in image pictures, by applying a 

band o f orientationally selective 2-D Gabor filters tuned to a constant radial frequency, but 

different orientation preferences.
We consider the convolution of an image function with orientationally selective Ga­

bor filters with an envelope aspect ratio =  0.5. The aspect ratio is chosen to reduce the 
noise sensitivity at the presence of an image corner, but at the expense of increased processing 
time. Let us consider a circular band 9 (x , y, t\) of Gabor filters where:

and

(7.2)

(7.3)

(7.4)

such that each filter is applied to a constant radial frequency r, and tuned to an orientation



7.5. CORNER DETECTION 121

Figure 7.1: A band o f  9 (z , y, !*,-,«•) filters applied in a circle and considered in the 2-D 

Fourier plane, with equal spatial frequency but different orientation preferences. If we model 
a corner as a pair o f orthogonal lines represented by the unit vectors ft and in the Fourier 
domain, then we minimise the product o f the normal distance between each filter, and the 

image stimulus.
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Consider a multi-orientated pre-envelope taken at a localised corner in the image 
plane (fig. 7.1). This is formed by the linear operation:

E(0i,Ui,Vi\x,y) =  |¥(z,y, u,-,Vj) * /(z,y)| (7.5)

where / ( z ,  y) refers to a two dimensional image function and we consider the filter $ (z , y, u,, u,) 

applied in several different orientations. Here the two filters with orientation preferences sep­
arated by ^ radians in the closest proximity to the edges of the corner will respond with 
maximal energy. Using a simple model, we assume that the energy response will be inversely 

proportional to the normal distance (in the the frequency domain) between the center fre­
quency of the filter and the edge which in this case is approximated by a line in the Fourier 

domain. This is also equivalent to the statement that the filter will respond to the local 

frequencies in the 2-D Fourier plane that are perpendicular to the center frequency of the 
filter. For corner detection, we apply weighted least squares fit to the energy output of each 
quadrature filter pair, and noting that we must minimise the product o f a pair of vectors 

taken from each filter to the line of best fit i.e:

Q (0 ,x ,y ) =  E2(0i,uitVi;x,y) [| <  Fith > |2| <  Fith± > |2] (7.6)

where r,- is a position vector representing the filter in the frequency domain 
(fig. 7.1), and n is a unit vector with whose normal (nj.) is used to model the orientation o f 
Fourier energy present at a corner. Q (0 ;x ,y )  refers to a weighting taken from all the filters 

applied at a point (z ,y ) in the image domain. In figure 7.1, the lengths di and ¿ 2  are the 

lengths whose squared products we wish to minimise. This gives:

Q(0; x ,y ) =  ^  E2(0i, v,-; z, y) r2 cos2(0, -  0] sin2[0j -  0]
«=o

differentiating with respect to 0 we have:
N

= 5 3  E2(0i, Ui, Vi\x,y)r24 cos 2[0, -  0] sin 2[0{ -  0J 
*—o

N
=  5 3  £ a(0i'» U i , V i ; x , y ) r 2 sin4[0i -  0]

dQ(0\x,y)
d0

setting the derivative equal to zero we finally obtain:

(7.7)

(7.8)

(7.9)
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Equation (7.9) provides a definition for the orientation of the local corner in the picture plane. 
However, it is only possible to distinguish between corners separated by mod ^ radians in 
the Fourier domain. Thus by considering local operations it is not possible to separate 
” X ” from ” L” junctions based upon an energy response alone. This is because of the one­

sided nature of the Hilbert Transform. Similarly, it is not possible to distinguish an angular 

separation between a pair of lines of rj and jt — t) by considering a local pre-envelope. Should 
we consider processing the pre-envelope response from a circular band of filters with a radial 
spatial separation of r pixels, then we would expect to resolve these ambiguities. Knutsson, 

Wilson and Granlund[48] have also shown that edge orientation may be obtained using a 
similar method. They took Willsky’s(97] error measure on a circle, here we again consider a 
weighted least squares fit of the filter responses to a line through the origin to give a similar 

result[54]:

tan 20 = S ito„  (710)
cos2 *

As an interesting observation we note that the zero-crossing from the response pat­
terns of an odd directionally selective 2-D function, which is also applied in a circle can also 
indicate the orientation of an edge. This is because the zero-crossing in this case corresponds 

to the normal to the edge. Which is a simple method for extracting the edge tangent. Such 
a scheme, however, cannot itself give a probabilistic measure for edgeness and therefore may 

not be useful from this point o f view.

We present the responses taken from a circular band of 2D-Gabor filters to both 

an ideal edge, and corner (fig. 7.3). Notice the energy responses indicate a periodicity of J 

radians for a corner, and ^ radians for an edge which is obtained by mapping the energy 

responses from Gabor filters onto the real line 0 € [0,jt].

As a measure o f edge and corner confidence, we take the linear Fourier transform of 

the pre-envelope from each band of filters at 29, and 40,, which corresponds to the expected 

pre-envelope response indicating either edges or corners. This simplified model does have 

restrictions for Gabor filters because the model proposed is only an approximation. This is 
because we have not considered the envelope of the filter as a parameter of the model.

Consider a sine grating (or edge) sampled by 2-D Gabor filters with a fine orientation 
bandwidth. The actual pre-envelope response is a narrow Gaussian energy function whose 

peak is centered at the filters with similar orientation preference (fig. 7.4). The duration
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Figure 7.2: (a)(y-axis) Energy responses from a simple 2-D sine grating against orientation 

(x-axis). The grating (1/16 cpp) was orientated at J radians. Filters tuned to 1/8 cpp 
where convolved with the data with width/length spatial aspect ratio o f 0.65. Edge probability 
estimated at 90.9%, orientation :1.571 radians, (b) As (a) but with orientation bandwidth 

reduced with a width/aspect ratio =1.0. Edge probability estimated at 83.1%, orientation: 
1.570 radians.

of the response is dependent on the properties of the filter envelope. For fine orientational 
tuning the pre-envelope responce as a function of orientation will tend to an impulse, while 
for coarse orientational tuning, the envelope will correspondingly spread out as a function 

of orientation. By the scaling theorem, the Fourier transform o f a narrow Gaussian signal 

covers a wide spectrum with significant energy at both 2Oi and 40, sampled frequencies, thus 

making edge and corner measures inseparable. This is because equations (7.9) and (7.10) 

require the ordinary Fourier Transform applied to the energy responses of filters in the circle. 
Since the Fourier spectrum will be broad in this case, we cannot expect to isolate both corner 
and edge measures from this type of response. Fortunately, orthogonal edge intersections 

provide a unique response. This can be seen by considering the discrete Fourier Transform 
from the response at both corner and edge (fig. 7.4c). Even with the limitations o f the model 
we have considered, it is clear that the frequency component that we are primarily interested 

in for the detection of corners responds with the largest magnitude (ignoring d.c). In this 

case, corner and edge measures are now separable. By reducing the orientation preference 
of the Gabor filters, the orientational bandwidth o f the filter responses can be controlled so 

that there is little overlap between the frequency responses of interest, but at the expense
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Figure 7.3: Energy response from a band of t-D  Gabor filters. Aspect ratio 1.00 and center 

frequency 1/4 cpp, (a) to an ideal edge (b) corner, (c ) The discrete Fourier transform of the 
response in (a), (d) The discrete Fourier transform to the response in (b).
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Figure 7.4: Energy response from a band o f 2-D Gabor filters. Aspect ratio 0.65 and center 
frequency l/ f cpp. (a) to an ideal edge (b) corner, (c) The discrete Fourier transform of the 
response in (a), (d) The discrete Fourier transform to the response in (b).
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of increased noise sensitivity (fig. 7.3) to corner detection. Therefore, to reduce the noise 

sensitivity, filters should have fine orientation bandwidth, and the probability of detecting an 
edge must be established a priori before a corner can be declared. This can be represented 
by the following equations:

Equations (7.11) and (7.12) normalise the energy responses from the band o f filters 

for both corner and edge detection. Since the edge response is small at a corner intersection, 
then a measure of corner confidence may be calculated from:

By setting an appropriate threshold, measures of both edge and corner measurements can be 
obtained. In practice, a Gaussian matched filter (frequency domain) was applied to improve 
the probability of corner detection. A small pre-envelope threshold was also applied to filter 
out low pre-envelope image regions.

7 .5 .1  Orientation Results

We have observed the energy response by applying a band of orientationally selective filters to 

both an ideal edge and corner. Let us now apply equations 7.9 and 7.10 to estimate orienta­

tion. We have already applied this equation in figures 7.2 to 7.4. We consider added isotropic 
Gaussian noise to the estimates of orientation. In figure 7.5 we show the error in orientation 
estimate with added noise. As expected, the variance increases with the variance of added 

noise. Because there is in principle no difference between the phase error between directional 

quadrature filter pairs and the phase angle obtained through orientation estimates, the dis­

tribution of phase error is very similar to that observed in chapter 5. However, in this case 
the best fitting density function (shown as crosses) was found to be the Bivariate Gaussian 

density function. The most important result lies with increased stability for orientation esti­
mation. The signal to noise ratio between the quadrature phase estimation used in chapter 5 

and here was maintained. However, there is a noticeable difference between the performance

_  E £ a +  K £ o £ ] W ." i , * ; « , » )  ' » » i F
E J L „  £ * (* ,, « ¡ . n ; * ,  „)]»

(7.12)

7. ' . .  firtrni. —  Corn.. idge (7.13)
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Figure 7.5: Orientation estimates for a single grating (1 intensity unit peak to peak) using 8 
orientationally selective filters to obtain orientation for (a) N0 =  3.0 r =  0.985 and (b) 
N0 =  6.0 r =  0.87.

between figure 5.4e and 7.5b. This is to be expected, because we are both taking a least 
squares approximation to orientation and using 2-D filters to estimate the image properties. 
We also present results indicating the estimation o f corner orientation with the same quan­
tities of added noise (fig. 7.6). Care was taken to ensure that the signal to noise ratio was 

maintained but with an image stimulus comprising o f the sum of two orthogonal sinusoidal 
gratings. Interestingly there is little difference between the noise sensitivity estimates for 

corners and edges. However, we point out that at ideal image corner each oricntationally 
selective filter can only integrate along a half of its own length. This would still explain the 

noise sensitivity of corner detection as opposed to a ” X” in the image domain.

We are particularly interested in the noise sensitivity from directional filtering, since 
we wish to interpret disparity in the least squares sense from a band of filters applied in a 

circle. Any error in orientation measurement, will correspondingly induce a measured error 
in disparity measurement.

As a further example, we present an orientation field from figure B.la. In this 

case, we show orientation at regularly spaced intervals as a unit vector, whose magnitude is 
represented by the edge probability measure that we have defined in equation (7.10). In this 

instance, the center frequency of the Gabor filter was |0.25| epp and circularly symmetric in 

terms o f the envelope. Circular symmetry was chosen because we were primarily interested 
in representing edge orientation.
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Figure 7.6: Orientation estimates for a pair o f  orthogonal gratings (- j- intensity units peak 

to peak) for (a) Na =  3.0 r =  0.985 (b) Na =  6.0 r =  0.885.

Figure 7.7: Orientation represented as a vector from figure D.I. 8 filter pairs were applied 

with unity orientation/spatial frequency preferences.
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Figure 7.8: Ideal square image used for both edge and com er extraction.

Figure 7.9: Edge extraction probability from ”square” image.
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Figure 7.10: Corner extraction probability from "square” image.

7.5.2 Corner and Edge Results

We present the results of the work concerning both corner and edge detection. We show 
the processing of a synthetic square and our room to both edge and corners confidence 

measures. These are presented in figures 7.8 to 7.12. Here the bright image regions represent 
the magnitude of the corner and edge probability measures. Notice that we have correctly 

indicated image regions that exhibit energy describing both edges and corners.

Unlike traditional edge and corner extraction algorithms, we are not necessarily 

interested in the exact location of the corner or edge. This is because the technique for 
disparity measurement that we are considering does not require an accurate measure of edge 

location. We will argue in chapter 8, that it is useful to retain a probabilistic measure of 

edges because o f an aperture problem[l] in stereopsis. The aperture problem arises because 

of the ambiguity in inferring a translation over a two dimensional region in the presence of 

local image signals that are primarily oriented in a single direction. We will also use the 
probabilistic function: 1 — Pe to infer local image regions that are either isoluminant or 

contain more than one local orientation of dominant energy. In the latter case this could be

a corner.
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7.5 .3  The general case

We can extend our previous arguments to the general case of finding the internal angle of 

separation between a pair o f edges or a piecewise linear approximation to the change in angle 

of a curve. If we consider some arbitrary curve passing through a pixel, then we assume a 
piecewise approximation to the curve, as two edges separated by an unknown angle 29. We 
then define a unit vector hc which is perpendicular to the piecewise linear approximation 
to one of the edges of the curve and passes through r,- =  ¡/¡), which is a position vector

representing the ith filter. We also define a unit vector N which is obtained from convolving 
in a circle spatially and represents the normal of the curve at the point of interest (x , y). The 
orientation of the normal can be found from:

£ J ( 0 i i u i . ’> , ; x ,y ) s in 2 0 ,

YliLo E*(0iyUi,Vi;x,y)co820i (? .14)

Since we have defined the normal to the curve which we will assume bisects the angular 

separation of our two edges. We also define h „  =  [cos0, -  sin0]T as the reflection of hc = 
[cos0,sin0]T about the normal by an angle 9. It is necessary to redefine our position vectors 
of the band of filters in the frequency domain relative to the normal of the curve:

fit =  (7.15)

Where R^j. represents the rotation matrix of the orientation of the normal to the pair of 
lines and:

N =  [cos 0„, sin 0n]r  (7.16)

Here 9„ represents the orientation of the normal to the curve. Using the same notation that 
we used to define the orientation of a corner we have:

dx < Pit, > (7.17)

and d?:

¿2 = < Fitter > (7.18)

We then form a measure Q (9,x.y) as before based upon the weighted response from all filters 
applied to the circle, which we wish to minimise i.e:

N
Q(0\x,v) =  £ £ 3(i„u<,t>,;*,y) I < ri9,h e > |a| < ft#,fi«. > I5 (7.19)
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Figure 7.11: Edge probability from figure B.l.

Figure 7.12: Corner probability from figure B .l .
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We can also see that:

r̂ g =  r[cos(0 ,- — 0 n),sin(0 , — 0n)]T (7.20)

where r represents the radial distance of the ith filter from the origin in the frequency domain 
i.e:

Setting the derivative to zero at the minimum, then we arrive at:

The above expression is a generalisation of the internal angle between a pair of edges or 

a segment of a curve. A little examination reveals that the form o f the solution lies in 
terms of the variance or spread of energy from the band of filters. We know from signal 

processing theory, that the variance or second moment in the frequency domain, is equivalent 
to differentiating twice in the spatial domain, which is indeed the form of the rate of change 

of angle. The quadratic solution for the change in angle also suggests the possible ambiguity 

introduced by the application of oricntationally selective filters at the same retinal location.

This expression, however, assumes that the orientational selectivity o f each filter can 
be modeled as an impulse function. It is not difficult to introduce additional constraints which 

also accounts for the spread of energy as a cosine function from the preferred orientation. 

However, we do not pursue this topic further. This is because the measure for orientation 

differences requires an appropriate model to describe the exact orientational tuning o f each 

filter. Such a model would indeed be sensitive to both the orientation and spatial frequency 

bandwidth that each filter possessed and therefore not generally applicable as a phase rela­
tionship. We will, however, review the work of Koenderink and Richards[50], which although 

not explicitly used in this thesis, bears significance as an important phase relationship.

N
Q ( e ,x , y )  =  J 2  £ ’ ( * ( , « i , Vi-.x.y) c o , , ( * - ( » j - i l n) ] c o . , ( » + ( * i - * » ) ]  (7.21)

Differentiating Q (0 ;x ,y ) with respect to 0, we obtain:

dQ(<
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7.6 Curvature

It would be appropriate to include a small section reporting some work on image curvature. 
The curvature K of a contour or edge is defined to be the rate of change o f slope of the 

tangent vector to the contour with respect to distance along the contour. Where the radius 

of curvature is simply the reciprocal of K. We can define curvature in vector space:

as the first Serret-Frenet equation of differential geometry[40]. Koenderink and Richards[50] 

showed that the second derivative taken over an isoluminant region L(x,y) is:

as the tangent of the edge. This equation has been successfully implemented using the Canny 

edge detector[ 16]. Since the curvature K over L(x,y) may also be shown to be:

then in the special case where the x axis is tangent to the local boundary of a curved edge, 
Lx =  0  and by comparing the above two equations we see that:

Koenderink and Richards then proposed convolving oricntationally selective filters in a circle. 

They argued that the filter with maximal output then indicates the orientation of the bound­

ary from which the local coordinate frame may be calculated to apply their equations. The 
expression obtained by Koenderink for curvature, is only valid at edges. The same may also

Using the Hilbert transform, we can extend the calculation of orientation to an 

image field of arbitrary phase. We form:

(7.23)

fl
dx1

— +  2 L Xi/L r L y  — L y y L f (7.24)

with
dy_ _  Li 
dx Li

(7.25)

(7.20)

K (7.27)

be attributed to the calculation of orientation using the Canny edge operator from equation 

(7.25).

* (x ,y ) = L (x ,r) +  j l ( x .  ) ) = k (7 .2 8 )
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(7.29)

where 9 (x ,y )  refers to the 2-D analytic signal with L (x ,y ) and L (x,y) as Hilbert transform 
pairs. A: is a constant, which enables us to define an orientation from This equation gives 
an orientation (0) which is reduced to a resolution of ^ radians, i.e:

u . «  =  - l & M f e l
\LV +  jL y  |

which would directly obtain orientation throughout the phases o f an image field. This expres­

sion merely requires the derivatives of a Hilbert pair orthogonal in orientation. The phase 
information which is not considered in this definition is still valid for the method o f phase 
differences. This approach indicates that first order directional derivatives of a Hilbert pair 
may well yield improved least-squares estimates for orientation, since the expression is indeed 
a phase relationship. That Biology applies first order kernels to extract spatial orientation, 
has recently been determined psychophysically(27). This notion may equally apply to improve 

the calculation of velocity from the relationship ^  a sa  spatio-temporal orientation.
By similar arguments, we can also define the curvature as:

K  =  (7.30)
|Z.„ + jL„\

which would also be independent on the quadrature phase of the signal. The expression for 
curvature about regions of even symmetry that Koenderink and Richards considered, required 
the further examination of third and second order partial derivatives of an image function, 

which would be highly noise sensitive.

7.7 Phase relationships in Image processing

It is interesting to notice that equations for orientation, and curvature all require an inverse 

tangent operation. Similarly, in chapter 4, we have also extensively applied inverse tangent 
operations to locate the displacement o f a signal from the location of our quadrature filter 
pairs using the method of phase differences. Instantantaneous frequency may also be locally 

defined as the spatial derivative of phase, which may be obtained by the change in phase from 

spatially separated filters or equivalently, by applying the 1 st order quadrature derivatives 

o f a Hilbert transform pair of operators. Orientation and curvature arc also obtained from 

phase relationships. In particular, Koenderink and Richard’s expression for curvature in 
equation (7.27) is a rather unusual phase relationship in the circle of orientation differences, 

since it requires the ratio from an odd cell to even cell, who themselves are orientated in
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Figure 7.13: An example o f  Koenderink’s equation for curvature extraction. (a)  The circu­

lar energy responses from  the 1st directional derivative o f the Gabor function, (b) Second 

directional derivative. Isoluminant circle with curvature o f  0.03. Estimated curvature 0.043. 
12 filters applied in a circle tuned to 1/8 cpp. Notice the zero-crossing from the imaginary 

filter response corresponding to edge normal. Edge orientation from least squares estimate at 

1.5707 radians.

quadrature in the spatial domain. This scheme we have extended by further use of phase 

relationships. Indeed, the essential characteristic of a phase lies witli the division between 
orthogonal parameters. In terms of convolution filters, the division often removes the envelope 

from consideration, leaving a descriptor based upon the image function alone.

7.8 Classical E nd-stopped  Cell

Recent physiological investigations provide evidence for a curvature sensitive cell referred 
to as the end-stopped cell. Koenderink and Richards[50] observed that a similar receptive 

field may be obtained from the third derivative of a Gaussian (LXxy in their notation) we, 
however, show that this cell may be obtained quite simply from the addition o f  two sets of 

oricntationally selective Gabor filters in orthogonal directions.
First we will define and show the end-stopped cell (fig. 7.14) by:

(7.31)

by noticing that we can expand the product of the oscillatory terms we have: 

sin(u;xx)cos(wvy) = i(sin(w xx + wwy) +  sin(wxx -  u>„y)) (7.32)
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Figure 7.14: (a) Classical form of the ”Imaginary” end stopped cell formed from the addi­

tion o f  two Gabor functions with unity width/length aspect ratio but orthogonal orientation 

preferences, (b) ”Real” end-stopped cell.
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which when multiplied with the Gaussian envelope is the sum of two orthogonal Gabor 
functions providing u ,  =  wv. In the frequency domain, this representation is equivalent to 
4 Gaussian distributions centered at [|u>z|,|b'„|] in the imaginary plane. For a similar cell in 

the real Fourier plane, we can similarly show that:

Fr (x , v)  =  K e x p l - - ^  -  ^ ] c o s ( u xx)cos(u>vy) (7.33)

Is also a real component of the classical end-stopped cell and may also be shown to be 
equivalent to the sum of two real Gabor functions with orthogonal directional preferences. 
We should, however, observe that these receptive field profiles, are equivalent (in the case of 

unity aspect/width ratio) to the operators we have applied to obtain corner responses.

7.9 Sum m ary

We have shown in principle how localised 2D-Gabor filters may be applied to the problem of 

corner and edge detection. We have also obtained a function for describing the internal angle 
between pairs o f  line elements using Gabor filters. However, the nature of this last relationship 

incorporates rigid assumptions regarding the orientational bandwidth o f the filter. These 
assumptions do not permit a correct model to describe the internal angle between a pair of 
lines or edges in the image domain.

We have also reviewed work for obtaining edge orientation, which we have inferred 

is particularly important in the extension of the theoretical body o f this work into two 

dimensional stereoscopic computation. It is proposed that post-processing a band of 2D- 

Gabor filters for corner detection provides a confidence measure for methods that claim to 

solve both the stereoscopic and motion aperture problem.
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8.1 Introduction

The extension of the theory to two dimensions is not simple. In particular, 2-D image 

functions immediately expand the computation power by at least a factor of mN2: where N 
is the spatial number o f computations in the 1-D case and m is the number of orientationally 
selective filters (we have ignored polar separability), and contain their own special properties 

to which increased attention has been paid. There is evidence that stereopsis also has some 
components of vertical disparity induced by the horizontal separation o f the eyes, although 

the application of this form of disparity interpretation remains uncertain. It is well accepted, 

however, that the vertical component of disparity is considerably less than its horizontal 
counterpart, and as a consequence has been ignored in many stereo algorithms[83]. The 
role o f vertical disparity may have considerable benefits in its estimation. Using vertical 
disparities Longuet-IIiggins[60] lias shown in principle, that for precise depth to lie extracted 

from a stereo pair it is essential that at least three points must be correctly matched and that 
they must not lie in a vertical plane to the eyes. Longucl-IIiggins, however, assumed that only 
relative disparity was available and that the spatial location of disparity on image sensors 

an unknown parameter. Such an assumption may well be correct with mammalian systems, 
and therefore implies that without the additional vertical disparity component precise depth 

information cannot be obtained. Relative depth, however, would be possible. This question 
lias caused some problems for experimental psychologists to determine.

A further causal effect of vertical disparity lies with the physical displacement of 

the optical sensors. For a visually guided autonomous vehicle, it is possible over a period of 

time, that cameras become misaligned. Indeed, the biological ocular system also experiences 

a similar problem[70). In order to self calibrate, it would be important to have a stable 

reference point such as a nose and an intrinsic sensitivity towards vertical disparities.

8.2 Phase Inform ation from  2-D G abor filters

Daugman[18] extended the work of Gabor and Fapoulis[82] and showed that in the image 
domain Gabor filters also minimise the uncertainty between the signal and spatial-frequency, 

but that the new uncertainty inequality becomes:

16ir2A j/A xA tiA t>  > ( 8 . 1)
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where similar to the 1-D case, Ay, A x  and Au, Av  refer to the duration o f the signals in the 
space and frequency domains respectfully.

The reason for using 2-D filters is clear. Consider an image function:

/ ( r )  =  s in ( 2 j r i l . r )  (8 .2 )

Such an image function will have an associated spatial frequency and preferred direction. 
Consider an identical signal, which is mirrored about the axis we are examining. In 1-D 
analysis, both signals will respond with an identical energy and phase response the phase 
differences will also be similar in a stereo pair but the signals will be markedly different 
on the grounds o f orientation. Clearly, this is a potential source of false matching. For this 

reason, it is essential to apply 2-D filters with an orientation preference to the correspondence 

problem. In the same manner as the 1-D filter consider:

/ . ( x , =  r  r —2 a ^ v ) I  ■'<’ 2
cos[2 jtu , ( x  -  r )  - f  2 jtv ,(y  -  £)]F(x, y)drd£ (8 .3 )

Ia(x,y,Ui,Vi) =  f  [  -------— -r  caPI---- — 5------------- — =-
y_oo 7-00 (2jr<Tx<7y)s 4<7x \o v

sin[2 ?rui(x -  r )  +  2 iru,(y — y)drd£ (8 .4 )

The convolutions in the shifted image may be computed and placed in a similar 

form as the 1-D case with:

F (x , y; u0, t>0) = cos[2ir(u,,x +  i><,y)] (8.5)

and

F{x,y\<t>x,<t>v,Uo,v0) =  cos[2jt( u 0x  +  vQy) +  <̂x +  <£„] (8 .6 )

It is important to notice that 4>x and <f>y represent unrotated phase differences cor­
responding to vertical and horizontal disparities in a binocular image. Dy proceeding in an 

identical manner, it can be shown that the rotation matrix of equation (4.25) is preserved 

with:
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/«¿(x , y ,  u Vi; u oy va) cos <f> — sin 4> J,(x, !/» ui> v«i v0)
(8 . T )

sin <f> cos <f>,

and
I a(x ,y ,U i ,V i\  u0,v 0)  
I a( x ,y ,U i ,V i ; u0,v 0)

=  ^ tan[2 x(u0x + t>„y)] (8 .8 )

Where we use the same notation as that used in chapter 4. Interestingly, the method of phase 
differences is now directional, which is a feature that we will use to obtain both horizontal 

and vertical components of disparity. The new 2-D correction factor for the rotation matrix 
now becomes:

Because the new rotation element <t> is dependent on the Pythagorian combination of 
vertical and horizontal phase differences then a filter’s phase difference may be derived from 
an infinite combination of vertical and horizontal disparities that lie on a circle of constant 

magnitude.
A similar occurrence is well known in motion analysis as the aperture problem but 

has not previously been linked to stereopsis[53].

8.3 T h e  M otion and S tereoscop ic A p ertu re  P rob lem

The evidence from the geometry o f retinal images supports the notion that objects not aligned 

on either the vertical or horizontal horopter will experience both a vertical and horizontal 

disparity. If we consider a sinusoidal grating, then, any physical displacement corresponding 
to a phase difference can best be resolved as a shift parallel to the grating’s direction because 

of orientational selectivity. Phase differences parallel to the grating’s orientation will yield 

no phase change.

Ç =  tanh(8xa(uiU0<r’  +  t;,-v0<ra)) (8.9)

with the phase rotation difference equal to:

*(,x,y,ui,vi;u0tv0) =  \f<t>l{.x,y,Ui;u0) +  <^J(x,y, v,; u„) ( 8 . 10)

The new linear phase condition for a 2-D Gabor filter becomes:

(8 .11)

The condition for linear phase now becomes an ellipse o f minimum area.
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combination of vertical and horizontal disparities (assuming the epipolar constraint). The 
solution to the aperture problem may be directly extracted from motion analysis and pre­
dicts: if both horizontal and vertical disparities are required for absolute depth perception and 
binocular fusion, then each binocular image pair must contain features with similar frequency 

content and at least two orientations o f dominant energy response.

To extract this information, it is necessary to apply 2-D Gabor filters in bands 

of constant frequency but different orientation preferences in at least two quadrants in the 
Fourier plane. From the work o f Longuet-Higgins, we observe that a stereoscopic image signal 
that does not satisfy this criterion may only provide relative as opposed to precise depth cues. 

The calculation of disparity may be obtained by taking a weighted least-squares fit from a 

band of filter’s energy responses, and phase differences applied in a circle at the same pixel 
location i.e:

Where E is the MxM diagonal matrix of the energy responses from the ith(i  =  ItoA/) filter 

in a circle whose leading elements are formed from:

$  = [cos d>{,sin 4>i\ the Mx2 matrix of directional orientation, and d represents the vector
of measured disparity at all M orientations. £ / ( 0 j , x ,y )  and Er(0i, u,, t»,; z ,  y ) represent 
the pre-envelope of the ith filter in both image domains, which follows from equation (7.5). 

D = [Dx ,D y]T represents the disparity (in pixels) estimated at the image point of interest 

in both image pairs from the filters at the tth orientation.

from which we may estimate disparity in both vertical and horizontal directions. This equa­

tion holds several drawbacks. In particular, the equation has no weighting corresponding to 

the epipolar constraint. Indeed, should the dominant energy response from the band o f filters 

lie along the vertical axis, then there will be a bias towards zero horizontal disparity, since 

vertical disparities are negligible for the finite visual angle of current camera hardwarc[83).

E d?D = E d ( 8 .12)

(8.13)

The above equation may be solved by numerical methods related to over determined 

sets of equations. In particular, the pseudo-inverse method gives us:

D  = ( * TP * ) "1* TEd (8.14)
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Equation (8.13), has some interesting properties. It has the effect of weighting down the en­
ergy responses from filters with similar orientation preferences but markedly different energy 

responses.

8.3.1 M ethods

We will now consider some brief experimental work in the estimation of disparity using 

orientationally selective filters.

Experiment 1

We consider the error in horizontal disparity measurement for a horizontally oriented, two 
dimensional sinusoidal grating in both images, for a fixed horizontal shift between the image 

pairs as a function of grating orientation (both images retained the same orientation). The 
disparity estimates for a horizontally oriented sinusoidal grating that is shifted horizontally 

is also shown to indicate the phase differences obtained from orientationally selective filters 

as a function of orientation at a single point in the image.

Experiment 2

We consider the estimation of disparity from two superimposed sinusoidal gratings separated 
by a different internal angle. Both image gratings retained the same modulus o f spatial 
frequency but were orientated in different directions. Here we are primarily interested in 

the estimation of disparity as the internal angle that separates two gratings is altered. We 

also indicate that both components of vertical and horizontal disparity can be obtained 
by considering an ideal ” L” junction, which is displaced by both vertical and horizontal 

components of disparity.

Experiment 3

We now consider the estimation of horizontal disparity as a function of image position for the 

case of a horizontally oriented grating with a horizontal shift, and the same grating rotated 

by x /4  radians with a similar disparity.
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8 .3 .2  Results 

Experiment 1

Table 8.3.2 indicates the problems that occur with respect to the stereoscopic aperture prob­
lem. Here the correct estimate of horizontal disparity is only available when the grating is 
horizontal. A little examination of table 8.3.2 will reveal that the error in interpreting a 

horizontal disparity estimate can be described by a cosine function. Figure 8.2 highlights the 
phase differences as a function of orientation with respect to a horizontal disparity introduced 

into a horizontally orientated pair of gratings.

Experiment 2

Table 8.2 shows the results of this experiment. Here, the best disparity estimates occur when 
gratings are separated by ^ radians. This may well be considered as the intersection o f two 

orthogonal edges in a real image. To disambiguate a stereoscopic aperture problem, it is 
essential for an image to contain least two spatial frequencies with orientation preferences 
that are dissimilar. That the best stimulus for solving the aperture problem occurs at image 
corners is intuitive, because a single 2-D filter will have difficulty in disambiguating the contri­

bution from two sinusoidal functions whose orientation and spatial frequency characteristics 
lie within the bandwidth o f a single filter.

Corner detection is clearly important within stereopsis as indeed it is in motion since 

the best resolution o f orientational differences between local signals arises at corners. Several 

authors have also stressed the importance of image features with high curvature in motion 

and stereopsis (e.g [12]). During scene analysis, corner intersection often occurs at areas of 

depth discontinuity and therefore is of considerable interest as an isolated image feature.

In figure 8.3 we show the phase differences from Gabor filters in both images as a 

function o f orientation, taken from a pair of orthogonal lines displaced horizontally by 5 pixels 

and vertically by 2.5 pixels. The filters were located exactly on the corner o f one image and 
disparity measurements were taken accordingly. The overall measures o f disparity error in 
this case was 0.3 pixels in the x-axis and 0.15 pixels in the y-axis. From the energy response 

in figure 8.4, we can observe that the two energy maxima are unequal. This has occurred 
because the filters in the second image lie an unequal distance from each pair of lines in the 

stereo image.
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Orientation (rads) Dk Dv

- 3 jt/8 0.45 -1.07

—*/4 1.52 -1.52

- x / 8 2.60 -1.07

0 3.05 5.6 £ - '
, / 8 2.60 1.07

x/4 1.52 1.52

3x/8 0.45 1.07

x / 2 0 0

Tabic 8.1: Disparity estimates for a single grating and 8 orientationally selective filter pairs 

tuned to 1/8 cpp. Sine grating varied in orientation. Horizontal disparity o f 3 pixels intro­

duced into the stereo jmir.

Experim ent 3

In this experiment, we present the results for disparity estimation, as a function of image 

position for a pair o f horizontal sinusoidal gratings, one of which is a shifted version of the 
other. The actual disparity introduced was 3 pixels, which has been recovered. If we now 
orientate our image pairs to % and repeat the experiment, we observe that the estimate 

for disparity has resolved into the minimum path required to translate both gratings into 
correspondence, i.e both vertical and horizontal disparities are obtained. If we consider a 

disparity of -3 pixels introduced into a pair of gratings both orientated at tt/ 4 then we would 

expect to measure a horizontal disparity of —3cosx/4  = —2.12 because o f the aperture

problem. This is the result that we obtain.

8.3 .3  Conclusions

For the simple sinusoidal grating, considered in figure 8.2, disparity estimates have behaved 
similar to a step, whose magnitude corresponds to the disparity estimate. This result is easy 

to interpret since a sinusoidal function transforms to an impulse in the Fourier plane. It 
follows from equation (8 .8 ) that each filter can only respond to the local phase and frequency 

component of the grating. Therefore, disparity estimates from phase differences are a constant 

in magnitude. Orthogonal to the grating, however, the phase non-linearity term C prevents
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Orientation difference (rads) Dh Dv

0 1.52 1.52
x / 8 1.90 0.71

jr/4 2.57 0.18

3ir/8 2.84 0.03

* / 2 2.96 6.7 E~3

Table 8.2: Disparity estimates from a pair o f  sine plaids with orientation differences (orien­

tation is defined in the frequency domain). One grating was maintained at an orientation of 
tt/4  radians. Both gratings and 8 orientationally fdter pairs tuned to 1/8 cpp. Horizontal 

disparity o f 3 pixels introduced into the stereo pair.

a correct interpretation o f phase differences. This is because: 

tanh- , ( { )  =  8 jt
UgOl

(8 .15 )

which varies as an inner product between the orientation of the filter and grating.
The displaced pair of vertical lines indicate a different phase difference response 

profile as a function o f orientation in comparison to the displaced sinusoid. In this case the 
difference can be described by a cosine function whose magnitude corresponds to the disparity. 

The displaced ” L” junction indicates the presence of higher harmonics within the disparity 
estimates obtained from a circle of filters because of the introduction of both horizontal and 

vertical disparities.
These results can be interpreted from our work on corner and edge extraction in 

chapter 7 . Because the Fourier transform o f a bar is a constant 2-D linear impulse function 
orthogonal to the orientation of the bar in the spatial domain, we know from our feature 

based work, that each filter responds to the frequency component whose distance is shortest 

from the center frequency of the applied filter. From Chapter 7, the preferred frequency that 
each filter responds to is |ri -  For filters applied in a circle the preferred image signal

frequency varies as a cosine function. Therefore, for a translated pair of image bar functions, 

our disparity estimation:
D ,„  =  (8.16)

contains an error similar to chapter 4 because of the differences in edge spatial frequency
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w w vw vw w v

Figure 8.1: (a) Horizontal disparities estimated from 2-D filters applied in a circle over 

a single raster line. Filters tuned to the frequency o f the grating at 1/8 cpp. Disparity 
introduced at -3 pixels. Orientation calculated at 0 radians with confidence 88.0%. Error 
in estimation calculated as 3.3%. There was no component o f  vertical disparity measured 
with this stimulus, (b) Horizontal shift o f  -3 pixels introduced into a stereo pair o f  gratings 

orientated at 7r/4 radians. Confidence measure 88.8% and orientation measured at 1.5701 
radians.

sensitivity for filters applied in a circle. In this special case:

u>di = u)g cos(0, -  6n) (8.17)

where 0 ; — 9n represents the angle difference between the normal to the bar (0 n) and the 
orientation of the ith filter ( 0 ,), and u>n represents the spatial frequency that each filter 

is sensitive to. In this case, we have the unusual situation, where the displacement (d) 

is constant, but the image frequency to which each filter is sensitive to varies as a cosine 
function (cqn. 8.17) as we rotate our applied filter pairs. To maintain, the same disparity 

displacement, the phase difference must correspondingly decrease. Indeed, the filter which 

lies parallel to the tangent of the bar has an indeterminate disparity measurement because 
the directional instantaneous frequency is zero (i.e d.c). If we were to assume an epipolar 

constraint, then an error in the measurement o f horizontal disparity has been created by the 

nature o f applying oricntalionally selective filters.

Indeed, if one observes a RDS formed from the two primary colours red and green 
and superimposed, then by rotating the angle of view, we observe that stcreopsis is rapidly 

destroyed as the viewing angle increases past *  radians, thereafter the stereoscopic image
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Figure 8.2: Pair of horizontally oriented sinusoidal gratings (1/8 cpp). Disparity o f  two pixels 

induced into one stimulus. Filler center frequency also 1/8 cpp. (a) Disparity estimates from 
a band o f orientated filters located at a single point, (b) Energy response taken from the 
product o f pre-envelopes from left and right image pairs.

pairs are in rivalry. The destruction of the stereoscopic signal in this case appears to be 

related to a cosine function o f orientation. Thus it would appear that the human visual 
system is indeed insensitive to vertical translational disparity and that the perception of 

stereoscopic depth varies cosinusoidally with the orientation of the disparity signal. Such a 
percept would indeed be consistent with the extraction of a horizontal component of disparity 

from the mechanisms that we have proposed.

With motion analysis, a body may translate in any arbitrary path across the image 

plane. Therefore, to minimise the error in the computation, one would expect the percep­

tion of a translating grating to appear in the direction of the grating. However, stereoscopic 
translations are predominantly horizontal owing to the displacement o f  the eyes. This poses a 
dilemma that questions the application of orientationally selective filters towards the compu­

tation of disparity. Possibly stereoscopic systems could use a system equivalent to equation 
(8.14). However, such a system would incorrectly compute disparity at any other than a ver­

tically orientated edge unless iteration methods were also used. Indeed, such computations 
are unnecessary when viewing the geometry o f stereoscopic space. Thus, the question arises 

towards the need for the calculation of vertical disparities. Traditionally, the main evidence 

for vertical disparities lies with the Induced effect first introduced by Ogle[79]. Rogers and 

Koenderink[87] refuted these findings as we do here. Our argument, however, is more simple.
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Figure 8.3: Disparity estimates from an ideal vertically oriented bar. Disparity o f 10 pixels 

introduced in the horizontal axis. 12 Filters applied in a circle center frequency o f 1/22 epp 
and aspect ratio 1:1. Disparity estimates obtained as 10.3 pixels (x-axis) and 0.000065 pixels 
(y-axis). (a) Disparity estimates from a circle o f filters applied to the same retinal location, 
(b) Energy responses.

W e argue that if vertical disparities are to be obtained then we require disparity computation 
from filters applied in a circle to resolve both orthogonal directions. However, by doing so, 

we immediately introduce an aperture problem, whose effects would seriously affect stereo­
scopic computation. Therefore we might propose that the aperture problem is not generally 
considered in biological stereopsis, at the expense o f vertical disparity estimates and possibly 

absolute depth computation during correspondence.

Alternatively, we could argue that the visual system only applies equation (8.14) 

at corners, or in the presence of orthogonal signals. Otherwise it resolves disparity into the 

horizontal component. The motivation for this type o f calculation may be to resolve the 

local vertical displacements owing to sensor misalignment, a feature that has been recorded 
by physiological studies[70]. Indeed, the process of applying 2-D filters onto an image plane 

serves the purpose of permitting a certain degree of vertical disparity because of the spatial 
extent of the 2-D filters.

In view of the severe criticisms of equation (8.14), we can propose a justification for 

orientation selection, through all scales of filtering. We can add to the final disparity estimate 

an additional weighting that corresponds to the orientational differences between the left and 

right image pairs. There is also an additional advantage in the application of oricntationally
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Figure 8.4: An ideal corner formed from two orthogonal linear spatial impulse functions 

(bars). 12 Filters tuned to 1/22 cpp with aspect ratio 1:1. Initial disparity o f  5 x-axis and 

3 y-axis pixels input. Disparity estimates obtained as ^.77 pixels x-axis, and 2.88 pixels 
(y-axis). (a) Disparity estimates from a band o f fdters applied in a circle at the same point, 

(b) Energy response

of orientationally selective filters that relates to the response o f the filter as a function of 
orientation. A filter that is not orientated in the direction of the image signal will respond 

with a small energy response. As we have already shown in chapter 5, such a response will 
be highly noise sensitive since for small increments of added noise, there is approximately a 
linear relationship of phase error with respect to added quadrature noise. This follows from 

equation (5.3) with the maximum error (<J>max) in quadrature phase given by:

Vma*
|nr(:r,y,fa;,<r)|

|zr(x,y,u>,<7 , 0 )| (8.18)

here we assume the image contains added isotropic noise (|nr(x,y,u>, <r)|). If the magnitude 

of the pre-envelope (|zr(x,y,u>,<7 ,0 )|) is dependent on the filter orientation, then the filter 
with the least energy response will be most sensitive to added isotropic noise. Therefore it is 

essential to evenly sample the 2-D Fourier plane with oricntionally selective filters.
In view of the narrow orientation bandwidths for stereoscopic correspondence that 

were found by both Blakcmore and Braddick[l 1], we propose using the square Willsky weight­

ing factor (jj):

71 =  1(1 + C052«j )1 (8.19)4
where Oj corresponds to the difference in orientation between the corresponding
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filter pairs in both the left and right image to constrain stereo matching. This term will 

weight down the correspondence of the phase locking process from image features that difTer 
markedly in orientation differences. Our disparity interpretation vector becomes:

D = [ ( * T E * ) - 1 * T Ed]i) (8.20)

Where tj is obtained from the orientational differences between quadrature pairs of filters 

from equations (7.10) and (8.19) respectively.
Care must be taken in the application o f the orientation differences between our 

image pairs. This is because orientation is measured as a local image property, and we would 
not wish to prevent phase locking from a 2-D feature which is horizontally displaced, but also 
exhibits local orientation differences because of the location of the respective left and right 
image filter pairs relative to the feature. Consider phase locking a 2-D feature such as a box, 
with one band of filters located close to the vertical edge and the corresponding pair of filters 

in the stereo pair located close to the horizontal edge owing to disparities. Here we would 
erroneously prevent phase locking by the differences in local orientation. In dealing with this 
problem, we suggest iterating the phase locking procedure twice, and on the second pass use 
the orientation differences as a weighting to prevent false matching.

8.4 M eth od

Here we present the algorithm that was used to estimate disparity using 2-D Gabor filters. 

The basic details of the algorithm are explained in chapter 6 . The algorithm functions with 

a simulation o f a Phase-locked loop with a single estimate of horizontal disparity taken at 

each pixel of a compressed image. We therefore have assumed an epipolar constraint. As 

previously, the algorithm works from coarse to fine scales of filtering. For the remainder 

o f this chapter, we will discuss alternative methods for disparity measurement. The basic 
structure of the Pseudo-code will not change, and will therefore only be presented once.

P seudo-code

Defi ne.Con vol ve( ) 

For i =  allocates
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For j  =  Number.of_filters_at_each_scale 

For x,y =  every_pixel_position_at_eachjscale 
For k =  Every orientation 

(
/*  Create five dimensional arrays containing the modulus-Argumcnt representation 
of both images convolved with a quadrature filter at each pixel, scale and orientation. * / 

^[*»y][*][j][*] =  A rg[I,(x ,y ,i) * 9(O j,0k,x ,y )];
=  Arg[Ir(x ,y ,i)**(<T j ,0k,x,y)]-,

= |fi(*.y»*') * I;
£ r [x ,y ][« ']L 7 p ] =  \ I r ( x ,y , i )  ♦ *(<rJ,0 fc,x ,y ) | ;

}
Uegin_program

ReadJmage();

Subtract_d.c_froinJinage();

O.D =  0 ;
Compress_image_with_Compact_Pyramid(//(x,y,»),/r(:r,y,t)); /*  Returns compressed data */ 
Convolve();

For i =  first_scale to last_scale step 1

<
For j  =  first Jn_each_scale to lastJnjeach.scale step 1

<
For x,y =  first.pixel to last.pixel step 1

{
d =  (int)Z7([z,y]; /*  integer disparity estimate */

/ ’  Pass -<*.»][•JUKI,
/*  to a proceedure that returns the horizontal component of disparity (D dx) only * /

/* Disparity measured using the center frequency o f the filter * /

Solve-weighted_fit-disparityostimation(Drfx);

A p »  y]+ = Atei

}
Smooth_disparity_bufrer.with_truncated.parabola();
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)
Expandjlisparity_bufler(); /*  Inverse of compress */

= Ẑ fc[] * 2  ; /*  Mutiply disparity estimates by 2 * /

)
Printout Z?fc[];
End_program

8.4 .1  Discussion and Results

We present our first results to the 4 test raster lines that we have used in chapter 4 (fig.8.5). 
Results have both increased in stability and also improved in accuracy by this method of 
filtering. This can be seen by comparing the data presented in Appendix A. This is not the 

case for figure 8.5a. Here we notice that we have incurred an anomalous depth estimate around 
pixel position 80. Examination subsequently revealed that this was owing to aliasing at the 
lowest spatial frequencies. The remainder of the results, however, are significantly improved 

from the 1-D study. In particular, we have not observed any aliasing in figure 8.5.d, which was 

a problem in 1-D for this particular sequence. We point out, that no vergence mechanism was 
incorporated into this particular algorithm, and therefore we would expect to improve on our 
results significantly by adding this feature to our algorithm. We have not included a recursive 

filter operation or a Willsky phase damping term because we have not found these additional 

damping factors essential, at least for these stereo pairs. This is partly owing to the weighted 

fit that we can now use to improve the measurement of disparity. We stress that resolving 

the horizontal component o f disparity implicitly introduces an orientational damping which 
could be conceived as a similar weighting in 2-D as the Willsky error measure that was used 

in chapter 4 and proposed by Wilson and Knutsson[100]. Since, we have already improved 

our results on this basis alone, we immediately present a depth response from our control 
pair o f images shown in figure B.l. This is shown in figure 8 .6 , where we have also shown 

the disparity estimates through the scales of resolution.
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Figure 8.5: Disparity estimates obtained by applying equation (8.20) to (a) Figure B.3, 
r=0.88; t  =  -0 .51 ; o n =  0.20. (b)  Figure B.2, r=0.96; X =  -0 .99; on =  0.23. (c) 
Figure B-4, r=0.93; X =  -1 .87 ; on =  0.34. (d) Figure B.5, r=0.96; X =  0.17; o n =  0.20. 8 
orientationally selective filters were used with aspect ratio l : t  and tuned to 1/8 cpp. Images 

compressed to 16x16 at the lowest resolution.

8.5 B iologica l plausibility

Perhaps it is advisable to turn to biology as a reference guide for possible solutions to the 

stereoscopic aperture problem. Maske et al[70], studied the response patterns from orienta- 

lionally selective cells in the striate cortex of the cat to simple bar stimuli. They were in­

terested in investigating the claims by Bishop and Pcttigrcw[G] that only cells with preferred 
stimulus orientation near to the vertical can make significant horizontal disparity interpreta­

tions. They showed that cells that were sufficiently end-stopped can make precise horizontal 
disparity discriminations, independent of the optimal stimulus orientation. They also showed 

that end-free cells were only effective for the measurement of horizontal disparity providing
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Figure 8.6: Intensity disparity image produced from figure D .l. 8 orientationally selective 

filters with aspect ratio 1:1 were used tuned to 1/8 cpp. Images compressed to 16x16 at the 
lowest resolution.
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d. Disparity lot 128 x 128 subsample
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Figure 8.7: Surface map showing disparity from figure 8.6 through the resolutions o j subsam­

pling with the Compact Pyramid Code.



162 CHAPTER 8. TWO-DIMENSIONAL ANALYSIS

Figure 8 .8 : Disparity estimates obtained by applying equation (8.20) to (a) Figure 13.3, 
r=0.86; X =  -1 .0 ; on = 0.22. (b) Figure D.2, r=0.9G; X =  -0 .97 ; <r„ =  0.23. (c) Fig­

ure D.4, r=0.87; x =  -3.47; on =  0.56. (d) Figure D.5, r=0.96; X =  -0.05; <7 n =  0.20. 12 
orientationally selective fdters were used with aspect ratio 1:1 and tuned to 0.25 cpp. Images 

compressed to 16x16 at the lowest resolution.

their preferred orientations were near to the vertical. We have also obtained similar results 

which we interpret as a direct consequence o f  the stereoscopic aperture problem. We have 
already shown that the receptive field profile o f our corner detector has a similar form to the 

end-stopped cell. We suggest there is no justification by applying the receptive field profile 
of the end-stopped cell as a single operator to obtain translational disparity. This is because 

we lose the orientational phase information from the orthogonal filter pairs. Indeed, this is 

the very notion that we are relying on from equation (8.14) to obtain unambiguous measures 

for both horizontal and vertical disparity.

It appears that biological systems have also recognised the stereoscopic aperture 

problem and has dealt with the problem in a logical manner: In the presence o f regions which
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Figure 8.9: Intensity disparity image produced from figure B .l. 12 orientationally selective 

filters with aspect ratio 1:1 were used tuned to 0.25 cpp. Images compressed to 16x16 at the 

lowest resolution.

exhibit orthogonal signals (i.e corners) the stereoscopic aperture problem may be resolved 

into both horizontal and vertical components of disparity. This naturally follows from the 

motion aperture problem. However, unlike the motion aperture problem we know from the 

cpipolar geometry constraint that disparities expected in the direction of the horizontal axis. 
Since we have a confidence measure for both corners and edges, we can therefore propose to 

disambiguate this situation. We suggest:

Dh =  CtdgtdKe +  (1 -  Cedgt)dhc (8.21)

where Dh is the measure for horizontal disparity at a given scale and position in the image 
function, and Cedge is the probabilistic measure for edgeness and dhe ,dhc represent the hor­

izontal estimates for disparity in the presence and absence o f  edge information respectively. 
We choose this form, because we have seen that edge information gives rise to a particularly 

large energy response. Since the aperture problem is consequence of directional image energy 

we suggest it is sufficient to detect the presence and absence of edge information only. This
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holds the advantage of not requiring a description to any arbitrary response pattern (tex­

tures) that may occur from the circle of filters. The vertical component o f disparity is then 

similarly obtained from:

where the subscript ‘ v’ denotes a vertical component[55).

8.6 Dealing w ith  the stereoscopic aperture p rob lem

Having spent some time discussing the issues involved with stereopsis and the aperture prob­
lem, we require a solution. First, we could simply restrict our analysis to the 1-D case, by 

the application of a single 2-D filter with horizontal spatial frequency preferences. This im­
mediately removes all the issues that we have discussed. We would still expect considerable 
improvements over the results presented in chapter 4, since we would now be dealing with a 

filter whose spatial characteristics were two-dimensional. Indeed this is also the case which 
we observe in figures 8.12 and 8.13. Results have improved in stability by comparison to 
chapter 4, since we have iterated the phase locking procedure using only the center frequency 
of the filter to interpret disparity, the Willsky error measure to damp phase differences, and 

also applied our parabolic window to smooth the data. This is similar to the algorithm pro­
posed by Wilson and Knutsson, however, but we have refrained from iterating more than 
once through each scale and still smoothed at each resolution to avoid local instability.

As an alternative consider applying filter pairs so that we restrict the orientations 

from which we extract horizontal disparities. Thus we restrict the application of filters with 
spatial frequency orientations between ± ^ , which immediately permits a weighted estimate 
of disparity in the same manner prescribed before, but with the additional advantage that 

we resolve our estimated disparities by:

Where cos(0,) represents the orientation of the ith filter from which disparity is interpreted. 

We would then anticipate estimating the final disparity estimate in a least squares sense from:

Dv = (1 - C tJar)dvc ( 8 .22)

n =  1,3,.. (8.23)

EL- f  v)Dhi (8.24)
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which we would anticipate to assist in the phase locking process. The problem that we have 

introduced by applying orientationally selective filters, becomes clear by the division o f the 

cosine of the angle, since we cannot define a horizontal disparity for filter pairs with vertically 
oriented spatial frequency preferences. This risks entering a pole into the above expression, 

which cannot be tolerated.

A further option would be to include a weighting function which approximated -J 1̂  

for say the first radians and then rapidly tends to zero at x / 2  radians, i.e:

which approximates the property that we require. This would then enable us to extract 
the phase information from all our filters in a circle. Alternatively, we could apply a cosine 

weighting function to our energy responses i.e:

to reduce the bias for vertical disparity sensitivity. We choose our solution based upon the 

neurophysiological data, i.e we apply equation (8.14) to obtain our vertical and horizontal 
estimates o f disparity, and we also extract an estimate of disparity horizontally based upon 

filters with orientation preferences of jr/4 towards the horizontal, which arc then resolved to 
interpret horizontal components of disparity from the least squares measure obtained from 

equation (8.24). This scheme holds the desirable property, that all the other oriented fil­

ters that are also applied in the circle, are in fact orthogonal to at least one filter whose 

disparity is resolved horizontally. We could then apply equation (8.21) to obtain our horizon­
tal component of disparity, with the corresponding vertical estimate obtained from equation 

(8.22).

The horizontally resolved estimates for disparity interpretation are presented in Ta­
ble 8.3 for the same stimulus as in Table 8.2. Improved accuracy may also be obtained from 

extracting the horizontally resolved disparity from equation (8.24) from a circular band of 

filters and excluding the filter with horizontal orientation preferences (Table 8.4), since equa­
tion (8.24) will still contain an error in disparity interpretation from a feature oriented at an 

angle less than ^ radians. We presents results from this experiment in figure (8.10).

»7 = 1  -f Oi sin 0 , (8.25)

Ei{0i,Vi,Ui;x,y) =  £<(0 ,- x ,y )  cos 0 ; (8.26)
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Orientation difference (rads) Dk Dv Pe

0 2.77 0.09 0.95

x / 8 2.56 0.09 0 . 8 8

x/4 2.75 0.05 0 . 6 8

3jt/8 2.80 0.03 0.37
x/2 2.96 6.7 E~3 0 . 0 1

Table 8.3: Horizontally resolved disparity estimates from a pair o f  sine plaids with orientation 
differences. One grating was maintained at an orientation o f  t /4  radians. Doth gratings and 
8 orientationally filter pairs tuned to 1/8 cpp. Horizontal disparity of 3 pixels introduced into 
the stereo pair. Far right column shows edge probability estimate given.

Orientation (rads) Dh Du

- 3 tt/8 3.10 -0.07

- jt/4 3.08 -0.09

-7t/8 3.04 -0.06
0 3.05 3.10£ " 8

jt/ 8 3.04 -0.06

jt/4 3.10 0.06
3jt/8 3.04 0.09

* / 2 0 0

Table 8.4: Horizontally resolved disparity estimates for a single grating and 8 oricntationally 

selective filter pairs tuned to 1/8 cpp. Only the horizontally oriented filter was prevented from 

contributing in this case. Sine grating varied in orientation. Horizontal disparity o f 3 pixels 
introduced into the stereo pair.
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Figure 8.10: Disparity estimates from applying 8 orientationally selective 2-D filters tuned 
to 1/8 epp with aspect ratio 1:1 to (a) Figure II.3, r=0.86; 2 = —0.42; o n — 0.21 . (b) 

Figure 11.2, r=0.96; £ =  —1.60; an =  0.29. (c) Figure B.5, r=0.95; £ =  —0.58; on =  0.22. 

(d) Figure B.f, r=0.89; £ =  -2 .11 ; <r„ =  0.41. Edges resolved horizontally.

8.7 2-D  Spatial derivatives o f  Phase

There are now two options that we might now consider by applying the spatial derivative of 
phase to interpret our measure of instantaneous frequency. In the first instance, we could 

consider applying our filter pairs arranged in a circular cluster. Therefore, instead of extract­

ing information from a band of filters located at the same pixel location, we extract phase 
information from a band of filters which lie on a circle of radius (r ) on the image domain, 

relative to a point of interest. This technique would enable us to extract the directional 
derivative of phase from filter pairs with similar orientation preferences, but separated by 

the spatial diameter of the circle that they lie on. Naturally, to implement this notion cor­

rectly and efficiently, we would require an image that has been sampled isotropically. The
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Figure 8.11: Intensity depth image using the horizontally resolved component of disparity as 
displayed in figure 8.10.

hexagonal lattice would provide a natural image basis for this notion because it holds these 
properties, and is presumably the reason why biological systems also use a similar sampling 

array on the retina of the eye. Unfortunately, conventional sampling arrays do not exhibit 
these isotropic properties. In view of this, we apply the 1st directional spatial derivatives of 

our Gabor functions to estimate the instantaneous frequency o f our image ficld[56]. However, 

stationary phase presents considerable problems for disparity interpretation by this method. 
At an edge, instantaneous frequency varies as a Willsky error (fig. 8.16). This response is 

owing to two contributing factors. First, there exists a cosine weighting based upon the 

difference in orientation between filter and stimulus. Second, there lies an additional cosine 

weighting owing to the radial sensitivity of the filter in the frequency domain. This results 
in a Willsky error. Resolving horizontal and vertical components of disparity under these 

conditions is difficult. However, in this case we can propose a frequency domain model of:

%
l *(■

divu>„ I  +  defu;0 M
1  0

0  - 1
(8.27)
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Figure 8.12: Disparity estimates from applying a single 2-D filter tuned to 1/8 cpp with aspect 
ratio 1:1 to (a) Figure B.3, r=0.90; t  — 1.03; o n =  0.21. (b) Figure D.2, r—0.94; 2 =  -0.95; 

on =  0.29. (c) Figure D .f, r=0.91; i  =  0.31; on =  0.29. (d) Figure D.5, r=0.95; 2 =  0.27; 
on =  0.23.

where M  refers to the principle axis of the deformation and T) is a paramter. Unfortunately, 
using the directional instantaneous frequency in this case does not lend naturally to the direct 
interpretation of disparity. This can be seen from figure 8.16. Perpendicular to the orientation 

of the signal lies a d.c component which is indicated by the instantaneous frequency term 
passing through zero. It is not possible to continuously interpret disparity orthogonal to an 

edge or line using instantaneous frequency because the phase advance is stationary. We can 

also see from the assumptions made on corner detection, that the instantaneous frequency at 
a corner will oscillate as a function of orientation at twice the frequency of an edge. There is 

therefore no direct model o f instantaneous frequency behaviour as a function of orientation.
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Figure 8.13: Intensity disparity image produced from figure D.l using a single horizontally 
oriented 2-D filter as in figure 8.12.

A t  an  e d g e /b a r  w e c o u ld  a p p ly  a  w e ig h te d  least sq ua res fit:

E * F  = E f (8.28)

where f  refers to the measured instantaneous frequency vector /,■(£,■) E refers to the product 

pre-envelope weighting used in equation (8.13), $  =  [cos#,-,sin0,, 1] refers to the orientation 

of the »th filter with the added constant that requires evaluation (i.e the d.c term now present) 

with F  =  [0 1 , 0 2 , 0 3 ]^ referring to the coefficients of the constant and oscillatory part o f f  
that we wish to measure. Because o f the difficulty in representing a suitable model, we have 

chosen a weighted mean instantaneous frequency to interpret disparity. For example in the 

left image we would have (fiav):

(8.29)
v)

We have also applied the same thresholds as we have applied in the 1-D case, based 

upon the disparity gradient limit, and the upper and lower cut-ofT frequencies of our filter 

pairs. At present, we take a weighted average of spatial frequency as the threshold parameter.



8.7. 2-D SPATIAL DERIVATIVES OF PHASE 171

Figure 8.14: Disparity estimates from applying 8 orientationally selective 2-D filters tuned 
to 1/8 epp with aspect ratio 1:1 to (a) Figure B.3, r—0.82; £ =  —0.98; o „  =  0.23. (b)

Figure B.2, r=0.95; £ =  -1 .5 ; an =  0.30. (c ) Figure B.5, r=0.95; £ =  -0 .88; an =  0.24. 
(d) Figure B.f, r=0.91; £ =  —2.4; on =  0.40. The directional component o f sjmtial frequency 

was weighted and used to interpret disparity differences. Thresholds were applied similar to 

those used in chapter f.

Some results from applying this technique arc presented in figure 8.14. Where equation (8.12) 

is now modified to:

E * D  =  E <f>A (8.30)

where <f>,\ now represents a vector that contains the phase differences between quadrature 
filter pairs at similar orientations in the left and right images.

We can propose a better method o f disparity measurement that is based upon the 

derivative of phase resolved in the horizontal direction. Here we extract phase from our circle 

of filters, and obtain the horizontal derivative o f phase from the output response of each filter
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Figure 8.15: Intensity disparity image using the same parameters as figure 8. Im­

pair. i.e we form:

1  dtf>(x\0) 
2 jr dx /.» (* ) (8.31)

where /,/,(*) refers to the horizontally resolved frequency component extracted from the
quadrature pair o f filters whose orientation is given by 6. It is also possible to obtain the

phase gradient of equation (8.31) by using quadrature filters and their derivatives with an

isotropic envelope by a modification o f equation (3.17):

d<t>(x,0) h{ux\ x , y)h(uj, u,; i ,y )  -  A(ux; x,y)h(uj, t>,; x, y)
dx ~ E*(ux-,x,y) ( " }

with /i(ur ; x ,y )  +  jh (u x ; x, y) as Hilbert Transform pairs with horizontal directional prefer­

ences, and h(ui,Vi\x,y) +  jh (u i,V i;x,y) as Hilbert transform pair derivatives taken at an 
arbitrary orientation.

We therefore obtain the frequency for interpreting horizontal disparity by:

Eiïo iWft, »i.«<;*,») + ESo £,<(*,»„ «,■;*,»)
and obtain a least squares phase difference from equation (8.30).

(8.33)



8.8. DISPARITY ERROR IN TWO DIMENSIONS 1 7 3

Figure 8.16: Instantaneous frequency from 12 oriented filters and their directional derivatives 
with center frequency at 1/4 cpp. (a) Edge response showing a Willsky error in instantaneous 

frequency, (b) Sine grating (1/4 cpp) with vertical orientation (Fourier domain): only a 
cosine error exists in this case.

8 .8  Disparity E rror in T w o Dim ensions

A final method of disparity measurement in two dimensions follows from the observations 

in chapter 4, that the method of phase differences reduces to a Newton-Raphson iteration. 

From equations (8.12) and (8.27), it is clear that we are assuming that the disparity can 
be represented by a vector, and instantaneous frequency can be modeled as a second order 

tensor. It is straight forward to realise that at a given scale of filtering the iteration of 
disparity measurements can be defined by:

D(n+0 = D 1" 1 + (8.34)

where Dl” l = [dz,dv]T refers to nth iteration of disparity using the horizontally and vertically 
resolved phase difference vector from equation (8.30) and the tensor is:

°-b  d- t

ay ay

(8.35)

where once again, we can apply the local instantaneous frequency from either image to 
interpret disparity. Thus by creating the partial derivatives o f the instantaneous frequency 

field, it is possible to iterate into convergence. Similarly to the one dimensional case, the 

disparity error (c) from the measurement of disparity from the center frequency of the filter
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after one iteration becomes:

(8 .36 )

which retains both horizontal and vertical components. Here |u;| refers to the modulus of 
center frequency of the filter, and D  the disparity.

8.9 C onclusion

Within the context of this thesis, there exist two main approaches which are based upon the 
methods used to interpret disparity:

• Instantaneous frequency

• Center or expected filter frequency

Both o f these methods contain problems in their interpretation. In the first case, an improved 

description of the image signal is possible, and also statements regarding the convergence of 

the phase locking iteration. Unfortunately, thresholds are at present applied to this technique, 
which would be preferable to avoid. The technique of applying a directional component of 
instantaneous frequency to interpret disparity is also difficult because of stationary phase 
problems. It is, however, possible to estimate a mean horizontal component of instantaneous 
frequency by considering the spatial phase derivative taken in the horizontal direction from 
filters with arbitrary orientation. A weighted mean instantaneous frequency can then be 

obtained to measure disparity.

With one dimensional filtering, and using the center frequency of the filter to inter­

pret disparity docs increase the error in disparity measurement and also relies heavily on the 

signal characteristics. Convergence cannot yet be assured with this technique, although we 
have noted some considerable improvements in performance by applying recursive filtering, 
and additionally the Willsky error measure. The two dimensional extension does improve 

results considerably.
The greatest problems that have been found occur with the instability of a phase 

process in the presence of noise. This is particularly true at the higher spatial frequencies 

of analysis. The premise that surrounds a coarse to fine strategy assumes that the lowest 

spatial frequencies present in an image signal will not themselves alias. We have seen, that
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this premise is not entirely reliable and forms the basic weakness o f the algorithms proposed. 
We have, however, reduced this possibility by the examination of the spatial phase gradient. 
Indeed, noise forms an additional constraint, which makes image interpretation particularly 
difficult. Fortunately, within the 2-D framework, we have been able to apply least squares 

functions which reduce the consequences of noisy signals. Which has enabled a considerable 
improvement to stereoscopic computation.
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9.1 Introduction

We will review some work on the computation o f deformation under a stereoscopic transforma­

tion. This work has not yet been incorporated into an algorithm to obtain both translational 
and higher order properties of the disparity field. The methods discussed here, however, 

are relevant in the context of this thesis because they apply some techniques considered in 
chapter 6 , towards the computation of differential invariants of the disparity field.

9.2 The geom etry o f  the disparity field

Let us consider the translation of a non-rigid laminar surface (R ), given by:

R  =  V  +  f i x R  +  F  (9.1)

We have rotational (ilx R ), translational (V ) and deformation (F) components 
which can be used to model the possible transformations of an image plane. Generally, we 
should consider the six possible degrees of freedom that a solid surface can translate through 

and its representation on the image plane. It is more difficult, is to extract any combination 
of these degrees of freedom in representing an object stcrcoscopically. Koenderink and Van 
Doorn[49] considered these transformations in binocular space. They came to the conclusion 

that the local disparity vector field (x (r ))can be represented by:

X<.r +  d r ,r -)  =  *(? ;> •-) +  +  Bd~r + Cd~r + ... (9.2)

Where r represents the 3-D vector of a point in disparity space from the cyclopcan eye. The 
first term describes a rigid translation, the second a rotation proportional to the curl. The 

third term represents the divergence of the image function, while the fourth term relates 

to a deformation. This decomposition is, however, well established within the context of 
continuum mechanics and dynamic equations[69). We will therefore review this field with the 

purpose of re-interpreting the conclusions o f Koenderink and Van Doom.

9 .2 .1  Interpretation o f the Local Disparity Field

From Koenderink and Van Doom, we assume that the local image field is differentiable at 

least twice. In addition we assume that the image field possesses a singularity at the origin
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of our current frame of reference with:

(9.3)

as the Jacobian of the transformation. We assume that it is possible to Taylor expand the 
local velocity or disparity field (there is no distinction between the time and stereoscopic 
sampling for a time invariant system) in the case where the transformations are autonomous. 
We arrive at equations with the form:

=  J x i (9.4)

where the spatial gradient of the velocity vector (v; =  ^ )  may be decomposed into symmetric 
and skew-symmetric parts according to:

dv{
dxj 2x O x j

£^l) +  1i ° Vi
dxi’  2 KdXj d x,

) =  D  + V (9.5)

where D and V refer to the rate o f  deformation tensor and vorticity tensor respectively. 
The behaviour of the above system o f equations are well understood within the regions of 
the linear approximation in the context of continuum mechanics[69] and small deformation 
theory. In particular, since we assume stereoscopic fusion has been obtained at the fixation 
point (singularity) or origin o f our coordinate frame of reference, the local vector field is 
analogous to the material derivative of a continuum. The isoclines ( jj£) under the linear 
approximation exhibit properties that are completely described by the eigenvalues of the 
matrix J  shown above. We show three examples (fig. 9.1) which are particularly relevant:

• Saddle point: Eigenvalues real and of opposite sign.

• Centre: Eigenvalues wholly imaginary.

• Focus: Eigenvalues real and equal sign.

Within this context, compression/expansion transformations correspond to wall sur­
faces (rotations about a vertical axis) that deforms the orientation o f local line elements with 
path lines described by a saddle with principle axis in horizontal and vertical directions (re­

lating to world coordinates). For points that lie along the principle axis of the deformation 
(i.e vertical and horizontal lines) there are only normal strains (stretch ratio). Lines not 

oriented along the principle axis exhibit rotation. If we assume the epipolar constraint, then
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a) Saddle b) Center

(c) Node (unstable)

Figure 9.1: The local differential field o f an image plane obtained from motion or stereoscopic 
transformations represented as isoclines (arrows). The interpretation assumes a singularity 
at the origin corresponding to stereoscopic fusion or indeterminate velocity with det|j7| = 0 .
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coniprcssion/expansion surfaces can be described by both components of deformation and 
divergence. For ground planes (rotations about a horizontal axis), line elements exhibit ei­
ther vertical or horizontal shear. Shear may be decomposed from components pertaining to 

rotation and deformation, with the axis of deformation rotated by ^ radians in relation to 
the deformation field owing to wall planes.

9 .2.2 T h e  D i s p a r i t y  V e c t o r  F i e l d  M o d e l

If we consider équation (9.4) in terms of the linear approximation by a Taylor expansion on 
an image plane we arrive at:

Ht- ai bi X1

H t a2 b2 x 2

where in this case l i s a  parameter 

The matrix:
ai b\

a2 i>2

can be re-written in a pseudo-canonical form as:

(9.6)

(9.7)

1 d O  1 tn 0 l 0 c l O e

2 0 d 2 0 _ w 2 c 0  2 _ e 0

where the decomposition in this case is found from:

(9.8)

d =  <ii + ¿»2 , w =  ai -  62 , c =  a2 +  61 , e = 61 -  <12 (9.9)

and from left to right we have terms approximating to: DIV, DEF0'? , D E F **  and ROT1.

By restricting consideration to the changes in orientation of local line elements, we 
do not consider the contribution owing to the divergence o f the image field. By changing the 
coordinate frame by the Jacobian:

d(xu x2)
0 (r ,0)

we have:'

(9.10)

and also:

f  =  ^[d — csintf +  ujcos 0] (9.11)

'superscripts denote the deformation axes.
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Notice that the deformation component 0 =  f(0 )  is a form of orientation modula­
tion and analogous to frequency or phase modulation that we discussed in chapter 4. Rogers 
and Graham[8 8 ] showed that the magnitude of perceived slant for a surface oriented about 
a horizontal axis (ground plane) was twice that of an equivalent slant but rotated about a 
vertical axis (wall plane). They explained their results by suggesting that the human vi­
sual system uses the local differences in orientation between stereoscopic images to infer the 

magnitude and direction of slant. This is easily explained by equation (9.10). The disparity 

gradient owing to a wall plane is equivalent to an image compression which comprises of a 
divergence and deformation part. In contrast, a ground plane is equivalent to an image shear 
which comprises of rotation and deformation parts. In terms of the local changes in orien­
tation, the shear transformation predicts the anisotropy because of the additional rotation 

term.

9 .2 .3  Ogle’s Induced Effect

Ogle[79] introduced the psychophysical observation that a frontoparallcl image field that is 
magnified along the vertical direction by a cylindrical lens appears rotated about a vertical 
axis. This interpetation is not difficult in terms of the differential invariants o f the stereo­

scopic field, since the action of a single direction of expansion to an image function can be 

decomposed into equal parts of deformation and divcrgcnce[87]. Such a deformation by defi­

nition will also be an irrotational field since by definition the vorticity tensor (rotation) will 

on average vanish everywhere in the field.

9.3 R otational Invariants

Central to the expansion of the local stereoscopic field, lies the concept of vergence, or fusion 

at a fixation point. We consider two techniques[57]. First, we obtain only the rotation 

component of the stereoscopic field using a method that requires a minimal number of filters 

to estimate orientation independent o f quadrature phase. Second, we consider a technique 

that permits the computation of both rotation and deformation.
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9.3 .1  Rotation

We begin by considering a direct method for obtaining the rotation component about the 
fixation point as the differences in local orientation that is independent of quadrature phase. 

This can be seen as the extension to some of the ideas presented in chapter 7. This can be 

effectively obtained by using the interpolative properties o f Gaussian derivatives and their 
Hilbert transforms. Freeman and Adelson[23] considered the second directional derivative of 

the Gaussian which unfortunately requires two additional filters to compute orientation. We 

use the natural tensor representation[47]:

x.x x.y p, + p,  5 . ,  +  « .
y-x y.y ¡i +  Pv

from which the eigenvectors give:

tan 20i —
(il +  W) -  (¡3 +  f y

(9.12)

(9.13)

where lx refers to the operation * l (x ,y )  with G (x ,y )  as a Gaussian smoothing kernel,

I (x ,y )  an image function, and subscripts refer to the directional derivative. lx refers to 
the Hilbert transform of the directional derivative of the Gaussian. It is well known that 
the orientational energy response o f this kerncl[l6 ] with an isotropic envelope varies as a 
function of cos(0 — i]) where i) refers to the orientation of the signal. The energy response 

of its Hilbert transform therefore varies as a function of ^/^(1 +  cos(2(0 -  y)). The real part 

includes a constant term which requires a further filter to estimate. Thus we note that we 
require the minimum of five filters to obtain a phase independent estimation of orientation 

(two odd-symmetric three even symmetric). In equation (9.12) we have applied six to avoid 

interpolation. Since orientation is energy based, we define orientation over 0 G [0 ,jt]. We 

also note in this case, that may be replaced by |/XI| but with a loss in quadrature. The 
rotation (Og) may then simply be found from a careful phase subtraction (since 0 € [0,*]): 

Og =  0i -  0T which can be used to approximate the magnitude of the disparity gradient 

( F )(83]:
sin(0 / - >r) : ; 0  <  0 1 , 0 r < r (9 .1 4 )

sinJ(tfr +  0i) +  sin2 0i sin2  0r 

but only in the absence of deformation. This interpretation o f the disparity gradient has also 

been applied by Brint and Brady[12] to infer a vector direction for edge based stereoscopic
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computation. The application of an isotropic Gaussian derivative does exibit singularity 

problems in the estimation of orientation. One example lies with the intersection of orthogonal 
lines. This can be overcome by the introduction of elliptical Gaussian envelopes but at the 

expense of the geometrical properties o f the filter in estimating orientation.

9.3 .2  Rotation and deform ation

To obtain estimates of both rotation and deformation, we propose to add a higher level of 

processing based upon the energy responses from orientation ally selective quadrature filter 

pairs. We form the analytic signal Z (xi,X2,u ,0):

where ¥ (z i ,Z 2 ,tDy,0 y) represents a quadrature filter pair with both spatial frequency and 
orientational preferences. L and L are directional Hilbert transform pairs formed by bandpass 

filtering.

0 =  | < Oi,0g > | and w =  | < <3,,d)a > | indicate the sensitivity of the envelope 

of 2 (x i ,X2,0,u ) to the 2-D Fourier components in the local neighborhood of the image at 

I(x\,X2,0i,CSi). At an orientation ( 6a) the directional instantaneous frequency (fa )  may be 
found from the directional derivative:

where fy = [cos09 ,sin0y] 7  . That horizontal differences in spatial frequency can be interpreted 

as a slant about the vertical axis (wall plane) was first proposed by Blakemore leading to 

his diffrcquency hypothesis. This is the fundamental operation o f  the phase-locked loop 
implemented by Miller(73] in hardware. This can be easily seen assuming linear phase and 

the expression used to interpret disparity D(x\) from the method o f phase differences in 
1-D[90, 42, 100):

where uq and uT refers to the instantaneous angular frequency used to obtain disparity in the 

left and right image respectively[56]. The horizontal disparity gradient becomes:

(9.16)

ß (*l) ~ ----------  wr*l + *1 -  *r) (9.17)

a i -d P ( * i )  _ . m  -  " t 
dx\ w/ +  wr (9.18)
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which with simple signals is also valid for narrow band disparity modulation. We also make 

the observation that in the temporal domain:

and therefore in this representation stereopsis is indeed a discrete form o f velocity (v) since 
in 1-D:

Equation (9.18) suggests a mechanism for obtaining the stretch ratio between the left to right 
stereoscopic transformation in a specified orientation by applying equation (9.16) to both 

images. In principle it is possible to use the directional instantaneous frequency processed 
in a circle to compute the divergence and deformation between stereoscopic transformations. 

This turns out to be numerically unstable because of singularities in phase space[4l). This 
form o f analysis is analogous to computing the stress forces on a planar surface. In the same 

manner as the rosette formation is commonly used in material science using strain guages, 
we can explore spatial arrangements of filters to obtain deformation. At present, we restrict 

ourself to local operations to illustrate the basic idea.
To avoid the computation o f instantaneous frequency, we use the envelope from 

equation (9.15) and assume both image sensors are fixating at the same point in the world 
at the origin x,(0). We form:

at a single point but different orientations. This defines an energy function from a circle to an 
interval on the real line [0,7r). A similar representation is also computed for the right image. 
Under stereoscopic transformation, the response from the directionally selective filters will 

encode the 1st order slope of the surface by an orientational modulation. We create an 
additional Hilbert Transform pair defined in the left image by:

(9.20)

which is the energy response from 2-D filters with similar spatial frequency preferences applied

p,(0) =  \2,(0t» r,*i(o))\  * x(*,vg) =  s(0) +  js (0 ) (9.21)

where x(0 ,vg) is a 1-D bandpass quadrature filter with centre angular frequency vg. Thus we 
are decoding the disparity signal by the group delay in the envelope[9l] under stereoscopic 
transformation. This also implies that the first order characteristics can also be obtained
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from a direct quadrature phase relationship. We consider the phase in response to Gaussian 

noise[1 0 ]:

The instantaneous frequency is defined by[22]:

Thus we may apply a quadrature pair of filters and their derivatives to obtain the local 
instantaneous frequency[56]. Because \2[(0,uf, x j, Xj)\ is bandpass, Pi(0) is also:

Notice the envelope J?/(t>y,u>j,0) is sensitive to the directional spatial frequencies present in 
the original image. We expand the angular part of equation (9.24), ignoring second and 

higher order terms:

Now assume that fu(0) is approximately constant between 0 and 0 + 60, as is the envclopc[81]:

The violation of this assumption is well known in telecommunications theory and its conse­

quence introduces phase distortion in the carrier signal. To overcome these restrictions it is 

usual to amplify the frequency components present in the passband of interest. This may be 
achieved by the subtraction of the Laplacian. This proposal provides a direct application for 

cells with similar profiles present in biological systems.

(9.22)

P,(0) =  E ,(vg,u,,0)exp[vg0+*(0)\ (9.24)

vg0 +  * (0 )  «  * ( 0 O) + vg0 + *'(0o)(0 -  0o) (9.25)

the local instantaneous frequency is then:

/«(• ) =  + * '( 0 )) =  ¿ V I (9.26)

Ei(vg ,io¡, 0) «  Ei(vg,u i,0  +  60) (9.27)

To illustrate these ideas, consider the transformation due to the slant of a planar 

surface in the right image relative to  the left. We have:

PT(0) =  Er(vg,ui +  6u,z)exp[jviz] (9.28)

where z = 0 + and the local change in spatial frequency (6u) occurs because of stretches 
explained by equation (9.11). The physical interpretation is a signal that is both phase 

(PM ) and amplitude (AM) modulated. PM occurs because of equation (9.10) while the AM
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occurs because of equation (9.11). Since the spatial frequency term in the energy response 
of a 2-D bandpass filter only responds to the modulus of the departure o f the fundamental 

image signal from the centre frequency o f  the filter, the transformed energy response or AM 

signal cannot be uniquely determined in this representation. This is a consequence of local 
stretches of the image field. We therefore have to rely on the orientational phase differences 

to demodulate the disparity signal. Consider the instantaneous frequency of the right image 
by differentiating the angular part of equation (9.28):

«*> " ¿3 ?*» - S*I1 + £# ,  <9 29>
The local diffrequency (fd(0)) between the left and right stereoscopic image pairs becomes:

Using equation (9.24) we can estimate the orientation disparity (Oj(O)) using the method of 
phase differences:

We can track orientational disparities in the form of a 1-D phase-locked loop or take a 
weighted estimate through resolutions o f filtering.

C on sider  from  continuum  m e c h a n ic s , the term  an a logou s  t o  the m ateria/ derivative:

where ij =  tan- 1  **** ;** • The modulus o f  the coefficient in the above term gives the magni­

tude o f the slant. The phase gives the direction of the slant.
An examination of equations (9.18,9.30,9.31) indicates that we can estimate the 

above term by:

since we can consider taking a reference from either image. Therefore difTrcqucncy can be used 
to approximate the slant of the surface, by using the anisotropic behaviour o f  deformation. 
However, because o f numerical difficulties in the computation of instantaneous frequency, we 

restrict our consideration to equation (9.31).

(9.30)

(9.31)

= (a jj — <i i j ) cos 20 + (flu + fl2 i ) sin 20 (9.32)

We can re-write this term as:

(9.33)

(9.33)
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9.4 M e th o d s

To implement this scheme, we have applied Gabor function as our 2-D orientation and spatial 

frequency bandlimited filter. To preserve orientational selectivity over spatial frequency, we 
have applied filters whose envelope aspect ratio is 2:1 in favour of orientation.

We assume that orientational disparities will be small. The risks from aliasing which 
are problematic with a phase differencing technique are therefore reduced. We therefore apply 
a weighted estimate and cyclotorsion as opposed to Phase-locking. From the energy responses 

from the band of filters, we obtain the weighted mean disparity, and diffrequency estimates 
by convolving with the quadrature Gabor function in both images by three resolutions of 

coarse to fine filtering:

where Eir(0,Vj) refers to the product of energy from the 1-D Gabor filters used to interpret 
disparity (fig. 9.2). A similar expression was applied to estimate the local difTrequency. At a 
given scale, we estimate the least squares mean phase difference (curl) using a similar mech­
anism proposed for camera vergence(55], which will act in the same manner as cyclotorsion:

Here S i,S r refer to the 2xM  matrices o f  Hilbert transform pairs (s(0) +  js (0 ))  and Rg 
contains the least squares phase difference. Disparity in this case is interpreted using the 

centre frequency of the bandpass filter x (0 , *>*)• We note that the the curl also defines the 
magnitude of slant about a horizontal axis. Removing the mean rotation also reduces both the 

risks from phase aliasing and disparity error[56] because we increase the range of orientational

S,SrT[SrS rT] - 1 = R , 

SrS|T[S ,S ,Tl-> = R jt

(9.36)

(9.37)

with:
(9.38)

as the least squares phase difference, with coefficients taken from:

R j  —  R j ^  =  2 s in O j
0  - 1

(9.39)
1  0

and

Rj + R j7 — 2cosOÿ I (9.40)
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disparity detection. The remaining disparity signal is now easy to compute. To extract the 

magnitude and phase of the deformation component we make the analogy to the computation 

of orientation[47] using tensor field filtering. We therefore consider the eigenfunctions o f the 
tensor:

(9.41)
0=0 i

where 7* =  [cos0,sin0]r [cos0,sin0]. In this representation, the eigenvalues correspond to 

the magnitude of the deformation, while the eigenvectors correspond to the surface slant. 
Alternatively, we could apply a weighted least squares fit[55]:

E ^ D  = Ed (9.42)

where E is an M xM  matrix with leading diagonal formed from the product of energy re­

sponses. d represents the measured disparities (A fx l), #  =  [cos20,,sin20,-, 1] represents 
the orientation of the ith disparity measurement and the constant refers to the rotation 
component , and D = [ai,a 2 ,<i3 ]T is a vector containing coeficients that relate to half the 

magnitude of deformation resolved into horizontal and vertical components (<ii,a2) with the 
rotation given by (0 3 ).

9 .4 .1  R esu lts

We present some simple data to highlight the principle that we have introduced. In figure

9.2 we show the energy response to an ideal corner that has been subjected to a horizontal 

shear. To obtain the total orientational disparity requires the summation of the rotation term 
to the vertical component of deformation. The energy response maxima correspond to the 

mutual alignment in orientation of quadrature filters located at an ideal and sheared corner. 
The estimated disparity and local diffrequency from subsequent postprocessing the band of 

filters is also shown. We also present a second example taken from a random dot stereogram 

that has also been subjected to horizontal shear. The Needle diagram (fig. 9.3) indicates the 
direction and magnitude of the disparity gradient in the absence of translational disparity.

9.5 C onclusion

We have shown, that the first order differential transformations o f slanted surfaces can reduce 

to differences in spatial frequencies between left and right stereoscopic image pairs. Thus we
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Figure 9.2: (a) Energy response at an ideal com er, (b) Energy response after horizontal shear 
taken at the fixation point, (c) Orientation disparity. Curl estimated at 0.148 rads, Def was 

esimated as: Dxi = -0.0065, Dxi =  0.1224 rads. Actual disparity gradient at 0.254 ra</s 
with an error of 0.016 rads, (d) Weighted diffrequency estimates.
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Figure 9.3: T op  Random dot stereogram subjected to a modulated horizontal shear. B ottom  
Disparity gradient vector field.

have combined the theories of Blakcmore[7] and Koenderink and Van Doorn[49] into an 
equivalent representation. Naturally, this scheme can equally be applied to visual motion.

There are two situations that require clarification given the methods proposed in 

this paper. Firstly, consider the case that the local image field contains strongly directional 
energy. The local image field will only experience rotations or divergences depending on the 

slant o f the surface, and orientation of the signal. In the case of an isolated but elongated 

line, the local stereoscopic field will only amount to a rigid rotation. Secondly, consider the 

case o f an elongated pair of lines that bisect the principal axes of the deformation component. 
Under these conditions, the local image field will also only be observed as a rigid rotation. 
We have proposed a technique that restricts consideration to rotational differences.

These approximations to the local behaviour o f  the disparity vector field draw inter­
esting conclusions regarding the architecture of the human visual cortex. In view of the large 

receptive field of orientationally selective filter that we apply, we do not expect a considerable
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change in orientational energy between neighboring points. To avoid circular convolutions 

at each point, we can propose that the 1-D phase locking iteration can be performed by 
stretching the M orientation samples at each point onto a linear array, and applying the 1-D 

operators over neighboring pixel locations. From this point of view, the architecture of the 

human striate cortex is highly suited towards the type of processing proposed in this paper.
To incorporate these ideas into the algorithm presented in chapter 8 is an area of 

further research. A correct solution is out of the scope o f this thesis. However, creating 

a further Hilbert Transform pair from the Energy responses of quadrature filter pairs and 
tracking orientational disparities from phase differences is a natural application of the method 

of phase differences.
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Figure 10.1: Random Dot Stereogram showing a four layered surface.

10.1 Sample Im agery

To highlight the extent of the work in this thesis, we present a small sample of stereoscopic 
intensity surfaces to a small selection of artificial and real data. Unless otherwise stated, all 
images were compressed under the Compact Pyramid code. The figure captions also include 

a reference to the proposed algorithm within the context of this work.

10.2 R andom  D ot Stereograms

We present a single example from a RDS stimulus. The stimulus comprises of four depth 
layers with disparities of 0 pixels, 5 pixels, 10 pixels and 15 pixels in the central region 

(fig 10.2). The stereoscopic pair has maximum entropy since 50% dots are black and are 

randomly distributed in the field. Results are presented for both 1-D and 2-D filtering 

techniques. Since the epipolar constraint is rigidly adhered to and there is no added noise, 

the 1-D Phase-locking algorithm has given the most accurate results.
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Figure 10.2: Intensity depth surface obtained from a 1-D filler. Disparity interpretation using 

the local instantaneous frequency. See section 6.7. f .

Figure 10.3: Intensity depth surface from Phase-locking with 12 orientationally selective fil­

ters (1/4 epp) interpreting disparity with the centre frequency o f the Gabor function. See 

section 8.4 .
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Figure 10.4: Disparity obtained from the Random Dot Stereogram in figure 10.2. Raster line 
128 presented, (a) 1-D filter (1/8 epp) (b) 12 2-D filters (1/4 epp) aspect ratio 1:1.

10.3 T he Pentagon

This image pair has received considerable attention over the years as a stereo sequence 
(fig. 10.5). We haved passed this sequence through several of our proposed algorithms which 
we show as a scries of intensity depth measurements in figures 10.6 to 10.8.

10.4 T he Tennis Snack

This image pair highlights a potential problems with the Phase-Locking iteration owing to 

the sparse image detail. The algorithm is noise sensitive under these conditions. Within 
this stereo pair, the fixation point lies in the plane of the image with the lunchbox and ball 
with negative disparity relative to fixation. Two image disparity intensity surfaces arc again 

presented for a 1-D and 2-D Phase-locking algorithm (fig. 10.10 to 10.11).
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Figure 10.5: An arid view o f the U.S Pentagon. Disparities were less than 4 pixels in a 
256x256 reduction o f the original image.

Figure 10.6: Using a 1-D filter (1/8 cpp)  and local instantaneous frequency to intepret dis­

parity. Histogram equalization was used to enhance the stereo features o f this image. See 

section 6.7.4-
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Figure 10.7: 12 orientationally selective filters (1/4 cpp) used to interpret a horizontal com­

ponent o f disparity. See section 8.4.

Figure 10.8: 12 orientationally selective filters (1/4 cpp) and their derivatives were used to 
obtain the instantaneous frequency and interpret disparity. See section 8.7.
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Figure 10.11: 12 orientationally selective (1/4 epp) filters used to interpret horizontal disjmr- 
ity. Sec section 8.4■
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11.1 C ontribution  to  know ledge

We have proposed a technique that can in principle obtain both vertical and horizontal com­
ponents of translational disparity. By interpreting the findings from neurophysiological data, 

we have proposed a weighted solution, by which vertical components of disparity are only 
obtained in image regions that contain orthogonal signals, while horizontal disparity is ob­

tained from a weighted probabilistic measure to resolve a horizontal component of disparity 

based upon the presence and absence o f edge information alone. Indeed, the corner proba­
bilistic measure that we have found is also new, which followed directly from the recognition 
o f  the stereoscopic aperture problem and the work of Wilson ct al [48]. To a lesser degree, we 

have proposed a different interpretation of the disparity gradient in frequency space. From 
a theoretical standpoint, we have obtained a formalised proof which indicates the conditions 
in which the Gabor function can be approximated as a quadrature filter.

More importantly, we have shown that the method of phase differences can be ap­
plied to real image data to extract depth information from a stereoscopic pair of images. 
The work has yielded two related interpretations of disparity. Firstly, the phase difference 

equation may be interpreted as a distance by the center frequency of the applied band-pass 
filter pairs. Even though this expression requires considerable damping with a 1-D filter, its 

least-squares extension into the 2-D image plane yields particularly pleasing results. This is 
because the mathematical operations are linear and final depth surfaces are obtained with­
out any form o f thresholding process. In the second place, we have used the instantaneous 
frequency obtained from the derivative o f phase to directly interpet disparity. This technique 

does, however, retain difficulties in its implementation in 2-D images because of stationary 

phase.

While the latter method retains an improved description of the image and can im­

prove the interpretation of disparity, it inherently holds instability problems associated with 

stationary phase, which we prove is due to interference. We see little alternative at present 
but to apply a series o f thresholds to restrict the analysis from these image regions, although 

we have inferred that it is possible to weight out these regions by filtering between and across 

scale of filtering. Fundamental to the method of phase differences lies the notion of disparity 
smoothing at each resolution of filtering which is the dominant operation required to obtain 

stability. Finally, we should gratefully acknowledge that the original notion for the method
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of phase differences was independently conceived by botli Larcoinbe [58] and Wilson [100] 
who are both at present lecturers in Computer Science at the University of Warwick. These 
notions have, however, been independently extended into a plausible theory for Computer 

Vision.
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11.2 Further C onsiderations

There are a number o f  areas that still require further work. We have already inferred, that 
the method of phase differences is suitable for the extraction of translational and compres­

sion/expansion deformations between corresponding image pairs. Within this context, we 
suggest that the methods proposed in chapter 8 can be used to obtain approximate corre­
spondence or the translation part of the disparity field.

Phase wrap-around is a problem. We have inferred two conditions by which this 
problem may be reduced by either a vergence mechanism or phase-locking iteration. From 
the geometry of stcreopsis, we could equally enforce a left to right matching paradigm (which 

would require truncating to zero disparity estimates below a given minimum) or take an 

ensemble of averages from several views of the same scene, but with vergence initiated from 

different starting positions. A Phase-locking iteration is sensitive to noise and is particularly 
concerning with sparse image detail. There are two avenues that might be persued to reduce 
this problem: Firstly, the Phase-locking iteration may be perceived as an attractive force. 

Stability would be expected to improve, if a suitable counteracting mechanism could be 

found. Secondly, recent work has involved the notion of applying a Phase-jmss iteration, 

which in terms of a Phase-locking iteration in phase space is analogous to bandpass filtering 

the frequency domain. Improved noise sensitivity is the main aim with this technique.

Future work must also combine further feature based stereopsis, perhaps with the 

methods proposed in this thesis. We know from the extensive psychophysical studies and 

intuition, that stereopsis is neither wholly described by low or higher levels image descriptions. 

Ultimately, we should consider both the advantages from feature based analysis and those 
obtained from the methods presented in this thesis. In particular, we could begin to from 

monocular depth cues from spatial pattern recognition. Indeed, this is an immediate extension 

of our present work on feature analysis, where we improve on our corner detector by extracting 
orientation from a spatially separated band of filters that are applied at a constant radius
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a predefined origin. In this way, we hope to disambiguate the problems in the separation 

o f ” Y” , ” X” and ” L” junctions, which we cannot hope to extract from filter pairs that are 

ail located at a single point in space. At the same time we increase the noise sensitivity 
in the detection of corners, since we are now integrating over a greater region of the edges 

present at image corners. Such a scheme also would hold particular advantages in stcrcopsis, 
because we would not generally wish to bring different, but locally indistinguishable features 
into correspondence based upon local operators.
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1-D C O R R E L A T IO N  D ATA

Algorithm Description Figure Correlation (r) Mean ( i ) s.d (<7n)

1-D local energy maxima B.2 4.59 -6.3 0.96

B.3 0.83 -1.70 0.284

1-D local energy maxima with median filter- B.2 0.599 -7.08 1.03

ing.

1-D Wilson and Knuttson Algorithm. B.2 0.39 3.98 1.28

B.4 0.04 -1.77 1.97

1-D Recursive filtering using the B.2 0.88 -3.03 0.52

Gabor centre frequency to interpret B.3 0.95 -1.59 0.83

disparity. B.4 0.93 -1.75 0.34

1-D continuity constraint using 1st derivative B.2 0.93 -1.53 0.33

of Gaussian Hilbert pairs, Compact Pyramid B.3 0.92 0.45 0.15

and instantaneous frequency to interpret B.4 0.93 -3.0 0.46

disparity. B.5 0.96 -0.65 0.20

1-D continuity constraint B.2 0.95 -1.41 0.28

using Gabor filter pairs, Compact Pyramid B.3 0.89 -0.41 0.18

and instantaneous frequency to interpret B.4 0.93 -2.6 0.41

disparity. B.5 0.96 -2.23 0.35

Table A .l: A comparison o f  1-D techniques used in this thesis to the four control raster line 

sequences in figures D.3, D.2, B.f, and 13.5. Data represents the statistical error between the 

manually determined disparity and techniques applied in this thesis.
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2-D C O R R E L A T IO N  D ATA

Algorithm Description Figure Correlation (r) Mean (£) s.d (<7„)

Phase-locking based upon the 

horizontal component of disparity from 

equation (8.14).

B.2 0.96 -0.99 0.23

B.3 0.88 -0.51 0.20

B.4 0.96 0.17 0.20

B.5 0.96 0.17 0.20

Phase-locking based upon the 

horizontally resolved disparity 

estimate using edge probability 

measure.

B.2 0.96 -1.60 0.29

B.3 0.86 -0.42 0.21

B.4 0.89 -2.11 0.41

B.5 0.95 -0.58 0.22

Phase-locking using a single 

oriented 2-D Gabor filter to 
interpret disparity.

B.2 0.94 -0.95 0.29

B.3 0.90 1.03 0.21

B.4 0.91 0.31 0.29

B.5 0.95 0.27 0.23

Phase-locking using the local 

directional instantaneous frequency to 

intepret disparity. Similar thresholds were 

applied than in the 1-D algorithm.

B.2 0.95 -1.5 0.30

B.3 0.82 -0.98 0.23

B.4 0.91 -2.4 0.40

B.5 0.95 -0.88 0.24

Table A.2: A comparison o f 2-D techniques used in this thesis to the four control raster line 

sequences in figures D.S, D.2, D.J, and B.5.
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Figure B .l: Images taken from a room with a 512x512 CCD camera. Data was compressed 
to 256x256 using the Compact Pyramid, (a) Left image (b) Right image.

B .l  Test D ata

The following stereo pairs of images were taken with a 512x512 CCD camera and compressed 
to 256x256 using the Compact Pyramid[15]. Epipolar geometry is assumed with parallel 

camera vergence. The following raster sequences have been consistently studied throughout 

the thesis as a control for comparative purposes.
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Figure B.2: Raster line 110. (a) Left image raster (b) Right image raster.

Figure B.3: Raster line 10 (a) left image (b) right image.

Figure B.4: Raster line 138. (a) Left image (b) Right image.
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Figure B.5: Raster line 118 from figure D.l. (a) Left image (b) Right image. This stereo 

pair sequence proved highly unstable.

Figure B.6: Measured edge based disparity estimates for control 1-D stereo raster lines, (a) 

Raster line 110. (b) Raster line 10. (c) raster line 138. (d) raster line 118.
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