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ABSTRACT: We have synthesized novel organo-iridium(III) antimicrobial complexes 

containing a chelated biguanide, including the antidiabetic drug metformin. These 16- and 18-

electron complexes were characterized by NMR, ESI-MS, elemental analysis, and X-ray 

crystallography. Several of these complexes exhibit potent activity against Gram-negative 

bacteria and Gram-positive bacteria (including methicillin-resistant Staphylococcus aureus 

(MRSA), and high antifungal potency towards C. albicans and C. neoformans, with minimum 

inhibitory concentrations (MICs) in the nanomolar range. Importantly, the complexes exhibit 

low cytotoxicity towards mammalian cells, indicating high selectivity. They are highly stable 

in broth medium, with a low tendency to generate resistance mutations. On co-administration, 

they can restore the activity of vancomycin against vancomycin-resistant Enterococci (VRE). 

Also the complexes can disrupt and eradicate bacteria in mature biofilms. Investigations of 

reactions with biomolecules suggest that these organometallic complexes deliver active 

biguanides into microorganisms, whereas the biguanides themselves are inactive when 

administered alone.  

 

INTRODUCTION 

Infectious diseases caused by drug resistant bacteria are currently the second main cause of 

death worldwide and the third leading cause of death in developed countries.1 Fungal infections 
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are also a human health threat,2 their clinical treatment presents profound challenges.3  Gram-

positive and Gram-negative bacteria have cell envelopes which guard against changes in 

osmotic pressure, chemical or enzymatic lysis and mechanical damage, and can survive under 

extreme conditions.4 The cell wall of Gram-positive bacteria comprises a thick layer of 

peptidoglycan and the additional outer membrane of Gram-negative bacteria is populated with 

lipopolysaccharides, both of which features can protect bacteria from antibiotics.5, 6  

Drug resistance was originally found in hospitals where most antibiotics are used, e.g. 

sulfonamide-resistant Streptoccoccus pyogenes emerged in the 1930s and Staphylococcus 

aureus showed resistance to penicillin shortly after it was introduced in the 1940s.7 Multidrug 

resistant bacteria, including the notorious Enterococcus faecium, Staphylococcus aureus, 

Klebsiella pneumoniae, Acetinobacter baumanii, Pseudomonas aeruginosa, and 

Enterobacteriaceae species, abbreviated as ‘ESKAPE’, are now a major threat to human health 

and cause of bacterial infectious diseases with high mortality.8-10 Therefore, novel, effective, 

and safe antibiotics are urgently needed.11 

Organometallic half-sandwich complexes provide a highly versatile platform for drug design.12 

The antiproliferative and antimicrobial activities of organometallic complexes can be fine-

tuned by choice of the π-bonded arene or cyclopentadienyl ligand, the metal itself and its 

oxidation state, and by the other monodentate or chelating ligands.13 We focus here on the 

third-row transition metal ion IrIII, which with its low-spin 5d6 outer shell electronic 

configuration can be relatively inert and therefore likely to reach drug target sites with at least 

some of its initial ligands still bound.14 So far, there are relatively few reports on the 

antimicrobial properties of organometallic iridium complexes.14-16  Here we have introduced 

biguanide ligands into organo-iridium cyclopentadienyl complexes. 
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Biguanides are an important class of compounds that have wide pharmaceutical applications. 

One of the best known biguanide derivatives is the drug metformin (Metf), which has been 

used to treat type II diabetes for over 60 years. Other derivatives like phenformin, buformin, 

1-phenylbiguanide and chlorophenylbiguanide are reported to exhibit antimicrobial and 

antiviral activity (Chart 1).17-20 Jiang et al. have reported the synergistic effect of gold 

nanoparticles and metformin, generating broad-spectrum antibacterial and bactericidal activity 

against superbugs, with low cytotoxicity. Such nanoparticles decorated with biguanide ligands 

can penetrate cell membranes readily and have significant anti-biofilm activity.9 Clardy et al. 

have synthesized norspermidine-mimicking guanide and biguanide compounds with activity in 

disrupting biofilms generated by B. subtilis and pathogenic S. aureus.21 Over the last two 

decades, a library of biguanide chelated transition metal complexes has been studied, including 

[MnIV(biguanide)3]
4+, [AuIII(biguanide)]+, [Cu(biguanide)2]

2+, [Zn(biguanide)Cl2], 

[Pt(biguanide)Cl2] and [M(biguanide)]2+ (M: Mn, Co, Cu and Zn).22-26 Some of those 

complexes show promising antimicrobial activity, but their mode of action (MoA) has yet to 

be elucidated.  

Here we have synthesized and characterized a series of novel IrIII complexes 1-14 containing 

either Cp*, CpXph or CpXbiph, a chelated metformin or an N-substituted biguanide, together with 

a monodentate halido ligand (Chart 2). Complexes and metal-free biguanides were screened 

against a broad range of microbes, including fungi, Gram–negative and Gram–positive 

bacteria. The synergistic effect of complexes 4, 7 and 10 on co-administration with vancomycin 

against vancomycin-resistant Enterococci (VRE), was studied, as well as the anti-biofilm 

activity of complexes 4-9 in an S. aureus model. The bio-compatibility of selected complexes 

was studied towards human cells, as well as the stability of the complexes in culture medium, 

and the mutation rate of S. aureus treated with complexes 4, 5 and 7. We also investigated cell 

permeability and morphology changes in S. aureus induced by complex 7, by confocal 
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microscopy and TEM, to gain insight into the mechanism of action. The interaction of 

complexes 4, 7 and 10 with DNA nucleobase models 9-ethylguanine and guanosine-5’-

monophophate, and a variety of amino acids was investigated by 1H NMR and LC-MS to probe 

potential target sites. 

 

Results 

Synthesis and Characterization 

Organometallic IrIII complexes 1-14 were synthesised following a reported general 

procedure,27 involving reaction of the appropriate chlorido-bridged IrIII dimer and biguanide 

ligands in anhydrous methanol, to which triethylamine was added, followed by heating at  45 

oC under nitrogen for 18 h. The dark red solids obtained after removal of solvent were purified 

by recrystallization (in MeOH and diethyl ether, 2:9 (v/v)) or on a silica chromatographic 

column using MeOH and DCM, 1:9(v/v) as eluents. Complexes 8 and 9 were synthesized by 

adding a 100-fold excess of NaBr or NaI, respectively.  

Crystals of complexes 1 [(Cp*)Ir(Metf)Cl]Cl and 4 [(CpXbiph)Ir(PhBig)]Cl suitable for X-ray 

structure determination were obtained by slow diffusion of diethyl ether into a saturated 

methanol solution of the complex at ambient temperature. The crystallographic data and 

selected bond lengths and angles are given in Tables 1, S1-3, and the crystal structures are 

shown in Figure 1. Complex 1 adopts a pseudo-octahedral structure with IrIII bound to a η5-

Cp* ring, a chelated neutral metformin and chloride as ligands to form an 18e 1+ cation with 

‘piano-stool’ geometry and chloride as the counter anion. In contrast, iridium in complex 4 is 

also a 1+ cation but bound only to a η5-CpXbiph ring and deprotonated N,N-bound 

phenylbiguanide, giving a 16e species, with chloride as counter anion.  
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The asymmetric unit of complex 4 contains two crystallographically independent but 

chemically identical complexes, two chloride counter ions and a small amount of electron 

density modelled as a partially occupied methanol (40% occupancy). The Ir-N bond lengths of 

complex 1 are slightly longer than in complex 4, Table 1. The C3-N3 and C5-N5 bond lengths 

of complex 1 are shorter than C3-N4 and C5-N4, and can be denoted as double bonds (Table 

1 and Chart 2A).While in complex 4, the C110-N111 bond lengths are shorter than the 

respective C108-N108, and thus can be defined as double bonds (Table 1 and Chart 2B). The 

N-Ir-N angle of complex 1 (83.21(12)°) is smaller than that of complex 4 (85.35(11)°). The 

structures of complexes 1 and 4 suggest that these novel IrIII complexes can be fine-tuned by 

the chelated ligands to result in 16 e or 18 e species. 

Relative Hydrophobicity 

The relative hydrophobicities of complexes 1-14 were determined by RP-HPLC using a 

reverse-phase C18 column. To ensure solubility of the IrIII complexes, MeOH/H2O, 1:9 v/v was 

used with NaCl (50 mM) present to suppress the hydrolysis. The HPLC eluents were also 

prepared with 50 mM NaCl (Figure S1 in the Supporting Information). The resulting retention 

times are shown in Table S4 in the Supporting Information. Complex 1 shows the shortest 

retention time (least hydrophobic) at 13.0 min. It is evident that complexes with more phenyl 

groups on the η5-CpX (complexes 2-3), have higher retention times, indicating higher 

hydrophobicity. Complexes 4-9 with more hydrophobic functional phenyls on the chelating 

biguanide ligands have retention times range within 20.9-25.3 min, and the introduction of 

sulfonyl groups with aromatic substituents on the chelated biguanide ligands significantly 

enhances the hydrophobicity with retention time various of 32-37 min with the exception of 

complex 10 (toluene sulfonyl, 21.44 min) which was much less hydrophobic.  

Antimicrobial Activity  
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The minimum inhibitory concentrations (MICs) of complexes 1-14 were determined against 

Gram-negative bacterial strains: Escherichia coli, Klebsiella pneumoniae, Pseudomonas 

aeruginosa, Acinetobacter baumannii, and Gram-positive bacteria strains: Bacillus subtilis, 

Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus epidermidis and 

Staphylococcus aureus (including methicillin-sensitive and -resistant (MRSA) strain types). 

Antifungal activity against Candida albicans and Cryptococcus neoformans was also studied. 

First, the antimicrobial activity of selected biguanide chelating ligands L1-6 and L10 against 

E. coli, K. pneumoniae, P. aeruginosa, A. baumannii and MRSA, and fungi was determined. 

None of these ligands exhibited activity, with MICs > 32 µg/mL. 

The more hydrophilic IrIII complexes 1 and 2 are inactive against the majority of the pathogens 

studied, with MICs over 32 µg/mL (Figure 2), but the activity increased with increase in 

hydrophobicity (longer HPLC retention times), which is obvious seen from complex 3, with 

MICs in the range 2- >32 µg/mL, probably due to the increased uptake of the complexes within 

the membranes of the bacteria.28 This trend is also apparent from the antibacterial activity of 

complexes 1-4 against MRSA (Figure S2 in the Supporting Information).  

Among the Gram-negative bacteria, complexes 4-7 exhibit the highest potency against A. 

baumannii (MICs, 4 μg/mL (5.4-5.8 μM), an important nosocomial non-motile aerobic 

bacterial pathogen29) and E. coli (MICs 4-8 μg/mL (5.4-11.2 μM)) (Figure 2 and Table S4 in 

the Supporting Information). These complexes had moderate potency (MICs 16-32 μg/mL 

(21.6-44 μM)) towards K. pneumoniae, a cause of various nosocomial infections, e. g. urinary 

tract, pneumonia, and intra-abdominal infections (Figure 2).30 However, all biguanide 

complexes have little activity towards P. aeruginosa (MICs above 32 µg/mL), probably due to 

the poor membrane permeability (only ca. 8% that of E. coli) and very effective efflux system, 
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which makes P. aeruginosa intrinsically resistant to many antibiotics (Table S4 in the 

Supporting Information).31  

In order to study the effect of halido ligand on the antimicrobial activity, the Cl in complex 7 

were substituted by Br and I to obtain complexes 8 and 9, respectively. To increase the 

hydrophobicity and potentially enhance uptake of the complexes, a sulfonyl group with an 

aromatic substituent was introduced onto the terminal nitrogen of the biguanide ligand, to 

obtain complexes 10-14 (Chart 2). Interestingly, complexes bromido 8 and iodido 9 showed 

higher antibacterial activity against K. pneumoniae compared to chloride complex 7, but were 

less potent towards E. coli and A. baumannii (Figure 2). By introducing the sulfonyl 

substituents, the potency of complexes 10-14 decreased dramatically, with MICs all above 32 

μg/mL (Figure 2).  

The antifungal activity of complexes 1-14 was screened towards C. albicans, a common fungus 

in humans which can cause superficial mycoses, invasive mucosal infections, and disseminated 

systemic disease,32, 33 and C. neoformans, an opportunistic yeast that can cause meningitis.34 

Interestingly, complexes 4-9 exhibited excellent antifungal activity against these fungi (MICs 

= 0.25-1 μg/mL (0.34-1.45 μM), Figure 2), ca. 76-fold more active against C. neoformans than 

the reference compound Fluconazole (8 μg/mL (26.1 μM), Table S4 in the Supporting 

Information). The exchange of monodentate halido ligands had little effect on the antifungal 

activity (MICs 1 µg/mL (ca. 1.2 µM) and 0.5 µg/mL (ca. 0.6 µM), respectively). However, the 

introduction of sulfonyl functional groups lowered the activity slightly (MICs of complexes 

10-14 of 1-2 μg/mL (1.1-2.4 μM), Figure 2 and Table S4 in the Supporting Information).  

For Gram-positive bacteria, the antibacterial activity of complexes 1-14 was investigated in 

comparison with clinical drug vancomycin, and the minimum bactericidal concentrations 

(MBCs) were also determined. Generally, complexes 4-14 show moderate to excellent 
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antibacterial activity against Gram-positive bacteria strains, with MICs and MBCs within the 

range 0.125-32 μg/mL (0.17-38 μM, Table 2). In particular, complexes 4-9 exhibit potent 

inhibitory and bactericidal activity towards S. pyogenes and S. epidermidis, giving MIC and 

MBC in the range of 0.125-1 µg/mL (0.17-1.5 µM, Table 2). S. pyogenes is a pathogenic strain 

that responsible for ca. 517000 deaths annually,35 which can cause benign to invasive diseases, 

e.g. necrotizing fasciitis, rheumatic fever and rheumatic heart disease.36 S. epidermidis is an 

opportunistic microorganism which exists in human skin and mucosa;37 the nosocomial 

genotypes are the main cause of catheter-related bloodstream, joint and biomedical device-

related infections.38-40 Complexes 4-9 also display potent antibacterial activity against S. aureus 

and B. subtilis, with MICs and MBCs in the range of 0.25-4 μg/mL (0.3-2.9 μM, Table 2). 

E. faecalis is amongst the intestinal flora, and causes about 90% of enterococcal infections by 

inhibiting alimentary canals of man, which can induce lethal diseases. E. faecalis can survive 

in nosocomial environments due to intrinsic resistance to several antibiotics.41 Complexes 4-9 

show potent antibacterial activity against E. faecalis (MICs, 0.5-1 μg/mL (0.58-1.45 μM), 

Table 2), ca. 4× more potent than vancomycin (2.8 μM); and the MBCs range from 4-32 μg/mL 

(5.5-43 μM). Sulfonyl-substituted complexes 10-14 exhibited significant inhibitory activity 

against S. aureus, B. subtilis, S. pyogenes and S. epidermidis, with MICs all below 1 μg/mL 

(0.3-1.2 μM, Table 2). However, the bactericidal activity of complexes 10-14 decreased 

dramatically, with MBCs against S. aureus, S. epidermidis and E. faecalis are >32 μg/mL (>38 

µM).  

We next investigated whether generation of reactive oxygen species (ROS) could be a key 

process in the activity of the complexes. The MICs of complexes 4-10 were assessed under 

strict anaerobic conditions (generated with Oxoid AnaeroGen 2.5L sachets in a plastic 

container) for bacteria that lack superoxide dismutase (SOD) and so cannot quench the high 

levels of superoxide,42 S. aureus (ATCC 29213) and S. pyogenes (ATCC 151112). As can be 
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seen from Table S5, there were no significant changes in MICs of complexes 4-10 compared 

with aerobic conditions, which suggests that ROS generation is not a key process in their 

activity. 

Cytotoxicity (CC50), Haemolytic Activity (HC50) and Cytopathic Effects  

To investigate the selectivity of the complexes for microorganisms versus mammalian cells, 

the concentrations giving 50% cytotoxicity towards human embryonic kidney cells (HEK-293) 

and 50% haemolytic activity towards human red blood cells (RBC) for complexes 4-14 were 

determined (Table 2). In general, complexes 4-9 exhibited low in vitro cytotoxicity against 

HEK-293 and RBC cells (CC50: 17 - >32 µg/mL (19 - >47 µM) and HC50: 6 - 21 μg/mL (8 - 28 

μM)). Interestingly, complexes 8 (Br complex) and 9 (I complex) showed higher cytotoxicity 

(CC50, 27.6 µM and 18.6 µM, respectively) towards HEK-293 cells than that of complex 7 (Cl 

complex, CC50 value over 44 µM), decreasing in the order: 7 > 8 > 9; while complexes 8 and 

9 gave similar HC50 values (8.2 and 8.6 µM, respectively), are lower than that of 7 (20 µM). 

As expected, complexes 10-14 displayed lower cytotoxicity (CC50: >32 µg/mL (>35 µM) and 

HC50: 15 - >32 μg/mL (17 - >35 μM)), when compared to complexes 4-9 (Table 2). 

We also determined the cytopathic effect of a representative set of complexes 4-7, 11, 12 and 

14 on HaCaT human keratinocyte cells (an immortalized, non-tumorigenic cell line, Table 

2).43-45 A 4 h-exposure of keratinocyte cells to these selected antimicrobial agents induced 

morphological changes in keratinocytes cells at concentrations of 128 µg/mL (139-179 μM) 

for 5-7 and 11-12, and of 64 µg/mL (94 μM) and 32 µg/mL (35 μM) for complexes 4 and 14, 

respectively; indicating the low cytotoxicity. 

The selectivity factors (SF) of complexes 4-14 for the cytotoxicity against HEK-293 (CC50, 

µM) and RBC (HC50, µM in brackets) versus the bactericidal activity towards Gram-positive 

bacteria (MIC, µM), are given in Table S6 in the Supporting Information. SF values are the 
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ratio of CC50 or HC50 values to MBC values. Complexes 4-9 have good to excellent SF values 

between S. aureus, B. subtilis, S. pyogenes and S. epidermidis, with SF values in the range of 

4 to >256 for CC50/MBC and 2 to 118 for HC50/MBC. However, the selectivity factors between 

E. faecalis and human cells for complexes 4-14 are poor, since these complexes have little 

activity towards this highly resistant pathogen. 

Long-term Antibacterial Investigation 

The stability of complexes 4-10 by using S. aureus as model bacterium was investigated by 

determining their MICs after various time intervals (1-21 days). The complexes were dissolved 

in Cation-adjusted Mueller Hinton Broth at the concentration of 128 μg/mL and stored at three 

different temperatures: -18 oC, 18 oC and 42 oC. Antibacterial testing was performed on days 

1, 4, 8 and 21 (Table S7 in the Supporting Information). Little change in MICs of complexes 

4-7 was observed after 21 days at 42 oC (in the range of 2-4 µg/mL), indicative of high stability. 

However, MICs of complexes 8-10 increased gradually from day 8 to day 21 at 42 oC, with 

MICs rising from 1 μg/mL to 16, 8 and 32 μg/mL, respectively, indicative of some degradation 

of these complexes at this temperature (42 oC).  

Resistance Evolution  

To investigate the rate of generation of bacterial resistance towards these novel IrIII biguanide 

complexes, we determined the mutation rate of standard strain S. aureus exposed to complexes 

4, 5 and 7 at concentrations of 0.25 MIC, for sustained passages. MICs were determined after 

every 4 passages. After a total of 24 passages, MIC values of complexes 4, 5 and 7 against S. 

aureus remained unchanged, suggesting that Gram-positive bacteria do not rapidly evolve 

resistance to these IrIII biguanide complexes.   

Kinetics of Growth Inhibition 
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The kinetics of growth inhibition by complex 7 was studied in three different S. aureus cultures 

of densities 105, 107 and 108 CFU/mL (Figure 3a-c), and the effect of DMSO concentration 

(1%, 5% and 10% DMSO in medium, v/v) in the broth medium on the cell growth (at bacterial 

intensity of 105 CFU/mL, Figure 3d). It is evident that high DMSO concentrations can greatly 

inhibit the bacterial growth (slow growth in 10% DMSO/90% medium).  Concentrations of 

complex 7 in three ranges in bacterial medium culture were studied: 0.125 MIC to 2 MIC (cell 

density of 1 × 105 CFU/mL), 0.25 MIC to 4 MIC (1 × 107 CFU/mL) and 0.5 MIC to 8 MIC (1 

× 108 CFU/mL). As can be seen in the Figure 3, bacterial growth was well inhibited at MIC 

concentration when the cell culture density was 1 × 105 CFU/mL; at higher cell culture densities 

(1 × 107 and 1 × 108 CFU/mL), the total bacterial growth inhibition concentration of complex 

7 increased to 2 MIC, but the complex inhibited the growth of S. aureus for ca. 500 min at MIC 

concentration when cell culture density was 1 × 107 CFU/mL. Complex 7 exhibits a density-

dependent antibacterial activity against S. aureus, consistent with MIC values. The growth of 

S. aureus was effectively hindered at sub-MIC and MIC concentrations of complex 7 at 

different culture cell densities, which indicates that these IrIII complexes may be sequestered 

inside bacteria cell and exhibit a constant bactericidal activity towards Gram-positive bacteria 

such as S. aureus. 

Synergistic Effects on Antibiotic Resistance 

The intrinsic and acquired resistance of pathogens towards antibiotics has become a major 

problem.46 Some newer antibiotics have little effect on highly resistant microorganisms.47 Co-

administration of new antibiotics with existing clinical drugs (to which pathogens have 

developed resistance) may re-activate their antimicrobial activity. Here we have investigated 

the synergistic activity of organo-iridium complexes 4, 7 and 10 and the clinical drugs cefoxitin 

and vancomycin towards two highly resistant nosocomial pathogens: vancomycin-resistant 

Enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA).  
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The MICs for co-administration of complexes 4, 7 and 10 and the clinical drugs cefoxitin and 

vancomycin towards MRSA and VRE, respectively, were determined (Table 3, in the 

Supporting Information). The IrIII complexes themselves exhibit high antibacterial activity 

against VRE and MRSA with MICs of 0.5-4 μg/mL; while cefoxitin against MRSA and 

vancomycin against VRE give MIC values of 32 μg/mL and 64 μg/mL, respectively.  As can 

be seen from Table 3, no synergistic effect of cefoxitin against MRSA was observed when co-

administered with complexes 4, 7 and 10 (at sub-MIC concentrations). Notably, the 

combination of complexes 4, 7 and 10 with vancomycin towards VRE showed very high 

synergy, significantly decreasing the MIC values from 64 μg/mL to 0.25, 4 and 2 μg/mL, 

respectively (Table 3).  

In further experiments, we examined the reverse synergistic effect upon co-incubation of 

vancomycin (at the concentrations of 0.25, 4 and 2 μg/mL) with complexes 4, 7 and 10. 

However, no growth inhibitory towards VRE below 0.5× MIC complex concentrations was 

observed after 24 h, at 37 oC.   

Anti-biofilm Study 

Biofilms are integrations of microorganism communities with extracellular polymeric 

substances which consist mainly of a variety of bio-polymers.48 The slow growth rate or low 

metabolism of organisms in biofilms makes the bacteria difficult to eradicate, and thus bacteria 

in biofilm are more tolerable to antibiotics.48, 49 Biguanide derivatives, both polymers50 and low 

weight molecules21 are reported as biofilm disruptors. We studied the ability of complexes 4-9 

(at 100, 50, 30, 20, 10, 5 and 2 μg/mL) to kill S. aureus in biofilm model of soft-tissue biofilm 

infection. The logarithms of the numbers of bacterial colonies are listed in Table S8. A two-

factor analysis of variance was carried out to compare the effectiveness of complexes with 

negative controls. It is evident from Figure 4, that after treatment of mature biofilms with IrIII 
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biguanide complexes, at the concentrations of 100 and 50 μg/mL, at least a 3 log difference 

from the negative control is observed, suggesting that at such complex concentrations, over 

99.9% of S. aureus are killed. Anti-biofilm efficacy at complex concentrations of 30 and 20 

μg/mL decreased significantly, but there was still a reduction of 1.5 and 1 log, respectively, 

compared to negative control, which indicates that IrIII biguanide complexes can eradicate over 

90% biofilm cells at equipotent 10× to 15× MIC concentrations. A decrease of cell viability 

was still observable, but very limited at lower complex concentrations (10, 5 and 2 μg/mL). 

Overall, there was a significant effect of each concentration on the number of CFU and this 

differed between the complexes (all p-values <0.01, see ANOVA Table S9 in the Supporting 

Information) 

Induced Permeability Changes in Bacterial Cell Walls 

In order to gain insight into the mechanism of the potent bactericidal activity of these 

complexes against Gram-positive bacteria, we evaluated the permeability change of bacterial 

cells based on a fluorescence DEAD/LIVE assay by exposure of S. aureus to complex 7 at 4× 

MBC and 8× MBC concentrations, with S. aureus without adding any antibiotic as negative 

control. The viability of bacteria was checked before being stained. Propidium Iodide (PI) is 

an effective dye which can bind uniquely to DNA or RNA nucleobase. PI itself cannot cross 

the membranes of viable cells, while dead cells with broken cell membranes are readily 

recognized by PI for intracellular staining.51,52 It is evident from the images in Figure 5a-c, 

that little PI fluorescence was observed in negative control. The percentage of PI stained cells 

is ca. 6% on treatment with 7 at equipotent 4× MBC concentration. Interestingly, this 

significantly up to ca. 28% at 8× MBC concentration of 7. However, either at 4× MBC or 8× 

MBC concentration of complex 7, no obvious diffused fluorescence clusters were found, which 

implies that the bacterial cell membranes are intact and no leakage of nucleobases occurs. 
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Next, we investigated the change in morphology of cell walls by transmission electron 

microscopy (TEM). It is apparent from Figure 5d, that complex 7 did not break cell walls at 

equipotent concentrations of 10× MBC and 50× MBC. This is consistent with the confocal 

microscopy observations, which indicates that these biguanide Ir complexes are less likely to 

target bacterial cell walls. 

Interaction with Nucleobases and Amino-Acids 

To provide preliminary indications of possible target sites for these potent antimicrobial 

biguanide complexes, we investigated reactions of some active complexes with nucleobases 

and amino acids. 

The interaction of complexes 4 and 7 (2 mM, DMSO-d6/D2O, 2:3 (v:v)) with DNA nucleobases 

model 9-ethylguanine (9-EtG, 2 mM, D2O) and guanosine 5’-monophosphate disodium 

hydrate (5’-GMP, 2 mM, D2O) was investigated by NMR spectroscopy. No binding of 

complexes 4 and 7 to either 9-EtG or 5’-GMP was observed after 24 h incubation at pH* 7.3, 

37 oC. This suggests that DNA appears not to be the target for those novel complexes. 

Next, the interaction of complexes 4, 7 and 10 with the amino-acids (1 mole equiv) tryptophan, 

leucine, N-acetyl-L-methionine, L-histidine and L-cysteine (L-Cys) was studied on NMR, ESI-

MS and LC-MS at pH 7.2. Samples were prepared and stored at 37 oC for 24 h. No reaction 

with tryptophan, leucine, N-acetyl-L-methionine or L-histidine was observed after 24 h 

incubation by ESI-MS (or LC-MS) and 1H NMR (data not shown). However these complexes 

can react rapidly with L-Cys, as shown for complexes 4 and 7 in Figures S3 and S4, 

respectively, in the Supporting Information. Within 10 min at 37 oC, peaks for L-Cys had 

disappeared. The reactions appeared to proceed via L-Cys coordination followed by 

decomposition of the complex. This was investigated further by LC-MS. 
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The reaction of complexes 4, 7 and 10 (0.2 mM, MeOH/H2O) with L-Cys (0.2 mM, H2O) was 

monitored by LC-MS after 24 h incubation at 37 oC, pH 7.1 (Figure S5, RP-HPLC eluents are 

given in Figure S6 in the Supporting Information). Interestingly, complexes 4, 7 and 10 formed 

the dinuclear dimer [(CpXbiph)Ir(L-Cys)]2
2+ (P2 in Figure S5 in the Supporting Information) 

1171.39 m/z (calculated  [C48H53Ir2N2O4S2-H]+ 1171.27 m/z), with concomitant liberation of 

free biguanide ligands L2 (phenylbiguanide + H+), L5 (1-(o)-tolylbiguanide + H+) and L6 (P1, 

TolSul-Big-Tol + H+). 

Discussion 

Antimicrobial Activity 

The prevalence of antibiotic resistance towards the traditional clinical drugs has stimulated the 

development of more novel and potent antibiotics, especially the metal-based antimicrobial 

agents over the last decade.5 A broad spectrum of organometallic complexes (e.g. Pt,53 Cu,53 

Rh54 and Ru55-57) as antimicrobial agents have been synthesized and studied for their 

antimicrobial activity. Collins and Keene et. al. have reported a series of mononuclear [Ru-

(phen)2(bb7)]
2+ and [Ru(phen)2(bb16)]

2+, dinuclear  [{Ru(phen)2}2{m-bbn}]4+ and oligonuclear 

RuII complexes, where bbn is bis[4(4’-methyl-2,2’-bipyridyl)]-1,n-alkane (n = 7, 12 or 16, 

etc).58-61 Those RuII complexes showed potent antibacterial activity against S. aureus and 

MRSA, with MICs in the range of 0.3-16 µg/mL and MBCs in the range of 1-32 µg/mL;59, 61 

however, the dinuclear IrIII analogues [{Ir(tpy)Cl}2{μ-bbn}]Cl4 (n = 7, 12 and 16) exhibited 

lower antibacterial activity, with MICs over 128 µg/mL, the enhancement of charges from +2 

(for Ru) to +3 (for Ir) may have an inverse effect on the antibacterial activity for dinuclear 

complexes.59 Falkinham et. al. have reported [(CpxR)Ir(1,2-diamine-R1)Cl]Cl complexes, 

containing various R and R1 aliphatic substituents;62 these gave broad spectrum of anti-

staphylococcal potency towards S. aureus and MRSA, with MICs in the scale of 4 to >500 
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µg/mL. The introduction of substitutions on the amino groups lead to a decrease of biological 

activity, perhaps indicating that hydrogen bonding by NH2 of the diamine core is important for 

retaining the antibacterial potency.62 In the present work, IrIII-biguanide complexes 4-9 showed 

higher antibacterial activity against S. aureus and MRSA, with MICs as low as 1 µg/mL, more 

potent than the reported IrIII complexes.59, 62 Complexes 3-9 are bactericidal towards the 

investigated Gram-positive bacteria, with the exception of E. faecalis, since the ratios of 

MBC/MIC for complexes 4-9 are within 2 (bactericidal activity denotes as a ratio of MBC to 

MIC no more than 4).63, 64 Potent bacteriocidal activity is sometimes important for specific 

conditions, e.g. endocarditis from staphylococci infections.65 In contrast, the introduction of 

sulfonyl groups on the terminal N of biguanide ligand L5 significantly decreased bacteriocidal 

activity, making complexes 10-14 bacteriostatic (MBC/MIC > 4; Table S10 in the Supporting 

Information) towards the Gram-positive bacteria, with the exception of S. pyogenes.63  

Complexes 4-9 have potent antimicrobial activity, but relatively low cytotoxicity towards 

mammalian cells and low haemolytic activity (SF up to 256), indicative of good selectivity. 

Interestingly, bromo complex 8 and iodido complex 9 show higher potency in cytotoxicity and 

haemolytic activity than chlorido complex 7, probably because complexes 8 and 9 are more 

inert and more stabilized from aquation; the complexes may remain intact before approaching 

intracellular targets, and this is in agreement with previous observations.66,67 However, 

complexes 8 and 9 have similar antimicrobial activity (MIC), which is indistinctively different 

from complex 7, suggesting that these complexes may have a different mode of action in killing 

microorganisms and human mammalian cells. 

Potential Targets and Mode of Action 

These organometallic biguanide complexes contain a π-bonded CpX ligand which occupies 3 

coordination sites and a chelated biguanide, ligand exchange at the 6th coordination site is 
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facile. In fact some complexes exist as either 16e or 18e species (Chart 2). The binding of the 

6th ligand is therefore quite weak; no binding to the DNA nucleobase guanine (as 9-EtG or 5’-

GMP) was detected, nor to the amino acids histidine, tryptophan and leucine. However, the 

thiol amino acid L-Cys reacted readily and displaced the biguanide ligand (Figures S3 and S4 

in the Supporting Information). 

L-Cysteine is an important biosynthetic material for thiol-containing proteins and enzymes in 

cells, and is the major thiol donor for many intracellular cofactors, e.g. GSH (in eukaryotes and 

Gram-negative bacteria), Mycothiol (in Mycobacteria) and Bacillithiol (in many Gram-positive 

bacteria, i.e. S. aureus and B. subtilis).68, 69 Bacteria, like cancer cells, are constantly under high 

oxidative stress. To cope with such stress, bacteria use these low-molecular weight thiols to 

detoxify xenobiotics.42 Organometallic IrIII complexes have been reported to generate high 

levels of reactive oxygen species (ROS) in human cancer cells to induce the apoptosis;13 

however,  the antibacterial activity (MIC) of complexes 4-10 against S. aureus and S. pyogenes 

under aerobic conditions is close to that under anaerobic conditions, suggesting that ROS 

generation is not critical for their antimicrobial activity. 

From the DEAD/LIVE fluorescence staining and TEM study, the cell envelope remains intact 

after exposure to high complex concentrations (MBC to 8 MBC, Figure 5), indicating that 

these novel IrIII biguanide complexes are unlikely to target cell walls. The formation a 

[(CpXbiph)Ir(L-Cys)]2
2+ dimer may play a key role in the mechanism of action together with the 

release of the free biguanide, inhibiting the biosynthesis of proteins and important cofactors. 

Agents which disrupt the cell wall or membrane, or interfere with essential enzymes, are often 

bactericidal, whereas agents which only inhibit protein synthesis tend to be bacteriostatic.70, 71  

In the present study, the biguanide ligands alone are inactive towards all the microorganisms 

screened. Perhaps with their high basicity and overall positive charge, low hydrophobicity 
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limits biguanide uptake by bacteria. Biguanide derivatives including polyhexamethylene 

biguanide (PHMB) or chlorhexidine dihydrochloride, have been widely used as microbicides.72 

with biomembrane disruption being proposed as the prevailing mode of action. The guanidino 

groups of biguanides are highly basic (pKa ca. 10.5-12.5) and cationic at pH 7, facilitating 

interactions with phospholipids via electrostatic forces. Adsorption of biguanides on the cell 

envelope perturbs lipids packing, leading to leakage of essential cellular molecules.73 However, 

Good et. al. recently reported a DNA targeting mechanism for the biguanide PHMB, arresting 

cell division and inducing the condensation of bacterial chromosomal DNA.74 Biguanide 

derivatives have strong metal-binding sites, and can bind to endogenous metal ions, and might 

inhibit enzymes.75 For example biguanides such as phenformin inhibit pyruvate kinase.76  

The IrIII biguanide complexes can act as delivery systems for transport of biguanides into 

bacteria. The complexes can react rapidly with thiol-containing biomolecules, e.g. L-cysteine, 

to form a [(CpXbiph)Ir(L-Cys)]2
2+ dimer,  with the liberation of free biguanide ligands in the 

bacteria. The released biguanide ligands can bind to endogenous metal ions and might inhibit 

the important cell enzymes, e.g. pyruvate kinase, which play a key role in glycolysis regulation 

and are highly dependent on metal ions;77 therefore bacteriocidal. However, the introduction 

of electron-withdrawing sulfonyl groups on the biguanide ligands lowers the pKa (from >12 for 

ligand L5 to 4.7± 0.1 for L6 (Figure S7 in the Supporting Information). Notably the sulfonyl 

complexes 10-14 are bacteriostatic in contrast to the bacteriocidal activity of the other 

complexes 4-9, which is perhaps related to the activity of the released biguanide ligand and 

difference in charge (+1 versus 0 at pH 7). 

Conclusions 

We have synthesized novel organo-iridium(III) antimicrobial complexes 1-14 containing a 

derivative of widely-used biguanides as a chelated ligand [(η5-CpX)Ir(Big)Z]Z (where CpX = 
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Cp*, CpXph (phenyltetramethylcyclopentadienyl) or CpXbiph (biphenyltetramethyl 

cyclopentadienyl), Big = a biguanide or sulfonyl-substituted biguanide ligand,  Z = Cl, Br and 

I). The complexes were characterized by NMR, ESI-MS, elemental analysis, and X-ray 

crystallography.  

Several of these complexes have potent activity against Gram-negative bacteria and Gram-

positive bacteria, including MRSA with MICs as low as 0.125 µg/mL (0.17 μM, ca. 4× more 

potent than vancomycin). Notably, complexes 4-7 also exhibit high antifungal potency towards 

C. albicans and C. neoformans, with MIC values as low as 0.25 μg/mL (0.34 μM). Importantly, 

the complexes exhibit low cytotoxicity towards mammalian cells, indicating high selectivity. 

They are highly stable in broth medium, with a low tendency to generate resistance mutations.  

Complexes 4, 7 and 10 exhibit synergy with vancomycin against vancomycin-resistant 

Enterococci (VRE) when co-administered (up to ca. 256× enhancement of MIC). Also these 

complexes can disrupt and eradicate bacteria in mature biofilms. The high reactivity of these 

complexes towards L-cysteine, in contrast to other amino acids or nucleobases, with 

displacement of the biguanide ligand, suggests that their mechanism of action may involve 

intracellular biguanide release. In contrast the biguanides themselves are inactive when 

administered alone. 
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Experimental Section 

Materials 

Trihydrated iridiumIII trichloride was purchased from Precious Metals Online (PMO Pty Ltd.) 

and used as received. Biguanide ligands (metformin, 1-phenylbiguanide hydrochloride, 1-(4-

Fluorophenyl) biguanide hydrochloride, 1-(o-Tolyl)biguanide and phenformin) were 

purchased from Sigma-Aldrich and used without further procession. All the sulfonyl chloride 

compounds used in this research were obtained from Sigma-Aldrich. High concentration rat 

tail collagen was obtained from Scientific Laboratory Supplies. Collagenase was obtained from 

VWR. Fetal bovine serium was purchased from Fisher Scientific, and peptone water and 

anaerobic atmosphere generation bag (Oxoid AnaeroGen 2.5L Sachets) were from Thermo 

Scientific. The NMR spectroscopy solvent, e.g. MeOD-d4 and DMSO-d6, were purchased from 

Cambridge Isotope Laboratories Inc, and D2O and CDCl3 were purchased from Sigma-Aldrich. 

The bacteria strains, B. subtilis DSM 10, S. pyogenes ATCC 151112, E. faecalis ATCC 29212, 

S. aureus ATCC 29213 and S. epidermidis ATCC 12228 were purchased from American Type 

Culture Collection (ATCC). The human keratinocyte cells were provided by Dr. Meera 

Unnikrishnan (University of Warwick). The remaining of the antimicrobial and cytotoxicity 

screens were carried out by CO-ADD from University of Queensland, Australia.  

The purity of the synthesized materials has been determined to be ≥95% by elemental analysis, 

1H and 13C NMR, high resolution MS, and RP-HPLC.  

Synthesis of Complexes 1-14 

[(Cp*)Ir(Metf)Cl]Cl (1). [(Cp*)IrCl2]2 (55.86 mg, 0.07 mmol) and metformin hydrochloride  

(25 mg, 0.15 mmol) were placed in a round-bottom  flask to which anhydrous methanol  (50 

mL) and triethylamine (21 µL, 0.15 mmol) were added. The solution was heated under refluxed 
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in a nitrogen atmosphere (50 oC) overnight. After which the solvent was removed on a rotary 

evaporator to give a red solid. The crude product was purified by recrystallization from mixed 

solvent of MeOH and diethyl ether (4:6, v:v), to obtain orange solid. Yield = 49 mg (66%). 1H 

NMR (400 MHz, MeOD-d4): δH 1.68 (s, 15H), 3.07 (s, 6H); 13C NMR (125.73 MHz, D2O): δc 

8.2, 38.2, 88.5; HRMS (ESI): Calcd for [C14H26N5(Ir-HCl2)]
+ 456.1739 m/z, found: 456.1734 

m/z. Anal. Calcd for C14H26 Cl2N5Ir(H2O)0.5: C, 31.34; H, 5.07; N, 13.05. Found: C, 31.29; H, 

4.78; N, 12.87. 

[(CpXph)Ir(Metf)Cl]Cl (2). Complex 2 was synthesized following the method similar to 

complex 1, where [(CpXph)IrCl2]2 (150 mg, 0.163 mmol), metformin hydrochloride  (55 mg, 

0.33 mmol) and triethylamine (92 µL, 0.66 mmol) were used. The crude product was purified 

by recrystallization from mixed solvent of MeOH and diethyl ether (4:6, v:v), to obtain yellow 

solid. Yield = 104 mg (54%). 1H NMR (300 MHz, D2O): δH 1.71 (s, 6H), 1.84 (s, 6H), 3.09 (s, 

6H), 7.52 (s, 5H); 13C NMR (125.73 MHz, D2O): δc 8.3, 8.9, 38.2, 88.3, 92.0, 129.0, 129.1, 

129.5, 130.2; HRMS (ESI): Calcd for [C19H27N5(Ir-HCl2)]
+ 518.1896 m/z, found: 518.1893 

m/z. Anal. Calcd for C19H28Cl2IrN5: C, 38.71; H, 4.79; N, 11.88. Found: C, 38.60; H, 4.79; N, 

11.50. 

[(CpXbiph)Ir(Metf)Cl]Cl (3). Complex 3 was synthesized following the method similar to 

complex 1, where [(CpXbiph)IrCl2]2 (100 mg, 0.093 mmol), metformin hydrochloride  (32 mg, 

0.188 mmol) and triethylamine (53 µL, 0.376 mmol) were used. The crude product was purified 

on a chromatography column (DCM/MeOH (10:1, v:v), to obtain red solid. Yield = 72 mg 

(58%). 1H NMR (300 MHz, MeOD-d4): δH 1.94 (s, 6H), 2.05 (s, 6H), 3.16 (s, 6H), 4.60 (s, 2H), 

7.38-7.43 (m, 1H), 7.49 (t, J = 8.1 Hz, 2H), 7.67 (q, J = 7.7 Hz, 15.0 Hz, 4H), 7.78 (d, J = 7.4 

Hz, 2H); 13C NMR (125.73 MHz, D2O): δc 8.8, 9.3, 37.2, 90.0, 91.1, 126.8, 127.3, 128.2, 129.2, 

130.9, 139.4, 141.2; HRMS (ESI): Calcd for [C25H31N5(Ir-Cl)]+ 594.2209 m/z, found: 594.2204 
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m/z. Anal. Calcd for C25H31ClIrN5(H2O)0.5: C, 47.05; H, 5.05; N, 10.97. Found: C, 46.88; H, 

4.86; N, 10.63. 

[(CpXbiph)Ir(PhBig)Cl] (4). Complex 4 was synthesized following the method similar to 

complex 1, where [(CpXbiph)IrCl2]2 (100 mg, 0.093 mmol), 1-phenylbiguanide hydrochloride  

(41 mg, 0.188 mmol) and triethylamine (53 µL, 0.376 mmol) were used. The crude product 

was purified on a chromatography column (DCM/MeOH (10:1, v:v), to obtain dark red solid. 

Yield = 57 mg (45%). 1H NMR (400 MHz, DMSO-d6): δH 1.90 (s, 6H), 1.98 (s, 6H), 6.44 (s, 

2H), 6.94 (t, J = 7.1 Hz, 1H), 7.24 (t, J = 7.8 Hz, 2H), 7.41 (t, J = 7.0 Hz, 1H), 7.50 (t, J = 7.6 

Hz, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 7.77 (d, J 

= 8.1 Hz, 2H), 9.18 (s, 2H), 9.24 (s, 1H); 13C NMR (125.73 MHz, CDCl3): δc 127.0, 127.9, 

128.0, 129.0, 129.6, 130.5; HRMS (ESI): Calcd for [C29H31N5(Ir-Cl)]+ 642.2209 m/z, found: 

642.2209 m/z. Anal. Calcd for C29H31ClIrN5(H2O)0.5: C, 50.75; H, 4.70; N, 10.21. Found: C, 

50.78; H, 4.54; N, 10.10. 

[(CpXbiph)Ir(4-F-PhBig)Cl] (5). Complex 5 was synthesized following the method similar to 

complex 1, where [(CpXbiph)IrCl2]2 (200 mg, 0.187 mmol), 1-(4-fluorophenyl)biguanide 

hydrochloride  (93 mg, 0.4 mmol) and triethylamine (112 µL, 0.8 mmol) were added. The crude 

product was purified on a chromatography column (DCM/MeOH (10:1, v:v), to obtain dark 

red solid. Yield = 118 mg (43%). 1H NMR (400 MHz, MeOD-d4): δH 1.96 (s, 6H), 2.06 (s, 6H), 

7.05 (t, J = 8.6 Hz, 2H), 7.41 (t, J = 7.2 Hz, 1H), 7.47-7.51 (m, 4H), 7.64 (d, J = 8.2 Hz, 2H), 

7. 96 (d, J = 7.4 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H); 13C NMR (125.73 MHz, CDCl3): δc 127.0, 

127.9, 128.0, 129.1, 130.6; 19F NMR (376.4 MHz, D2O): δF -121.8; HRMS (ESI): Calcd for 

[C29H30FN5(Ir-Cl)]+ 660.2114 m/z, found: 660.2105 m/z. Anal. Calcd for 

C29H30ClFIrN5(H2O)0.9: C, 48.96; H, 4.51; N, 9.84. Found: C, 48.97; H, 4.19; N, 9.77. 
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[(CpXbiph)Ir(PhenethylBig)Cl]Cl (6). Complex 6 was synthesized following the method 

similar to complex 1, where [(CpXbiph)IrCl2]2 (200 mg, 0.187 mmol), phenformin hydrochloride 

(92 mg, 0.38 mmol) and triethylamine (110 µL, 0.76 mmol) were added. The crude product 

was purified on a chromatography column (DCM/MeOH (10:1, v:v), to give dark red solid. 

Yield = 183 mg (66%). 1H NMR (300 MHz, MeOD-d4): δH 1.93 (s, 6H), 2.02 (s, 6H), 3.49-

3.58 (m, 4H), 4.60 (s, 3H), 7.20-7.29 (m, 5H), 7.42 (d, J = 6.5 Hz, 1H), 7.47-7.52 (m, 2H), 7.61 

(d, J = 7.7 Hz, 2H), 7.68 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 7.5 Hz, 2H); 13C NMR (125.73 MHz, 

MeOD-d4): δc 42.4, 126.6, 127.3, 127.6, 128.1, 128.5, 128.7, 130.9; HRMS (ESI): Calcd for 

[C31H34N5(Ir-HCl2)]
+ 670.2522 m/z, found: 670.2519 m/z. Anal. Calcd for C31H36Cl2IrN5: C, 

50.20; H, 4.89; N, 9.44. Found: C, 50.74; H, 4.88; N, 9.38. 

[(CpXbiph)Ir(TolBig)Cl]Cl (7). Complex 7 was synthesized following the method similar to 

complex 1, where [(CpXbiph)IrCl2]2 (200 mg, 0.187 mmol), 1-(o-tolyl)biguanide  (73 mg, 0.38 

mmol) and triethylamine (110 µL, 0.76 mmol) were added. The crude product was purified on 

a chromatography column (DCM/MeOH (10:1, v:v), to get a dark red solid. Yield = 125 mg 

(46%). 1H NMR (300 MHz, MeOD-d4): δH 1.92 (s, 6H), 2.04 (s, 6H), 2.26 (s, 3H), 7.11-7.16 

(m, 1H), 7.21 (d, J = 7.7 MHz, 1H), 7.28 (d, J = 7.7 Hz, 1H), 7.38-7.44 (m, 2H), 7.48-7.53 (m, 

2H), 7.57 (d, J = 7.5 Hz, 2H), 7.71 (t, J = 8.6 Hz, 4H); 13C NMR (125.73 MHz, CDCl3): δc 

126.8, 127.0, 127.3, 127.4, 127.9, 128.0, 129.1, 130.2, 131.7; HRMS (ESI): Calcd for 

[C30H33N5(Ir-HCl2)]
+ 656.2365 m/z, found: 656.2362 m/z. Anal. Calcd for C30H34Cl2IrN5: C, 

49.51; H, 4.71; N, 9.62. Found: C, 49.49; H, 4.46; N, 9.69. 

[(CpXbiph)Ir(TolBig)Br]Br (8). [(CpXbiph)IrCl2]2 (100 mg, 0.093 mmol) in methanol (30 mL) 

and sodium bromide (1.92 g, 18.7 mmol) in deionised water (10 mL) were mixed in a round 

bottom flask. The solution was heated to 70 oC for 1 h. Then, a solution of 1-(o-tolyl)biguanide  

(36.6 mg, 0.191 mmol) and triethylamine (54 µL, 0.383 mmol) were added, the reaction was 
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heated at 70 oC under nitrogen atmosphere for 12 h. After which the solvent was removed on 

a rotary evaporator to get a dark red solid. The solid was re-dissolved in chloroform and washed 

with brine (3 × 50 mL), and dried over MgSO4. The crude product was further purified on a 

chromatography column (DCM/MeOH (20:1, v:v), to give a reddish-brown solid. Yield = 100 

mg (65%).  1H NMR (400 MHz, MeOD-d4): δH 1.69 (s, 6H), 1.82 (s, 6H), 2.14 (s, 3H), 7.31 (t, 

J = 7.6 Hz, 1H), 7.10 (t, J = 6.8 Hz, 1H), 7.17 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.39 

(t, J = 7.2 Hz, 4H), 7.56 (t, J = 7.4 Hz, 4H); 13C NMR (125.73 MHz, CDCl3): δc 16.6, 65.5, 

126.6, 127.3, 127.5, 128.7, 130.5, 140.0; HRMS (ESI): Calcd for [C30H33N5(Ir-HBr2)]
+ 

656.2365 m/z, found: 656.2376 m/z. Anal. Calcd for C30H34Br2IrN5(Et2O)0.6: C, 45.19; H, 4.68; 

N, 8.13. Found: C, 45.24; H, 4.32; N, 8.33. 

[(CpXbiph)Ir(TolBig)I]I (9). [(CpXbiph)IrCl2]2 (100 mg, 0.093 mmol) in methanol (30 mL) and 

potassium iodide (3.1 g, 18.7 mmol) in deionised water (10 mL) were mixed in a round bottom 

flask. The solution was heated to 70 oC for 1 h. Then, a solution of 1-(o-tolyl)biguanide  (36.6 

mg, 0.191 mmol) and triethylamine (54 µL, 0.383 mmol) were added, the reaction was heated 

at 70 oC under nitrogen atmosphere for 12 h and a scarlet precipitate was observed. After which 

the solvent was removed on a rotary evaporator to get a dark red solid. The solid was re-

dissolved in chloroform and washed with brine (3 × 50 mL), and dried over MgSO4. The crude 

product was further purified on a chromatography column (DCM/MeOH (20:1, v:v), to give 

an orange solid. Yield = 102 mg (59%).  1H NMR (400 MHz, MeOD-d4): δH 1.76 (s, 6H), 1.90 

(s, 6H), 2.23 (s, 3H), 7.11-7.18 (m, 3H), 7.26 (d, J = 7.4 Hz, 1H), 7.41 (d, J = 8.0 Hz, 3H), 7.50 

(t, J = 7.4 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 7.2 Hz, 2H); 13C NMR (125.73 MHz, 

CDCl3): δc 8.3, 9.0, 16.7, 126.6, 127.2, 127.5, 128.7, 130.4, 131.3, 140.0, 141.2; HRMS (ESI): 

Calcd for [C30H34IN5(Ir-I)]
+ 784.1488 m/z, found: 784.1488 m/z. Anal. Calcd for C30H34I2IrN5: 

C, 39.57; H, 3.76; N, 7.69. Found: C, 39.96; H, 3.77; N, 7.60. 
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[(CpXbiph)Ir(TolSul-Big-Tol)Cl] (10). Complex 10 was synthesized following the method 

similar to complex 1, where [(CpXbiph)IrCl2]2 (130 mg, 0.121 mmol), 4-methyl-N-(N-(N-(o-

tolyl)carbamimidoyl)carbamimidoyl)benzenesulfonamide (93 mg, 0.269 mmol) and  

triethylamine (110 µL, 0.76 mmol) were added. The crude product was purified on a 

chromatography column (DCM/MeOH (25:1, v:v), to give a yellow solid. Yield = 139 mg 

(68%). 1H NMR (400 MHz, MeOD-d4): δH 1.53 (s, 6H), 1.72 (s, 6H), 2.17 (s, 3H), 2.30 (s, 3H), 

7.17-7.22 (m, 5H), 7.27 (d, J = 6.9 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 7.4 Hz, 1H), 

7.49 (t, J = 7.4 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.65-7.67 (m, 4H); 13C NMR (125.73 MHz, 

MeOD-d4): δc 8.7, 18.0, 21.4, 126.1, 127.0, 127.6, 127.6, 128.9, 129.2, 130.4, 131.5, 133.8, 

140.3, 140.8, 141.3, 141.4, 151.7, 152.9; HRMS (ESI): Calcd for [C37H39N5O2S(Ir-Cl)]+ 

810.2454 m/z, found: 810.2449 m/z. Anal. Calcd for C37H39ClIrN5O2S(H2O)0.4: C, 52.12; H, 

4.70; N, 8.21. Found: C: 52.16, H: 4.62, N: 8.07. 

[(CpXbiph)Ir(4-(BrCH2)-PhSul-Big-Tol)Cl] (11). Complex 11 was synthesized following the 

method similar to complex 1, where [(CpXbiph)IrCl2]2 (200 mg, 0.187 mmol), 4-(bromomethyl)-

N-(N-(N-(o-tolyl)carbamimidoyl)carbamimidoyl)benzenesulfonamide (173.6 mg, 0.410 

mmol) and triethylamine (116 µL, 0.83 mmol) were added. The crude product was purified on 

a chromatography column (DCM/MeOH (25:1, v:v), to give a yellow solid. Yield = 131 mg 

(38%). 1H NMR (300 MHz, MeOD-d4): δH 1.56 (s, 6H), 1.75 (s, 6H), 2.18 (s, 3H), 2.32 (s, 1H), 

4.60 (s, 1H), 7.19-7.22 (m, 3H), 7.27 (d, J = 8.8 Hz, 1H), 7.37-7.52 (m, 5H), 7.57-7.59 (m, 

2H), 7.67 (d, J = 9.2 Hz, 3H), 7.79 (d, J = 10.4 Hz, 1H); 13C NMR (125.73 MHz, MeOD-d4): 

δc 7.6, 8.4, 16.5, 44.4, 91.2, 126.2, 126.6, 127.2, 127.2, 127.3, 127.5, 128.6, 128.7, 128.9, 129.1, 

130.4, 131.3, 140.1; HRMS (ESI): Calcd for [C37H38N5O2SBr(Ir-Cl)]+ 888.1559 m/z, found: 

888.1551 m/z. Anal. Calcd for C37H38ClBrIrN5O2S: C, 48.08; H, 4.14; N, 7.58. Found: C, 

48.09; H, 4.14; N, 7.45. 
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[(CpXbiph)Ir(4-F-PhSul-Big-Tol)Cl] (12). Complex 12 was synthesized following the method 

similar to complex 1, where [(CpXbiph)IrCl2]2 (150 mg, 0.140 mmol), 4-fluoro-N-(N-(N-(o-

tolyl)carbamimidoyl)carbamimidoyl)benzenesulfonamide (103 mg, 0.294 mmol) and 

triethylamine (82 µL, 0.588 mmol) were used. The crude product was purified on a 

chromatography column (DCM/MeOH (25:1, v:v), to give a yellow solid. Yield = 84 mg 

(48%). 1H NMR (400 MHz, MeOD-d4): δH 1.58 (s, 6H), 1.75 (s, 6H), 2.18 (s, 3H), 7.12-7.22 

(m, 5H), 7.28 (d, J = 6.9 Hz, 1H), 7.38-7.41 (m, 3H), 7.49 (t, J = 7.4 Hz, 2H), 7.60 (d, J = 8.1 

Hz, 2H), 7.67 (d, J = 7.4 Hz, 2H), 7.82 (t, J = 7.5 Hz, 2H); 13C NMR (125.73 MHz, MeOD-

d4): δc 7.4, 8.3, 16.4, 91.4, 115.2, 115.4, 126.6, 127.2, 127.2, 127.5, 127.8, 128.7, 130.4, 131.3, 

140.0, 141.4; 19F NMR (376.38 MHz, MeOD-d4): δF -109.97; ESI-MS: Calcd for 

[C36H36N5O2SF(Ir-Cl)]+ 814.2203 m/z, found: 814.2200 m/z. Anal. Calcd for 

C36H36ClFIrN5O2S: C 50.90, H: 4.27, N: 8.24; Found: C, 50.56; H, 4.26; N, 8.20. 

[(CpXbiph)Ir(4-NO2-PhSul-Big-Tol)Cl] (13). Complex 13 was synthesized following the 

method similar to complex 1, where [(CpXbiph)IrCl2]2 (110 mg, 0.103 mmol), 4-nitro-N-(N-(N-

(o-tolyl)carbamimidoyl)carbamimidoyl)benzenesulfonamide (86 mg, 0.228 mmol) and 

triethylamine (64 µL, 0.455 mmol) were added. The crude product was purified on a 

chromatography column (DCM/MeOH (25:1, v:v), and yellow solid was obtained. Yield = 162 

mg (66%). 1H NMR (400 MHz, MeOD-d4): δH 1.58 (s, 6H), 1.75 (s, 6H), 2.18 (s, 3H), 7.18-

7.21 (m, 3H), 7.27 (d, J = 6.9 Hz, 1H), 7.37-7.41 (m, 3H), 7.49 (t, J = 7.4 Hz, 2H), 7.58 (d, J 

= 8.0 Hz, 2H), 7.65 (d, J = 7.7 Hz, 2H), 8.02 (d, J = 8.6 Hz, 2H), 8.25 (d, J = 8.3 Hz, 2H); 13C 

NMR (125.73 MHz, MeOD-d4): δc 7.5, 8.3, 16.4, 123.5, 126.6, 127.1, 127.2, 127.5, 128.7, 

130.4, 131.2, 140.0; ESI-MS: Calcd for [C36H36N6O4S(Ir-Cl)]+ 841.2148 m/z, found: 841.2143 

m/z. Anal. Calcd for C36H36IrN6O4S: C, 49.33; H, 4.14; N, 9.59. Found: C, 49.14; H, 4.06; N, 

9.49. 
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[(CpXbiph)Ir(Dan-Big-Tol)Cl] (14). Complex 14 was synthesized following the method similar 

to complex 1, where [(CpXbiph)IrCl2]2 (120 mg, 0.112 mmol), 5-(dimethylamino)-N-(N-(N-(o-

tolyl)carbamimidoyl)carbamimidoyl)naphthalene-1-sulfonamide (100 mg, 0.236 mmol) and 

triethylamine (66 µL, 0.472 mmol) were added. The crude product was purified on a 

chromatography column (DCM/MeOH (25:1, v:v), to give yellow solid. Yield = 91.2 mg 

(44%). 1H NMR (400 MHz, MeOD-d4): δH 1.45 (s, 6H), 1.68 (s, 6H), 2.06 (s, 3H), 2.76 (s, 6H), 

7.11 (s, 1H), 7.17-7.24 (m, 6H), 7.36-7.41 (m, 4H), 7.47-7.54 (m, 3H), 7.60 (d, J = 7.4 Hz, 

2H), 8.06 (d, J = 6.8 Hz, 1H), 8.40 (d, J = 8.5 Hz, 1H), 8.56 (d, J = 8.6 Hz, 1H); 13C NMR 

(125.73 MHz, MeOD-d4): δc 7.4, 8.2, 16.3, 44.3, 91.9, 114.7, 122.9, 126.6, 127.0, 127.1, 127.1, 

127.2, 127.5, 128.7, 129.9, 130.3, 131.3, 140.0, 151.4; HRMS (ESI): Calcd for [C42H44N6O2S 

(Ir-Cl)]+ 889.2876 m/z, found: 889.2883 m/z. Anal. Calcd for C42H44ClIrN6O2S: C, 54.56; H, 

4.80; N, 9.09. Found: C, 54.23; H, 4.77; N, 8.75. 

NMR Spectroscopy  

1H NMR spectra were acquired at 298 K on either a Bruker HD-400, or HD-500 spectrometer 

using 5 mm NMR tubes. Data were processed out using TopSpin 3.5pl7 version (Bruker U.K. 

Ltd.). 1H NMR chemical shifts were internally referenced to TMS via 1, 4-dioxane in D2O (δ 

= 3.75) or residual MeOD-d4 (δ = 3.31 ppm) or CDCl3 (δ = 7.26 ppm). 1D spectra were 

recorded using standard pulse sequences. 

High Resolution Mass Spectrometry and Elemental Analysis 

Elemental analyses were performed by Warwick Analytical Service using an Exeter Analytical 

elemental analyzer (CE440). High Resolution Mass Spectrometry (HRMS) Data were obtained 

on Bruker Maxis Plus Q-TOF. 

X-ray Crystallography 
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Single crystals of complexes 1 and 4 were grown from methanol/diethyl ether. Suitable crystals 

were selected and mounted on a glass fibre and placed on an Xcalibur Gemini diffractometer 

with a Ruby CCD area detector. The crystal was kept at -123 ± 2 oC during data collection. The 

structures were solved with the ShelXT78 structure solution program using Direct Methods, and 

refined with the ShelXL79 refinement package using Least Squares minimisation. The crystal 

data have been deposited at the Cambridge Crystallographic Data Centre with numbers: CCDC 

1846267 and 1846268 for complexes 1 and 4, respectively. 

Relative Hydrophobicity  

Since log P determinations on metal complexes are often complicated by hydrolysis of metal-

halide bonds in traditional octanol-water systems, we have used RP-HPLC to compare relative 

hydrophobicities.80 These measurements were performed utilizing the Agilent 1200 system 

with a VWD and 50 µL loop. The column was an Agilent Zorbax 300SB C18, 150 × 4.6 mm 

with a 5 µm pore size. The mobile phase was H2O (50 mM NaCl)/H2O/CH3CN 1:1 (50 mM 

NaCl), with a flow of 1 mL min-1. The detection wavelength was set at 254 nm with the 

reference wavelength at 360 nm. All compounds were dissolved in 10% MeOH/90% H2O (v/v) 

in 50 mM NaCl to ensure that hydrolysis was prevented. Sample injections were the loop 

volume (50 μL) with needle washes of H2O and MeOH between injections. Reported retention 

times (tR) and standard deviations (SD) are from duplicates of triplicate measurements. The 

gradient used is shown in Figure S1. 

Liquid Chromatography–Mass Spectrometry (LC-MS) 

LC-MS was performed on a HP 1200 Series HPLC System (Agilent) coupled to a Bruker HCT-

Ultra ETD II PTR PTM mass spectrometer. The column used was an Agilent ZORBAX Eclipse 

Plus C-18 (4.6 × 250 mm, 5 μm pore size). The mobile phases were A: water (HPLC grade, 

with 0.1% TFA), and B: acetonitrile (HPLC grade, with 0.1% TFA). Samples were prepared 
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in double deionized water (DDW), with 50 μL injection for each running. The mass 

spectrometer was operated in electrospray positive mode with scan range 50-2000 m/z. The 

gradient used is shown in Figure S6. 

Antibacterial Assays  

The minimum inhibitory concentrations (MICs) against a variety of Gram-positive bacteria 

studied by us was determined by the broth microdilution method as described in the CLSI 

guidelines.81 The bacteria strains studied were cultured in Cation-adjusted Mueller Hinton 

Broth (CAMHB) and diluted to give the concentration of 5 × 105 CFU/mL. The complexes in 

broth were serially diluted in the sterile 96-well plate to give the volume of 100 µL. The media 

solutions with bacteria were then dispensed to each well cell to make the final volume of 200 

µL and the final concentration of IrIII complexes ranged in 0.125-256 µg/mL, all the plates 

were covered and incubated at 37 °C for 18 h without shaking. Inhibition of bacterial growth 

was determined measuring absorbance at 600 nm (OD600), using a Tecan SPARK 10M plate 

reader. The negative control (media only) and positive control (bacteria without inhibitors) on 

the same plate were used as references to determine the growth inhibition of bacteria. Samples 

with inhibition value above 90% were classified as active agents. The minimum bactericidal 

concentrations (MBCs) were determined by treating the agar plate with 5 µL sample solutions 

from each well with no visible growth observed. The agar plates were placed in a 37 oC oven 

for 18 h without shaking (S. pyogenes were incubated under a 5% CO2 atmosphere). The ones 

had no colony formed with minimum concentrations will be MBCs.  

Resistance Evolution  

The standard bacterial strain S. aureus (ATCC 29213) was cultured in HB medium (1 mL) in 

the presence of 0.25 µg/mL (1/4 of MICs) of complexes 4, 5 and 7, and overnight incubation 

at 37 oC was considered as the first passage. At the second day, 40 µL of bacteria medium was 
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added to the prepared complex stockings (1 mL), and such a treatment was repeated for 24 

times (count as 24 passages). The antibacterial activity of complexes 4 and 7 against the treated 

S. aureus was determined by culturing the microbe on agar plate containing complexes 4, 5 

and 7 (at MIC concentrations) every 4 days.  

Kinetics of Growth Inhibition  

Bacteria strain S. aureus (Type: ATCC 29213) was cultured in CAMHB overnight at 37 oC. 

Three bacteria suspensions of 1 × 105, 1 × 107 and 1 × 108 CFU/mL were prepared by culture 

dilution. Complex in broth was diluted to give the concentration 0.125× MIC to 8× MIC. The 

negative control (media only) and positive control (culture bacteria with DMSO (1% - 10%)) 

were used as comparison. The measurement of absorbance at OD600 was determined on a Tecan 

SPARK 10M plate reader with shaking for 18 h at 37 oC, the absorbance was detected every 5 

min for the first one hour and every 30 min for the rest 17 h. No growth was observed for 

negative control. 

Biofilm Cultivation and Antibiotic Treatment  

Biofilms were prepared according to a reported literature procedure, with modifications.82 

Generally, bacteria strain S. aureus (ATCC 29213) was cultured in synthetic wound fluid 

(SWF, consisting of 50% fetal bovine serum and 50% autoclaved peptone water, v/v) at 37 oC 

on an orbital shaker. In a sterile falcon tube, polymerized rat tail collagen matrix was prepared 

and kept on an ice bath. Typically, 10 mL collagen matrix, 2 mL collagen stock solution (10 

mg/mL), was mixed with 6 mL SWF, 1 mL 0.1%, v/v acetic acid and 1 mL 0.1 M NaOH.  After 

mixing, 400 μL of the collagen matrix was added to separate wells of 24-well polystyrene 

microtiter plates without introducing bubbles and placed at 37 oC for 1 h to allow collagen to 

polymerise. Then 100 μL of diluted bacterial culture (OD600 of ca. 0.1 in SWF) was added to 
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each collagen matrix. The plate was incubated at 37 oC without shaking for 24 h to allow growth 

of biofilms in the collagen matrix. 

The tested complexes (200 μL of complexes 4-9, in DMSO/H2O, 5/95(v/v)) were added to the 

24-h-old biofilms in triplicate and placed at 37 oC for a further 24 h. Then 600 μL of collagenase 

(0.5 mg/mL in PBS) was added to each wound, and incubated at 37 oC for 1 h to dissolve the 

collagen matrix. Serial dilutions of each wound were made in PBS using a sterile 96-well plate, 

and 10 μL of each dilution dropped onto an LB agar plate in triplicate for colony counting and 

calculation of viable cell numbers in the treated and untreated biofilms.   

We used R to fit an ANOVA on log-transformed data to determine the effect of complex 

identity and concentration (and their interaction) on numbers of viable bacteria (Table S10 in 

the Supporting Information).82 We then used the lsmeans package to perform a one-sided test 

of whether each concentration of each complex led to a reduction in numbers of viable 

bacteria,84 compared with the mean number of bacteria recovered from 9 replica untreated 

cultures (which was 3.03e+9). A Tukey correction for multiple comparisons was used. 

Live/Dead Cell Assessment by PI Staining 

1 × 108 CFU/mL of S. aureus cells were seeded in 50-mL Falcon tubes and exposed to two 

concentrations of complex 7 (equipotent MIC and 2 MIC) for 2 h without shake. S. aureus cells 

without any antibiotics were used as negative comparison. After indicated incubation time, cell 

suspensions were collected by centrifugation at 8000 rpm for 10 min and washed with PBS 

(0.01 M) 3 times. The cell pellets were then re-suspended in water in 2 mL eppendorf tubes 

and treated with 3 μM PI for 30 min in the dark at room temperature. Excessive PI was removed 

by washing cells with PBS 3 times, and 20 μL of samples were placed on a glass slide with a 

glass coverslip. The fluorescence of each glass slide was detected on a confocal microscope 

(LSM 880, AxioObserver) at excitation and emission wavelengths of 514/642 nm. 



32 
 

Transmission Electron Microscopy  

5 × 108 CFU/mL of S. aureus cells were cultured in 50-mL Falcon tubes and exposed to two 

concentrations of complex 7 (10 MBC and 50 MBC) at 37 oC for 2 h without shake. After 

incubation, the cell suspensions were harvested by centrifugation at 8000 rpm for 3 min and 

washed with PBS (0.01 M) 2 times at 4 oC. The cells were fixed by 2.5% glutaraldehyde in 

PBS at 4 oC for 1 h, washed with PBS and water, and centrifuged. Then the bacterial pellet was 

re-suspended in 10% ethanol, and dehydrated with 20%-100% ethanol with 20 min of each. 

Cells were left in 100% fresh ethanol for over 24 h. Then the cell pellets were left in propylene 

oxide for 2 h, propylene/LV resin (1:1, v/v) for 5 h and 100% LV resin overnight. After which, 

cells were polymerised at 65 oC for 24 h and cut on Ultracut E Microtome to 100 nm and 

stained with 4% uranyl acetate. Finally, TEM monitoring was carried out on Jeol 2011 LaB6 

filament with Gatan Ultrascan 1000 camera. 
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Molecular formula strings of complexes 1-14 (CSV) 
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Chart 1. Biguanide Ligands with Various Functional Substituents. 

 
Ligand Name R R1 R2 

L1 Metf Me Me H 

L2 PhBig 
Phenyl  

H H 

L3 4-F-PhBig 
4-F-phenyl  

H H 

L4 PhEtBig 
PhEt  

H H 

L5 TolBig 
1-(o-Tolyl)  

H H 

L6 TolSul-Big-Tol 1-(o-Tolyl) H 
TolSul  

L7 
4-(BrCH2)-

PhSul-Big-Tol 
1-(o-Tolyl) H 

4-Br-PhSul  

L8 
4-F-PhSul-Big-

Tol 
1-(o-Tolyl) H 

4-F-PhSul  

L9 
4-NO2-PhSul-

Big-Tol 
1-(o-Tolyl) H 

4-NO2-PhSul  

L10 Dan-Big-Tol 1-(o-Tolyl) H 
Dan  
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Chart 2. Structures of Complexes 1-14 Studied in This Work 

 

Complex 

(struct type) 
R3 X Y Biga 

1 (A) Me Cl Cl L1 

2 (A) Ph Cl Cl L1 

3 (A) Biph Cl Cl L1 

4 (B) Biph Cl - L2-H 

5 (B) Biph Cl - L3-H 

6 (A) Biph Cl Cl L4 

7 (A) Biph Cl Cl L4 

8 (A) Biph Br Br L4 

9 (A) Biph I I L5 

10 (C) Biph Cl - L6-H 

11 (C) Biph Cl - L7-H 

12 (C) Biph Cl - L8-H 

13 (C) Biph Cl - L9-H 

14 (C) Biph Cl - L10-H 
aBiguanide ligands L1-L10, see Chart 1: in L, the biguanide is protonated on the 

backbone N; in L-H, biguanide is deprotonated. 
 

Table 1. Selected Bond Lengths (Å) and Angles (˚) for Complexes 1 and 4 

Bonds 
Bond Length (Å)/Angle (o) 

1 4 

Ir1-Na 2.087(2) 1.975(3) 

Ir1-Nb 2.074(2) 1.973(3) 

Ir1-Cpx(Centroid) 1.777 1.775 

Ca-Na 1.287(4) 1.346(5) 

Ca-Nc 1.382(4) 1.331(5) 

Cb-Nb 1.301(4) 1.348(4) 

Cb-Nc 1.382(4) 1.321(5) 

Na-Ir1-Nb 84.97(9) 85.38(13) 

Ca-Nc-Cb 124.3(2) 122.2(3) 

Na corresponds to N5, N111; Nb: N3, N108; Nc: N4, N109 

Ca corresponds to C5 C110; Cb: C3, C108 
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Table 2. Antibacterial Activity (MIC and MBC), Cytotoxicity (CC50), Haemolytic Activity (HC50), 

and Cytopathic Effect (IC50) of Complexes 1-14 

Compl

ex 

S. aureus B. subtilis S. pyogenes S. epidermidis E. faecalis HEK-293 RBC HaCaT 

Gram-positive bacteriaa 

MIC/MBC (µg/mL) 

(MIC/MBC  (μM)) 

Mammalianb 

µg/mL 

(μM) 

1 
>32/>32 

(>59.7) 

>32/>32 

(>59.7) 

>32/>32 

(>59.7) 

>32/>32 

(>59.7) 

>32/>32 

(>59.7) 

>32 

(>59.7) 
n. d. n. d. 

2 
>32/>32 

(>54.3) 

>32/>32 

(>54.3) 

>32/>32 

(>54.3) 

>32/>32 

(>54.3) 

>32/>32 

(>54.3) 

>32 

(>54.3) 
n. d. n. d. 

3 
8/8 

(12.6) 

4/4 

(6.3) 

2/2 

(3.2) 

4/16 

(6.3/25) 

8/32 

(12.6/50) 

27.4 

(43.5) 
n. d. n. d. 

4 
2/2 

(2.9) 

0.5/0.5 

(0.7) 

0.25/1 

(0.4/1.5) 

0.25/0.5 

(0.4/0.7) 

1/8 

(1.5/11.7) 

>32 

(>47) 

6.1 

(9.0) 

64 

(94) 

5 
2/2 

(2.8) 

0.5/0.5 

(0.7) 

0.25/0.25 

(0.4) 

0.5/0.5 

(0.7) 

1/8 

(1.4/11.2) 

>32 

(>45) 

11.8 

(16.9) 

128 

(179) 

6 
2/2 

(2.7) 

1/2 

(1.3/2.7) 

0.125/0.5 

(0.17/0.7) 

0.25/0.25 

(0.3) 

1/32 

(1.3/43.1) 

17.2 

(23.2) 

21 

(28.3) 

128 

(173) 

7 
1/2 

(1.4/2.8) 

0.25/0.5 

(0.3/0.7) 

0.125/0.125 

(0.17) 

0.5/0.5 

(0.7) 

1/4 

(1.4/5.6) 

>32 

(>44) 

14.6 

(20) 

128 

(176) 

8 
0.5/1 

(0.6/1.2) 

0.5/1 

(0.6/1.2) 

0.25/0.25 

(0.3) 

0.5/1 

(0.6/1.2) 

0.5/32 

(0.6/37) 

23.7 

(27.6) 

6.7 

(8.2) 
n. d. 

9 
0.5/4 

(0.5/4.4) 

0.25/1 

(0.3/1.1) 

0.25/0.25 

(0.3) 

0.5/0.5 

(0.5) 

1/16 

(1.1/17.6) 

17.0 

(18.6) 

7.8 

(8.6) 
n. d. 

10 
0.5/>32 

(0.6/>38) 

0.5/16 

(0.6/19) 

0.25/0.25 

(0.3) 

0.25/>32 

(0.3/>38) 

>32/>32 

(>38) 

>32 

(>38) 

14.6 

(17) 
n. d. 

11 
0.5/>32 

(0.5/>35) 

0.5/16 

(0.5/17) 

1/2 

(1.1/2.2) 

0.5/>32 

(0.5/>35) 

>32/>32 

(>35) 

>32 

(>35) 

>32 

(>35) 

128 

(139) 

12 
0.5/>32 

(0.6/>38) 

1/32 

(1.2/38) 

1/8 

(1.2/9.4) 

0.25/>32 

(0.3/>38) 

>32/>32 

(>38) 

>32 

(>38) 

>32 

(>38) 

128 

(151) 

13 
0.5/>32 

(0.6/>38) 

0.5/16 

(0.6/19) 

0.5/8 

(0.6/9.5) 

0.25/>32 

(0.3/>38) 

>32/>32 

(>38) 

>32 

(>38) 

25 

(30) 
n. d. 

14 
0.5/>32 

(0.5>35) 

0.5/32 

(0.5/35) 

1/4 

(1.1/4.4) 

0.25/>32 

(0.3/>35) 

>32/>32 

(>35) 

>32 

(>35) 

>32 

(>35) 

32 

(35) 

Van 
2/>32 

(1.4/>22) 

0.25/0.25 

(0.2) 

1/1 

(0.7) 

4/4 

(2.8) 

4/>32 

(2.8/>22) 
n. d. n. d. n. d. 

aBacterial strains: S. aureus, ATCC 29213; B. subtilis, DSM 10; S. pyogenes, ATCC 151112; S. 

epidermidis, ATCC 12228; E. faecalis, ATCC 29212. bMammalian cells: HEK-293 human embryonic 

kidney cells ATCC CRL-1573 (CC50), RBC human red blood cells (HC50), HaCaT human keratinocytes 

cells (IC50). 

  



48 
 

 

 

Table 3. Effect of Complexes 4, 7 and 10 on the Activity of Cefoxitin (Cef) and Vancomycin (Van) 

towards MRSA and VRE (MIC µg/mL) 

Strain Cef Van 
4 7 10 

4 4+Cef 4+Van 7 7+Cef 7+Van 10 10+Cef 10+Van 

MRSA 32 n.d. 2 32 n. d. 0.5 32 n. d. 0.5 32 n. d. 

VRE n.d. 64 4 n. d. 0.25 2 n. d. 4 4 n. d. 2 

  



49 
 

 

 

Figure 1. Structures of IrIII complexes 1 (left) and 4 (right) and with atom labelling. Thermal 

ellipsoids are drawn at 50% probability level.  

 

 

Figure 2. Selected antimicrobial data of complexes 1-14, as MIC values in µM. Bacterial strain 

types: A. baumanii: ATCC 19606; E. coli: ATCC 25922; K. pneumoniae: ATCC 700603; 

MRSA: ATCC 43300; C. albicans: ATCC 90028; C. neoformans: ATCC 208821. Further 

activity data for these complexes are listed in Table S4. 
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Figure 3. Kinetics of growth inhibition for complex 7 against S. aureus, a) bacterial suspension of 1 × 

105 CFU/mL with complex concentrations ranging from 0.125 MIC to 2 MIC; b) bacterial suspension 

of 1 × 107 CFU/mL with complex concentrations from 0.25 MIC to 4 MIC; c) bacterial suspension of 

1 × 108 CFU/mL with complex concentrations from 0.5 MIC to 8 MIC; d) effect of DMSO on the 

growth of bacteria. 
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Figure 4. S. aureus biofilm disruption of complexes 4-9 at a variety of complex concentrations indicated 

as logarithm of the number of bacteria. Analysis of variance (ANOVA) determined that both complex 

and concentration had an effect on number of viable bacteria; post-hoc comparison of each treatment 

with the negative control (bacterial culture without any antibiotics) showed that all complexes killed 

bacteria, even at the lowest concentration tested (p < 0.05 for *). 
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Figure 5. Monitoring of the permeability change of cell membranes of S. aureus (ATCC 29213) 

induced by complex 7 via PI staining and confocal microscopy, and morphological changes by TEM; 

a-c) complex 7 at concentrations of 0, 4× MBC and 8× MBC, respectively; the left images show the 

contrast mode of both stained and unstained cells and the right images suggest the PI fluorescence cells; 

d) TEM images, treatment of complex 7 at concentrations of 10× MBC (left) and 50× MBC (right). 

 


