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Mixing Properties for Toral Extensions
of Slowly Mixing Dynamical Systems
with Finite and Infinite Measure

Ian Melbourne * Dalia Terhesiu |

30 November 2015. Updated 28 April 2018.

Abstract

We prove results on mixing and mixing rates for toral extensions of nonuni-
formly expanding maps with subexponential decay of correlations. Both the
finite and infinite measure settings are considered. Under a Dolgopyat-type
condition on nonexistence of approximate eigenfunctions, we prove that ex-
isting results for (possibly nonMarkovian) nonuniformly expanding maps hold
also for their toral extensions.

1 Introduction

In a landmark paper, Dolgopyat [§] obtained results on superpolynomial decay of cor-
relations for compact group extensions of uniformly expanding and uniformly hyper-
bolic dynamical systems. An interesting question is to extend this result to nonuni-
formly expanding/hyperbolic systems, including systems that are slowly mixing or
preserving an infinite measure.

In this paper, we focus on the case when the group is abelian, and consider toral
extensions of a large class of (not necessarily Markov) nonuniformly expanding maps,
including the AFN maps of [31], [32], in both the finite and infinite measure settings.
Under mild hypotheses, we show that sharp mixing results for the underlying map
pass over to the toral extension.

Future projects could include group extensions of nonuniformly hyperbolic systems
including the case of general compact groups. Passing from nonuniformly expanding
to nonuniformly hyperbolic should be straightforward for systems with exponentially
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contracting stable directions, but this is a somewhat restrictive assumption. For
recent substantial progress on the analogous question for nonuniformly hyperbolic
flows and comparison with the group extension situation, see [3] and [22, Section 9|
respectively.

The analysis of compact group extensions divides into the cases where the group
is abelian (a torus) or semisimple. As seen in [§] (see also [I1]), it turns out that
the toral case raises more technical difficulties, though the semisimple case is more
complicated in terms of notation and prerequisites from representation theory. In
this paper, we have chosen to focus on the technically harder toral case; we do not
anticipate any major difficulties in dealing with general compact groups but have not
investigated this further.

1.1 Existing results for nonuniformly hyperbolic maps

Let (X, d) be a metric space with Borel measure u, and let f : X — X be an ergodic
and topologically mixing measure-preserving transformation. Let Y C X be a subset
with pu(Y") € (0,00). We define the first return time 7 : Y — Z* and first return map
F=f":Y —Y given by

T(y) =inf{n >1: f"y €Y} and F(y) = fT(y)(y).

Under certain assumptions on F' and 7, it is possible to obtain sharp mixing properties
for f. More specifically, we assume that

(i) The first return time 7 : Y — Z7 is either nonintegrable with u(y € Y : 7(y) >
n) = £(n)n~" where 8 € (0,1] and ¢ is a slowly varying functionl} or integrable
with u(y € Y : 7(y) > n) = O(n™") where 8 > 1.

(ii) The first return map F' : Y — Y fits into the appropriate functional abstract
framework with suitable Banach space of observables B(Y) C L'(Y') with norm
| || (see [12, 27] for the finite measure case, and [24] for the infinite measure
case).

Under conditions (i) and (ii), we recall the following results from [12, 27] and [24]
for the map f : X — X and observables vy, wy supported in Y with vy € B(Y),
wg € L>®(Y). Let vg = fY vo dpt, Wy = fY wo dt.

In the infinite measure case, define

= BEOD g, [asinAm 80D
S LG B=1 1, B=1

1A measurable function £ : (0,00) — (0,00) is slowly varying if lim,_,, ¢(Ax)/¢(z) = 1 for all
A>0.

(1.1)




If 8 € (3,1], then

lim g(n)nl_ﬁ/ vo wo o f" dp = dgtywy. (1.2)
Y

n—oo

If p < %, or if 8 < 1 and either vy = 0 or wy = 0, then

/ vowo o fdp = O(L(n)n ™" |lvo|||wo|se)- (1.3)
Y

In the finite measure case, we normalise so that p is a probability measure on X.
For alln > 1,

/ Vo Wo © fn d,u — @0@0 = ZM(T > j)@owo + Eﬂ(n)||vo|||w0|oo, (14)
Y

i>n

where Eg(n) = O(n) for 8 > 2, Eg(n) = O(n~2logn) for f = 2, and Ez(n) =
O(n=®2) for 1 < B < 2. Also Eg(n) = O(n™?) for all B > 1 if vy = 0 or wy = 0.

Remark 1.1 The precise functional analytic hypotheses mentioned in condition (ii)
play no role in this paper; we use only the consequences (1.2] - 1.4])) for fY vo woo [ dpu.
A special case is when F' is a full branch Gibbs-Markov map with B(Y") taken to be a

space Fy(Y') of Lipschitz observables (see Subsection|1.2/and Section [3|for definitions.)
For nonMarkov examples, see Subsection [1.3|

1.2 Toral extensions

Set up In this paper, we prove analogous results for toral extensions of nonuniformly
expanding maps f : X — X satisfying conditions (i) and (ii). We assume further
that there exists Z C Y C X (possibly Z = Y) with u(Z) > 0 and a return
timeﬂ ¢ Z — Z" (not necessarily a first return time). Define the return map
G=f¢:7—Z G(z)= f*®z We assume:

(iii) there is a measure puz on Z equivalent to p|z and an at most countable mea-
surable partition a of Z such that ¢ is constant on partition elements and
ged{p(a) : a € a} = 1. Moreover, there are constants A > 1, n € (0,1], C; > 1,
such that for each a € «a,

(1) G :a— Z is a measure-theoretic bijection.

(2) d(Gz,GZ") > Ad(z,2') for all 2,2’ € a.

(3) g =log dd“z satisfies |g(z) — g(2')] < C1d(Gz,GZ')" for all 2,2’ € a.
(4)

9=
4) d(fz, ft2') < C1d(Gz,G2') for all 2,2' € a, 0 < £ < ¢(a).

2 A function ¢ : Z — Z71 is called a return time if f#*)z € Z for all z € Z.
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In particular, conditions (1)—(3) mean that G : Z — Z is a full branch Gibbs-
Markov map with partition . Such maps are discussed further in Section [3|

(iv) There exists p : Z — ZT constant on elements of the partition « such that
G(z) = FP@z for 2 € Z. Moreover, uz(z € Z : p(z) > n) = O(e™") for some
¢ >0, and if a € a, then 7o F7 is constant on a for all j < p(a).

Assumptions similar to (iv) were considered in [5].

Remark 1.2 Note that p =7,: Z — Z*,

0(2) = Tye(2) = T4 Hr o Y.

It follows from assumptions (i) and (iv) by an elementary calculation [20] (see also [6,
Theorem 4] that pz(p > n) = O(n=") for any specified 8’ < 5. Moreover, it suffices
in (iv) that uz(p > n) = O(n™9) for ¢ sufficiently large.

In certain situations, including the examples in Subsection [1.3] it is possible to
achieve 8 = 3. However, this does not lead to improvements in our main results,
so we generally ignore this possibility. (On the other hand, the upper bound result
Corollary does depend on the specific decay rate for puz(¢ > n).)

Let h : X — T? be a measurable map; following standard conventions we refer
to h as a cocycle. We assume that h is C". (More precisely, view T¢ as a compact
group of diagonal d x d complex matrices with distance | |. We require that |h|, =
sup,z, [h(z) — h(z')[/d(x,2")" < oc.) Form the toral extension

fo: X xT? = X x T fu(z,v) = (fo, ¢ + h(z)).

The product measure m = u x di) is fj,-invariant.

It is necessary to rule out certain pathological cases, since toral extensions of
mixing uniformly expanding maps need not be mixing, and mixing toral extensions
can mix arbitrarily slowly. Dolgopyat [7, 8] introduced condition (v) below for proving
superpolynomial decay of correlations for suspensions and compact group extensions
of uniformly expanding/hyperbolic systems. Our final assumption is

(v) There do not exist approximate eigenfunctions.

The definition of approximate eigenfunctions is somewhat technical, and so is
delayed until Section |4 where we show that condition (v) holds typically in a strong
probabilistic sense. In Appendix [A] we show that condition (v) holds for an open and
dense set of smooth toral extensions.



Mixing results for toral extensions

Let f: X — X be a topologically mixing map with ergodic invariant measure y and
h: X — T¢ be a C" cocycle, n € (0,1]. We consider toral extensions f, : X x T¢ —
X x T? as described previously satisfying conditions (i)—(v), where condition (ii)
can be replaced by the fact that (1.2)—(1.4) hold for observables vy € B(Y) and
Wy € LOO(Y)

Let v : X x T% — R. For n € (0,1], define |[v|cn = supycpa Sup,., [v(z, 1) —
v(y,¥)|/d(z,y)" and ||v||cn = |v]e + [v]cn. Write v € C"(X x T9) if ||v]jcn < oo

For n € (0,1] and p € N, write v € C"?(X x T?) if v is p-times differentiable with
respect to ¢ with derivatives that lie in C"(X x T¢), and set ||v||cn» = > i< | % lon .

For our main results, we consider observables v, w supported in Y x T¢. Let vy(y) =
Jrav(y, ) dip. Suppose that vy € B(Y), v — vy € C"P(Y x T%), w € L=(Y x T%),
where p € N is chosen sufficiently large (depending only on 7, d, and the measure
on X), and write [|v|| = [Jvo + [|[v — vol|cnr. Let 0= [, pavdm, © = [, . wdm.

Theorem 1.3 In the infinite measure case, define { and dg as in (1.1)).
(a) Suppose that 8 € (3,1]. Then

lim g(n)nl_ﬁ/ vwo f; dm = dgvw.

n—oo Y xTd

(b) Suppose either that 3 € (0,1], or that B € (0,1] and either v = 0 or w = 0.
Then for all € > 0,

/ vwo firdm = O(n™ = Jolll|w)-
Y xTd

Remark 1.4 Under stronger conditions on p(7 > n), improved error rates and higher
order asymptotics are obtained for nonuniformly expanding maps f in [24] 2§]. This
applies in particular to the Markov intermittent maps considered in [19] and to the
nonMarkov examples in Subsection (for the nonMarkov examples, the stronger
conditions on y(7 > n) are proved in [5] as described in Subsection [I.3)). The results
in this paper show that these higher order results apply also to typical toral extensions
of these intermittent maps.

Theorem 1.5 In the finite measure case, for all € > 0,
| owepdm = o0 =Y (> j)vw -+ O ol ol
YXTd ]>’Vl
where =0 —e€eif >2and q=20 -2 if 1 < [ < 2. We can also take ¢ = 3 — € if
B>1andvo=0 orw=0.

o o . o _ g oMl
3 Given j € Z4 with j1,...,jq > 0, we write |]|:jl+~~~+]dandwzm.



Strategy of the proofs For L? observables v,w : X x T¢ — R, we write

v(@, ¥) = Pyezavi(r)e™, (1.5)

where vy € L*(X,C)[] and similarly for w. Conditions (i) and (ii) above on the
first return map F' = f7 : Y — Y take care of the zero Fourier modes vy and wy,
so the main contribution of the current paper is to deal with the nonzero modes.

In Section 2} we show how this can be achieved under conditions (iii)—(v) using the
induced map G = f¢: 7 — Z.

Remark 1.6 If the first return map F' = 7 : Y — Y is a full branch Gibbs-Markov
map, then there is no need for a second inducing scheme: we can simply take G = F.
(Conditions (iii) and (iv) can now be ignored.) Even here our results are new. This
simplified set up applies to the maps in Examples and below if they are
Markov, and more generally to the class of Thaler maps [29)].

For the nonMarkovian “AFN” maps of [31 B2], we use both of the inducing
schemes and our main theorems apply with B(Y) taken to be the space of bounded
variation functions on Y. This includes all cases in Examples [I.7] and

Upper bounds on decay of correlations In the finite measure case, we also
obtain an upper bound for decay of correlations, see Corollary This is simpler
than the other results mentioned here, and we need only to use one inducing scheme,
G = f?: Z — Z, satisfying condition (iii) with § > 1. In particular, our result
applies to toral extensions of maps modelled by Young towers with polynomial tails
and summable decay of correlations [30], and shows under condition (v) that the toral
extension fj, mixes at the same rate as f.

1.3 Examples

Prototypical examples include Pomeau-Manneville intermittent maps of the unit in-
terval [26] such as the following:

(14 cfx7), z€|0,3)
2r — 1, z € [3,1]
¢1 = 2, the map f is Markov and was introduced in [19].

Example 1.7 f(z) = , where v > 0, ¢; € (0,2]. When

Example 1.8 f(z) = z(1 + c22”) mod 1, where v > 0, ¢ > 0. If ¢y is an integer,
then f is Markov and belongs to the class of maps studied by [29].

In general, the above maps f are nonMarkovian and are examples of “AFN
maps” [31, B2]. For all v > 0, there is a unique (up to scaling) o-finite invariant
measure p equivalent to Lebesgue and the measure is finite if and only if v < 1.

4Since v is real-valued, necessarily v_j is the complex conjugate of vy.



We now describe how to verify assumptions (i)-(v) for these examples. In Exam-
ple , it is convenient to take Y = [%, 1]. In Example , a convenient choice is
to let Y be the domain of the right-most branch. Let = 1/7. By the proof of [5]

Lemma 9.1] and by [5, Lemma 9.2], there are constants ¢y, ¢y > 0 such that

pz(e >n) =cn @+ 0 % n~ P logn),
w(r > n) = copz(p > n) + O(n~ B+, (1.6)

so condition (i) is satisfied.

Condition (ii) holds with B(Y") taken to be the space of bounded variation func-
tions on Y (see for example [24, Proposition 11.10]) and conditions (iii,iv) are verified
in [5 Section 9]. Condition (v) is satisfied for typical Holder cocycles h, see Proposi-
tion [£.2] and also for an open and dense set of smooth cocycles, see Appendix [A]

Hence our main results apply to typical toral extensions of nonMarkovian inter-
mittent maps. Since the estimates for u(p > n) in include error terms,
we can obtain error rates and higher order asymptotics in the infinite measure case
~v > 1 as indicated in Remark

The remainder of the paper is structured as follows. In Section [2, we state results,
Theorems and , on the nonzero Fourier modes in and use these to prove
the results from the introduction. In Section |3] we recall the definition and basic
properties of the Gibbs-Markov induced map G = f¥. In Section {4 we recall the
notions of eigenfunctions and approximate eigenfunctions. In Section [5 we recall
some standard results about smoothness of Fourier series. In Section [0, we obtain
some estimates for twisted transfer operators corresponding to the induced dynamics
on Y, and we derive a Dolgopyat-type estimate. In Section [7], we obtain estimates for
certain associated renewal operators. Theorems [2.2] and are proved in Sections
and [9] respectively.

Notation We use “big O” and < notation interchangeably, writing a,, = O(b,) or
a, < b, if there is a constant C' > 0 such that a,, < Cb,, for all n > 1.

2 Reduction to the nonzero Fourier modes

In this section, we show how to reduce to dealing with the nonzero Fourier modes
in (L.5). First, we require the following basic expansion of [, .,vw o fi"dm. Note

that f'(z,v) = (f"x,¢ + hp(x)) where h,, = Z;:(} ho fi.

Proposition 2.1 Let v,w : X x T — R be L? observables with Fourier series as
in [LE). Then [y qavwo firdm =3 54 [y " v_j wyo frdu for all n > 0.



Proof Expanding into Fourier series,

[ ewesian= 30 [ u@e (et O
X xTd XxTd

J,ke€Z4
= % [uwmirae i [ c0mvas= 3 [ o murness,
G k€2 kezd
as required. [

The next two results concern the nonzero Fourier modes

Spw(n) = Z / ey 1wy o fdp.
kezd\{0} X

Theorem 2.2 Assume that the induced map G = f¥ : Z — Z and the C" cocycle
h: X — T4 satisfy conditions (iii)—(v).

Then there exists p € N such that for all observables v, w supported in'Y x T with
v e CM(Y x T, we LY x TY), and for all e > 0,

Spw(n) = O(n_(ﬂ_ﬁ)”v = vollenr|wls).

Theorem 2.3 Let h: X — T¢ be a C" cocycle, n € (0,1], and assume nonexistence
of approzimate eigenfunctions. Let p : Z — 7 be a (general) return time such that
pz(p >n)=0(Mn"P) where > 1, and G = f% : Z — Z is full branch Gibbs-Markov.
(Here, the return times T and p and the first return map F are absent.)

Then there exists p € N such that S,.,(n) = O(n~B=Y||v — vl gnr|w|e) for all
observables v,w with v € C"(X x T%), w € L®(X x T9).

Remark 2.4 We say that v : X x T — R is a trigonometric polynomial if only
finitely many of the Fourier coefficients v, : X — C in are NONZero.

If at least one of the observables v, w is a trigonometric polynomial, then all of our
results simplify. Instead of requiring nonexistence of approximate eigenfunctions, we
require only the nonexistence of ordinary eigenfunctions (see Section . Moreover,
we can take p = 0.

In the simplified situation of trigonometric polynomials, Theorem 2.3 recovers and
improves upon [4] where similar results are obtained only for § > 2. The improved
convergence rate for observables supported in Y in Theorem [2.2| was also not obtained
in [4].

All of our results about toral extensions f, are immediate consequences of Theo-
rems and combined with known results for f. In particular, in the proofs of
Theorem and Theorem below we use —, while in the upper bounds
result on decay of correlation, namely Corollary below, we use the result of
Young [30].



Proof of Theorem Write [, ravwo firdm = [, vowo o f"dp+ Sy.u(n). For
B> 1 by (1.2), lim, o0 £(n)n' =7 [, vowoo f™ dp = dgtowy = dgvw. By Theorem ,
U(n)n' =08, (n) = O(n' =252 v—vg || cme|w] ). Since B > L and e is arbitrarily small,
part (a) follows.

For 8 € (0,3], or if 5p = 0 or @wy = 0, by (L.3), [, vowy o frdu =
O(n=B=9|vg|||wo|s). Hence part (b) follows from Theorem . |
Proof of Theorem Write [, pavwo firdm — 0w = g(n) + S, .(n), where
g(n) = fy vy wo © f"dp — vowy. By ,

g(n) =Y u(r > §)oto + Bs(n)|volllwoloc = Y 7 > )00 + Eg(n) ol [wolss.

ji>n ji>n

The result follows from the estimates for E(n) together with the estimates in Theo-

rem [2.2| for S, ,(n). |

Corollary 2.5 Let h: X — T? be a C" cocycle, n € (0,1], and assume nonexistence
of approximate eigenfunctions. As in Theorem let o : Z — ZF be a (general)
return time such that pz(¢ > n) = O(n=?) where B> 1, and G = f¢ : Z — Z is full
branch Gibbs-Markov.

Then there exists p € N such that

|fXdevw o firdm — fXdev dmeXwa dm| = O(n_(ﬂ_1)||v\|cn,p|w|oo),
for allv e C" (X x T9), w € L®(X x T%).
Proof Write

fXXTdU wo f}! dm_fXx’]l‘dU dmeXwa dm = fXUO wgo f* d,u—vag dufxwo du+Sy.u(n).

By Young [30],
|fXUO wo o fdp — fXUO d,ufxwo du| < C’n*(ﬁfl)Hvo\ on|[Wolso,
for all vy Holder and wq in L*°. Hence the result follows from Theorem [2.3] |

3 Induced Gibbs-Markov maps

Let f : X — X be a topologically mixing map satisfying conditions (1)—(4) in assump-
tion (iii) in Section[l] Let G = f¥ : Z — Z be the induced full-branch Gibbs-Markov
map as defined in assumption (iii). Standard references for background material on
Gibbs-Markov maps are [I, Chapter 4] and [2]. In particular, a consequence of condi-
tions (1)—(3) is that there is a unique ergodic G-invariant probability measure on Z

9



equivalent to pz such that condition (iii) still holds with this measure in place of pz.
Without loss we can suppose that py is this ergodic invariant probability measure.
Moreover piz is mixing. This leads to a unique (up to scaling) f-invariant measure
won X with p|z equivalent to pz, see for example [30, Theorem 1]. An explicit
definition of p is given in Remark The condition ged{p(a) : a € a} =1 implies
that f is topologically mixing, and in the finite measure case p is mlxmg

If ag,...,a,—1 € a, we define the n-cylinder |ag,...,an,_1] = ﬂj 0 LG ;. Let
0 € (0,1) and define the symbolic metric dy(z, 2’) = #***) where the separation time
s(z,2') is the greatest integer n > 0 such that z and 2’ lie in the same n-cylinder.
In the remainder of this section, we fix § € [A\"",1). For convenience we rescale the
metric d on X so that diam(Z) < 1.

Proposition 3.1 d(z,2")" < dy(z,2') for all z,2' € Z.
Proof Let n = s(z,z'). By condition (2),
1> diam Z > d(G"z, G"2') > \d(z,2') > (0Y")™"d(z, 7).

Hence d(z,2')" < 0" = dy(z, 2'). |

An observable v : Z — R is Lipschitz if ||v|lp = |v|eo + |v]¢g < o0 where
[vlp = sup, .. [v(z) — v(2')|/dy(z,2"). The set Fyp(Z) of Lipschitz observables is
a Banach space. More generally, we say that v : Z — R is locally Lipschitz,
and write v € F)¢(Z), if v|, € Fy(a) for each a € a. Accordingly, we define
Dg’U(G) = SUD; »rca: 242! |U<Z) - U(Z/>|/dg(z, ZI)'

We say that an observable v = (vy,...,vq) : Z — Riliesin Fy(Z,R?) ifvy,...,v4 €
Fy(Z), and we define |v|g = max,_
define F°¢(Z,RY) and F}°°(Z, T?).

4 ||vjllo- Similarly, we

..........

PropOSItlon 3.2 Let h : X — T? be a C" cocycle. Define the induced cocycle
H(z) = S¢9" B(fiz). Then H € F*°(Z,T%), and there is a constant Cy > 1 such
that

DgH(a) < Cylh|cnip(a),
for all a € a.

Proof Let 2,2’ € a. Then p(z) = p(z') = ¢(a). Let C] = C. By condition (4) and
Proposition 3.1},

p(a)—1 p(a)—1

|H(2) |<Z\hf‘ f’“|<\h\m2d (f'z, 1)

< Cilhlengpla )d(G%GZ )" < Cilhleng(a )de(GzaGZ) = C107"|hlenp(a)de(z, '),
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yielding the required estimate for DyH (a). |

The transfer operator R : L'(Z) — L'(Z) corresponding to the induced map
G:Z— Zisgivenby [, Rowduy = [,vwoGduy for all v € L'(Z), w € L>(Z).
Since we are now taking pz to be invariant, this is the normalized transfer operator
satisfying R1 = 1. It can be easily seen that (Rv)(z) = >, e/*v(z,) where
z, denotes the unique preimage of z in a under G and g is the potential defined
in condition (3) in the definition of Gibbs-Markov map (beginning of Section [I.2)).
Similarly, (R"v)(z) = >_ e9(2a)y(z,) where z, denotes the unique preimage of z
in @ under G" and g,(z) = Z?:_Ul g(G72). Moreover, there exists a constant Cs such
that

acan

e94) < Cypuzla), and e — G| < Coig(a)dy(GP2,GP2), (3.1)
for all z,2' € a, a € a,, n > 1.

Proposition 3.3 There exists 7 € (0,1) such that |R"v — [,vduzlly < CT"||v]l,
for allm > 1 and v € Fy(Z).

Proof This follows from the fact that the transfer operator R has a spectral gap [1,
Section 4.7]. |

4 Eigenfunctions and approximate eigenfunctions

In this section, we recall the notion of approximate eigenfunction, and show that
typically there are none. That is, condition (v) in the introduction holds typically.

In Subsection [£.I, we consider ordinary eigenfunctions as mentioned in Re-
mark 2.4 (Non-existence of eigenfunctions is a sufficient condition for a technical
result on renewal operators, namely Proposition [7.2] required in the proof of our
main results.) Approximate eigenfunctions are then considered in Subsection .

Throughout this section, we work with toral extensions of a map f : X — X with
full branch Gibbs-Markov induced map G = f¥ : Z — Z corresponding to a general
return time ¢ : Z — Z*. Given a measurable cocycle h : X — T¢, we define the
induced cocycle H : Z — T? given by H(z) = S22 (ft2).

4.1 Eigenfunctions

In this subsection, we define eigenfunctions and recall some of their basic properties.
Let S! denote the unit circle in C.

Definition 4.1 A measurable function v : Z — S' is an eigenfunction if there exist
frequencies k € Z4\ {0} and w € [0,27) such that v o G = e*Helwvy,

11



By Remark [2.4] nonexistence of eigenfunctions is a sufficient condition for our
main results in the case of trigonometric polynomials. The next result shows that
nonexistence of eigenfunctions is typical.

Proposition 4.2 Suppose that h is C" for some n > 0 and that z; and 29 are fixed
points for G : Z — Z. If there exists an eigenfunction, then there exist ki, ky € Z\{0}
such that ky - H(z1) = ko - H(29) mod 27.

Proof Suppose that v is an eigenfunction with frequencies & € Z<¢\ {0} and
w € [0,27). Since G is Gibbs-Markov, it follows by Liv§ic regularity that v

is continuous. Since z; are fixed points, we obtain ehH(z)eiwe(z) = 1. Hence
gip(2)kH(z)giwp(a))p(22) = | gpd ek H(z)oiwe(z)e(2) = 1 Tt follows that

eip(z2)kH(z1) — pip(z0)k-H(22)  The result follows with k| = ¢(22)k and ky = p(2z1)k. B

It follows that nonexistence of eigenfunctions holds generically (for a residual set
of C" cocycles h : X — T? for any fixed n > 0). An open and dense criterion is given
in Appendix [A]

4.2 Approximate eigenfunctions
For k € 2, w € [0, 27|, define My, : L>=(Z) — L>(Z),
My v = e hHgmiwey 6 @,
Note that v is an eigenfunction with frequencies k, w if and only if M;, v = v.

Definition 4.3 There are approximate eigenfunctions on a subset Z, C Z if for any
&o > 0, there exist constants £, ( > & and C' > 1, and sequences

u; € F@(Z), ]fj c Zd\{O}, wj € [0,271’), Xj € [0,271'), n; = [C1H|]€]|] eN, 7>1,
with lim; . |k;| = oo, |u;| =1 and |u;lg < Clkj|, such that
(M7, 1) (2) — €™y (2)] < Olky| 5,

forall z € Z,, and all j > 1.

Definition 4.4 A subset Z,, C Z is called a finite subsystem of Z if Z, =
ﬂn21 G "Zy where Z is the union of finitely many elements from the partition «.

Definition 4.5 We say that there exist approrimate eigenfunctions if for every finite
subsystem Z,, C Z there exist approximate eigenfunctions on Z.

Proposition 4.6 Let 21, 29, z3 be three fized points for G : Z — Z such that p(z1) #
©(z2). Let Z,, be the finite subsystem corresponding to the union of the partition
elements containing z1, 2o, 23. For almost all H(z,), H(z), H(23) € T¢, there are no
approximate eigenfunctions on L.

12



Proof Suppose that there exist approximate eigenfunctions on Z.. Then there
exists sequences as in Definition such that

‘e—mjk’j'H(Za)e—inng'so(Za) _ ein| - O(\k:j]_(d”)),

fora =1,2,3, 7 > 1. Eliminating x;, we obtain
dist (n,k; - (H(z0) — H(z9) + ny0;((20) — 9(25)), 207Z) = O((hy| ),

for a = 1,2, j > 1. Define k; = n,k; € Z¢ and Q = (p(21) — (23))(H(25) — H(23)) —
(p(22) — ¢(23))(H(21) — H(#3)). Eliminating w;, we obtain

dist(k;Q, 277Z) = O(|k;|~*2).

For almost every value of 2, this Diophantine condition holds for at most finitely
many values of k; € Z¢, violating the requirement that |k;| — oco. Hence approximate
eigenfunctions do not exist on 7. |

Field et al. [9,10] introduced the notion of good asymptotics. We recall this notion
in Appendix [A] and show that it gives an open and dense criterion for nonexistence of
approximate eigenfunctions for (piecewise) smooth toral extensions, including those

in Examples [I.7 and [1.§

5 Fourier analysis and Holder norms

In this section, we recall some standard results about smoothness of Fourier series [1§].
Let A, be a sequence of bounded linear operators on some Banach space X and set
Alw) = > Ape™, w e [0,2n]. If A € L' then we define the Fourier coefficients
A, = (1)27) [77 e A(w) du.

When speaking of regularity of A, we regard A as a 27m-periodic function on R.
Let [A|co = sup, [|[A(w)||. For m € N, define ||A|gn = maxj—g, _n|A9|c0. For
qg=m+a mcN acl01l),defne ||Allcc = ||Allcn + |A™)]|, where |A|, =
SUP,, s, [Aw1) — A(w2)]/|wr — w2

Proposition 5.1 Suppose that Zj>n||Aj|| < Cn~? for constants C > 1, q > 0,
where q is not an integer. Then there is a universal constant D, depending only on q

such that A : [0,2n] — L(X, X) is C? and ||Al|ca < CD,.

Proof The details are written out for example in [4, Lemma 2.4]. |

Proposition 5.2 Suppose that A : [0,2n] — L(X,X) is C?, ¢ > 0. Then there is a
universal constant D, depending only on q such that || A,|| < D,||A||can™1.

Proof The details are written out for example in [4, Lemma 2.5]. |
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Remark 5.3 If ¢ > 1 in Propositions [5.1] or , then A, = A, and the Fourier series
is uniformly absolutely convergent.

Next, we consider Holder norms of families of operator functions A, B : [0, 27] —
L(X,X) where A(w) is invertible for all w € [0,27] and B(w) = A(w)™ "

Lemma 5.4 For each m € N, there is a universal constant c,, > 0 such that for all
g=m+a, a €0,1),

IBllos < em(1+ [ Blleo)* (1 + [|Aflca) ™.

Proof First we consider the case ¢ = m € N. The case m = 0 is trivial. For m > 1,
note that D™ B is a linear combination of terms of the form (D" B)(D"™A)(D"B)
with ny 4+ no + n3 = m and ny > 1. Inductively,

[D™Bleo < ¢, Y |D™ Bloo| D" Aleo| D™ Bleo < ¢ | Allem Y |Bllem || Bllens

nitngtng=m ni1+nz<m—1
na>1

< CZzHAHCm Z (1 + HBHCO)2m+2n3+4(1 + HAHCm)2n1+2n3+2

ni+ng<m-—1

< (L4 [[Blleo)™ (1 + [|Aflem) ™™,

establishing the required result when ¢ = m is an integer.
When ¢ = m + «, we have in addition that

ID"Bla < ¢, > (2|D" Bla| D™ Alco| D™ Blco + | D™ Blco| D™ Alo| D™ Bl o)

n1+n2+n3:m
no>1

<3¢l Allce Y [IBllgnitalBlln

ni+nz3<m—1

S C/r,nHAHC'q Z (1 + ||B||CO)2n1+2a+2n3+4(1 + ||A||Cq)2n1+20¢+2n3+2

ni+nz3<m—1

< AL+ [1Blleo)* (1 + [|All o)™,

completing the proof. |

6 Estimates for induced twisted transfer operators

Throughout this section, we assume condition (iii) on the induced map G = f¥ :
Z — Z. Recall from Section [3| that R is the transfer operator corresponding to G,
and that H : Z — T is the induced cocycle H(z) = S>5% 7 n(fly).

For k € Z4, define the twisted transfer operators Ry : L'(Z) — LY(Z), Ryv =
R(e*Hv). We can write Ry = Y oo | Ry, where Ry, : L'(Z) — L'(Z) is given by

Rk,nU = Rk(l{wzn}v).
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Define Ry (w) : LY(Z) — LY(Z) for w € [0, 27| by setting
w)v = Z Ry ne™v = R(e™He%y).

Note that Ri(w)"v = R*(ekHneiweny) where H, = Z;‘;& HoGl, p, = Z?:_Ol poGY.
In Subsection , we derive some basic estimates for the operators Ry, and Ry (w).
In Subsection [6.2] we obtain a Dolgopyat-type estimate.

6.1 Some basic estimates

Proposition 6.1 Forallk € Z¢, w € [0,27], n > 1, (a) |Rp.nloo < Cspiz(p =n) and
() | Ri() e < 1

Proof Let z € Z. For each a € o, let 2, be the unique preimage 2, € a N G~1(z).

Then ‘
(Rrnv)(2) = Z eIt H )y (2,).

a€azp(a)=n

By (3.1,
Rintloe <Cs Y pz(a)|vle = Capz(p = n)[v]s,

aca:p(a)=n
proving part (a).
Since |R|o = 1 and Ry(w)v = R(e*He?y), part (b) is immediate. |

Lemma 6.2 Let € > 0 and fir @ € [A\7",1). There exists a constant C > 1 such
that for every v € Fp(Z), k € Z%\ {0}, w € [0, 27|, and for every n-cylinder a € a,,
n>1,

[Rilw)" (Lav)lo < Crz(a){ Ik Zen Tp(Ga) ol +07[0]o}.

Proof Let z € Z, and let z, be the unique preimage z, € a N G~"(z). Noting that
©, 1s constant on a,

(Rulo)(140))(2) = el eioenly )
and
(Bi(w)"(Lav))(2) — (Bi(w)" (Lav))(2)) = I + I + I,
where
) eg”( ))eik.Hn(za)eiwgon(a)U<Za)7
(ezk ‘Hp(za) eik-Hn(z;))eiwgon(a),U(za),

) @ (0(2,) — ().

I = (e7(z,
IQ = eg”(
Iy = e (2

2)
2)
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By (3.1),

|| < Cspz(a)|vleoda(z, 2), |I3] < Csuz(a)|vlede(zq, 2,) = C50™ pz(a)|vlede(z, 2').

Using the inequality |e®® — 1| < 2|x|¢ for all z € R, € € (0, 1],
12| < 2C3p7(a)|k| [ H(2a) — Hn(2)| 0] o0
Let v € [A™",1). By definition of z,, 2.,
LG GP2) = 3 (2, 1) = 7 (2, 2),

for j=0,...,n— 1, and so by Proposition (with 6 = ~),

|H(G'20) = H(Gz,)| < DyH(GPa)d (G724, (P 2,) < Co|hlenp(GPa)y" 7 dy (2, 2

Hence

n—1

Ho(ea) — ()| = | S (H(G2) — HGZ)] < Colhleon Y7 (Gayy

j=0 7=0

It follows that

[Io] < 2C2Csk|“v|sopiz(a) | Ry

nz_f ,Yn ]90 ’ es(z,2")

n—1

§202C3’k|6’7}’oo,UZ(a)‘h‘€Cn ,yen 7) (G] )6 es(2,2)

=0
Choosing v = /¢,
n—1
|1o] < 205G k| [vloopz (@) Rl Y 0" p(GPa) dy(2, ),
=0

Combining the estimates for Iy, I, I3 yields the required result.

).

(2.7).

Corollary 6.3 Choose € such that o¢ € L'(Z) and let 6 € [A\"",1). There exists a
constant Cy > 1 (depending on h, ¢, €) such that for every 0 € (0,1), v € Fy(Z),

keZ\{0}, wel0,2n], n>1,
(a) |Rinllo < Caprz(p = n)lk|nc.
(b) |Ri(w)"v]|o < Cuf{|k||v]o + 0[]0}
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Proof Taking w=0,n =1, a € « in Lemma [6.2] we obtain

[Ri(1av)lo < Cprz(a){|k]*p(a))]v]e + |vlo} < Cprz(a)|k|“e(a)|v]lo.

Summing over those a with ¢(a) = n, we obtain that | Ry, ,,v|p < pz(@ = n)|k|“n||v|l.
This combined with Proposition [6.1[(a) yields part (a).

To prove part (b), we write Ry (w)"v =) ., Rp(w)"(14v) and sum the estimates
from Lemma [6.2] Note that

n—1
IO)ISERCEES WD WD WET
acony 7=0 bEay a€an:Gia=b
n—1
=370 N o0z (b) <01 -0 pz(b)e
7=0 bEa,—; bea
Hence |Ry,(w)"v|g < C{O(1 — 0) k[ - e, 1z(a)p(a)[v]o + 07} n

Corollary 6.4 Choose € € (0, ) so that 5 — € is not an integer and such that ¢ €
LY (Z). Let 6 € [\ 1).

For each k € Z4\ {0}, the map Ry, : [0,27] — L(Fy(Z), Fp(2)), w — Rp(w), is
CP=¢. Moreover, there is a constant C > 1 independent of k such that ||Rg||cs— <
Clk|°.

Proof Recall from Remark [1.2) . 2 that pz(p > n) = O(n=¥=9). By Corollary (a)
we have that >_._ ||Rxllo < |k|*n=¥=29). Now apply Proposition n

j>n‘

6.2 A Dolgopyat-type estimate

The argument in this subsection is a direct adaptation of an argument in [21] and is
included mainly for completeness. Propositions and below correspond to [21]
Lemmas 3.12 and 3.13] respectively, and the Dolgopyat-type estimate, Lemma ,
follows immediately.

Throughout, we fix € € (0, 1] such that ¢ € L*(Z), and 6 € [\77, 1).

Remark 6.5 As in [7, Section 6], we define ||v||x = max{|v|eo, [v|o/(2C4|k|¢)}. Then
it follows from Proposition ( ) and Corollary . ) that || Ry(w)"||x < Cs+ 1 for
all n > 1. Moreover, || Ry(w)" Hk < 1foralln > ng (where ng = [In(2Cy)/(—In6)]+1).

Since we are estimating operator norms with respect to || ||x, we consider the unit
ball Fy(Z)r = {v € Fy : |Jv]|x < 1}. It follows from Remark [6.5] that |Rk(w)"v]e < 1
and |Ry(w)"v|p < 2C4|k|¢ for all v € Fy(Z), and n > ny.

Throughout, Z; denotes a fixed subset of Z consisting of a finite union of partition
elements of Z, and Z, = N;>0G 7 Zy. Note that the potential g is uniformly bounded
on Zs, and moreover g,(z) < n|lz_g|ls for all z € Z and n > 1.
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Proposition 6.6 Let &, (; > 0. Then there exist & > 0 and ( > (y, such that the
following is true for each fized |k| > 2, w € [0, 27], setting n(k) = [ In|k|]:
Suppose that there exists vy € Fy(Z)y such that for all x € Z, and all j =0,1,2,

[(Ri(w)"Pvg) ()] > 1= 1/[K[*

Then there exists w € Fp(Z) with |w| = 1, |w|s < 16C4|k|, and x € [0,27) such that
forall z € Z, '
(M w)(2) = e¥u(z)| < 8/ k|,

Proof We write n = n(k) and Cy = 16C}. Set

(=(&+2+InCy/In2)/(—1nb), & = max{1,2& + |1z gleo}-

If necessary, increase ¢ so that ¢ > (y. Following [7, Section 8] and [21, Section 3], we
write v; = Ri(w)’™vy and v; = s;w;, where |w;(z)| =1 and 1 — 1/]k[* < s;(z) <1
for x € Z.. Note that |v;]g < 2C4|k|® so that |w;|s < Cylk|® < Cylk|. Rearrange
v1 = Ri(w)™vg to obtain w; ™ Re(w)"(sowo) = s1 > 1—1/|k[¢*. It then follows from the
definition of Ry (w) that e9()[1 — R(e*-n(2)eiwen 2y, (2)wy H(G2))] < 1/]k[¢ for all
z € Z with G"z € Z,,. Hence |eFHn(Z)eiwen(@) g () —w; (Gnz)| < 2(e9n(3) /| k[&1)1/2,
Similarly, with wy and w; replaced by w; and ws. Restricting to z € Z,,, we have
e~ 9(2) /|k|S < 1/|k|?¢2 and hence

|6ik-Hn(z)eiW<Pn(Z)wO(z) — wl(GnZ)| S 2/|k|£2,
|k Hn(2) gioen (2 () — wo(GM2)] < 2/ |K|, (6.1)
for all z € Zy. Fix ¢ € Zy and choose xo, x1 € R such that w;(q) = €™
for j = 0,1 and such that x = xo — x1 € [0,2m). To each z, we associate
2 =qo Gp1ZnZns1 - € Zs. Then z* is within distance 6" of ¢ and G"z* = G"z.
We obtain
|tk Hn (=) giwen(Z) pixo _ gy (GM2)| < 2/ K|S 4 Cylk|0™ < 3/|k|%
|k Hn (&) giwen(z) X _ gy (GR2)| < 2/ || + Cylk|0™ < 3/|k[¢

(by the choice of ¢), and so |e™Xw; (G"z) —wq(G"2)| < 6/]k|*2. Substituting into (6.1])
yields the required approximate eigenfunction w = wy. |

Proposition 6.7 For any &,( > 0, there exists £ > 0 and C' > 1 with the following

property.
Let |k| > 1 and suppose that for any v € Fp(Z)i there exists xyg € Zo and
7 < [¢Inlk|] such that |(Rg(w)'v)(xo)] < 1—1/|k|%. Then ||(I — Ri(w)) e < C|E[S.
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Proof Following [7, Section 7], we use the pointwise estimate on iterates of Ry (w)
to obtain estimates on the L', L> and || ||z norms.

Write @ = Ry (w)’v and u = Ry, (w)*®v where £(k) = [ In |k|]. Note that ||, <1
and |i|g < 2C,lk|¢ < 2C4|k|. Hence, |a(z)] < 1 —1/(2|k|*) for all z within distance
1/(4C,| k|1 of . Call this subset U. If C,, is an m-cylinder, then diam C,, = 6™,
so provided 0™ < 1/(4Cy4|k|**1), the m-cylinder containing g lies inside U. It suffices

to take m ~ (& + 1) In|k|/(—In6). By (3.1),
1z(U) 2 pz(C) = Oy leom0) = Oyl miomtls > O [~ 0%,
where & = |17 9|oo/(—1n6). Breaking up Z into U and Z \ U,
uly < faly < (1=1/@2k")pz(U) +1=pz(U) = 1= uz(U)/2/k") < 1-C7HE[™S,
where 5 = & + & + £1&. By Proposition 3.3}

| B (w) oo < (R |ul)]oo < [(B"ul = [lu])loo + [uly < 7" |[ullo + [ul
< (14 2C4|k[)m" + 1 — C k|5,

Choosing n = ny(k) = [(1 In |k|] where (; > 1 ensures that
| Ri(w) 8Bl = |Ry(w)™ Pulos < 1— O k|7
Setting ny(k) = [(2In |k|] where (o = ( + (1,
|Ri(w)2®y| o <1 —C7 k|75
By Proposition (a) and Corollary (b), | Ry (w)m2®+n| o < 1 — C7HE[~ for all

n >0, and
|Rk(W)n2(k)+nU|9/(2C4|k|€) < %+0n04 < %7

for n sufficiently large (independent of k). Increasing (, slightly, we obtain

| Ri(w)2®y||, < 1 — C7'k|=%. Hence ||(I — Rp(w)™2®™)~1|, < C|k|®*. Using the

identity (I — A)™'=(I+ A+ + A" 1) (I — A™)~! and Remark [6.5] we obtain
I(Z = Ru(w)) ™ [l = O(na(k)|K|*) = O(|k[*),

for any choice of £ > &;. |

Lemma 6.8 Assume conditions (iii) and (v). Then there exists £ > 0 and C > 1
such that ||(I — Ri(w)) e < C|k|¢ for all k € Z4\ {0} and all w € [0, 27].

Proof This is immediate from Propositions [6.6] and [6.7] u

19



7 Renewal operators

Define the tower A = {(2,0) € Z xZ : 0 < { < ¢(z) —1}. The tower map
. A (+1 ? < -2 A
f A — Alisgiven by f(z,0) = 222,_(;—), ) ’ ; zég 7 with ergodic f-invariant

measure pin = fiz X counting. Let L : L'(A) — L*(A) denote the transfer operator
corresponding to f : A — A. (So fA Lvwdpa = fA vwo fdua.)
Denote by m: A — X the projection 7(z,¢) = f‘z.

Remark 7.1 Since 7 is a semiconjugacy from f to f, the measure u = m,ua is an
ergodic f-invariant measure on X. This is the measure described in Section [3]

Given a cocycle h: X — T?, we define the lifted cocycle h = hom: A — T<. For
k € 74, define the twisted transfer operators Ly : L*(A) — LY(A), Lyv = L(e?*hv).
Next, define the renewal operators T}, : L'(Z) — L'(Z) given by T}.o = I and
forn > 1, )
Tkmv = 1zLZ(12U) = 1ZL"(1Zeik‘h"v).

Define Ty (w) : LY(Z) — LY(Z) for w € [0, 27],
Tk(W) = ZTk’neinw.
n=0

Note that G = f“a . Z — 7 is the first return to Z for the map f : A — A. Hence
for all k € Z¢ we have the renewal equation,

Ti(w) = (I = Ry(w)) ™.

Let Ty, denote Fourier coefficients of Tj(w).

Since the expression S, ,,(n) in Theorem [2.2]is a sum over k € Z%\ {0}, we restrict
attention throughout to this range of k. (The operators Tp,, and Tp(w) were studied
in [12, 27, 24].)

Proposition 7.2 Assume condition (#ii) and nonezistence of eigenfunctions. Then
Tim = Tim for all k € Z4\ {0}, n > 0.

For g > 1, this follows from Remark using the estimate T, kon = O(n=¥=9), and
the assumption that there are no eigenfunctions is not required. (The case § > 2 was
treated similarly in [4].) The proof of Proposition for general 8 > 0 is postponed
to Appendix [B]

Lemma 7.3 Assume conditions (iii) and (v). Choose € and 0 as in Corollary [6.4)
Then there are constants C > 1, & > 0, such that

Tl < Clk[*n~ 79,
for all k € Z2\ {0}, n > 1.
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Proof By Corollary , w > Ry(w) is C°~¢. By Lemma , I — Ri(w) is invertible
and so w — Tj,(w) = (I — Ry(w))~! is CP~¢. Hence by Propositions [5.2 and [7.2]

| Tenll = 1Tl < N Tells-en=9.
By Lemma [5.4] and Corollary [6.4]

| Tllos—« < IRZs N — Ri) M Ige™ < k[P Sup ]II(I = Ri(w)) 712,
we 0,27

Hence by Lemma | Tk || cs— < |k|5. The result follows. |

8 Proof of Theorem 2.2

In this section, we assume conditions (iii)—(v). Let f : X — X with induced map
Gibbs-Markov map G = f¥ : Z — Z as in Section [3 Let uz denote the associated
ergodic G-invariant measure on Z.

Let f : A — A be the tower map defined in Section with ergodic f—invariant
measure pa = jiz X counting. We continue to let 7 : A — X denote the semiconjugacy
7(z,0) = f‘z from f to f. Recall that m,ua = p is the underlying ergodic f-
invariant measure on X. Given a cocycle h : X — T? we define the lifted cocycle
h=hom:A— T

Fix € € (0, ) sufficiently small (to be specified) and § € [A7"¢,1). The sym-
bolic metric dy on Z defined in Section [3] extends to a metric on A by defining

d d 0=V
do((2,0), (<, 1)) = o(2,7), .

1 oy
vl = |v]oo + |v]o < 00 Where |v]g = sup,, [v(p) — v(q)|/de(p,q) < co. Let Fy(A)
denote the space of Lipschitz observables on A.

An observable v : A — R is Lipschitz if

Proposition 8.1 If v € C"(X), then v = vorm € Fy(A). Moreover, there is a
constant C' > 1 such that ||9]|s < C||v||cn.

Proof Clearly, |0]o < |[v]oo. Let ¢ = (2,0), ¢ = (Z/,0) € A. If £ # V', we have
10(q) — 0(q")] < 2|v|eo = 2|v|0oda(q,¢). If £ = ', then setting C} = C7, and using
condition (4) in the definition of nonuniformly expanding map and Proposition ,

[6(q) = 0(¢)| = [0(f%2) = v(f*2) < [vlend(f'y, )" < J0]enC1d(Gz, GZ')"
< |o|enCldp(Gz, G2') = |v|en OO dy (2, 7).
Hence |0]g < ||v||cn- |

In Theorem we are interested in observables v : X — R supported in Y.
These lift to observables © : A — R supported in Y = 7~ }(Y). Proposition

A

guarantees that if v € C"(Y'), then v € Fp(Y).
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Proposition 8.2 Leta € o, 0 < { < p(a). If (ax {{})NY #0, then a x {{} C Y.

Proof Suppose there exists zy € a such that (zg,¢) € Y. Then there exists qg>1
such that 7,(29) = £. Note that 7, = ¢ < ¢ =7, s0o ¢ < p and 7, is constant on a by
condition (iv). Hence 7,(2) = ¢ for all z € a, and it follows that a x {¢} C Y. |

The tower A can be partitioned into levels {A,; n > 0} and diagonals {D,,; n > 1}
where

A, ={(z,n) e Zx{n}:po(z) >n}, D,={(z,90(2) —n) € ZXZ:p(z)>n}.

Note that ua(A,) = pa(Dn) = pz(e > n). We have the corresponding partitions
YNA,and YN D, of V.

Proposition 8.3 > .., pa(Y NA;) = O(n= -9, Y isna(Y N Dj) = O(n=5=9).

Proof The proof of these estimates is based on [5].
First notice that both (J;, Y N A; and (J;,, Y N D; are contained in {(2,() €
Y : ¢(z) > n}, so it suffices to show that pua{(z,0) € Y : p(z) > n} = O(n~#=9),
Next, we write {(z,{) € Y : o(z) > n} = Ugpei{(2,6) € Y oop(z) >
n, p(z) = q}. If p(z) = ¢, then p(2) = 7,(2) and so there are precisely ¢ values
of £ € {0,1,...,¢(z) — 1} such that (z,¢) € Y. Hence

pal{(z0) €Y p(z) > n}) = Z/m {(z.0) €Y 1 p(2) > n, pl(z) = q})

Z Az € Z:p(2) > n, pl2) = @}).

For k > 1,

Y auzle>n,p=q)=> apz(e>n,p=0q)+ Y auz(e>n, p=q)
g=1 q=1 q=k+1

< kuz(e >n)+ ZQMZ
a=k+1

< kPn~B-¢/2) 4 Z ge 1 < k2n~(B=</2) 4 e_Ck/2,
q=k+1

where the implied constant is independent of k. Choosing £ = plogn with p suffi-
ciently large, we obtain the desired estimate. |
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Recall from Section 7| that L, : L'(A) — L'(A) is the family of twisted transfer
operators Lyv = L(eik‘i‘v) where h = hon and L is the transfer operator correspond-
ing to f. From now on, with an obvious abuse of notation, we write 1y L)1y as a
shorthand for v — 1y L?(15v). We view these as operators 15 L1 : Fy(Y) — LY(Y),

Following Gouézel [13], 14] (see also [4]), we define the sequences of operators

Ak,n : LOO(Z) — Ll(A), Bk,n : FQ(A) — FQ(Z), Ek,n : LOO(A) — LI(A),

as follows:
(Apnv)(z) = Z eQn(Z)eik-ﬁn(Z)U(Z)7 (Byn?)(2) = Z egn(u)ezk-hn(u)@(u)7
Af"z:x . f”u:z
2€Z;5 f2€Z,...,f"2¢Z uéZ,..., fn—lugz; f”uGZ
(Brn0)(@) = Y enehhnip(y).
f"uA:x
UEZ,....frud”Z

As in [13], 14} 4],

LZ = Z AkmlTkz,nsz,ng + Ekz,na (81)

ni+n2+nzy=n
and so
lyLily = > (1gAkn) Thns (Bemsly) + 1y Braly, (8.2)

nit+nz2+nz=n

where

A

1y Agn : L°(Z) = LNY), Bpaly : Fo(Y) = Fo(Z), 1¢Egpaly 1 L2(Y) = LY(Y).
Proposition 8.4 Uniformly in k € Z%, n > 1,

(0) 3o 115 Akl o2y i1y = O(n™P79).

(0) 11y Brnlyll ooy ) = On~9).

(¢) g 1Braly iz = O1RIR=E9).

Proof (a) We have |1y Ak ,v| < |v|oo and supp lyAg,v C Y N A,. Hence
1y Aknvht < paY N AL vl and so [[1g A pll oo zymriy < pa(Y NA,). Part (a)
now follows from Proposition [8.3 A

Similarly |1y Ej,1y9]ee < |0|e and supp ly By ,lp0 C U, Y N Ay Hence
11y Bk ly | oo 9y pr ) < 2oesm 1a(Y NA), so part (b) follows from Proposition .
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Finally,

(Binly0)(2) = Z 1{%,(abn}eg(z‘l)eik'h"(z‘““"(a)_”)19(za, w(a) —n)o(zq, p(a) —n).

aco

By Proposition , 14 (2a, p(a) — n) = 1 if and only if a x {¢(a) —n} C Y. Hence
(Bk,nlyﬁ)(Z) _ Z*eg(za)6ik~hn(f¢(a)—nza)@(zm ola) —n),

where % denotes summation over those a € a such that a x {p(a) —n} C Y N D,,.
By Proposition [8.2]

> nz(a) = Y pala x {pla) = n}) = ua(¥ N Dy). (8:3)

Hence by ‘) ‘Bk,n1f/6|oo < CB|@‘OOZ*/LZ<OJ) < C3|7}|oo,uA(Y N Dn)
Also, for z, 2 € Z, we have that (B ,1y0)(2) — (Binly0)(2') = 1+ I3+ I3, where

I = Z*(eg(‘z“) - eg(zg))e"k'h"(f“p(a)f%)@(zm p(a) —n),

I, = Z*eg(z;)(eikm(fv(a%”za) — eI B (20, (@) — ),

L= esCem T (5, p(a) — n) — (2L, pla) — ).
By " and " |]1| < O3|@|OOMA(Y N Dn) d9<z72/)7 and

’I3| < C3’®|6’MA<?ﬂDn) d@(Za,QO(CL) n, au(p( ) )
= 039|@|9/LA(Y N Dn) dg(z, Z/).

Let v = 6/¢. As in the proof of Proposition [3.2]

hlond(f za, ff20)" < nd. (2, 2").

¢(a)
M ([ 2,) — by (FP@7721) Z
=¢(a)

Hence using similar arguments as in the proof of Lemma
el 20) — R PEI) < QIR (£ 20) = B (72
< |k|“ndg(z, 2").
It follows that .
|| < |0]oo |k nua(Y N D,)dy(z, 7).
Hence |Binlytls < [k[n‘ua(Y 0 Do)llolle and so ||Benlellp iz <

[k[“nua(Y 0 Dy). By Proposition [8.3) 3., [1Biylyll g,y z) = ORI n™7729),
yielding part (c). |
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Corollary 8.5 There exists C, &€ > 0 such that |1y L1y || g5 g9y < R[S0~
for all k € Z2\ {0}, n > 1.

Proof An elementary calculation shows that if u,, v, are real sequences and |u,| =
O(n™7), 325, lv5l = O(n™7), where v > 0, then |(uxv),| = O(n~7). We apply this
with v = —e.

Note that G = f¢ : Z — Z is the first return map to Z for the tower map
f A — A. Also, the induced cocycle H : Z — R is identical starting from f
and h or from f and h so we still have nonexistence of approximate eigenfunctions
when working in the tower set up. Hence Lemma applies and we have that
1Tl < [[$m (57,

Combining this with the estimates for 3 ., 1y Ag; and > ., By 1y in Proposi-
tion [8.4] it follows that
1o Apn) Tony (Bions Ly H k|E+en—(6-9),
| X A Tiw Beandp)| gy < IHE

ni+nz2+nz=n

Using (8.2)) and the estimate for 1y Ej 1y in Proposition , we obtain the desired
estimate for 1y L1 n

Proof of Theorem Since T.pa = p and v and w are supported in Y x T¢, for
keZ\ {0} and n > 1,

/eik'h"’ukwkofndM:/Qik.Bnﬁkwkofnd,uA:/ 1YLZ]~YﬁfkwkduA
X A X
Hence

[t so £ dn] < 1y Lol < 11 Lty llo-ilolol

By Corollary , |1y L2y || < |k[$n~¥=9). By Proposition , lv_klle < Cllv—illcn-
It follows from the usual integration by parts argument that ||[v_g||cn < |k]7||v||cnee-
Hence

’/ eik'h"U,k Wy, © fn du’ < |]€‘£7pn7(676)HUHC"vP’w’oo-
b's
Taking p > £ + d, we obtain that

Soaw(@] < Y KPR o]l gnswlee < 0B 0 onnw]oc
kezd\{0}

as required. [
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9 Proof of Theorem

Let f : X — X with induced map Gibbs-Markov map G = f¥ : Z — Z as in
Section [3] Let pz denote the associated ergodic G-invariant probability measure on
p. We suppose that jz(¢ > n) = O(n=?) where 8 > 1.

Again, we fix € € (0, ) sufficiently small (to be specified) and 6 € [A\7" 1). We
assume in particular that § —e > 1.

The tower map f : A — A, invariant measure ua, and lifted cocycle h=ho
7 : A — T? are all defined as before. Also we define L : L'(A) — L'(A) and
Lyt = L(e®*"9) as before.

The arguments are similar to those in Section [§] the main differences being that
we use instead of and that the estimates are simpler but weaker.

Proposition 9.1 There is a constant C' > 0 such that for all k € Z¢\ {0}, n > 1,

| Akl (zypsnra)y <p(e > n), | Bl Fya)ys o2y < Calp > m)|k|n,
| Bl a)—rra) < ZM(SO > 7).

i>n
Proof These estimates are similar to the ones in Proposition [8.4] n

Corollary 9.2 Assume condition (v). There exists C, & > 0 such that
Ly ayspi(ay < ClE[SR=CY for all k € Z4\ {0}, n > 1,

Proof We estimate the sequences in (8.1)). As in the proof of Corollary [8.5] || T | <
|k|¢n~(#=9). By Proposition , the same estimate holds for || A, || and || By,||. Since
B — € > 1, the convolution of these three sequences is also O(|k|n=#=9)) for some &.
Finally, by Proposition [9.1] || By | < n~ =Y. N

Proof of Theorem This follows from Corollary in the same way that
Theorem [2.2] followed from Corollary [8.5] |

A Good asymptotics and nonexistence of approx-
imate eigenfunctions

In this appendix, we prove nonexistence of approximate eigenfunctions for an open
and dense set of smooth toral extensions. The method is based on the notion of good
asymptotics [9, [10].

Recall that G : Z — Z is the induced Gibbs-Markov map with induced cocycle
H:Z — T Let py € Z be a fixed point for G and let py be a sequence of periodic
points, N > 1, with py — po and G¥py = pny. We assume that the set of periodic
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orbits G’/py, 7> 0, N > 1 is contained in a finite union Z; of partition elements. In
a neighborhood of py, we can lift H to a cocycle with values in R%.

Definition A.1 The sequence of periodic points py has good asymptotics if

Hy(py) = NH(po) + r + JN’YN + O(’yN) as N — 00, (A.1)
on(py) = No(po) ++, N >1,

where v € (0,1), x, Jy € RY k' € Z and the i’th coordinate of Jy has the form
Jni = En;cos(NO; + ¢n,;). Moreover, Ey; is a bounded sequence of real numbers
with liminfy . |[En;| > 0 for each i, and either (a) §; = 0 and ¥n,; = 0 or (b)
0; € (0,7) and 1y, € (6; — 7/12,6; + 7/12) for some 6;.

Proposition A.2 If py has good asymptotics, then there are no approrimate eigen-
functions on the finite subsystem Z., corresponding to Z.

Proof The argument is an adaptation of [10, Proof of Theorem 1.6(a)]. Suppose that
there are approximate eigenfunctions u; on Z.,, so ]M:]?’wjuj — ey, = O(|k;|~%).
We show that iminfx_, |En;| = 0 for some i € {1,...,d}, so that good asymptotics
fails.

Since |M;€j’wj|Oo = 1, it is immediate that for all N > 1,

ik s . ATy ‘N
‘6 zk]Hane WiPniNa . o Gn]N _ ezNX]u'| _ |Mn3 .
J J kj,w;j

uj — ™Myl = O(Nk;|%).
Substituting in the periodic points py, and using the fact that |u;| = 1, we obtain
|ei(”]‘kj'HN(pN)+nij's0N(pN)+NXj) —1] = O(N|kj|_§),

and hence

dist(njk; - Hx(pn) + njwion (pn) + Nx;j, 20Z) = O(N|k;|7%).
Similarly,

dist(Nn;k; - H(po) + Nnjw;e(po) + Nx;, 27Z) = O(N|k;| ™).
Subtracting these expressions and using (A.1)),

dist(nk; - (k + Iny™ + o(Y™)) + njw;r’, 21Z) = O(N |k, ).

Recall that n; = [(In|k;|]. Set N = N(j) = [pln|k;|]. For large enough p > 0,

we have njk;ExyvN¥) = O(|k;|7%). Tt follows that dist(njk; - k + njw;k’,27Z) =
O(|k;]=¢Ink;]) and so

dist(n;k; - (JnyY +o(v"Y)),27Z) = O(Nk;| %) + O(|k;| ¢ In |k;). (A.2)
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v)] + 1. Then

Let S = supy |Jn| and set M(j) = [(In(n;|k;]) + InS +1n2)/(—1In
)| < % and so taking

Snjlkj|yM9) = Lypi with p; € (0,1]. In particular, |Sn;|k;|vM0)|
N = M(j) + m with m € N fixed, condition (A.2]) implies that

lim n;k; - Jari)+m?Y M) = .

j—o0
Moreover, n;|k;|yM) > ~/(2S5) and it follows that there exists i € {1,...,d} such
that

lim EM (5)+mi COS<<M(]) + m)& + wM Y+m, z) =0.

j‘)OO

We show that for this 4, there is a choice of m € N for which cos((M(j) + m)0; +
Yu(j)+m,i) does not converge to 0 as j — oo
Assume for contradiction that for each integer m > 0

hﬁm (M(5) +m)0; + Yrr(jy4m,s = 7/2 mod 7. (A.3)
j—o0

Recall that if §; = 0 then ¥y = 0, hence ) fails (with m = 0). Otherwise,
0; € (0,7) and |5 — 6] < 7/12. Taking dlfferences of (A.3] - ) for various values of m
we obtain that ¢6; € [—7/6,7/6] mod 7 for all ¢, which is impossible. |

Next, we recall the construction of periodic orbits with good asymptotics in [9, [10].
We assume that (X,d) is a Riemannian manifold. Let Z; and Z; be two of the
partition elements in Z and assume that these are submanifolds of X and that G|z, :
Z; — Z and H| 7,0 L = T< are C” for some r > 2. These are natural assumptions for
piecewise C" dynamical systems f : X — X and dynamically C" cocycles h : X — T¢.
For instance, the set up includes Examples and the maps are not C? for v < 1,
but G|, is C* for all partition elements a. Similarly, H|, is C" in these examples
provided h|si, is C7 for j =0,...,¢(a) — 1.

Let py € Z; be a fixed point for G and choose a transverse homoclinic point z € Z,.
Following [9] [10], we construct a sequence of N-periodic points py, N > 1, for G with
orbits lying in Zy = Z; U Zy. The sequence automatically has good asymptotics
except that in exceptional cases there may exist ¢ such that liminfy . |En;| = 0.
By [9, [10], the liminfs are positive for a C? open and C” dense set of cocycles. (The
construction in [9, [10] yields the expression for H in (A.I), and the same argument
gives a similar expression for ¢. This simplifies as in @ since ¢ is integer-valued.)

Combining this construction with Proposition [A.2] it follows that nonexistence of
approximate eigenfunctions holds for an open and dense set of smooth toral exten-
sions.

B Proof of Proposition

In this appendix, we show that the coefficients T}, and Tkn of T}, coincide for all
B >0, keZ\ {0}, n>0. The case k = 0 was treated in [24] using a dominated
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convergence argument on an annulus at the boundary of the unit disk. Here we use
the same strategy, but the details are somewhat different.

Throughout we assume nonexistence of eigenfunctions, and we work with a fixed
k € Z%\ {0}. Also, we fix € € (0, 1] such that ¢¢ € L'(Z).

Let D={2€C:|zl <1} and D = {z € C : |2] < 1}. First, we extend the
definition of Ry to the closed unit disk, setting Ry(z) = >~ Ry 2" for all z € D.
Then Ry(z)v = R(e®*H2#v). Note that Ry(e™) coincides with the operator previously
denoted Ry (w).

Proposition B.1 sup, oo [|(I — Ri(e™)) ™ |o < oc.

Proof A standard consequence (see for example [I6]) of Proposition [6.1(b) and
Corollary [6.3|b) is that Rj(e™) has essential spectral radius at most 6. Hence
if 1 € spec Ri(e™), then there exists a nonzero function v € Fyp(Z) such that
Ri(e™)v = v. A calculation using the fact that My, is the L? adjoint of Ry(e™)
(see for example |23 p. 429]) shows that My ,v = v contradicting the assumption
that there are no eigenfunctions.

Hence 1 ¢ spec Ry,(e™), and so ||(I — R(e™))™ ||y < oo, for each w € [0,27]. By
Corollary 6.4} w — Ry(e™) is continuous and the result follows. |

Remark B.2 Under the assumption that there are no approximate eigenfunctions,
we could bypass Proposition and simply quote Lemma

The next step is to extend this estimate to an annulus.

Proposition B.3 There exists C > 1 such that || Ri(e™) — Ri(pe™)|ls < C(1 — p)*,
for all p € 0,1], w € [0, 27].

Proof Define S, , = Ri(e™) — Ri(pe™). Let v € Fy(Z). Then
Sw,pl = R(e™He?(1 — p?))v.
Hence in the usual notation, for z € Z,

(Supv)(2) = Z69(za)eik-H(Za)eiwsa(a)(1 — pPD)u(2,).
acw

By (3.1),
St ptloe < Calvloe > piz(a)(1 — p#1).

acx

Now 1 — p" < min{l, (1 — p)n} < (1 — p)n°. Hence,

[Suploe < Cslvlo > pz(a)(1 = p)e(a)® = Csle[1]v]o(1 = p)° < [v]oo(1 = p)°.

aco
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Next, for 2,2 € Z,
|(Sup0)(2) = (Sup0) ()| < [+ I2 + I,
where

I = Z(eg(za) — e9(=0) ) gik-H (za) giwp(a) (1 _ fe(@) )y,

acx

I, = Z eg(z;)(eik.H(za) _ eik.H(z;))eiww(a)(l — pPDN(z,),
acx
Z 69 zkH zwgo(a)(l _ p‘f’(“))(v(za) — ’U(Z;))
aco

Using estimates as in the proof of Lemma [6.2| combined with the argument above for
estimating 1 — p?(@, we obtain
111 < C3le[i[v]oo(1 = p) do(2,2"),  [Is] < Csle[i|v]o(1 — p)* do(z,2"),
| Io| < 2C5C3[k|[h|gal o1 [v]oo (1 — p)“ do(z, 2).

Hence |S,, ,v|p < [|v]lo(1 — p)¢ and the result follows. |

Corollary B.4 There exists po € (0,1] such that sup,ci, 11 5UDye02q (I —
Ri(pe™)) Mo < oo

Proof We use the resolvent identity
(I = Ry(pe)) ™ = (I = Ry(e™)) ™ (I + Auy) ™", (B.1)

where

Aup = (Ri(e™) = Ri(pe™))(I — Ri(e™)) ™,
By Propositions and [B.3] || Auplle < (1 —p)* for all p € [0,1], w € [0, 27]. Hence
we can choose py so that ||A,, |l < 3 for all p € [p, 1], w € [0,27]. It follows that
(I + Asp) e < 2. The result follows from and Proposition [B.1] |

Next, we define Tjy(2) = >~ Tjn2". Since [T |1 < 1 for all n, the family Tj(z)
is analytic on the open unit disk D when viewed as a family of operators on L!(Z7).
Hence it is certainly analytic as a family of operators from Fp(Z) to L*(Z).

The renewal equation becomes T, (z) = (I — Ry (2))~! for z € D. By Corollary [B.4]
we can extend T;(z) to D as a continuous family of operators from Fy(Z) to L'(Z).

The Fourier coefficients of Ty, : S' — L(Fy(Z),L'(Z)) are given by Ty, =

-1 f027r Ty(e™)e ™ dw. Also the coefﬁcients of the analytic function T : D —
L(Fy(Z), L*(Z)) are given by Ty, = fo p "1, (pe™)e™™ dw for any p € (0, 1].
By Corollary [B.4 m and the renewal equatlon the integrand I,(w) = p Tk (pe™)e "™
satisfies the uniform bound sup,c(,, 1) SUPye(0 24 | 1p(W) |7y (2)5 112y < 00.  Letting
p — 17, it follows from the dominated convergence theorem that T}, = Tkn as
required.
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