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Mixing Properties for Toral Extensions
of Slowly Mixing Dynamical Systems

with Finite and Infinite Measure

Ian Melbourne ∗ Dalia Terhesiu †

30 November 2015. Updated 28 April 2018.

Abstract

We prove results on mixing and mixing rates for toral extensions of nonuni-
formly expanding maps with subexponential decay of correlations. Both the
finite and infinite measure settings are considered. Under a Dolgopyat-type
condition on nonexistence of approximate eigenfunctions, we prove that ex-
isting results for (possibly nonMarkovian) nonuniformly expanding maps hold
also for their toral extensions.

1 Introduction

In a landmark paper, Dolgopyat [8] obtained results on superpolynomial decay of cor-
relations for compact group extensions of uniformly expanding and uniformly hyper-
bolic dynamical systems. An interesting question is to extend this result to nonuni-
formly expanding/hyperbolic systems, including systems that are slowly mixing or
preserving an infinite measure.

In this paper, we focus on the case when the group is abelian, and consider toral
extensions of a large class of (not necessarily Markov) nonuniformly expanding maps,
including the AFN maps of [31, 32], in both the finite and infinite measure settings.
Under mild hypotheses, we show that sharp mixing results for the underlying map
pass over to the toral extension.

Future projects could include group extensions of nonuniformly hyperbolic systems
including the case of general compact groups. Passing from nonuniformly expanding
to nonuniformly hyperbolic should be straightforward for systems with exponentially
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contracting stable directions, but this is a somewhat restrictive assumption. For
recent substantial progress on the analogous question for nonuniformly hyperbolic
flows and comparison with the group extension situation, see [3] and [22, Section 9]
respectively.

The analysis of compact group extensions divides into the cases where the group
is abelian (a torus) or semisimple. As seen in [8] (see also [11]), it turns out that
the toral case raises more technical difficulties, though the semisimple case is more
complicated in terms of notation and prerequisites from representation theory. In
this paper, we have chosen to focus on the technically harder toral case; we do not
anticipate any major difficulties in dealing with general compact groups but have not
investigated this further.

1.1 Existing results for nonuniformly hyperbolic maps

Let (X, d) be a metric space with Borel measure µ, and let f : X → X be an ergodic
and topologically mixing measure-preserving transformation. Let Y ⊂ X be a subset
with µ(Y ) ∈ (0,∞). We define the first return time τ : Y → Z+ and first return map
F = f τ : Y → Y given by

τ(y) = inf{n ≥ 1 : fny ∈ Y } and F (y) = f τ(y)(y).

Under certain assumptions on F and τ , it is possible to obtain sharp mixing properties
for f . More specifically, we assume that

(i) The first return time τ : Y → Z+ is either nonintegrable with µ(y ∈ Y : τ(y) >
n) = `(n)n−β where β ∈ (0, 1] and ` is a slowly varying function1, or integrable
with µ(y ∈ Y : τ(y) > n) = O(n−β) where β > 1.

(ii) The first return map F : Y → Y fits into the appropriate functional abstract
framework with suitable Banach space of observables B(Y ) ⊂ L1(Y ) with norm
‖ ‖ (see [12, 27] for the finite measure case, and [24] for the infinite measure
case).

Under conditions (i) and (ii), we recall the following results from [12, 27] and [24]
for the map f : X → X and observables v0, w0 supported in Y with v0 ∈ B(Y ),
w0 ∈ L∞(Y ). Let v̄0 =

∫
Y
v0 dµ, w̄0 =

∫
Y
w0 dµ.

In the infinite measure case, define

˜̀(n) =

{
`(n), β ∈ (0, 1)∑n

j=1 `(j)j
−1, β = 1

, and dβ =

{
1
π

sin βπ, β ∈ (0, 1)

1, β = 1
. (1.1)

1A measurable function ` : (0,∞) → (0,∞) is slowly varying if limx→∞ `(λx)/`(x) = 1 for all
λ > 0.
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If β ∈ (1
2
, 1], then

lim
n→∞

˜̀(n)n1−β
∫
Y

v0w0 ◦ fn dµ = dβ v̄0w̄0. (1.2)

If β < 1
2
, or if β < 1 and either v̄0 = 0 or w̄0 = 0, then∫

Y

v0w0 ◦ fn dµ = O(`(n)n−β‖v0‖|w0|∞). (1.3)

In the finite measure case, we normalise so that µ is a probability measure on X.
For all n ≥ 1,∫

Y

v0w0 ◦ fn dµ− v̄0w̄0 =
∑
j>n

µ(τ > j)v̄0w̄0 + Eβ(n)‖v0‖|w0|∞, (1.4)

where Eβ(n) = O(n−β) for β > 2, Eβ(n) = O(n−2 log n) for β = 2, and Eβ(n) =
O(n−(2β−2)) for 1 < β < 2. Also Eβ(n) = O(n−β) for all β > 1 if v̄0 = 0 or w̄0 = 0.

Remark 1.1 The precise functional analytic hypotheses mentioned in condition (ii)
play no role in this paper; we use only the consequences (1.2)–(1.4) for

∫
Y
v0w0◦fn dµ.

A special case is when F is a full branch Gibbs-Markov map with B(Y ) taken to be a
space Fθ(Y ) of Lipschitz observables (see Subsection 1.2 and Section 3 for definitions.)
For nonMarkov examples, see Subsection 1.3.

1.2 Toral extensions

Set up In this paper, we prove analogous results for toral extensions of nonuniformly
expanding maps f : X → X satisfying conditions (i) and (ii). We assume further
that there exists Z ⊂ Y ⊂ X (possibly Z = Y ) with µ(Z) > 0 and a return
time2 ϕ : Z → Z+ (not necessarily a first return time). Define the return map
G = fϕ : Z → Z, G(z) = fϕ(z)z. We assume:

(iii) there is a measure µZ on Z equivalent to µ|Z and an at most countable mea-
surable partition α of Z such that ϕ is constant on partition elements and
gcd{ϕ(a) : a ∈ α} = 1. Moreover, there are constants λ > 1, η ∈ (0, 1], C1 ≥ 1,
such that for each a ∈ α,

(1) G : a→ Z is a measure-theoretic bijection.

(2) d(Gz,Gz′) ≥ λd(z, z′) for all z, z′ ∈ a.

(3) g = log dµZ
dµZ◦G

satisfies |g(z)− g(z′)| ≤ C1d(Gz,Gz′)η for all z, z′ ∈ a.

(4) d(f `z, f `z′) ≤ C1d(Gz,Gz′) for all z, z′ ∈ a, 0 ≤ ` < ϕ(a).

2 A function ϕ : Z → Z+ is called a return time if fϕ(z)z ∈ Z for all z ∈ Z.
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In particular, conditions (1)–(3) mean that G : Z → Z is a full branch Gibbs-
Markov map with partition α. Such maps are discussed further in Section 3.

(iv) There exists ρ : Z → Z+ constant on elements of the partition α such that
G(z) = F ρ(z)z for z ∈ Z. Moreover, µZ(z ∈ Z : ρ(z) > n) = O(e−cn) for some
c > 0, and if a ∈ α, then τ ◦ F j is constant on a for all j < ρ(a).

Assumptions similar to (iv) were considered in [5].

Remark 1.2 Note that ϕ = τρ : Z → Z+,

ϕ(z) = τρ(z)(z) =
∑ρ(z)−1

j=0 τ ◦ F j.

It follows from assumptions (i) and (iv) by an elementary calculation [20] (see also [6,
Theorem 4] that µZ(ϕ > n) = O(n−β

′
) for any specified β′ < β. Moreover, it suffices

in (iv) that µZ(ρ > n) = O(n−q) for q sufficiently large.
In certain situations, including the examples in Subsection 1.3, it is possible to

achieve β′ = β. However, this does not lead to improvements in our main results,
so we generally ignore this possibility. (On the other hand, the upper bound result
Corollary 2.5 does depend on the specific decay rate for µZ(ϕ > n).)

Let h : X → Td be a measurable map; following standard conventions we refer
to h as a cocycle. We assume that h is Cη. (More precisely, view Td as a compact
group of diagonal d × d complex matrices with distance | |. We require that |h|η =
supx 6=x′ |h(x)− h(x′)|/d(x, x′)η <∞.) Form the toral extension

fh : X × Td → X × Td, fh(x, ψ) = (fx, ψ + h(x)).

The product measure m = µ× dψ is fh-invariant.
It is necessary to rule out certain pathological cases, since toral extensions of

mixing uniformly expanding maps need not be mixing, and mixing toral extensions
can mix arbitrarily slowly. Dolgopyat [7, 8] introduced condition (v) below for proving
superpolynomial decay of correlations for suspensions and compact group extensions
of uniformly expanding/hyperbolic systems. Our final assumption is

(v) There do not exist approximate eigenfunctions.

The definition of approximate eigenfunctions is somewhat technical, and so is
delayed until Section 4 where we show that condition (v) holds typically in a strong
probabilistic sense. In Appendix A, we show that condition (v) holds for an open and
dense set of smooth toral extensions.
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Mixing results for toral extensions

Let f : X → X be a topologically mixing map with ergodic invariant measure µ and
h : X → Td be a Cη cocycle, η ∈ (0, 1]. We consider toral extensions fh : X × Td →
X × Td as described previously satisfying conditions (i)–(v), where condition (ii)
can be replaced by the fact that (1.2)–(1.4) hold for observables v0 ∈ B(Y ) and
w0 ∈ L∞(Y ).

Let v : X × Td → R. For η ∈ (0, 1], define |v|Cη = supψ∈Td supx6=y |v(x, ψ) −
v(y, ψ)|/d(x, y)η and ‖v‖Cη = |v|∞ + |v|Cη . Write v ∈ Cη(X × Td) if ‖v‖Cη <∞.

For η ∈ (0, 1] and p ∈ N, write v ∈ Cη,p(X ×Td) if v is p-times differentiable with

respect to ψ with derivatives that lie in Cη(X×Td), and set ‖v‖Cη,p =
∑
|j|≤p ‖

∂jv
∂ψj
‖Cη .3

For our main results, we consider observables v, w supported in Y ×Td. Let v0(y) =∫
Td v(y, ψ) dψ. Suppose that v0 ∈ B(Y ), v − v0 ∈ Cη,p(Y × Td), w ∈ L∞(Y × Td),

where p ∈ N is chosen sufficiently large (depending only on η, d, and the measure µ
on X), and write |||v||| = ‖v0‖+ ‖v − v0‖Cη,p . Let v̄ =

∫
Y×Td v dm, w̄ =

∫
Y×Td w dm.

Theorem 1.3 In the infinite measure case, define ˜̀ and dβ as in (1.1).

(a) Suppose that β ∈ (1
2
, 1]. Then

lim
n→∞

˜̀(n)n1−β
∫
Y×Td

v w ◦ fnh dm = dβ v̄w̄.

(b) Suppose either that β ∈ (0, 1
2
], or that β ∈ (0, 1] and either v̄ = 0 or w̄ = 0.

Then for all ε > 0,∫
Y×Td

v w ◦ fnh dm = O(n−(β−ε)|||v||||w|∞).

Remark 1.4 Under stronger conditions on µ(τ > n), improved error rates and higher
order asymptotics are obtained for nonuniformly expanding maps f in [24, 28]. This
applies in particular to the Markov intermittent maps considered in [19] and to the
nonMarkov examples in Subsection 1.3 (for the nonMarkov examples, the stronger
conditions on µ(τ > n) are proved in [5] as described in Subsection 1.3). The results
in this paper show that these higher order results apply also to typical toral extensions
of these intermittent maps.

Theorem 1.5 In the finite measure case, for all ε > 0,∫
Y×Td

v w ◦ fnh dm− v̄w̄ =
∑
j>n

µ(τ > j)v̄w̄ +O(n−q|||v||| |w|∞),

where q = β − ε if β ≥ 2 and q = 2β − 2 if 1 < β < 2. We can also take q = β − ε if
β > 1 and v̄ = 0 or w̄ = 0.

3 Given j ∈ Zd with j1, . . . , jd ≥ 0, we write |j| = j1 + · · ·+ jd and
∂j

∂ψj
=

∂|j|

∂ψj1
1 · · · ∂ψ

jd
d

.
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Strategy of the proofs For L2 observables v, w : X × Td → R, we write

v(x, ψ) =
∑

k∈Zdvk(x)eik·ψ, (1.5)

where vk ∈ L2(X,C),4 and similarly for w. Conditions (i) and (ii) above on the
first return map F = f τ : Y → Y take care of the zero Fourier modes v0 and w0,
so the main contribution of the current paper is to deal with the nonzero modes.
In Section 2, we show how this can be achieved under conditions (iii)–(v) using the
induced map G = fϕ : Z → Z.

Remark 1.6 If the first return map F = f τ : Y → Y is a full branch Gibbs-Markov
map, then there is no need for a second inducing scheme: we can simply take G = F .
(Conditions (iii) and (iv) can now be ignored.) Even here our results are new. This
simplified set up applies to the maps in Examples 1.7 and 1.8 below if they are
Markov, and more generally to the class of Thaler maps [29].

For the nonMarkovian “AFN” maps of [31, 32], we use both of the inducing
schemes and our main theorems apply with B(Y ) taken to be the space of bounded
variation functions on Y . This includes all cases in Examples 1.7 and 1.8.

Upper bounds on decay of correlations In the finite measure case, we also
obtain an upper bound for decay of correlations, see Corollary 2.5. This is simpler
than the other results mentioned here, and we need only to use one inducing scheme,
G = fϕ : Z → Z, satisfying condition (iii) with β > 1. In particular, our result
applies to toral extensions of maps modelled by Young towers with polynomial tails
and summable decay of correlations [30], and shows under condition (v) that the toral
extension fh mixes at the same rate as f .

1.3 Examples

Prototypical examples include Pomeau-Manneville intermittent maps of the unit in-
terval [26] such as the following:

Example 1.7 f(x) =

{
x(1 + cγ1x

γ), x ∈ [0, 1
2
)

2x− 1, x ∈ [1
2
, 1]

, where γ > 0, c1 ∈ (0, 2]. When

c1 = 2, the map f is Markov and was introduced in [19].

Example 1.8 f(x) = x(1 + c2x
γ) mod 1, where γ > 0, c2 > 0. If c2 is an integer,

then f is Markov and belongs to the class of maps studied by [29].

In general, the above maps f are nonMarkovian and are examples of “AFN
maps” [31, 32]. For all γ > 0, there is a unique (up to scaling) σ-finite invariant
measure µ equivalent to Lebesgue and the measure is finite if and only if γ < 1.

4Since v is real-valued, necessarily v−k is the complex conjugate of vk.
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We now describe how to verify assumptions (i)-(v) for these examples. In Exam-
ple 1.7, it is convenient to take Y = [1

2
, 1]. In Example 1.8, a convenient choice is

to let Y be the domain of the right-most branch. Let β = 1/γ. By the proof of [5,
Lemma 9.1] and by [5, Lemma 9.2], there are constants c1, c2 > 0 such that

µZ(ϕ > n) = c1n
−β +O(n−2β, n−(β+1) log n),

µ(τ > n) = c2µZ(ϕ > n) +O(n−(β+1)), (1.6)

so condition (i) is satisfied.
Condition (ii) holds with B(Y ) taken to be the space of bounded variation func-

tions on Y (see for example [24, Proposition 11.10]) and conditions (iii,iv) are verified
in [5, Section 9]. Condition (v) is satisfied for typical Hölder cocycles h, see Proposi-
tion 4.2, and also for an open and dense set of smooth cocycles, see Appendix A.

Hence our main results apply to typical toral extensions of nonMarkovian inter-
mittent maps. Since the estimates (1.6) for µ(ϕ > n) in (1.6) include error terms,
we can obtain error rates and higher order asymptotics in the infinite measure case
γ ≥ 1 as indicated in Remark 1.4.

The remainder of the paper is structured as follows. In Section 2, we state results,
Theorems 2.2 and 2.3, on the nonzero Fourier modes in (1.5) and use these to prove
the results from the introduction. In Section 3, we recall the definition and basic
properties of the Gibbs-Markov induced map G = fϕ. In Section 4, we recall the
notions of eigenfunctions and approximate eigenfunctions. In Section 5, we recall
some standard results about smoothness of Fourier series. In Section 6, we obtain
some estimates for twisted transfer operators corresponding to the induced dynamics
on Y , and we derive a Dolgopyat-type estimate. In Section 7, we obtain estimates for
certain associated renewal operators. Theorems 2.2 and 2.3 are proved in Sections 8
and 9 respectively.

Notation We use “big O” and � notation interchangeably, writing an = O(bn) or
an � bn if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1.

2 Reduction to the nonzero Fourier modes

In this section, we show how to reduce to dealing with the nonzero Fourier modes
in (1.5). First, we require the following basic expansion of

∫
X×Td v w ◦ f

n
h dm. Note

that fnh (x, ψ) = (fnx, ψ + hn(x)) where hn =
∑n−1

j=0 h ◦ f j.

Proposition 2.1 Let v, w : X × Td → R be L2 observables with Fourier series as
in (1.5). Then

∫
X×Td v w ◦ f

n
h dm =

∑
k∈Zd

∫
X
eik·hnv−k wk ◦ fn dµ for all n ≥ 0.
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Proof Expanding into Fourier series,∫
X×Td

v w ◦ fnh dm =
∑
j,k∈Zd

∫
X×Td

vj(x)eij·ψwk(f
nx)eik·(ψ+hn(x)) dm

=
∑
j,k∈Zd

∫
X

vj(x)wk(f
nx)eik·hn(x) dµ

∫
Td
ei(j+k)·ψ dψ =

∑
k∈Zd

∫
X

v−k(x)wk(f
nx)eik·hn(x),

as required.

The next two results concern the nonzero Fourier modes

Sv,w(n) =
∑

k∈Zd\{0}

∫
X

eik·hnv−k wk ◦ fn dµ.

Theorem 2.2 Assume that the induced map G = fϕ : Z → Z and the Cη cocycle
h : X → Td satisfy conditions (iii)–(v).

Then there exists p ∈ N such that for all observables v, w supported in Y ×Td with
v ∈ Cη,p(Y × Td), w ∈ L∞(Y × Td), and for all ε > 0,

Sv,w(n) = O(n−(β−ε)‖v − v0‖Cη,p|w|∞).

Theorem 2.3 Let h : X → Td be a Cη cocycle, η ∈ (0, 1], and assume nonexistence
of approximate eigenfunctions. Let ϕ : Z → Z+ be a (general) return time such that
µZ(ϕ > n) = O(n−β) where β > 1, and G = fϕ : Z → Z is full branch Gibbs-Markov.
(Here, the return times τ and ρ and the first return map F are absent.)

Then there exists p ∈ N such that Sv,w(n) = O(n−(β−1)‖v − v0‖Cη,p|w|∞) for all
observables v, w with v ∈ Cη,p(X × Td), w ∈ L∞(X × Td).

Remark 2.4 We say that v : X × Td → R is a trigonometric polynomial if only
finitely many of the Fourier coefficients vk : X → C in (1.5) are nonzero.

If at least one of the observables v, w is a trigonometric polynomial, then all of our
results simplify. Instead of requiring nonexistence of approximate eigenfunctions, we
require only the nonexistence of ordinary eigenfunctions (see Section 4.1). Moreover,
we can take p = 0.

In the simplified situation of trigonometric polynomials, Theorem 2.3 recovers and
improves upon [4] where similar results are obtained only for β > 2. The improved
convergence rate for observables supported in Y in Theorem 2.2 was also not obtained
in [4].

All of our results about toral extensions fh are immediate consequences of Theo-
rems 2.2 and 2.3 combined with known results for f . In particular, in the proofs of
Theorem 1.3 and Theorem 1.5 below we use (1.2)–(1.4), while in the upper bounds
result on decay of correlation, namely Corollary 2.5 below, we use the result of
Young [30].
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Proof of Theorem 1.3 Write
∫
Y×Td v w ◦ f

n
h dm =

∫
Y
v0w0 ◦ fn dµ+ Sv,w(n). For

β > 1
2
, by (1.2), limn→∞ ˜̀(n)n1−β ∫

Y
v0w0◦fn dµ = dβ v̄0w̄0 = dβ v̄w̄. By Theorem 2.2,

˜̀(n)n1−βSv,w(n) = O(n1−2β+2ε‖v−v0‖Cη,p|w|∞). Since β > 1
2

and ε is arbitrarily small,
part (a) follows.

For β ∈ (0, 1
2
], or if v̄0 = 0 or w̄0 = 0, by (1.3),

∫
Y
v0w0 ◦ fn dµ =

O(n−(β−ε)‖v0‖|w0|∞). Hence part (b) follows from Theorem 2.2.

Proof of Theorem 1.5 Write
∫
Y×Td v w ◦ f

n
h dm − v̄w̄ = g(n) + Sv,w(n), where

g(n) =
∫
Y
v0 w0 ◦ fn dµ− v̄0w̄0. By (1.4),

g(n) =
∑
j>n

µ(τ > j)v̄0w̄0 + Eβ(n)‖v0‖|w0|∞ =
∑
j>n

µ(τ > j)v̄w̄ + Eβ(n)‖v0‖|w0|∞.

The result follows from the estimates for Eβ(n) together with the estimates in Theo-
rem 2.2 for Sv,w(n).

Corollary 2.5 Let h : X → Td be a Cη cocycle, η ∈ (0, 1], and assume nonexistence
of approximate eigenfunctions. As in Theorem 2.3, let ϕ : Z → Z+ be a (general)
return time such that µZ(ϕ > n) = O(n−β) where β > 1, and G = fϕ : Z → Z is full
branch Gibbs-Markov.

Then there exists p ∈ N such that

|
∫
X×Tdv w ◦ f

n
h dm−

∫
X×Tdv dm

∫
X×Tdw dm| = O(n−(β−1)‖v‖Cη,p|w|∞),

for all v ∈ Cη,p(X × Td), w ∈ L∞(X × Td).

Proof Write∫
X×Tdv w◦f

n
h dm−

∫
X×Tdv dm

∫
X×Tdw dm =

∫
X
v0 w0◦fn dµ−

∫
X
v0 dµ

∫
X
w0 dµ+Sv,w(n).

By Young [30],

|
∫
X
v0 w0 ◦ fn dµ−

∫
X
v0 dµ

∫
X
w0 dµ| ≤ Cn−(β−1)‖v0‖Cη |w0|∞,

for all v0 Hölder and w0 in L∞. Hence the result follows from Theorem 2.3.

3 Induced Gibbs-Markov maps

Let f : X → X be a topologically mixing map satisfying conditions (1)–(4) in assump-
tion (iii) in Section 1. Let G = fϕ : Z → Z be the induced full-branch Gibbs-Markov
map as defined in assumption (iii). Standard references for background material on
Gibbs-Markov maps are [1, Chapter 4] and [2]. In particular, a consequence of condi-
tions (1)–(3) is that there is a unique ergodic G-invariant probability measure on Z
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equivalent to µZ such that condition (iii) still holds with this measure in place of µZ .
Without loss we can suppose that µZ is this ergodic invariant probability measure.
Moreover µZ is mixing. This leads to a unique (up to scaling) f -invariant measure
µ on X with µ|Z equivalent to µZ , see for example [30, Theorem 1]. An explicit
definition of µ is given in Remark 7.1. The condition gcd{ϕ(a) : a ∈ α} = 1 implies
that f is topologically mixing, and in the finite measure case µ is mixing.

If a0, . . . , an−1 ∈ α, we define the n-cylinder [a0, . . . , an−1] =
⋂n−1
j=0 G

−jaj. Let

θ ∈ (0, 1) and define the symbolic metric dθ(z, z
′) = θs(z,z

′) where the separation time
s(z, z′) is the greatest integer n ≥ 0 such that z and z′ lie in the same n-cylinder.
In the remainder of this section, we fix θ ∈ [λ−η, 1). For convenience we rescale the
metric d on X so that diam(Z) ≤ 1.

Proposition 3.1 d(z, z′)η ≤ dθ(z, z
′) for all z, z′ ∈ Z.

Proof Let n = s(z, z′). By condition (2),

1 ≥ diamZ ≥ d(Gnz,Gnz′) ≥ λnd(z, z′) ≥ (θ1/η)−nd(z, z′).

Hence d(z, z′)η ≤ θn = dθ(z, z
′).

An observable v : Z → R is Lipschitz if ‖v‖θ = |v|∞ + |v|θ < ∞ where
|v|θ = supz 6=z′ |v(z) − v(z′)|/dθ(z, z′). The set Fθ(Z) of Lipschitz observables is
a Banach space. More generally, we say that v : Z → R is locally Lipschitz,
and write v ∈ F loc

θ (Z), if v|a ∈ Fθ(a) for each a ∈ α. Accordingly, we define
Dθv(a) = supz,z′∈a: z 6=z′ |v(z)− v(z′)|/dθ(z, z′).

We say that an observable v = (v1, . . . , vd) : Z → Rd lies in Fθ(Z,Rd) if v1, . . . , vd ∈
Fθ(Z), and we define |v|θ = maxj=1,...,d |vj|θ and ‖v‖θ = maxj,...,d ‖vj‖θ. Similarly, we
define F loc

θ (Z,Rd) and F loc
θ (Z,Td).

Proposition 3.2 Let h : X → Td be a Cη cocycle. Define the induced cocycle
H(z) =

∑ϕ(z)−1
`=0 h(f jz). Then H ∈ F loc

θ (Z,Td), and there is a constant C2 ≥ 1 such
that

DθH(a) ≤ C2|h|Cηϕ(a),

for all a ∈ α.

Proof Let z, z′ ∈ a. Then ϕ(z) = ϕ(z′) = ϕ(a). Let C ′1 = Cη
1 . By condition (4) and

Proposition 3.1,

|H(z)−H(z′)| ≤
ϕ(a)−1∑
`=0

|h(f `z)− h(f `z′)| ≤ |h|Cη
ϕ(a)−1∑
`=0

d(f `z, f `z′)η

≤ C ′1|h|Cηϕ(a)d(Gz,Gz′)η ≤ C ′1|h|Cηϕ(a)dθ(Gz,Gz
′) = C ′1θ

−1|h|Cηϕ(a)dθ(z, z
′),

10



yielding the required estimate for DθH(a).

The transfer operator R : L1(Z) → L1(Z) corresponding to the induced map
G : Z → Z is given by

∫
Z
Rv w dµZ =

∫
Z
v w ◦ GdµZ for all v ∈ L1(Z), w ∈ L∞(Z).

Since we are now taking µZ to be invariant, this is the normalized transfer operator
satisfying R1 = 1. It can be easily seen that (Rv)(z) =

∑
a∈α e

g(za)v(za) where
za denotes the unique preimage of z in a under G and g is the potential defined
in condition (3) in the definition of Gibbs-Markov map (beginning of Section 1.2).
Similarly, (Rnv)(z) =

∑
a∈αn e

gn(za)v(za) where za denotes the unique preimage of z

in a under Gn and gn(z) =
∑n−1

j=0 g(Gjz). Moreover, there exists a constant C3 such
that

egn(z) ≤ C3µZ(a), and |egn(z) − egn(z′)| ≤ C3µZ(a)dθ(G
nz,Gnz′), (3.1)

for all z, z′ ∈ a, a ∈ αn, n ≥ 1.

Proposition 3.3 There exists τ ∈ (0, 1) such that ‖Rnv −
∫
Z
v dµZ‖θ ≤ Cτn‖v‖θ,

for all n ≥ 1 and v ∈ Fθ(Z).

Proof This follows from the fact that the transfer operator R has a spectral gap [1,
Section 4.7].

4 Eigenfunctions and approximate eigenfunctions

In this section, we recall the notion of approximate eigenfunction, and show that
typically there are none. That is, condition (v) in the introduction holds typically.

In Subsection 4.1, we consider ordinary eigenfunctions as mentioned in Re-
mark 2.4. (Non-existence of eigenfunctions is a sufficient condition for a technical
result on renewal operators, namely Proposition 7.2, required in the proof of our
main results.) Approximate eigenfunctions are then considered in Subsection 4.2.

Throughout this section, we work with toral extensions of a map f : X → X with
full branch Gibbs-Markov induced map G = fϕ : Z → Z corresponding to a general
return time ϕ : Z → Z+. Given a measurable cocycle h : X → Td, we define the
induced cocycle H : Z → Td given by H(z) =

∑ϕ(z)−1
`=0 h(f `z).

4.1 Eigenfunctions

In this subsection, we define eigenfunctions and recall some of their basic properties.
Let S1 denote the unit circle in C.

Definition 4.1 A measurable function v : Z → S1 is an eigenfunction if there exist
frequencies k ∈ Zd \ {0} and ω ∈ [0, 2π) such that v ◦G = eik·Heiωϕv.
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By Remark 2.4, nonexistence of eigenfunctions is a sufficient condition for our
main results in the case of trigonometric polynomials. The next result shows that
nonexistence of eigenfunctions is typical.

Proposition 4.2 Suppose that h is Cη for some η > 0 and that z1 and z2 are fixed
points for G : Z → Z. If there exists an eigenfunction, then there exist k1, k2 ∈ Zd\{0}
such that k1 ·H(z1) = k2 ·H(z2) mod 2π.

Proof Suppose that v is an eigenfunction with frequencies k ∈ Zd \ {0} and
ω ∈ [0, 2π). Since G is Gibbs-Markov, it follows by Livšic regularity that v
is continuous. Since zj are fixed points, we obtain eik·H(zj)eiωϕ(zj) = 1. Hence
eiϕ(z2)k·H(z1)eiωϕ(z1)ϕ(z2) = 1 and eiϕ(z1)k·H(z2)eiωϕ(z1)ϕ(z2) = 1. It follows that
eiϕ(z2)k·H(z1) = eiϕ(z1)k·H(z2). The result follows with k1 = ϕ(z2)k and k2 = ϕ(z1)k.

It follows that nonexistence of eigenfunctions holds generically (for a residual set
of Cη cocycles h : X → Td for any fixed η > 0). An open and dense criterion is given
in Appendix A.

4.2 Approximate eigenfunctions

For k ∈ Zd, ω ∈ [0, 2π], define Mk,ω : L∞(Z)→ L∞(Z),

Mk,ωv = e−ik·He−iωϕv ◦G.

Note that v is an eigenfunction with frequencies k, ω if and only if Mk,ωv = v.

Definition 4.3 There are approximate eigenfunctions on a subset Z∞ ⊂ Z if for any
ξ0 > 0, there exist constants ξ, ζ > ξ0 and C ≥ 1, and sequences

uj ∈ Fθ(Z), kj ∈ Zd \ {0}, ωj ∈ [0, 2π), χj ∈ [0, 2π), nj = [ζ ln |kj|] ∈ N, j ≥ 1,

with limj→∞ |kj| =∞, |uj| ≡ 1 and |uj|θ ≤ C|kj|, such that

|(Mnj
kj ,ωj

uj)(z)− eiχjuj(z)| ≤ C|kj|−ξ,

for all z ∈ Z∞ and all j ≥ 1.

Definition 4.4 A subset Z∞ ⊂ Z is called a finite subsystem of Z if Z∞ =⋂
n≥1G

−nZ0 where Z0 is the union of finitely many elements from the partition α.

Definition 4.5 We say that there exist approximate eigenfunctions if for every finite
subsystem Z∞ ⊂ Z there exist approximate eigenfunctions on Z∞.

Proposition 4.6 Let z1, z2, z3 be three fixed points for G : Z → Z such that ϕ(z1) 6=
ϕ(z2). Let Z∞ be the finite subsystem corresponding to the union of the partition
elements containing z1, z2, z3. For almost all H(z1), H(z2), H(z3) ∈ Td, there are no
approximate eigenfunctions on Z∞.
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Proof Suppose that there exist approximate eigenfunctions on Z∞. Then there
exists sequences as in Definition 4.3 such that

|e−injkj ·H(za)e−injωjϕ(za) − eiχj | = O(|kj|−(d+2)),

for a = 1, 2, 3, j ≥ 1. Eliminating χj, we obtain

dist(njkj · (H(za)−H(z3)) + njωj(ϕ(za)− ϕ(z3)), 2πZ) = O(|kj|−(d+2)),

for a = 1, 2, j ≥ 1. Define k̃j = njkj ∈ Zd and Ω = (ϕ(z1)−ϕ(z3))(H(z2)−H(z3))−
(ϕ(z2)− ϕ(z3))(H(z1)−H(z3)). Eliminating ωj, we obtain

dist(k̃jΩ, 2πZ) = O(|kj|−(d+2)).

For almost every value of Ω, this Diophantine condition holds for at most finitely
many values of k̃j ∈ Zd, violating the requirement that |kj| → ∞. Hence approximate
eigenfunctions do not exist on Z∞.

Field et al. [9, 10] introduced the notion of good asymptotics. We recall this notion
in Appendix A and show that it gives an open and dense criterion for nonexistence of
approximate eigenfunctions for (piecewise) smooth toral extensions, including those
in Examples 1.7 and 1.8.

5 Fourier analysis and Hölder norms

In this section, we recall some standard results about smoothness of Fourier series [18].
Let An be a sequence of bounded linear operators on some Banach space X and set
A(ω) =

∑∞
n=1Ane

inω, ω ∈ [0, 2π]. If A ∈ L1 then we define the Fourier coefficients

Ân = (1/2π)
∫ 2π

0
e−inωA(ω) dω.

When speaking of regularity of A, we regard A as a 2π-periodic function on R.
Let |A|C0 = supω ‖A(ω)‖. For m ∈ N, define ‖A‖Cm = maxj=0,...,m |A(j)|C0 . For
q = m + α, m ∈ N, α ∈ [0, 1), define ‖A‖Cq = ‖A‖Cm + |A(m)|α where |A|α =
supω1 6=ω2

|A(ω1)− A(ω2)|/|ω1 − ω2|α.

Proposition 5.1 Suppose that
∑

j>n ‖Aj‖ ≤ Cn−q for constants C ≥ 1, q > 0,
where q is not an integer. Then there is a universal constant Dq depending only on q
such that A : [0, 2π]→ L(X ,X ) is Cq and ‖A‖Cq ≤ CDq.

Proof The details are written out for example in [4, Lemma 2.4].

Proposition 5.2 Suppose that A : [0, 2π] → L(X ,X ) is Cq, q > 0. Then there is a
universal constant Dq depending only on q such that ‖Ân‖ ≤ Dq‖A‖Cqn−q.

Proof The details are written out for example in [4, Lemma 2.5].
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Remark 5.3 If q > 1 in Propositions 5.1 or 5.2, then An = Ân and the Fourier series
is uniformly absolutely convergent.

Next, we consider Hölder norms of families of operator functions A, B : [0, 2π]→
L(X ,X ) where A(ω) is invertible for all ω ∈ [0, 2π] and B(ω) = A(ω)−1.

Lemma 5.4 For each m ∈ N, there is a universal constant cm > 0 such that for all
q = m+ α, α ∈ [0, 1),

‖B‖Cq ≤ cm(1 + ‖B‖C0)2q+2(1 + ‖A‖Cq)2q+1.

Proof First we consider the case q = m ∈ N. The case m = 0 is trivial. For m ≥ 1,
note that DmB is a linear combination of terms of the form (Dn1B)(Dn2A)(Dn3B)
with n1 + n2 + n3 = m and n2 ≥ 1. Inductively,

|DmB|C0 ≤ c′m
∑

n1+n2+n3=m

n2≥1

|Dn1B|C0|Dn2A|C0|Dn3B|C0 ≤ c′m‖A‖Cm
∑

n1+n3≤m−1

‖B‖Cn1‖B‖Cn3

≤ c′′m‖A‖Cm
∑

n1+n3≤m−1

(1 + ‖B‖C0)2n1+2n3+4(1 + ‖A‖Cm)2n1+2n3+2

≤ c′′′m(1 + ‖B‖C0)2m+2(1 + ‖A‖Cm)2m+1,

establishing the required result when q = m is an integer.
When q = m+ α, we have in addition that

|DmB|α ≤ c′m
∑

n1+n2+n3=m

n2≥1

(2|Dn1B|α|Dn2A|C0|Dn3B|C0 + |Dn1B|C0|Dn2A|α|Dn3B|C0)

≤ 3c′m‖A‖Cq
∑

n1+n3≤m−1

‖B‖Cn1+α‖B‖Cn3

≤ c′′m‖A‖Cq
∑

n1+n3≤m−1

(1 + ‖B‖C0)2n1+2α+2n3+4(1 + ‖A‖Cq)2n1+2α+2n3+2

≤ c′′′m(1 + ‖B‖C0)2q+2(1 + ‖A‖Cq)2q+1,

completing the proof.

6 Estimates for induced twisted transfer operators

Throughout this section, we assume condition (iii) on the induced map G = fϕ :
Z → Z. Recall from Section 3 that R is the transfer operator corresponding to G,
and that H : Z → Td is the induced cocycle H(z) =

∑ϕ(z)−1
`=0 h(f `y).

For k ∈ Zd, define the twisted transfer operators Rk : L1(Z) → L1(Z), Rkv =
R(eik·Hv). We can write Rk =

∑∞
n=1Rk,n where Rk,n : L1(Z)→ L1(Z) is given by

Rk,nv = Rk(1{ϕ=n}v).
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Define Rk(ω) : L1(Z)→ L1(Z) for ω ∈ [0, 2π] by setting

Rk(ω)v =
∞∑
n=1

Rk,ne
inωv = R(eik·Heiωϕv).

Note that Rk(ω)nv = Rn(eik·Hneiωϕnv) where Hn =
∑n−1

j=0 H ◦Gj, ϕn =
∑n−1

j=0 ϕ ◦Gj.
In Subsection 6.1, we derive some basic estimates for the operators Rk,n and Rk(ω).

In Subsection 6.2, we obtain a Dolgopyat-type estimate.

6.1 Some basic estimates

Proposition 6.1 For all k ∈ Zd, ω ∈ [0, 2π], n ≥ 1, (a) |Rk,n|∞ ≤ C3µZ(ϕ = n) and
(b) |Rk(ω)|∞ ≤ 1.

Proof Let z ∈ Z. For each a ∈ α, let za be the unique preimage za ∈ a ∩ G−1(z).
Then

(Rk,nv)(z) =
∑

a∈α:ϕ(a)=n

eg(za)eik·H(za)v(za).

By (3.1),

|Rk,nv|∞ ≤ C3

∑
a∈α:ϕ(a)=n

µZ(a)|v|∞ = C3µZ(ϕ = n)|v|∞,

proving part (a).
Since |R|∞ = 1 and Rk(ω)v = R(eik·Heiωϕv), part (b) is immediate.

Lemma 6.2 Let ε > 0 and fix θ ∈ [λ−ηε, 1). There exists a constant C ≥ 1 such
that for every v ∈ Fθ(Z), k ∈ Zd \ {0}, ω ∈ [0, 2π], and for every n-cylinder a ∈ αn,
n ≥ 1,

|Rk(ω)n(1av)|θ ≤ CµZ(a)
{
|k|ε

n−1∑
j=0

θn−jϕ(Gja)ε|v|∞ + θn|v|θ
}
.

Proof Let z ∈ Z, and let za be the unique preimage za ∈ a ∩ G−n(z). Noting that
ϕn is constant on a,

(Rk(ω)n(1av))(z) = egn(za)eik·Hn(za)eiωϕn(a)v(za),

and
(Rk(ω)n(1av))(z)− (Rk(ω)n(1av))(z′) = I1 + I2 + I3,

where

I1 = (egn(za)− egn(z′a))e
ik·Hn(za)eiωϕn(a)v(za),

I2 = egn(z′a)(e
ik·Hn(za) − eik·Hn(z′a))eiωϕn(a)v(za),

I3 = egn(z′a)e
ik·Hn(z′a)eiωϕn(a)(v(za)− v(z′a)).
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By (3.1),

|I1| ≤ C3µZ(a)|v|∞dθ(z, z′), |I3| ≤ C3µZ(a)|v|θdθ(za, z′a) = C3θ
nµZ(a)|v|θdθ(z, z′).

Using the inequality |eix − 1| ≤ 2|x|ε for all x ∈ R, ε ∈ (0, 1],

|I2| ≤ 2C3µZ(a)|k|ε|Hn(za)−Hn(z′a)|ε|v|∞.

Let γ ∈ [λ−η, 1). By definition of za, z
′
a,

dγ(G
jza, G

jz′a) = γ−jdγ(za, z
′
a) = γn−jdγ(z, z

′),

for j = 0, . . . , n− 1, and so by Proposition 3.2 (with θ = γ),

|H(Gjza)−H(Gjz′a)| ≤ DγH(Gja)dγ(G
jza, G

jz′a) ≤ C2|h|Cηϕ(Gja)γn−jdγ(z, z
′).

Hence

|Hn(za)−Hn(z′a)| =
∣∣∣n−1∑
j=0

(H(Gjza)−H(Gjz′a))
∣∣∣ ≤ C2|h|Cη

n−1∑
j=0

γn−jϕ(Gja)γs(z,z
′).

It follows that

|I2| ≤ 2C2C3|k|ε|v|∞µZ(a)|h|εCη
∣∣∣n−1∑
j=0

γn−jϕ(Gja)
∣∣∣εγεs(z,z′)

≤ 2C2C3|k|ε|v|∞µZ(a)|h|εCη
n−1∑
j=0

γε(n−j)ϕ(Gja)εγεs(z,z
′).

Choosing γ = θ1/ε,

|I2| ≤ 2C2C3|k|ε|v|∞µZ(a)|h|εCη
n−1∑
j=0

θn−jϕ(Gja)εdθ(z, z
′).

Combining the estimates for I1, I2, I3 yields the required result.

Corollary 6.3 Choose ε such that ϕε ∈ L1(Z) and let θ ∈ [λ−ηε, 1). There exists a
constant C4 ≥ 1 (depending on h, ϕ, ε) such that for every θ ∈ (0, 1), v ∈ Fθ(Z),
k ∈ Zd \ {0}, ω ∈ [0, 2π], n ≥ 1,

(a) ‖Rk,n‖θ ≤ C4µZ(ϕ = n)|k|εnε.

(b) |Rk(ω)nv|θ ≤ C4{|k|ε|v|∞ + θn|v|θ}.
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Proof Taking ω = 0, n = 1, a ∈ α in Lemma 6.2, we obtain

|Rk(1av)|θ ≤ CµZ(a){|k|εϕ(a)ε)|v|∞ + |v|θ} ≤ CµZ(a)|k|εϕ(a)ε‖v‖θ.

Summing over those a with ϕ(a) = n, we obtain that |Rk,nv|θ � µZ(ϕ = n)|k|εnε‖v‖θ.
This combined with Proposition 6.1(a) yields part (a).

To prove part (b), we write Rk(ω)nv =
∑

a∈αn Rk(ω)n(1av) and sum the estimates
from Lemma 6.2. Note that∑
a∈αn

µZ(a)
n−1∑
j=0

θn−jϕ(Gja)ε =
n−1∑
j=0

θn−j
∑

b∈αn−j

ϕ(b)ε
∑

a∈αn:Gja=b

µZ(a)

=
n−1∑
j=0

θn−j
∑

b∈αn−j

ϕ(b)εµZ(b) ≤ θ(1− θ)−1
∑
b∈α

µZ(b)ϕ(b)ε.

Hence |Rk(ω)nv|θ ≤ C{θ(1− θ)−1|k|ε
∑

a∈α µZ(a)ϕ(a)ε|v|∞ + θn|v|θ}.

Corollary 6.4 Choose ε ∈ (0, β) so that β − ε is not an integer and such that ϕε ∈
L1(Z). Let θ ∈ [λ−ηε, 1).

For each k ∈ Zd \ {0}, the map Rk : [0, 2π] → L(Fθ(Z), Fθ(Z)), ω 7→ Rk(ω), is
Cβ−ε. Moreover, there is a constant C ≥ 1 independent of k such that ‖Rk‖Cβ−ε ≤
C|k|ε.

Proof Recall from Remark 1.2 that µZ(ϕ > n) = O(n−(β−ε)). By Corollary 6.3(a),
we have that

∑
j>n ‖Rk,j‖θ � |k|εn−(β−2ε). Now apply Proposition 5.1.

6.2 A Dolgopyat-type estimate

The argument in this subsection is a direct adaptation of an argument in [21] and is
included mainly for completeness. Propositions 6.6 and 6.7 below correspond to [21,
Lemmas 3.12 and 3.13] respectively, and the Dolgopyat-type estimate, Lemma 6.8,
follows immediately.

Throughout, we fix ε ∈ (0, 1] such that ϕε ∈ L1(Z), and θ ∈ [λ−ηε, 1).

Remark 6.5 As in [7, Section 6], we define ‖v‖k = max{|v|∞, |v|θ/(2C4|k|ε)}. Then
it follows from Proposition 6.1(a) and Corollary 6.3(a) that ‖Rk(ω)n‖k ≤ C4 + 1

2
for

all n ≥ 1. Moreover, ‖Rk(ω)n‖k ≤ 1 for all n ≥ n0 (where n0 = [ln(2C4)/(− ln θ)]+1).

Since we are estimating operator norms with respect to ‖ ‖k, we consider the unit
ball Fθ(Z)k = {v ∈ Fθ : ‖v‖k ≤ 1}. It follows from Remark 6.5 that |Rk(ω)nv|∞ ≤ 1
and |Rk(ω)nv|θ ≤ 2C4|k|ε for all v ∈ Fθ(Z)k and n ≥ n0.

Throughout, Z0 denotes a fixed subset of Z consisting of a finite union of partition
elements of Z, and Z∞ = ∩j≥0G

−jZ0. Note that the potential g is uniformly bounded
on Z∞ and moreover gn(z) ≤ n|1Z∞g|∞ for all z ∈ Z∞ and n ≥ 1.
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Proposition 6.6 Let ξ2, ζ0 > 0. Then there exist ξ1 > 0 and ζ > ζ0, such that the
following is true for each fixed |k| ≥ 2, ω ∈ [0, 2π], setting n(k) = [ζ ln |k|]:

Suppose that there exists v0 ∈ Fθ(Z)k such that for all x ∈ Z∞ and all j = 0, 1, 2,

|(Rk(ω)jn(k)v0)(x)| ≥ 1− 1/|k|ξ1 .

Then there exists w ∈ Fθ(Z) with |w| ≡ 1, |w|θ ≤ 16C4|k|, and χ ∈ [0, 2π) such that
for all z ∈ Z∞,

|(Mn(k)
k,ω w)(z)− eiχw(z)| ≤ 8/|k|ξ2 .

Proof We write n = n(k) and C̃4 = 16C4. Set

ζ = (ξ2 + 2 + ln C̃4/ ln 2)/(− ln θ), ξ1 = max{1, 2ξ2 + ζ|1Z∞g|∞}.

If necessary, increase ζ so that ζ > ζ0. Following [7, Section 8] and [21, Section 3], we
write vj = Rk(ω)jnv0 and vj = sjwj, where |wj(x)| ≡ 1 and 1 − 1/|k|ξ1 ≤ sj(x) ≤ 1
for x ∈ Z∞. Note that |vj|θ ≤ 2C4|k|ε so that |wj|θ ≤ C̃4|k|ε ≤ C̃4|k|. Rearrange
v1 = Rk(ω)nv0 to obtain w−1

1 Rk(ω)n(s0w0) = s1 ≥ 1−1/|k|ξ1 . It then follows from the
definition of Rk(ω) that egn(z)[1−<(eik·Hn(z)eiωϕn(z)w0(z)w−1

1 (Gnz))] ≤ 1/|k|ξ1 for all
z ∈ Z with Gnz ∈ Z∞. Hence |eik·Hn(z)eiωϕn(z)w0(z)− w1(Gnz)| ≤ 2(e−gn(z)/|k|ξ1)1/2.
Similarly, with w0 and w1 replaced by w1 and w2. Restricting to z ∈ Z∞, we have
e−gn(z)/|k|ξ1 ≤ 1/|k|2ξ2 and hence

|eik·Hn(z)eiωϕn(z)w0(z)− w1(Gnz)| ≤ 2/|k|ξ2 ,
|eik·Hn(z)eiωϕn(z)w1(z)− w2(Gnz)| ≤ 2/|k|ξ2 , (6.1)

for all z ∈ Z∞. Fix q ∈ Z∞ and choose χ0, χ1 ∈ R such that wj(q) = eiχj

for j = 0, 1 and such that χ = χ0 − χ1 ∈ [0, 2π). To each z, we associate
z∗ = q0 · · · qn−1znzn+1 · · · ∈ Z∞. Then z∗ is within distance θn of q and Gnz∗ = Gnz.
We obtain

|eik·Hn(z∗)eiωϕn(z∗)eiχ0 − w1(Gnz)| ≤ 2/|k|ξ2 + C̃4|k|θn ≤ 3/|k|ξ2

|eik·Hn(z∗)eiωϕn(z∗)eiχ1 − w2(Gnz)| ≤ 2/|k|ξ2 + C̃4|k|θn ≤ 3/|k|ξ2

(by the choice of ζ), and so |e−iχw1(Gnz)−w2(Gnz)| ≤ 6/|k|ξ2 . Substituting into (6.1)
yields the required approximate eigenfunction w = w1.

Proposition 6.7 For any ξ1, ζ > 0, there exists ξ > 0 and C ≥ 1 with the following
property.

Let |k| ≥ 1 and suppose that for any v ∈ Fθ(Z)k there exists x0 ∈ Z∞ and
j ≤ [ζ ln |k|] such that |(Rk(ω)jv)(x0)| ≤ 1−1/|k|ξ1. Then ‖(I−Rk(ω))−1‖k ≤ C|k|ξ.
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Proof Following [7, Section 7], we use the pointwise estimate on iterates of Rk(ω)
to obtain estimates on the L1, L∞ and ‖ ‖k norms.

Write û = Rk(ω)jv and u = Rk(ω)`(k)v where `(k) = [ζ ln |k|]. Note that |û|∞ ≤ 1
and |û|θ ≤ 2C4|k|ε ≤ 2C4|k|. Hence, |û(x)| ≤ 1 − 1/(2|k|ξ1) for all x within distance
1/(4C4|k|ξ1+1) of x0. Call this subset U . If Cm is an m-cylinder, then diam Cm = θm,
so provided θm < 1/(4C4|k|ξ1+1), the m-cylinder containing x0 lies inside U . It suffices
to take m ∼ (ξ1 + 1) ln |k|/(− ln θ). By (3.1),

µZ(U) ≥ µZ(Cm) ≥ C−1
3 e−gm(x0) ≥ C−1

3 e−m|1Z∞g|∞ ≥ C−1|k|−(ξ1+1)ξ2 ,

where ξ2 = |1Z∞g|∞/(− ln θ). Breaking up Z into U and Z \ U ,

|u|1 ≤ |û|1 ≤ (1−1/(2|k|ξ1))µZ(U)+1−µZ(U) = 1−µZ(U)/(2|k|ξ1) ≤ 1−C−1|k|−ξ3 ,

where ξ3 = ξ1 + ξ2 + ξ1ξ2. By Proposition 3.3,

|Rk(ω)nu|∞ ≤ |(Rn|u|)|∞ ≤ |(Rn|u| −
∫
|u|)|∞ + |u|1 � τn‖u‖θ + |u|1

≤ (1 + 2C4|k|)τn + 1− C−1|k|−ξ3 .

Choosing n = n1(k) = [ζ1 ln |k|] where ζ1 � 1 ensures that

|Rk(ω)`(k)+n1(k)v|∞ = |Rk(ω)n1(k)u|∞ ≤ 1− C−1|k|−ξ3 .

Setting n2(k) = [ζ2 ln |k|] where ζ2 = ζ + ζ1,

|Rk(ω)n2(k)v|∞ ≤ 1− C−1|k|−ξ3 .

By Proposition 6.1(a) and Corollary 6.3(b), |Rk(ω)n2(k)+n|∞ ≤ 1 − C−1|k|−ξ3 for all
n ≥ 0, and

|Rk(ω)n2(k)+nv|θ/(2C4|k|ε) ≤ 1
2

+ θnC4 ≤ 3
4
,

for n sufficiently large (independent of k). Increasing ζ2 slightly, we obtain
‖Rk(ω)n2(k)v‖k ≤ 1 − C−1|k|−ξ3 . Hence ‖(I − Rk(ω)n2(k))−1‖k ≤ C|k|ξ3 . Using the
identity (I − A)−1 = (I + A+ · · ·+ Am−1)(I − Am)−1 and Remark 6.5, we obtain

‖(I −Rk(ω))−1‖k = O(n2(k)|k|ξ3) = O(|k|ξ),

for any choice of ξ > ξ3.

Lemma 6.8 Assume conditions (iii) and (v). Then there exists ξ > 0 and C ≥ 1
such that ‖(I −Rk(ω))−1‖θ ≤ C|k|ξ for all k ∈ Zd \ {0} and all ω ∈ [0, 2π].

Proof This is immediate from Propositions 6.6 and 6.7.
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7 Renewal operators

Define the tower ∆ = {(z, `) ∈ Z × Z : 0 ≤ ` ≤ ϕ(z) − 1}. The tower map

f̂ : ∆→ ∆ is given by f̂(z, `) =

{
(z, `+ 1), ` ≤ ϕ(z)− 2

(Gz, 0), ` = ϕ(z)− 1
, with ergodic f̂ -invariant

measure µ∆ = µZ × counting. Let L : L1(∆) → L1(∆) denote the transfer operator
corresponding to f̂ : ∆→ ∆. (So

∫
∆
Lv w dµ∆ =

∫
∆
v w ◦ f̂ dµ∆.)

Denote by π : ∆→ X the projection π(z, `) = f `z.

Remark 7.1 Since π is a semiconjugacy from f̂ to f , the measure µ = π∗µ∆ is an
ergodic f -invariant measure on X. This is the measure described in Section 3.

Given a cocycle h : X → Td, we define the lifted cocycle ĥ = h ◦ π : ∆→ Td. For
k ∈ Zd, define the twisted transfer operators Lk : L1(∆)→ L1(∆), Lkv = L(eik·ĥv).

Next, define the renewal operators Tk,n : L1(Z) → L1(Z) given by Tk,0 = I and
for n ≥ 1,

Tk,nv = 1ZL
n
k(1Zv) = 1ZL

n(1Ze
ik·ĥnv).

Define Tk(ω) : L1(Z)→ L1(Z) for ω ∈ [0, 2π],

Tk(ω) =
∞∑
n=0

Tk,ne
inω.

Note that G = f̂ϕ : Z → Z is the first return to Z for the map f̂ : ∆→ ∆. Hence
for all k ∈ Zd we have the renewal equation,

Tk(ω) = (I −Rk(ω))−1.

Let T̂k,n denote Fourier coefficients of Tk(ω).
Since the expression Sv,w(n) in Theorem 2.2 is a sum over k ∈ Zd \{0}, we restrict

attention throughout to this range of k. (The operators T0,n and T0(ω) were studied
in [12, 27, 24].)

Proposition 7.2 Assume condition (iii) and nonexistence of eigenfunctions. Then
Tk,n = T̂k,n for all k ∈ Zd \ {0}, n ≥ 0.

For β > 1, this follows from Remark 5.3 using the estimate T̂k,n = O(n−(β−ε)), and
the assumption that there are no eigenfunctions is not required. (The case β > 2 was
treated similarly in [4].) The proof of Proposition 7.2 for general β > 0 is postponed
to Appendix B.

Lemma 7.3 Assume conditions (iii) and (v). Choose ε and θ as in Corollary 6.4.
Then there are constants C ≥ 1, ξ > 0, such that

‖Tk,n‖ ≤ C|k|ξn−(β−ε),

for all k ∈ Zd \ {0}, n ≥ 1.
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Proof By Corollary 6.4, ω 7→ Rk(ω) is Cβ−ε. By Lemma 6.8, I−Rk(ω) is invertible
and so ω 7→ Tk(ω) = (I −Rk(ω))−1 is Cβ−ε. Hence by Propositions 5.2 and 7.2,

‖Tk,n‖ = ‖T̂k,n‖ � ‖Tk‖Cβ−εn−(β−ε).

By Lemma 5.4 and Corollary 6.4,

‖Tk‖Cβ−ε � ‖Rk‖2β+1
Cβ−ε
‖(I −Rk)

−1‖2β+2
C0 � |k|ε(2β+1) sup

ω∈[0,2π]

‖(I −Rk(ω))−1‖2β+2.

Hence by Lemma 6.8, ‖Tk‖Cβ−ε � |k|ξ. The result follows.

8 Proof of Theorem 2.2

In this section, we assume conditions (iii)–(v). Let f : X → X with induced map
Gibbs-Markov map G = fϕ : Z → Z as in Section 3. Let µZ denote the associated
ergodic G-invariant measure on Z.

Let f̂ : ∆ → ∆ be the tower map defined in Section 4.1 with ergodic f̂ -invariant
measure µ∆ = µZ×counting. We continue to let π : ∆→ X denote the semiconjugacy
π(z, `) = f `z from f̂ to f . Recall that π∗µ∆ = µ is the underlying ergodic f -
invariant measure on X. Given a cocycle h : X → Td, we define the lifted cocycle
ĥ = h ◦ π : ∆→ Td.

Fix ε ∈ (0, β) sufficiently small (to be specified) and θ ∈ [λ−ηε, 1). The sym-
bolic metric dθ on Z defined in Section 3 extends to a metric on ∆ by defining

dθ((z, `), (z
′, `′)) =

{
dθ(z, z

′), ` = `′

1 ` 6= `′
. An observable v : ∆ → R is Lipschitz if

‖v‖θ = |v|∞ + |v|θ < ∞ where |v|θ = supp 6=q |v(p) − v(q)|/dθ(p, q) < ∞. Let Fθ(∆)
denote the space of Lipschitz observables on ∆.

Proposition 8.1 If v ∈ Cη(X), then v̂ = v ◦ π ∈ Fθ(∆). Moreover, there is a
constant C ≥ 1 such that ‖v̂‖θ ≤ C‖v‖Cη .

Proof Clearly, |v̂|∞ ≤ |v|∞. Let q = (z, `), q′ = (z′, `′) ∈ ∆. If ` 6= `′, we have
|v̂(q) − v̂(q′)| ≤ 2|v|∞ = 2|v|∞dθ(q, q′). If ` = `′, then setting C ′1 = Cη

1 , and using
condition (4) in the definition of nonuniformly expanding map and Proposition 3.1,

|v̂(q)− v̂(q′)| = |v(f `z)− v(f `z′) ≤ |v|Cηd(f `y, f `z′)η ≤ |v|CηC ′1d(Gz,Gz′)η

≤ |v|CηC ′1dθ(Gz,Gz′) = |v|CηC ′1θ−1dθ(z, z
′).

Hence |v̂|θ � ‖v‖Cη .
In Theorem 2.2, we are interested in observables v : X → R supported in Y .

These lift to observables v̂ : ∆ → R supported in Ŷ = π−1(Y ). Proposition 8.1
guarantees that if v ∈ Cη(Y ), then v̂ ∈ Fθ(Ŷ ).
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Proposition 8.2 Let a ∈ α, 0 ≤ ` < ϕ(a). If (a× {`}) ∩ Ŷ 6= ∅, then a× {`} ⊂ Ŷ .

Proof Suppose there exists z0 ∈ a such that (z0, `) ∈ Ŷ . Then there exists q ≥ 1
such that τq(z0) = `. Note that τq = ` < ϕ = τρ, so q < ρ and τq is constant on a by

condition (iv). Hence τq(z) = ` for all z ∈ a, and it follows that a× {`} ⊂ Ŷ .

The tower ∆ can be partitioned into levels {∆n; n ≥ 0} and diagonals {Dn; n ≥ 1}
where

∆n = {(z, n) ∈ Z × {n} : ϕ(z) > n}, Dn = {(z, ϕ(z)− n) ∈ Z × Z : ϕ(z) > n}.

Note that µ∆(∆n) = µ∆(Dn) = µZ(ϕ > n). We have the corresponding partitions
Ŷ ∩∆n and Ŷ ∩Dn of Ŷ .

Proposition 8.3
∑

j≥n µ∆(Ŷ ∩∆j) = O(n−(β−ε)),
∑

j≥n µ∆(Ŷ ∩Dj) = O(n−(β−ε)).

Proof The proof of these estimates is based on [5].
First notice that both

⋃
j≥n Ŷ ∩ ∆j and

⋃
j≥n Ŷ ∩ Dj are contained in {(z, `) ∈

Ŷ : ϕ(z) > n}, so it suffices to show that µ∆{(z, `) ∈ Ŷ : ϕ(z) > n} = O(n−(β−ε)).
Next, we write {(z, `) ∈ Ŷ : ϕ(z) > n} =

⋃∞
q=1{(z, `) ∈ Ŷ : ϕ(z) >

n, ρ(z) = q}. If ρ(z) = q, then ϕ(z) = τq(z) and so there are precisely q values

of ` ∈ {0, 1, . . . , ϕ(z)− 1} such that (z, `) ∈ Ŷ . Hence

µ∆({(z, `) ∈ Ŷ : ϕ(z) > n}) =
∞∑
q=1

µ∆({(z, `) ∈ Ŷ : ϕ(z) > n, ρ(z) = q})

≤
∞∑
q=1

qµZ({z ∈ Z : ϕ(z) > n, ρ(z) = q}).

For k ≥ 1,

∞∑
q=1

qµZ(ϕ > n, ρ = q) =
k∑
q=1

qµZ(ϕ > n, ρ = q) +
∞∑

q=k+1

qµZ(ϕ > n, ρ = q)

≤ k2µZ(ϕ > n) +
∞∑

q=k+1

qµZ(ρ = q)

� k2n−(β−ε/2) +
∞∑

q=k+1

qe−cq � k2n−(β−ε/2) + e−ck/2,

where the implied constant is independent of k. Choosing k = p log n with p suffi-
ciently large, we obtain the desired estimate.
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Recall from Section 7 that Lk : L1(∆) → L1(∆) is the family of twisted transfer

operators Lkv = L(eik·ĥv) where ĥ = h ◦ π and L is the transfer operator correspond-
ing to f̂ . From now on, with an obvious abuse of notation, we write 1ŶL

n
k1Ŷ as a

shorthand for v 7→ 1ŶL
n
k(1Ŷ v). We view these as operators 1ŶL

n
k1Ŷ : Fθ(Ŷ )→ L1(Ŷ ).

Following Gouëzel [13, 14] (see also [4]), we define the sequences of operators

Ak,n : L∞(Z)→ L1(∆), Bk,n : Fθ(∆)→ Fθ(Z), Ek,n : L∞(∆)→ L1(∆),

as follows:

(Ak,nv)(x) =
∑
fnz=x

z∈Z; f̂z 6∈Z,...,f̂nz 6∈Z

egn(z)eik·ĥn(z)v(z), (Bk,nv̂)(z) =
∑
f̂nu=z

u6∈Z,...,f̂n−1u6∈Z; f̂nu∈Z

egn(u)eik·ĥn(u)v̂(u),

(Ek,nv̂)(x) =
∑
f̂nu=x

u6∈Z,...,f̂nu6∈Z

egn(u)eik·ĥn(u)v̂(u).

As in [13, 14, 4],

Lnk =
∑

n1+n2+n3=n

Ak,n1Tk,n2Bk,n3 + Ek,n, (8.1)

and so

1ŶL
n
k1Ŷ =

∑
n1+n2+n3=n

(1ŶAk,n1) Tk,n2 (Bk,n31Ŷ ) + 1ŶEk,n1Ŷ , (8.2)

where

1ŶAk,n : L∞(Z)→ L1(Ŷ ), Bk,n1Ŷ : Fθ(Ŷ )→ Fθ(Z), 1ŶEk,n1Ŷ : L∞(Ŷ )→ L1(Ŷ ).

Proposition 8.4 Uniformly in k ∈ Zd, n ≥ 1,

(a)
∑

j≥n ‖1ŶAk,j‖L∞(Z)7→L1(Ŷ ) = O(n−(β−ε)).

(b) ‖1ŶEk,n1Ŷ ‖L∞(Ŷ )7→L1(Ŷ ) = O(n−(β−ε)).

(c)
∑

j≥n ‖Bk,j1Ŷ ‖Fθ(Ŷ )7→Fθ(Z) = O(|k|εn−(β−ε)).

Proof (a) We have |1ŶAk,nv|∞ ≤ |v|∞ and supp 1ŶAk,nv ⊂ Ŷ ∩ ∆n. Hence

|1ŶAk,nv|1 ≤ µ∆(Ŷ ∩ ∆n)|v|∞ and so ‖1ŶAk,n‖L∞(Z)7→L1(Ŷ ) ≤ µ∆(Ŷ ∩ ∆n). Part (a)
now follows from Proposition 8.3.

Similarly |1ŶEk,n1Ŷ v̂|∞ ≤ |v̂|∞ and supp 1ŶEk,n1Ŷ v̂ ⊂
⋃
`>n Ŷ ∩ ∆`. Hence

‖1ŶEk,n1Ŷ ‖L∞(Ŷ )7→L1(Ŷ ) ≤
∑

`>n µ∆(Ŷ ∩∆`), so part (b) follows from Proposition 8.3.
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Finally,

(Bk,n1Ŷ v̂)(z) =
∑
a∈α

1{ϕ(a)>n}e
g(za)eik·ĥn(za,ϕ(a)−n)1Ŷ (za, ϕ(a)− n)v̂(za, ϕ(a)− n).

By Proposition 8.2, 1Ŷ (za, ϕ(a)− n) = 1 if and only if a× {ϕ(a)− n} ⊂ Ŷ . Hence

(Bk,n1Ŷ v̂)(z) =
∑∗

eg(za)eik·hn(fϕ(a)−nza)v̂(za, ϕ(a)− n),

where
∑∗ denotes summation over those a ∈ α such that a× {ϕ(a)− n} ⊂ Ŷ ∩Dn.

By Proposition 8.2,∑∗
µZ(a) =

∑∗
µ∆(a× {ϕ(a)− n}) = µ∆(Ŷ ∩Dn). (8.3)

Hence by (3.1), |Bk,n1Ŷ v̂|∞ ≤ C3|v̂|∞
∑∗µZ(a) ≤ C3|v̂|∞µ∆(Ŷ ∩Dn).

Also, for z, z′ ∈ Z, we have that (Bk,n1Ŷ v̂)(z)−(Bk,n1Ŷ v̂)(z′) = I1 +I2 +I3, where

I1 =
∑∗

(eg(za) − eg(z′a))eik·hn(fϕ(a)−nza)v̂(za, ϕ(a)− n),

I2 =
∑∗

eg(z
′
a)(eik·hn(fϕ(a)−nza) − eik·hn(fϕ(a)−nz′a))v̂(za, ϕ(a)− n),

I3 =
∑∗

eg(z
′
a)eik·hn(fϕ(a)−nz′a)(v̂(za, ϕ(a)− n)− v̂(z′a, ϕ(a)− n)).

By (3.1) and (8.3), |I1| ≤ C3|v̂|∞µ∆(Ŷ ∩Dn) dθ(z, z
′), and

|I3| ≤ C3|v̂|θµ∆(Ŷ ∩Dn) dθ(za, ϕ(a)− n, z′a, ϕ(a)− n)

= C3θ|v̂|θµ∆(Ŷ ∩Dn) dθ(z, z
′).

Let γ = θ1/ε. As in the proof of Proposition 3.2,

|hn(fϕ(a)−nza)− hn(fϕ(a)−nz′a)| ≤
ϕ(a)−1∑
`=ϕ(a)−n

|h|Cηd(f `za, f
`z′a)

η � ndγ(z, z
′).

Hence using similar arguments as in the proof of Lemma 6.2,

|eik·hn(fϕ(a)−nza) − eik·hn(fϕ(a)−nz′a)| ≤ 2|k|ε|hn(fϕ(a)−nza)− hn(fϕ(a)−nz′a)|ε

� |k|εnεdθ(z, z′).

It follows that
|I2| � |v̂|∞|k|εnεµ∆(Ŷ ∩Dn) dθ(z, z

′).

Hence |Bk,n1Ŷ v̂|θ � |k|εnεµ∆(Ŷ ∩ Dn)‖v̂‖θ and so ‖Bk,n1Ŷ ‖Fθ(Ŷ ) 7→Fθ(Z) �
|k|εnεµ∆(Ŷ ∩ Dn). By Proposition 8.3,

∑
j≥n ‖Bk,j1Ŷ ‖Fθ(Ŷ ) 7→Fθ(Z) = O(|k|εn−(β−2ε)),

yielding part (c).
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Corollary 8.5 There exists C, ξ > 0 such that ‖1ŶLnk1Ŷ ‖Fθ(Ŷ ) 7→L1(Ŷ ) ≤ C|k|ξn−(β−ε)

for all k ∈ Zd \ {0}, n ≥ 1.

Proof An elementary calculation shows that if un, vn are real sequences and |un| =
O(n−γ),

∑
j≥n |vj| = O(n−γ), where γ > 0, then |(u ? v)n| = O(n−γ). We apply this

with γ = β − ε.
Note that G = f̂ϕ : Z → Z is the first return map to Z for the tower map

f̂ : ∆ → ∆. Also, the induced cocycle H : Z → R is identical starting from f
and h or from f̂ and ĥ so we still have nonexistence of approximate eigenfunctions
when working in the tower set up. Hence Lemma 7.3 applies and we have that
‖Tk,n‖ � |k|ξn−(β−ε).

Combining this with the estimates for
∑

j≥n 1ŶAk,j and
∑

j≥nBk,j1Ŷ in Proposi-
tion 8.4, it follows that∥∥∥ ∑

n1+n2+n3=n

(1ŶAk,n1) Tk,n2 (Bk,n31Ŷ )
∥∥∥
Fθ(Ŷ )7→L1(Ŷ )

� |k|ξ+εn−(β−ε).

Using (8.2) and the estimate for 1ŶEk,n1Ŷ in Proposition 8.4, we obtain the desired
estimate for 1ŶL

n
k1Ŷ .

Proof of Theorem 2.2 Since π∗µ∆ = µ and v and w are supported in Y × Td, for
k ∈ Zd \ {0} and n ≥ 1,∫

X

eik·hnv−k wk ◦ fn dµ =

∫
∆

eik·ĥn v̂−k ŵk ◦ f̂n dµ∆ =

∫
X

1ŶL
n
k1Ŷ v̂−k ŵk dµ∆.

Hence ∣∣∣∫
X

eik·hnv−k wk ◦ fn dµ
∣∣∣ ≤ |1ŶLnk1Ŷ v−k|1|wk|∞ ≤ ‖1ŶL

n
k1Ŷ ‖‖v−k‖θ|w|∞.

By Corollary 8.5, ‖1ŶLnk1Ŷ ‖ � |k|ξn−(β−ε). By Proposition 8.1, ‖v−k‖θ ≤ C‖v−k‖Cη .
It follows from the usual integration by parts argument that ‖v−k‖Cη � |k|−p‖v‖Cη,p .
Hence ∣∣∣∫

X

eik·hnv−k wk ◦ fn dµ
∣∣∣� |k|ξ−pn−(β−ε)‖v‖Cη,p|w|∞.

Taking p > ξ + d, we obtain that

|Sv,w(n)| �
∑

k∈Zd\{0}

|k|ξ−pn−(β−ε)‖v‖Cη,p|w|∞ � n−(β−ε)‖v‖Cη,p|w|∞

as required.
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9 Proof of Theorem 2.3

Let f : X → X with induced map Gibbs-Markov map G = fϕ : Z → Z as in
Section 3. Let µZ denote the associated ergodic G-invariant probability measure on
µ. We suppose that µZ(ϕ > n) = O(n−β) where β > 1.

Again, we fix ε ∈ (0, β) sufficiently small (to be specified) and θ ∈ [λ−ηε, 1). We
assume in particular that β − ε > 1.

The tower map f̂ : ∆ → ∆, invariant measure µ∆, and lifted cocycle ĥ = h ◦
π : ∆ → Td are all defined as before. Also we define L : L1(∆) → L1(∆) and

Lkv̂ = L(eik·ĥv̂) as before.
The arguments are similar to those in Section 8, the main differences being that

we use (8.1) instead of (8.2) and that the estimates are simpler but weaker.

Proposition 9.1 There is a constant C > 0 such that for all k ∈ Zd \ {0}, n ≥ 1,

‖Ak,n‖L∞(Z)7→L1(∆) ≤µ(ϕ > n), ‖Bk,n‖Fθ(∆)7→Fθ(Z) ≤ Cµ(ϕ > n)|k|εnε,

‖Ek,n‖L∞(∆) 7→L1(∆) ≤
∑
j>n

µ(ϕ > j).

Proof These estimates are similar to the ones in Proposition 8.4.

Corollary 9.2 Assume condition (v). There exists C, ξ > 0 such that
‖Lnk‖Fθ(∆)7→L1(∆) ≤ C|k|ξn−(β−1) for all k ∈ Zd \ {0}, n ≥ 1,

Proof We estimate the sequences in (8.1). As in the proof of Corollary 8.5, ‖Tk,n‖ �
|k|ξn−(β−ε). By Proposition 9.1, the same estimate holds for ‖Ak,n‖ and ‖Bk,n‖. Since
β − ε > 1, the convolution of these three sequences is also O(|k|ξn−(β−ε)) for some ξ.
Finally, by Proposition 9.1, ‖Ek,n‖ � n−(β−1).

Proof of Theorem 2.3 This follows from Corollary 9.2 in the same way that
Theorem 2.2 followed from Corollary 8.5.

A Good asymptotics and nonexistence of approx-

imate eigenfunctions

In this appendix, we prove nonexistence of approximate eigenfunctions for an open
and dense set of smooth toral extensions. The method is based on the notion of good
asymptotics [9, 10].

Recall that G : Z → Z is the induced Gibbs-Markov map with induced cocycle
H : Z → Td. Let p0 ∈ Z be a fixed point for G and let pN be a sequence of periodic
points, N ≥ 1, with pN → p0 and GNpN = pN . We assume that the set of periodic
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orbits GjpN , j ≥ 0, N ≥ 1 is contained in a finite union Z0 of partition elements. In
a neighborhood of p0, we can lift H to a cocycle with values in Rd.

Definition A.1 The sequence of periodic points pN has good asymptotics if

HN(pN) = NH(p0) + κ+ JNγ
N + o(γN) as N →∞, (A.1)

ϕN(pN) = Nϕ(p0) + κ′, N ≥ 1,

where γ ∈ (0, 1), κ, JN ∈ Rd, κ′ ∈ Z and the i’th coordinate of JN has the form
JN,i = EN,i cos(Nθi + ψN,i). Moreover, EN,i is a bounded sequence of real numbers
with lim infN→∞ |EN,i| > 0 for each i, and either (a) θi = 0 and ψN,i ≡ 0 or (b)
θi ∈ (0, π) and ψN,i ∈ (θ̃i − π/12, θ̃i + π/12) for some θ̃i.

Proposition A.2 If pN has good asymptotics, then there are no approximate eigen-
functions on the finite subsystem Z∞ corresponding to Z0.

Proof The argument is an adaptation of [10, Proof of Theorem 1.6(a)]. Suppose that
there are approximate eigenfunctions uj on Z∞, so |Mnj

kj ,ωj
uj − eiχjuj| = O(|kj|−ξ).

We show that lim infN→∞ |EN,i| = 0 for some i ∈ {1, . . . , d}, so that good asymptotics
fails.

Since |Mkj ,ωj |∞ = 1, it is immediate that for all N ≥ 1,

|e−i·kjHnjN e−iωjϕnjNuj ◦GnjN − eiNχjuj| = |M
njN
kj ,ωj

uj − eiNχjuj| = O(N |kj|−ξ).

Substituting in the periodic points pN , and using the fact that |uj| ≡ 1, we obtain

|ei(njkj ·HN (pN )+njωjϕN (pN )+Nχj) − 1| = O(N |kj|−ξ),

and hence

dist(njkj ·HN(pN) + njωjϕN(pN) +Nχj, 2πZ) = O(N |kj|−ξ).

Similarly,

dist(Nnjkj ·H(p0) +Nnjωjϕ(p0) +Nχj, 2πZ) = O(N |kj|−ξ).

Subtracting these expressions and using (A.1),

dist(njkj · (κ+ JNγ
N + o(γN)) + njωjκ

′, 2πZ) = O(N |kj|−ξ).

Recall that nj = [ζ ln |kj|]. Set N = N(j) = [ρ ln |kj|]. For large enough ρ > 0,
we have njkjEN(j)γ

N(j) = O(|kj|−2ξ). It follows that dist(njkj · κ + njωjκ
′, 2πZ) =

O(|kj|−ξ ln |kj|) and so

dist(njkj · (JNγN + o(γN)), 2πZ) = O(N |kj|−ξ) +O(|kj|−ξ ln |kj|). (A.2)
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Let S = supN |JN | and set M(j) = [(ln(nj|kj|) + lnS + ln 2)/(− ln γ)] + 1. Then
Snj|kj|γM(j) = 1

2
γρj , with ρj ∈ (0, 1]. In particular, |Snj|kj|γM(j)| ≤ 1

2
and so taking

N = M(j) +m with m ∈ N fixed, condition (A.2) implies that

lim
j→∞

njkj · JM(j)+mγ
M(j) = 0.

Moreover, nj|kj|γM(j) ≥ γ/(2S) and it follows that there exists i ∈ {1, . . . , d} such
that

lim
j→∞

EM(j)+m,i cos((M(j) +m)θi + ψM(j)+m,i) = 0.

We show that for this i, there is a choice of m ∈ N for which cos((M(j) + m)θi +
ψM(j)+m,i) does not converge to 0 as j →∞

Assume for contradiction that for each integer m ≥ 0

lim
j→∞

(M(j) +m)θi + ψM(j)+m,i = π/2 mod π. (A.3)

Recall that if θi = 0 then ψN ≡ 0, hence (A.3) fails (with m = 0). Otherwise,
θi ∈ (0, π) and |ψN − θ̃i| < π/12. Taking differences of (A.3) for various values of m
we obtain that `θi ∈ [−π/6, π/6] mod π for all `, which is impossible.

Next, we recall the construction of periodic orbits with good asymptotics in [9, 10].
We assume that (X, d) is a Riemannian manifold. Let Z1 and Z2 be two of the
partition elements in Z and assume that these are submanifolds of X and that G|Zj :
Zj → Z and H|Zj : Zj → Td are Cr for some r ≥ 2. These are natural assumptions for
piecewise Cr dynamical systems f : X → X and dynamically Cr cocycles h : X → Td.
For instance, the set up includes Examples 1.7 and 1.8; the maps are not C2 for γ < 1,
but G|a is C∞ for all partition elements a. Similarly, H|a is Cr in these examples
provided h|fja is Cr for j = 0, . . . , ϕ(a)− 1.

Let p0 ∈ Z1 be a fixed point for G and choose a transverse homoclinic point z ∈ Z2.
Following [9, 10], we construct a sequence of N -periodic points pN , N ≥ 1, for G with
orbits lying in Z0 = Z1 ∪ Z2. The sequence automatically has good asymptotics
except that in exceptional cases there may exist i such that lim infN→∞ |EN,i| = 0.
By [9, 10], the liminfs are positive for a C2 open and Cr dense set of cocycles. (The
construction in [9, 10] yields the expression for H in (A.1), and the same argument
gives a similar expression for ϕ. This simplifies as in (A.1) since ϕ is integer-valued.)

Combining this construction with Proposition A.2, it follows that nonexistence of
approximate eigenfunctions holds for an open and dense set of smooth toral exten-
sions.

B Proof of Proposition 7.2

In this appendix, we show that the coefficients Tk,n and T̂k,n of Tk coincide for all
β > 0, k ∈ Zd \ {0}, n ≥ 0. The case k = 0 was treated in [24] using a dominated
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convergence argument on an annulus at the boundary of the unit disk. Here we use
the same strategy, but the details are somewhat different.

Throughout we assume nonexistence of eigenfunctions, and we work with a fixed
k ∈ Zd \ {0}. Also, we fix ε ∈ (0, 1] such that ϕε ∈ L1(Z).

Let D = {z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1}. First, we extend the
definition of Rk to the closed unit disk, setting Rk(z) =

∑∞
n=1Rk,nz

n for all z ∈ D.
Then Rk(z)v = R(eik·Hzϕv). Note that Rk(e

iω) coincides with the operator previously
denoted Rk(ω).

Proposition B.1 supω∈[0,2π] ‖(I −Rk(e
iω))−1‖θ <∞.

Proof A standard consequence (see for example [16]) of Proposition 6.1(b) and
Corollary 6.3(b) is that Rk(e

iω) has essential spectral radius at most θ. Hence
if 1 ∈ specRk(e

iω), then there exists a nonzero function v ∈ Fθ(Z) such that
Rk(e

iω)v = v. A calculation using the fact that Mk,ω is the L2 adjoint of Rk(e
iω)

(see for example [23, p. 429]) shows that Mk,ωv = v contradicting the assumption
that there are no eigenfunctions.

Hence 1 6∈ specRk(e
iω), and so ‖(I − Rk(e

iω))−1‖θ <∞, for each ω ∈ [0, 2π]. By
Corollary 6.4, ω 7→ Rk(e

iω) is continuous and the result follows.

Remark B.2 Under the assumption that there are no approximate eigenfunctions,
we could bypass Proposition B.1 and simply quote Lemma 6.8.

The next step is to extend this estimate to an annulus.

Proposition B.3 There exists C ≥ 1 such that ‖Rk(e
iω)− Rk(ρe

iω)‖θ ≤ C(1− ρ)ε,
for all ρ ∈ [0, 1], ω ∈ [0, 2π].

Proof Define Sω,ρ = Rk(e
iω)−Rk(ρe

iω). Let v ∈ Fθ(Z). Then

Sω,ρv = R(eik·Heiωϕ(1− ρϕ))v.

Hence in the usual notation, for z ∈ Z,

(Sω,ρv)(z) =
∑
a∈α

eg(za)eik·H(za)eiωϕ(a)(1− ρϕ(a))v(za).

By (3.1),

|Sω,ρv|∞ ≤ C3|v|∞
∑
a∈α

µZ(a)(1− ρϕ(a)).

Now 1− ρn ≤ min{1, (1− ρ)n} ≤ (1− ρ)εnε. Hence,

|Sω,ρv|∞ ≤ C3|v|∞
∑
a∈α

µZ(a)(1− ρ)εϕ(a)ε = C3|ϕε|1|v|∞(1− ρ)ε � |v|∞(1− ρ)ε.
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Next, for z, z′ ∈ Z,

|(Sω,ρv)(z)− (Sω,ρv)(z′)| ≤ I1 + I2 + I3,

where

I1 =
∑
a∈α

(eg(za) − eg(z′a))eik·H(za)eiωϕ(a)(1− ρϕ(a))v(za),

I2 =
∑
a∈α

eg(z
′
a)(eik·H(za) − eik·H(z′a))eiωϕ(a)(1− ρϕ(a))v(za),

I3 =
∑
a∈α

eg(z
′
a)eik·H(z′a)eiωϕ(a)(1− ρϕ(a))(v(za)− v(z′a)).

Using estimates as in the proof of Lemma 6.2 combined with the argument above for
estimating 1− ρϕ(a), we obtain

|I1| ≤ C3|ϕε|1|v|∞(1− ρ)ε dθ(z, z
′), |I3| ≤ C3|ϕε|1|v|θ(1− ρ)ε dθ(z, z

′),

|I2| ≤ 2C2C3|k|ε|h|εCη |ϕε|1|v|∞(1− ρ)ε dθ(z, z
′).

Hence |Sω,ρv|θ � ‖v‖θ(1− ρ)ε and the result follows.

Corollary B.4 There exists ρ0 ∈ (0, 1] such that supρ∈[ρ0,1] supω∈[0,2π] ‖(I −
Rk(ρe

iω))−1‖θ <∞.

Proof We use the resolvent identity

(I −Rk(ρe
iω))−1 = (I −Rk(e

iω))−1(I + Aω,ρ)
−1, (B.1)

where
Aω,ρ = (Rk(e

iω)−Rk(ρe
iω))(I −Rk(e

iω))−1,

By Propositions B.1 and B.3, ‖Aω,ρ‖θ � (1− ρ)ε for all ρ ∈ [0, 1], ω ∈ [0, 2π]. Hence
we can choose ρ0 so that ‖Aω,ρ‖θ ≤ 1

2
for all ρ ∈ [ρ0, 1], ω ∈ [0, 2π]. It follows that

‖(I + Aω,ρ)
−1‖θ ≤ 2. The result follows from (B.1) and Proposition B.1.

Next, we define Tk(z) =
∑∞

n=0 Tk,nz
n. Since |Tk,n|1 ≤ 1 for all n, the family Tk(z)

is analytic on the open unit disk D when viewed as a family of operators on L1(Z).
Hence it is certainly analytic as a family of operators from Fθ(Z) to L1(Z).

The renewal equation becomes Tk(z) = (I−Rk(z))−1 for z ∈ D. By Corollary B.4,
we can extend Tk(z) to D as a continuous family of operators from Fθ(Z) to L1(Z).

The Fourier coefficients of Tk : S1 → L(Fθ(Z), L1(Z)) are given by T̂k,n =

(2π)−1
∫ 2π

0
Tk(e

iω)e−inω dω. Also the coefficients of the analytic function Tk : D →
L(Fθ(Z), L1(Z)) are given by Tk,n = (2π)−1

∫ 2π

0
ρ−nTk(ρe

iω)e−inω dω for any ρ ∈ (0, 1].
By Corollary B.4 and the renewal equation, the integrand Iρ(ω) = ρ−nTk(ρe

iω)e−inω

satisfies the uniform bound supρ∈[ρ0,1] supω∈[0,2π] ‖Iρ(ω)‖Fθ(Z)7→L1(Z) < ∞. Letting

ρ → 1−, it follows from the dominated convergence theorem that Tk,n = T̂k,n as
required.
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