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Sum m ary
This thesis contains a formal m athematical investigation of clutch engagement 

in automotive vehicles. T his investigation is conducted by developing a model of 
an automotive powertrain, and investigating undesirable effects that can occur in 
clutch engagement. This naturally leads to the development of a multi-objective 
optimal control problem describing how to best to engage a clutch. An algorithm 
for solving this optimal control problem is then presented. Arguments for the de­
velopment of a feedback control strategy are then discussed, with the construction 
of such a feedback strategy, along with the com putations required to evaluate the 
feedback controls detailed. A further extension, of adapting the feedback controls, 
to cope with powertrain model perturbations then follows, along with a method 
of estimating such perturbations. Finally, the use of this research in implementing 
clutch engagement control is outlined. Throughout the thesis, the various control 
strategies designed are evaluated by carry out simulations of models representing 
the powertrains of two different family cars.
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C hapter 1 
In trod u ction
The ability to autom atically control processes performing desired tasks to a satis­
factory standard is an im portant problem that has been addressed in one form or 
another for many years. Over a century ago, steam  engines were regulated using 
Watt flying ball governors and arc lamps were controlled using electromagnetic 
devices [1]. Later, at the beginning of this century, controllers which were more 
conventional, were m anufactured for the purpose of regulating industrial processes 
[2]. In these early controllers it is questionable w’hether much theory was used in 
the design process.

The theory of controlling systems has been an area of active research for many 
years. Early work tended to concentrate on the stability of processes often by 
examining the characteristic equation. In the 1930’s, further performance assess­
ment techniques, analysing the frequency response of systems were developed by 
Bode at the Bell Laboratories. Subsequent work through the 1940’s and 1950’s 
continued to concentrate on performance assessment techniques, generating m eth­
ods which are generally referred to as classical control theory. In the late 1950’s 
and throughout the 19G0's a new form of sta te  space control or modern con­
trol theory was developed. This included the development of concepts such as 
observability and controllability, observer theory and optimal control theory, in
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which controllers were designed using predom inantly theoretical techniques, and 
less engineering intuition. These techniques are very much model based, requir­
ing modelling techniques such as system identification and param eter estimation. 
Since the development of state space theory, a num ber of other control topics 
have been studied, notable examples of which are th e  work on adaptive and learn­
ing control and intelligent control. However, the most significant advances have 
been made in the problem of robust control, the problem of controlling uncertain 
systems. A more detailed history of control engineering can be found in [3].

Classical control theory includes a variety of performance assessment tech­
niques used as design aids for linear system controllers, which are normally single 
input single output (SISO). Most of the techniques involve interpreting graphical 
representations of the system dynamics and require the intuition and experience 
of control engineers in controller design. For exam ple, systems can be examined 
by analysing their step and impulse responses. T im e response features, such as 
percentage overshoot, settling time, steady state error, and system gain can be 
used to  assess controller performance. Other im portant quantities can be inferred 
from these time responses, such as dead tim e and th e  system tim e constant. Fre­
quency response techniques were developed in the telecommunications field a t the 
Bell Laboratories, and describe how the gain and phase lag of oscillating signals 
passing through the system vary as a function of frequency. Bode developed a 
method of plotting these variations, in which gain and frequency are scaled log­
arithmically, and can be used to ascertain system characteristics such as cut ofT 
frequencies and system order. The graph of gain against phase lag, again with 
the gain scaled logarithmically, is accredited to N.B.Nichols. A further graphical 
technique useful in stability assessment was developed by Nyquist [4], in which 
the gain and phase lag of the frequency responses are  plotted in polar coordinates. 
Subsequent analysis of these graphs by examining the open loop poles, zeros and



the number of encirclements of the point (1,-180°), often referred as the -1 point, 
indicates whether the closed loop system is stable or unstable. An understanding 
of how the controller affects th e  Nyquist plot can be used in their design. A fur­
ther feature of these plots is th a t the distance between the nyquist plot and the -1 
point is a measure of closed loop robustness. Nyquist plots for single input single 
output (SISO) systems can be generalised for multi-input m ulti-output (MIMO). 
W.R.Evans [5] developed yet another graphical technique, known as root locus 
plots, which depict how the poles of a feedback system move as the gain of the 
controller varies. All of the above graphical techniques are particularly useful 
in controller design, using m odern computer graphics, allowing the plots to be 
quickly generated, understood and analysed. An example of a software package 
which performs such tasks is th e  MATLAB control toolbox.

Prior to the introduction of state space control theory, other algebraic assess­
ment techniques were available, such as stability assessment by examining the 
roots of the characteristic equation. These roots are not always easy to calculate, 
however, a procedure referred to  as the Routh-Hurwitz method gives an indication 
of system stability, and can be extended to investigate the conditions which would 
cause the onset of instability. Lyapunov [6] developed a further general non-linear 
stability analysis m ethod in which stability is guaranteed if a Lyapunov function 
exists. Unfortunately, finding such a Lyapunov function is often difficult and no 
conclusion can be drawn if such a function is not located.

State space control theory allows the analysis and control of general m ulti­
input m ulti-output (MIMO) systems. This theory has particular relevance to lin­
ear systems because the notation allows the model to be conveniently expressed, 
allowing straight forward algebraic techniques for analysing such systems. Exam­
ples of the theory that has been developed for linear systems include: notions such 
as controllability and observability; the placement of closed loop poles; the esti-
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illation of system states from system measurements; and stability assessment by 
calculating eigenvalues, which are all performed using simple m atrix operations. 
One of the most im portant contributions to state space control theory was the 
development of optimal control theory, such as the maximum principle of Pon- 
tryagin [7] and the dynamic programming of Bellman [8], In general, the solution 
of the resulting equations is non-trivial. However, for some linear problems with 
quadratic costs, an optimal control problem referred to as the Linear Quadratic 
Regulator (LQR) problem, can be solved by solving a m atrix Riccati equation. An 
extension to the LQR problem, known as the Linear Quadratic Guassian (LQG) 
problem, uses a Kalman filter [9], to estim ate the system states in the presence 
of noise. This filter is designed using optim al stochastic control and forms a dual 
problem to the LQR problem. The concepts and theory of optimal control are 
well explained by Athans and Fall) [10].

Since the development of modern s ta te  space control theory a number of control 
topics have been investigated. Three of the  most prevalent control topics are now 
outlined.

Adaptive and learning control aims to  improve upon traditional techniques by 
the use of on-line measurements in addition to a priori knowledge. Such control 
strategies are necessary for control problems with uncertainties and/or proper­
ties that vary in time. A universal definition of adaptive control is lacking, but 
broadly speaking an adaptive controller is a control strategy where a controller 
is automatically adjusted by dynamics which are slower than the dynamics of 
the controller. These adjustm ents react to  internal or environmental variations 
which may occur. The problem of adaptive control is that the resulting control 
systems are inherently non-linear, resulting in slow progress in the development 
of adaptive control theory, with much effort addressed to analysing the stability 
of the adaptive processes. An introduction to adaptive control which describes
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many of the different approaches and techniques which exist can be found in [11], 
Learning control embraces adaptive control bu t tends to make greater use of past 
and present information in order to predict ’good’ control strategies from mea­
sured values rather than react to them. An introduction to learning control was 
recently presented at a symposium [12], with some of the theory used in such 
control strategies found in [13].

Intelligent control is the term referring to  control techniques inspired by ob­
servations of biological systems, and tend to use methods borrowed from the field 
of artificial intelligence. This area of control has particular im portance to the 
problem of controlling systems requiring autonomy, the ability of self government 
as described in [14]. A common way of constructing such an autonomous system 
is by using a hierarchical structure. For instance a standard PID controller can 
be autom atically tuned by some higher level devise, in order to cope with system 
variations. This devise can then be supervised by an additional level in order to 
prevent the  system encroaching into undesirable operating conditions, which can 
be in tu rn  supervised by yet another level which might be designed to  cope with 
system failures. Intelligent control in its present form includes the th ree areas: 
fuzzy logic; neural networks; and expert systems.

Fuzzy logic provides a determ inistic environm ent for vague linguistic concepts. 
In this environment, operations which are extensions to set operations can be per­
formed, and are used in the operation of fuzzy controllers. The strength of this 
fuzzy technique is that it formalises the knowledge and experience of control engi­
neers, transferring this expertise into the control strategy, in essence transferring 
the intelligence. An introduction to fuzzy control can be found in [15] with a 
recent application of such techniques to autom otive control found in [16].

Neural networks, have a parallel architecture, inspired by the interconnections 
of neurons in biological nervous systems. They consist of nodes which are simple
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non-linear functions connected via weights to form a network, allowing the network 
to he trained to perforin a desired task by adjusting the weights. Described in 
[17] and [18] are applications of neural networks to control.

An expert systems is a term referring to a computer system im itating a human 
expert, an expert in performing a particular task. A common exam ple are systems 
that are devised to im ita te  a medical doctor, which try  to diagnose a patien t’s 
illness. Expert systems consist of two separate units, a knowledge base supplied 
by human experts (perhaps containing a list of all illnesses and their symptoms) 
and an inference engine, which is a program which uses this knowledge to make 
decisions (for instance by asking questions about the patient the program decides 
the most probable illness). For control purposes these techniques have particular 
importance to controlling systems too complex to model, designing controllers and 
fault detection as explained in [19].

In recent years, considerable progress has been made in robust control, the 
problem of designing controllers to achieve performance objectives for uncertain 
systems. In most robust control theories, the uncertainty of th e  system is ex­
pressed by treating the model as an element of a set of models. Many different 
methods of expressing this set have been used and as a result many different 
branches of robust control have been developed. For instance, th e  system model 
set could be represented by a system characteristic equation, w ith coefficients 
bounded by upper and lower limits. In this case the stability of this model set 
can be assessed using Kharitonov polynomials [20]. Another m ethod of expressing 
the model set is to use differential inclusions, in which the sta te  space model is 
extended by allowing the  state derivatives to be an element of a se t dependent on 
the states, the controls and possibly tim e. An example of some stability theory 
resulting from this model set form can be found in [21], The m ost abundant ro­
bust control theory is referred to as robust Hx  control theory, in which a transfer
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function representing the model is perturbed by a parameter, bounded by an / / c0 
norm. Performance is expressed by a tracking condition, where a weighted sensi­
tivity function is again bounded by an H 0c norm. O ther criteria such as control 
effort can also be expressed using / / ^  bounds, with weights in the problem for­
mulation being used to trade ofT performance against robustness. Having defined 
the problem, if a solution exists, it can be found using an algorithm known as 
7-iteration. The concepts and ideas of Hoo robust control are described in [22], 
with details of algebraic solution techniques described in [23]. Other more recent 
state space solutions to the standard problem can be found in [24], where the 
solution is obtained by solving two Riccati equations. There are a large number 
of different ways in which the param eter perturbations can be included in the sys­
tem transfer function. These different approaches have resulted in the existence 
of many different robust control theories. One well known method for solving 
MIMO robust control problem was initially proposed by McFarlane and Glover 
[25], in which, due to the form in which the param eter perturbation is included, 
the complexity of the calculations is reduced. Recently the ideas of robust / / ^  
control theory have been extended to cope with structured bounds of the pertur­
bation parameters. The concepts and theory of these techniques, referred to as 
/¿-synthesis, can be found in [26]. For a detailed bibliography on robust control 
refer to [27] and [28],

This thesis is concerned with applying this wealth of control theory to control 
problems in automotive engineering. To date most effort has been applied to the 
designing of engine management systems, although many other problems have 
been successfully examined. As a brief review of automotive control this area is 
subdivided into three groups: suspension control; steering control; and propulsion 
control. A good reference source for automotive control is [29].

Suspension control is concerned with dynamic adjustm ents of the suspension
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system in order to improve vehicle ride and handling. In its most complicated 
form, referred to as active suspension, hydraulic or pneumatic devices are in­
cluded in the suspension system which may be connected in parallel or series with 
a conventional or passive system components. These additional devices generate 
external power which can be used to stiffen or slacken the suspension system as 
required. Semi-active suspension system is the term  referred to the dynamic ad­
justments of a passive suspension systems characteristics. For instance the dam p­
ing can be varied by adjusting an aperture restricting the flow of oil in a dam ping 
strut. Two other terms, referring to suspension control systems are, slow-active 
suspension which refers to an active suspension system with a low bandwidth so as 
not to excite particular vibration modes and roll control. A further application of 
control theory in vehicle suspensions is the problem of levelling the vehicle under 
variable loading, using self-levelling devices. A recent thesis [30] has looked at 
suspension control and contains more details including a review and the history 
of suspension control.

A driver can be assisted in steering a vehicle with the use of rear wheel steering 
control. This is to say that the rear wheels are steered by a control system, with 
the rear wheel steering angle determined from the front wheel steering angle, 
steered by the driver, and possibly other variables such as vehicle speed. For 
instance, for large front wheel steering angles which normally occur at low vehicle 
speeds, if the rear wheels steer in the opposite direction to the front wheels then 
the manoeverability of the vehicle can be improved. On the other hand, for small 
front wheel steering angles which normally occur at high vehicle speeds, if the 
rear wheels steer in the same direction as the front wheels then the yawing of the 
vehicle can be reduced. An example of such a control strategy can be found in 
[31]. Another higher level steering control problem is to design a control system  
to track a vehicle along a path, possibly defined by a white line of a submerged
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electric cable. An recent example of literature addressing this problem is [32].
Propulsion control, reviews of which can be found in [33] and [34], is the largest 

area of autom otive control and can be subdivided into engine control, transmission 
control and braking control.

Engine management systems, control the complex combustion and mechanical 
processes that occur in the engine and arise from the need to design engines with 
smooth and reliable performance, and to meet emission regulations. Examples of 
individual control tasks in engine management systems include: the control of the 
air/fuel ratio prior to combustion, sometimes called lambda control; the control 
of engine idle speed allowing the engine to idle at lower speeds; the minimisation 
of fuel consumption; and the control of ignition. Details of some of these control 
systems can be found in [35] and [36].

Transmission control deals with the problem of scheduling the ratio between 
the engine flywheel and the driveshaft, in order to influence the engine speed and 
the torque being transm itted to the tyres. This can be accomplished using ei­
ther an autom atic or semi-automatic transmission with the gear ratios governed 
by either a conventional discrete gearbox, or a continuously variable transmission 
(CVT). W ith a conventional gearbox, gear changes must be scheduled, the ’when 
to change problem ’, and whilst the gear change is effected, the engine has to be 
either fully or partially disengaged from the gearbox using a clutch, fluid coupling 
or torque converter, the ’how to change’ problem. Examples of research, investi­
gating this problem can be found in [37] and [38]. With a CVT the disengagement 
is unnecessary apart from when idling at rest. However, with the greater avail­
ability of gear ratios and the non-linearity of CVTs, the problem of choosing the 
gear ratio is more complex, and has been addressed in a recent thesis [3!)]. The 
disconnection of the engine from the t ransmission using a friction clutch, requires 
the clutch to disengage and reengage smoothly bringing the clutch plates speeds
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back together, whilst preventing large torque variations. Many torque converters 
also have bypass clutches which lockup when cruising so as to prevent energy loss 
through the torque converter, which also needs controlling.

Braking control is concerned with using the braking system, either to prevent 
the wheels locking up under braking, known as so called anti-lock breaking sys­
tem (ABS). or to prevent the tyres spinning under acceleration, so called traction 
control. Such systems normally consist of rule based algorithm  reacting to rapid 
changes in the wheel dynamics. For instance, for traction  control, a sudden in­
crease in the speed of a particular wheel could be corrected by increasing the brake 
pressure to that wheel.

An additional propulsion control problem which m ainly involves engine control 
but which might also require transmission control is cruise control, in which the 
speed of the vehicle is m aintained at a reference value by controlling the engine 
throttle. An example of this problem can be found in [40].

Two further areas of automotive control that have not yet been mentioned 
are: the control of auxiliary systems such as air conditioning systems; and the 
hierarchical problem of combining propulsion, steering and suspension control to 
manage the total motion of the vehicle [41].

This thesis addresses the task of automatically controlling a friction plate 
clutch. A typical friction plate clutch, consists of high friction plate attached to 
the gear box input shaft which is squeezed between two other plates attached 
to the flywheel. The force squeezing the plates together is exerted by diaphragm 
springs which are released by a release bearing when th e  clutch pedal is depressed. 
There are three distinct problems in controlling the dynam ics of such a clutch. 
I hese problems are:

1. to engage the clutch plates,

2. to disengage the clutch plates,
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3. and to control the slipping of the clutch plates allowing the vehicle to travel 
at very low speeds.

The first two problems are similar, with the engagement problem being more 
difficult as engine stalling has to be avoided and driveline oscillation excitation 
occurs at the point of clutch lock up, as will be seen in Chapter 2. The final 
problem is that of causing the vehicle speed to follow a reference value. In this 
thesis the first problem, the engagement problem is addressed. To date, little 
work seems to have been done in the field of clutch control, with most of the work 
that has been done using intuitive ideas which fail to consider the problem in a 
systematic way. For instance, one technique previously used to engage a clutch 
[42], is to initially engage t he clutch quickly, then slowly, then quickly again, which 
ensures that at the point of clutch lock up the torque being transm itted through 
the clutch is not too large, preventing large transient oscillations. The most 
popular technique used to  autom atically engage a clutch is a technique known 
as centrifugal clutch control, where the clutch torque pressure is a function of 
engine flywheel speed. This centrifugal approach has been studied in the context 
of conventional clutches and torque converter bypass clutches [43] and [44]. The 
idea behind this technique is that, assuming th a t the torque being transm itted 
through the clutch is proportional to pressure exerted between the clutch plates, 
then the clutch torque can be chosen so that:

• for low engine flywheel speeds the engine torque is greater than the clutch 
torque,

• for high engine flywheel speeds the engine torque is smaller than the clutch 
torque,

• and for an acceptable engine flywheel speed operating range the clutch 
torque approximates the engine torque.
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This ensures that: for low engine speeds the resultant torque on the flywheel is 
positive: for high engine flywheel speeds it is negative; and for acceptable engine 
speeds the resultant torque is sm all. This ensures that the engine flywheel speed 
moves into the acceptable range if it is outside this range. Hence, stalling can be 
prevented by preventing the engine speed from falling excessively. An example of 
such a piecewise linear function of clutch torque against engine flywheel speed is 
shown in figure 1.1, with this approach being well described by [45]. Refinements 
to this method can be made by including additional term s such as rate of engine 
flywheel speed change and th ro ttle  angle, as in [46], to  cope with unconsidered 
aspests such as dynamics of the clutch actuation mechanism. Other clutch control 
problems such as clutch to clutch shift operations have also been studied [47],

In applying control strategies to  automotive applications a number of hardware 
components are required. Sensors are needed to  acquire measurements of systems 
variables, a processing unit is needed to carry out the necessary on-line compu­
tations demanded by the control strategy, and actuators are needed to influence 
the system.

There are a number of sensors available for autom otive control, many of which 
are designed for specific autom otive applications. Examples of such sensors are: 
lambda sensors which measure th e  number of free oxygen molecules in the exhaust 
gases; hot air mass flow flow sensors which can measure the flow of fuel through 
the inlet manifold; flywheel reluctance sensors which m easure the rotational speed 
of the crankshaft by counting tee th  in a reluctor ring; and gearbox sensors which 
detect the current gear that is engaged. Other universal sensors such as tem pera­
ture sensors and pressure sensors are also available. Similarly there are a number 
of actuators designed specifically for automotive applications, such as fuel injec­
tion systems and ignition amplifiers. Again universal actuators such as stepper 
motors and hydraulic actuators are sometimes used.
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The computations in most modern automotive systems are performed by dig­
ital microelectronic processing units, which consists of a central processing unit 
(CPU) together with a large num ber of additional features. Some of these addi­
tional features include: non-volatile memory usually electronically erasable read 
only memory (EEPROM); analogue to digital and digital to analogue converters; 
timers to control data flow releasing the CPU from such tasks; an internal clock; 
and ports allowing communication with other external devices and allowing hard­
ware extensions to the unit. O ften these autom otive control units can be tailor 
made to individual control applications by the choice of the units modules. Ex­
amples of such control unit system s in current use are the TMS370 [48] and the 
8096BH [49] families.

In recent years, sensor and actuator technology has improved, developing new 
devices such as sm art sensors th a t may well enable system measurements which 
come with appreciation of their reliability. Furthermore, the speed of processors 
is continually increasing; a figure often quoted is that the speed of microelectronic 
processors increases by a factor of 10 every five years. An additional innovation, 
the development of serial communication between individual control units, allows 
devices to share information. Many different autom otive serial communication 
systems exist as described in [50], whose requirements are discused in [51]. This 
continual improvement in autom otive electronics, motivated by to use of automo­
tive control, and more im portantly the reduction in cost of outmoded components, 
has meant that increasingly complex control strategies will become more feasible.

With this background to the current state of control theory, automotive control 
applications, and the available technology for the implementation of automotive 
control, the aims of this thesis project are as follows:

1. to carry out a formal m athem atical investigation of the control of clutch 
engagement,
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2. to identify design requirements of clutch engagement,

3. to design a control strategies which take account of all of the design require­
m ents,

4. and to  develop techniques making the implementation of the control strategy 
more realistic.

The remaining chapters describe how these aims have been addressed. Chap­
ter 2, develops a m athem atical formulation of the clutch engagement, expressed 
as an optim al control problem. Chapter 3 attem pts to solve this optimal con­
trol problem, locating control strategies which exhibit ’good’ clutch engagement. 
Chapter 4, goes on to consider clutch engagement under perturbations, develop­
ing a m ethod of controlling clutch engagement under such perturbation. Chapter 
5, develops this approach one step further, developing a method for coping with 
perturbations in the powertrain if they are known, along with approaches for ob­
taining such variations. Finally, the use of this research in implementing autom atic 
clutch control is discussed.



---------- Engine torque
---------- Clutch torque
Figure 1.1: Centrifugal clutch control exam ple
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C hapter 2
M ath em atica l F orm ulation  o f  th e  
C lutch  E n gagem en t P rob lem
The first step towards carrying out a rigorous investigation of clutch engagement 
is to develop a m athematical formulation of the problem. This formulation begins 
with the development of a simple automotive powertrain model. Analysis and 
simulation of this model allows the notion of clutch performance to be expressed. 
This quantification of clutch performance, along with the powertrain model, then 
naturally results in the formulation of a continuous multi-objective optim al control 
problem.

2.1 P ow ertrain  M od el
An automotive powertrain consists of vehicle components transm itting power from 
the engine to the vehicle mass. Typical powertrains consist of: an engine which 
produces the power by burning fuel; a clutch or a fluid coupling which either 
fully or partially disengages the engine from the remainder of the powertrain; a 
discrete or continuously variable transmission which allows the torque transm itted 
to the tyres to be manipulated; a differential incorporating a final drive ratio 
which allows the vehicle wheels to rotate at different rates whilst cornering; and 
driveshafts which transm it the power between components and finally to the tyres.
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The tyres and the suspension then convert the power into longitudinal motion. 
For this study the powertrain considered is as in most family cars with manual 
transmissions, consisting of an engine, a clutch, a discrete gearbox, a differential 
and driveshafts.

A simple model of this powertrain is now developed by making a number of 
modelling assumptions, from which m odel equations arise. These assumptions 
have been made by considering the powertrain dynamics and other more com­
plex powertrain models including previous powertrain modelling work done at the 
University of Warwick [52]. Model details that are either felt to have negligible 
efTect for the clutch engagement problem or felt to be too problematic in the later 
optimisation techniques for the small improvement in model accuracy, are ignored.

The first component in the powertrain is the engine. Extensive effort has been 
applied to engine modelling for control studies, resulting in a wealth of literature 
detailing engine models, such as the models described in [53], [54] and [55]. A 
review of automotive engine modelling has been conducted by Powell [56]. The 
first progression towards an engine model is normally to  describe its steady state 
characteristics, acquired from engine test bed data. An example of such a static 
map, acquired from previous engine modelling work done at the University of 
Warwick [57], is detailed in figure 2.1. In this figure, the th ro ttle  angle is the 
engine input and the engine output is th e  engine torque which is also dependent 
on the engine flywheel speed fed back from  the flywheel dynamics. More detailed 
engine maps can incorporate additional engine inputs such as spark advance and 
air/fue! ratio. The engine dynamics can, in its simplest form, be represented by 
a dynamic lag from the throttle angle to  the engine torque, with this lag being 
dependent on quantities such as inlet manifold volume, engine tem perature and 
flywheel speed. More detailed models represent the fluctuations in pressure of 
various engine chambers. As the time constants of the dynamics in the engine
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are significantly faster than the time constants of dynamics in the rest of the 
powertrain, for the model, the engine dynamics are ignored. Typically the engine 
responds to a step in throttle angle in about 0.01 - 0.05 seconds as identified by 
[53], with the powertrain dynamics being controlled over a tim e interval of 0.5 
- 2.0 seconds. Furthermore some engine inputs such as spark advance respond 
even faster. W ith this assumption that the engine dynamics are neglected, the 
engine torque is taken as a engine input, control u\. The corresponding steady 
state throttle angles and other possible engine inputs such as spark advance can, if 
required, be obtained from the inverse of an engine map. Additional dynamics in 
the engine result from the movement of the engine on its mounts. This movement 
can be modeled by ’earthing’ (connecting to a static mass) the engine block inertia 
via a suitable compliance. As other compliance, felt to be more dominant, is 
present in other powertrain components, these extra dynamics are ignored with the 
engine represented by the engine torque and the flywheel represented by an inertia 
J i. However, this last modelling assumption will result in a lack of oscillations at 
the engine side of the clutch, that would be present with this compliance included.

A clutch acts as a torque limiter, limiting the  torque transm itted through the 
clutch to a maximum value, the clutch torque capacity. This clutch torque capac­
ity is dependent on many factors including the pressure between the clutch plates, 
the tem perature of the clutch plates and the rate of clutch slip. The variation of 
clutch torque capacity with respect to clutch slip has been associated with self 
exciting shudder [43]. The variations with respect to tem perature requires the 
modelling of additional dynamics, examining the dissipation of energy through 
the clutch. However, as the variation of clutch torque capacity with respect to 
clutch slip is normally small and the dynamics of the clutch tem perature fluctua­
tion are slow, both of these effects are neglected, if it is noted th a t the variations 
with respect to tem perature induce some uncertainty of the clutch torque capac-
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ity. The remaining correlation between the clutch torque capacity and the clutch 
plate pressure previously mentioned, is felt to be the key clutch characteristic. 
For this reason, the clutch is modelled by assuming that the torque capacity of 
the clutch is proportional to  the pressure exerted between the clutch plates. If 
this clutch plate pressure is taken to be a control, then the clutch torque capacity 
can be taken as a control, control u3, eliminating a proportionality constant in 
the model equations. Deterioration of clutch performance, due to clutch wear, 
can be modelled by multiplying the expected clutch torque capacity u3 by a pa­
rameter // £ [0,1]. This param eter can also be used to model the uncertainty 
of the clutch torque capacity due to tem perature changes noted above. Other 
compliance dynamics, resulting from clutch springs, is ignored as the compliance 
in the remainder of the powertrain is felt to be dominant.

A typical automotive gearbox consists of oiled cogs contained in a chamber 
with the input shaft connected to the clutch and the output shaft connected to a 
driveshaft or differential. As well as exhibiting the desired gear ratio, due to the 
meshing of the cogs, lash is present in the gearbox, and due to friction between 
the cogs and their bearings, some torque loss is present. In new gearboxes the 
size of the lash is not too large, of the order of 4 or 5 degrees. Furthermore, 
if only positive torque is being transm itted through the gearbox, the lash effect 
is redundant, a likely situation for the clutch engagement problem. Hence for 
this simple model, lash is neglected. The torque drop through the gearbox is 
also ignored, just introducing some uncertainty on the torque being transm itted 
through the powertrain. Hence the gearbox is modelled by taking the gearbox 
input and output shafts to be lumped inertias, inertias ,/2 and ./3 respectively, 
with the gearbox itself being modelled by setting the ratio of the output shaft 
speed to the input shaft speed to a constant value, control u2.

The remaining components between the gearbox output shaft and the vehicle



mass consist of driveshafts, a differential, tyres and a suspension system. These 
components exhibit compliance, a drop in the torque being transm itted through 
the components (referred to as rolling resistance) and an effect referred to as 
wheel slip, where the expected vehicle speed calculated from the gearbox output 
shaft speed differs from the actual vehicle speed. One way of modelling these 
components is to model them as a spring in series with a non-linear damper, 
which is a tyre model. This modelling is relatively complex, a simpler model 
would be preferable. As identified by previous powertrain modelling work done at 
the University of Warwick [52], the key dynamic efTect is the compliance in these 
components, which does not seem to be too noidinear. Indeed, comparison of a 
typical tyre model linearised about a particular vehicle speed, in series with a linear 
spring, indicates that these components can be represented by a linear spring and 
damper iri parallel. Hence for this model these components are represented by a 
linear spring (having a spring constant k) and a dam per (with damping rate «/), in 
parallel, connected to a lumped inertia (inertia J 4 ) representing the vehicle mass 
reflected up the powertrain through the differential. It should be observed that 
the analysis of tyre models suggests that the compliance parameters, in particular 
the damping rate, may vary with vehicle speed. It should also be observed that 
this model fails to represent rolling resistance arid wheel slip. However, for the 
case of rolling resistance a constant torque term representing the torque drop can 
be included in the retarding torque z, or the torque drop can be treated as a 
further uncertainty of the torque being transm itted through the powertrain. This 
retarding torque can also be used to represent air resistance and retarding force's 
due to the gradient of the terrain the vehicle is travelling over.

I he above m odelling assum ptions result in a model d iagram , detailed in lig 
ure 2.2. .Model equations can be constructed  from  the above m odelling assuinp 
lions, or th e  model d iagram , e ither by considering the transfer of energy between
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the rotational inertias or by considering resultant torques acting on the inertias 
and using Newton's second law. The limitation on the transfer of torque through 
the clutch induced by the clutch model (the torque being limited by the clutch 
torque capacity) results in the model equations being dependent on whether the 
clutch is slipping or locked up. The two conditions of the clutch will be referred 
to as the inodes of the clutch.

The first clutch mode is when the clutch is slipping. For this mode, the torque 
being transm itted through the clutch is equal in magnitude to the clutch torque 
capacity, w ith the sign of this torque being determined by the direction of the 
clutch plate slip, a standard representation of friction between slipping surfaces. 
With this clutch characteristic, the model equation construction results in the 
following equations

J  i X\ =  Uj ^ru3sign(i’j x 2) (2.1)
(J 2 +  1/3^2 )X2 =  pu 3 s\gn(xi -  x 2) -  u 2p (2.2)

J 4 X3 =  p -  z (2.3)
X \ — X3  — U2 X2 (2.4)
V =  — kXi — //(X3 — U2X2).

In these equations: p is the torque being transm itted up the powertrain from the 
inertia J 4 to  the gearbox ou tput shaft; x\ is the engine flywheel clutch plate speed; 
*r2 is the o ther clutch plate speed; x 3 is the rotational speed of the inertia and 
•r4 is the wind up in the compliance. All the other variables and parameters are 
as previously noted. Note that the dynamics of the flywheel is only dependent 
on the sign of the clutch plate slip. Hence, in essence, the flywheel dynamics 
are independent from the rest of the powertrain when the clutch is slipping. Air 
resistance is modelled by taking the retarding torque z  to be proportional to the
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(2.5)

square of the vehicle's velocity

i.e. r =  b,-l

Vehicle load resulting from a constant gradient is modelled by a constant retarding 
torque

s =  Mgr\ r 2 sin(0) (2-6)
where M  is the vehicle mass; g is the gravitational constant; ri is the  final drive 
ratio: is the effective tyre radius and 6  is the angle of the constant gradient
from the horizontal.

The second clutch mode is when the clutch plates are locked up. With the 
clutch plate speeds equal, the following equations result

Xi =  x 2 (2.7)
(J 1 +  J '2 +  J3u\)l2 = til — U2 P (2.8)

J 4I 3 = p — z (2.9)
X\ — X3  — U2 X2 (2.10)

with the variables and param eters as previously defined. This set of model equa­
tions implicitly determ ine the transfer of torque through the clutch, the value of 
which is that required to m aintain the clutch plate speeds equal. This torque is

r =  . (2.11)
J\ + Ji + J3U\

In order to fully describe the dynamics at any instant in tim e, the clutch 
mode which is active must be determ ined. This is done by describing conditions 
determining which mode is initially active and switching conditions describing 
when the mode of the clutch changes. These conditions arise from considering 
the model equations representing a locked up clutch or a slipping clutch and 
determining when they become invalid. For instance, when the clutch plates are
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locked up the magnitude of the torque being transm itted through the clutch must 
not exceed the torque capacity of the clutch. Hence the clutch switches to  being 
in its slipping mode when

M  > //u3. (2.12)
The reverse switching condition occurs when the clutch plate speeds return to 
being equal, so long as the clutch torque capacity is not exceeded. Hence the 
clutch switches to its locked up mode when

xi =  x 2 and |r | <  fiu3. (2.13)

The switching conditions also determ ine the initial clutch modes as they partition, 
into two sets, the space of model variables. T hat is

Clutch locked up when J i =  x 2 and |r | <  /j.u3 (2-14)
Clutch slipping when x\ ^  x 2 or |r | >  /¿u3. (2.15)

Initially these conditions are used to define the initial clutch mode. These condi­
tions could also be used to determine the clutch mode at other instants in time, 
but are far less convenient for simulation purposes.

A final detail of the powertrain model is the constraints on the controls. For 
this simple model, the engine torque and the clutch torque capacity are taken to
be bounded above and below. The gear ratio value is taken to  be an element of a
finite set U2. Hence

G [^lmi’ni ^lmor] (2.16)
6 Ui — {wj, • • •, (2.17)

^3 G [^3mini ^3max]’ (2.18)

The powertrain model now created is a state space model. The four states of 
the model are: a1! - the engine flywheel clutch plate speed: x 2 - the other clutch



plate speed; ,r3 - the rotational speed of the inertia  J,t (which is proportional to 
the vehicle's velocity); and .¡’4 - the wind up in th e  compliance. The three controls 
of the model are: tq - the engine torque; u2 - th e  gear ratio; and u3 - the clutch 
torque capacity. This state space model is not of a standard form as the state 
equations are dependent on discrete events, the  switching conditions, equations 
(2.14) and (2.15), between the clutch modes.

Examination of the model equations establishes a reduction in the order of 
the model when the clutch is locked up. In th is  clutch mode the number of 
states have reduced by one, as the state equations are no longer dependent on 
the engine flywheel speed. Furthermore, the num ber of active controls has also 
reduced by one as the clutch torque capacity control u3 no longer affects the 
state equations. However, this control does still effect the switching conditions, 
effecting whether the clutch remains in this clutch mode. For this reason in order 
to clarify and summarise this variable state order model, a narrow class of state 
space models which the powertrain model belongs to is introduced. Rigorous 
conditions can then be applied to this model class, conditions which allow the 
optimisation techniques of later chapters to be applied.

The powertrain state space model for the first clutch mode, representing the 
clutch when the clutch plates are slipping, is of th e  form

x  - f ( x , u )  (2.19)

where x  and u are vectors representing the n states and the m controls respectively 
and /  : 5Rn x 1—► 3?n. The second clutch m ode is a reduced model form, with 
some of the states lacking state equations. The states that lack states equations 
are dependent on the states that still have state equations. Furthermore, the state 
equation still remaining are not dependent on all of the controls. Algebraically, 
this second form can be represented by partitioning the states into states still 
having state equations and states that do not, and partioning the controls into



controls still active and controls that are not. W ith this partitioning the model 
form for the second mode is

£1 =  d U  2) (2.20)
¿ 2  =  h ( x  2, Ml) (2.21)

where X! are the n 1 states lacking state equations, x2 are the n 2 states having 
state equations, iij are the m  1 active controls for the second mode, u2 are the m 2 

redundant controls for the second mode, g : SR"2 1—» R"1 and h : R™2 x R mi 1—► JR"2. 
The discrete events are of the form

mode 1 — » mode 2 if Xj =  g(x_2) and (x,u)  €  <S (2.22)
mode 2 — > mode 1 if (x, u) $  S  (2.23)

where S  =  { (x ,u ) ||r | <  ¡.1 1 1 3 } for the clutch engagement problem, is a set in 
x 3ffm. The initial conditions and initial modes are given by

x(0) = £0 (2.24)
initially mode 1 if £i(0) /  fffeiO )) or (x(0),u(0)) £  S (2.25)
initially mode 2 if Xi(0) =  <7(x2(0)) and (x(0), «(0)) € S. (2.26)

In order to enable the optimisation techniques of later chapters to be applied 
to the clutch engagement problem, conditions on the model form are introduced. 
These conditions are th a t the functions

/ ,  g and h are all continuously differentiable (or smooth) (2.27)

and that
S  is a smooth manifold. (2.28)

I hese conditions are sufficient for all of the optimisation techniques, but can 
be relaxed for individual techniques. For instance, for the open loop study it
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is sufficient for f , g  and h to  only be continuous, differentiable and to have a 
continuous derivative.

Inspection of the above powertrain model equations verifies that for the clutch 
engagement problem they would be in the desired form if it were not for the sign 
term of equations (2.1) and (2.2), and for the fact that S  is not a smooth manifold. 
If during clutch slip, the sign of Xi — x 2 remains constant then this sign term  can 
be replaced by a constant, equal to the sign of jq — x 2 at an initial starting point or 
at a point in time just after th e  clutch has switched to its slipping mode, thereby 
reducing the non-linearity of th e  state equations. This simplification is not totally 
unjustified. From equation (2.13), as the states are continuous in time, for the 
sign of a-! — x 2 to change whilst the clutch remains slipping, |r |  >  /¿u3 at the 
point of sign change. However, just prior to clutch plate speed equality it can be 
shown that r  < fju3. Both of these conditions can only be satisfied if r  <  —fiu3. 
For large clutch torque capacities, or for large engine torques, this final condition 
is extremely unlikely. Hence, it is assumed that, when the clutch plates come 
together with large clutch torque capacities,

r  >  —/ju3. (2.29)

With this assumption, not only is the sign simplification valid but the second term 
of the switching condition when switching to a locked up clutch, equation (2.13), 
is automatically satisfied (i.e. |r |  <  ¿*u3). This removes the difficulties with S  not 
being a smooth manifold, as in the optimal control problem formulation S  can be 
taken to be S ’1 x 3?m.

With the above simplifications, the model is now in the required form. Any 
state space model of this form would be adequate for the  optim isation techniques. 
Indeed many of the dynamic effects in the powertrain mentioned, but not mod­
elled, could be incorporated without violating the model conditions. However, 
additional modelling which includes pure tim e delay or pure lash, used to model
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the engine or gearbox dynamics respectively, is prohibited, as this would violate 
condition (2.27). The penalty of additional modelling is an increase in complexity 
of the computation required for the later optim isation techniques. This is the 
reason that the powertrain model is kept as simple as possible, only representing 
the key dynamics of the powertrain.

Two sets of model data, both representing a typical family car, have been ap­
plied to the model. The first set of data, referred to  as vehicle A, is obtained from 
previous powertrain modelling work done at the University of Warwick [52], This 
modelling work details measurements of inertias, gear ratios, final drive ratio, 
vehicle mass, air resistance coefficient and compliance coefficients. These mea­
surements either provide the required model param eters directly or provide data 
enabling the parameters to be calculated. For instance, the inertia J 4 is calcu­
lated from the vehicle mass, the final drive ratio and the effective tyre radius. 
Note that, for this data set, the compliance coefficients, the spring constant and 
damping rate, are chosen so that the model approximates the key dynamics of the 
components that the compliance represents in the powertrain, when excited, with 
their values being obtained by comparisons with experimental data. Bounds on 
the controls are also needed. For the engine torque, the upper and lower bounds 
are taken so that they are obtainable for a large set of engine speeds. These values 
are obtained by studying some previous engine modelling work done at the Univer­
sity of Warwick [57]. The lower bound for the clutch torque capacity, is naturally 
chosen to be 0 Nm, representing a fully disengaged clutch, with the upper bound 
taken to be 2.25 times the maximum engine torque. This value was decided upon 
after consultation with P.R.Crossley of Ford Research and Engineering Centre 
[58]. The values of this first set of data  are detailed in table 2.1.

The second set of data, referred to as vehicle B, contains similar information of 
a different, but realistic, powertrain. This data provides values of the inertias, final
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drive ratio , gear ratios and vehicle mass, enabling calculation of the vast majority 
of the model param eters as before. Details of steady state engine characteristics, 
again, are used to choose the engine torque bounds, again choosing bounds that 
are obtainable for a large set of engine speeds. However, this time, additional 
details of clutch actuation characteristics are used to  calculate the clutch torque 
capacity upper bound. For this data set, the compliance coefficients are calculated 
by inspecting tip in (a sudden change in engine torque) simulations of a complex 
powertrain model representing the same powertrain, and choosing the values which 
give the best comparison. The only parameters not provided, or calculated, is the 
air resistance coefficient which is taken as in the first set. The values of this second 
set of da ta  are detailed in table 2.2.

Comparing the two sets of data, all of the param eter values are similar in 
order, apart from the gearbox inertias. The data representing vehicle B has much 
smaller gearbox inertias, sufficiently small that the ex tra  dynamics generated by 
the gearbox modelling is negligible. This fact has been ignored for later work as 
they are significant for the other set. For vehicle B, this observation could be 
utilised in order to simplify later work. In particular, when the clutch is slipping, 
if the rate of change of the controls is not too great, then the clutch dynamics can 
be represented by the following state  equations

J \ X \

•J\X 3
x 2

u t ~  fiu3s ign (xt -  x 2) 

/m3sign(xi -  x 2) _  

u 2X3
u 2

fiu3sign(ji -  x 2) 

u2k

(2-30)
(2.31)
(2.32)

(2-33)

w ith  th e  t o r q u e  b e in g  t r a n s m i t t e d  th r o u g h  t h e  c l u t c h  in  o r d e r  t o  m a i n t a i n  t h e



clutch plates speeds equal now being
U i •/.] II2 U2 ~Jl

J\ + (2-34)

This simplification halves the number of states in the model when the clutch plates 
are slipping, leaving the num ber of controls unchanged. Elimination of from 
the state equations using equations (2.7) and (2.32) results in a  model of a similar 
form to the form identified by equations (2.19) - (2.23). Sim ilar simplifications 
of the sign term can be made to ensure that this new simplified model is in the 
desired form, allowing the optim al control techniques to be applied.

There are also some smaller differences between the two d a ta  sets. For vehicle 
B, the compliance is twice as stiff and less damped, the engine torque upper 
bound is higher and the gear ratio steps are smaller with an additional gear ratio 
included. These differences are not large enough to alter the modelling but are 
large enough to affect the powertrain characteristics, as will be seen in the next 
section.

2.2 M odel V alidation
The powertrain model now developed has been validated by sim ulating it using 
the computer package ACSL. This computer package can sim ulate sta te  space 
equation models and contains a state event finder. This state event finder is used 
to effect the discrete events in the form of the switching conditions required to 
simulate the powertrain model. For these simulations the control values of the 
engine torque and the clutch torque capacity have been ram ped up and down as 
appropriate, with the gear ratio  being stepped up and down as required. A sim­
ulation which indicates many characteristics of the powertrain is an acceleration 
from rest simulation, incorporating a gear change from first gear to second gear. 
This simulation has been carried out for both sets of vehicle data, with graphs
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detailing the controls, clutch plate speeds, vehicle speeds and driveline torques 
being detailed in figures 2.3 - 2.6.

For vehicle A. the controls initially remain at zero, with the vehicle at rest 
and first gear engaged. After 0.5 seconds the engine torque is quickly ramped up 
to 60 Nm, after which the clutch torque capacity is ramped up, more slowly, to 
its maximum value of 225 Nm. The controls then remain constant until a time 
of 4 seconds has elapsed, at which point the clutch is disengaged and the engine 
torque is ramped down to zero. While the clutch is fully disengaged the gear ratio 
is stepped up to second gear. The re-engagement of the clutch is similar to the 
engagement from rest, with the clutch torque capacity being ramped up a little 
faster.

The details of the clutch plate speeds, the vehicle speed and the driveline 
torque, in figure 2.4, describe the  resulting dynamics. From these graphs it can 
be observed that as the clutch is engaged and the engine torque is increased, the 
vehicle starts to accelerate away from rest, but with some small drive line oscil­
lations being present. Initially the engine flywheel speed increases, but as the 
clutch torque capacity continues to  increase the engine flywheel speed eventually 
decreases. The increase in clutch torque capacity also causes the vehicle to accel­
erate at a faster rate. At the point of clutch lock up, the rate of acceleration steps 
down, with large oscillations in the drive line being generated, which then die 
away to leave a steady rate of acceleration. The occurrence of these oscillations 
is an effect experienced by learner drivers when engaging a clutch poorly, causing 
the car to ’kangaroo' forward in extrem e cases. When the clutch is disengaged 
and the gear ratio is changed, oscillations are generated in the powertrain. The 
re-engagement dynamics are sim ilar to the previous engagement dynamics, with 
oscillations being generated at the  point of lock up. The resulting steady state 
acceleration in second gear is smaller than th a t for first gear.
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For vehicle B, a similar simulation is carried out as detailed in figures 2.5
and 2.6. The main differences between the two simulation results are that the 
oscillations when the clutch is locked up are faster and less damped, the magnitude 
of the gear change is smaller, and that th e  oscillation frequency when the clutch 
is slipping is much higher, for vehicle B. The first two differences are explained 
from noted differences between the two data sets. An appreciation of the high 
frequency oscillations when the clutch is slipping, can be obtained from analysing 
the model equations. It can be shown th a t when the clutch is slipping, the natural 
frequency and the damping coefficient are

For vehicle A, it can be calculated th a t uia = 19.6rads_1 and =  0.33, and for 
vehicle B u,'3 =  108.Grads-1 and =  0.31, in first gear. As well as confirming 
the observed high frequency oscillations, the equations (2.35) and (2.36), demon­

clutch is slipping, which are heavily dam ped. These highly damped, high fre­
quency oscillations are the dynamics th a t the reduced model equations (2.30) 
- (2.33) representing a slipping clutch, ignores. An identical simulation carried 
out using the reduced order model for vehicle B, detailed in figure 2.7, results in 
nearly identical simulation results. The only noticeable difference is the loss of the 
fast dynamics at the point of clutch disengagement and gear change. The above 
simulation results are consistent with th e  observed dynamics of an automotive 
powertrain in the frequency range up to  approximately 10Hz.

(2.35)

(2.36)

strate that small gearbox inertias equate to high frequency oscillations when the
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2.3 P erform ance Q uantification
A natural question, when examining clutch performance, is what is 'good' perfor­
mance. In order to analyse this notion clutch performance is quantified. However, 
as there are many different aspects to clutch performance, the initial quantification 
results in several ’cost’ values.

In order to carry out this performance quantification for the clutch engagement 
problem, a num ber of engagement for rest simulations have been conducted, for 
both vehicles. The simulations for the engagement from rest problem, the worst 
case of the clutch engagement problem, identify a number of undesirable effects 
that can occur. For each vehicle, two simulations are detailed, a slow and a 
fast engagement, from rest, in first gear (see figures 2.8 - 2.15). For the slow 
engagement from rest simulation, the engine torque is ram ped up to 60 Nm in 
0.1 seconds, with the clutch torque capacity being ramped up to its maximum 
value in 2.4 seconds (see figures 2.8 and 2.12). For the fast engagement from rest 
simulation, the engine torque is ramped up to its maximum value in 0.1 seconds, 
with the clutch torque capacity being ramped up to its maximum value in 0.4 
seconds (see figures 2.10 and 2.14). The resulting dynamics for these engagement 
simulations are detailed in figures 2.9, 2.11, 2.13 and 2.15. Each figure contains 
four graphs, a graph of the clutch plate speeds, a graph showing the rate of clutch 
energy dissipation, a graph of the vehicle speed (proportional to the state X3 ) 
and a graph showing the driveline torque. The rate of clutch energy dissipation 
is calculated from the states and controls, by examining power loss through the 
clutch, which is equal to fiu^ — a-̂ . The first two graphs detail the performance 
characteristics of the clutch. The last two graphs detail the effect on the vehicle 
dynamics and the driver, with the driveline torque being proportional to the force 
acting on the driver.

One undesirable effect present in the simulations is the occurrence of driveline
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torque oscillations. The driveline torque directly affects the force felt by the driver, 
hence any severe transient fluctuations in this torque, such as the oscillations, 
noted in all of the performance quantification simulations, are undesirable, as 
they cause driver dissatisfaction. The oscillations are also undesirable as they can 
cause driveability problems and can cause the wear, fatigue and eventual failure 
of powertrain components. Large fluctuations in driveline torque can occur while 
the clutch is slipping, with the driveline torque oscillating about a steady rate of 
increase on this torque, as in the fast engagement from rest simulation for vehicle 
A (figure 2.11). For vehicle B. the oscillation about the steady rate of increase is 
negligible, due to the light gearbox inertia, as previously discussed. However, the 
driveline oscillations are more prevalent after clutch lock up, with the oscillations 
appearing to be excited at the point of clutch lock up, for all of the simulations. 
In general, the oscillations tend to be worse for fast engagements.

Another undesirable effect is the dissipation of energy through the clutch. 
This energy dissipation is undesirable, not only for the resulting power loss, but 
for the clutch wear and the clutch tem perature changes that can result. Excessive 
temperature variations can change the characteristics of the clutch, causing further 
difficulties including exacerbating clutch wear. Referring to the simulations, it can 
be seen that this energy dissipation only occurs when the clutch is slipping. It 
can also be noted th a t the total energy dissipated, for one completed engagement, 
is greatest for slow engagements, the total energy dissipated being the area under 
the rate of clutch energy dissipation graph.

Stalling is another problem that must be prevented. Stalling can be prevented 
by maintaining the  engine flywheel speed above a minimum permissible value. 
For vehicle A. an engine flywheel speed below 80 rad/s can cause erratic engine 
performance and possible stalling problems. Referring to the fast engagement 
graph (figure 2.11), it can be noticed that the engine flywheel speed drops below
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this minimum value, indicating that stalling is a serious and realistic problem. 
Stalling problems tend to occur while the clutch plates are slipping and when 
th«' clutch plates are being engaged quickly. This is due to large torques which 
are transm itted through the clutch when the clutch is slipping, together with 
the large clutch torque capacity. These torques are larger than would normally 
be experienced with a locked up clutch. This large torque transmits the  kinetic 
energy of the flywheel inertia down the powertrain.

These undesirable effects, mentioned above, suggest that in designing a clutch 
engagement strategy a compromise must be sought, as the various undesirable 
effects seem to conflict. For fast engagements, the oscillations and the problem 
of stalling tend to be large, whilst for the slow engagements the clutch energy 
dissipation is large. This finding has been separately obtained in parallel research 
[59]. This dilemma must be addressed when designing the clutch performance 
measure.

Now that these undesirable effects have been observed, they can be quantified 
by designing several cost functionals for the clutch engagement problem. These 
cost functionals measure the m agnitude of the individual undesirable effects by 
equating the observed effects with the states and controls of the powertrain model, 
high values of the cost functionals equating to poor performance. These cost 
functionals are constructed so they take one of two forms. The first form, the 
integral form is

Fi =  f  M x , u ) d t  (2.37)Jo
where t j  is the time of clutch lock up, x  and u are the states and controls of the 
powertrain model and /, : x  1J?m >—► is a continuously differentiable function.
I he second form, the term inal form, is a functional dependent on the controls and 
states of the model at the time of clutch lock up. Hence

Fi = f „ ( x ( t , ) , u ( t } )) (2.38)
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where t f .  x  and u are as previously defined, and /,< : JR" X t—» is again a
continuously differentiable function. This is to say that, for the clutch engagement

clutch plates lock up, and the states and control at the point of lock up. The 
terminal cost form can, and will, be used to predict the clutch performance after 
clutch lock up. The restrictions on the form of the costs enable optimisation used 
in later chapters, to be used in order to solve the resulting optimisation problems. 
In many cases the cost functions naturally falls into one of the desired forms. 
However, this is not always the case, as will be seen with the construction of a 
cost measuring the likelihood of stalling.

For the three bad effects previously noted, six cost functions are now con­
structed. The oscillations in the driveline torque are measured using four costs. 
One cost measures the oscillation when the clutch is slipping. A reasonable mea­
sure of these oscillations is

This is just the square of the difference of the rotational speeds across the com­
pliance integrated over the interval whilst the clutch is slipping. Analysis of the 
powertrain model determines that a steady state offset of x 3 —U2 X2 can be present 
during clutch slip. This offset is proportional to the rate of change of the clutch 
torque capacity. Hence this cost also measures the rate of increase of the clutch 
torque capacity and minimising it will try to slow down engagement, as well as 
minimising the oscillations. The oscillations after engagement are measured by 
two costs. These costs are just the displacement of the states and controls from 
their steady state values at the point of clutch lock up, estim ating the oscillations 
after clutch lock up, and are

problem, the performance is dependent on the controls and states up until the

(2.39)

Fl =  ¿42 (tj)  =  (2-.s(</) -  U2 ( t f ) x 2 ( t f ) ) 2 (2.40)
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f 3 =

where the state equations representing a locked up clutch, equations (2.7) - (2.10), 
are used to evaluate the expressions. It can be shown th a t the square of the 
resulting oscillation magnitude is proportional to

oscillations when the clutch is locked up. Hence, if both these costs are small, 
small oscillations after clutch lock up will result. The last equation could be used 
to replace the two costs F2 and F3 but it is particularly messy when expanded

costs. The final cost functional, measuring driveline oscillations, measures the 
excitation of the compliance at the point of clutch lock up. Examination of the 
two state equation sets, determines that at the point of clutch lock up the torque 
being transm itted through the clutch jumps down. This torque jum p excites the 
compliance as observed. It can be shown that this torque jum p is proportional to

where the state equations representing a slipping clutch, equations (2.1) - (2.1), 
are used to evaluate the expression. It should be noted that not all the above cost 
functionals are needed to ensure small oscillations. For instance, small oscillations 
while the clutch is slipping, and a small amount of compliance excitation, will 
suffice. Similarly, the excitation cost can be om itted , replacing it with the two 
costs measuring t he oscillations after engagement.

w', 2 ( 1 ~  £ 2 ) j -42 ( f / )  +  ( ^ ( f / )  +  & X 4 (< / ) )2 (2.42)

where u> and £ are the natural frequency and dam ping coefficient of the driveline

out into the desired form. In the later optimisation techniques, the required 
differentiation of this cost would be laborious, hence the reason for using the two
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The cost functional measuring the dissipation of energy through the clutch, 
naturally, arises from the calculation of the rate of clutch energy dissipation from

A measure for stalling is a more difficult task, than for previous undesirable 
effects, as the natural functional measuring how low the engine flywheel speed
gets is

which is not of the required form. However, a functional which has high values 
for low engine flywheel speeds is

where x jmtr is chosen to  be sufficiently high in order to  prevent the flywheel speed 
dropping below its m inim um  perm issible level, a level sm aller than x \ , n l n . This 
cost, m easures the d istance of S \  below X|ml„ while the clutch is slipping and, 
hence, m easures the  likelihood of stalling . As low engine flywheel speeds are less 
of a problem  when the  d u tc h  is locked up, a cost m easuring the likelihood of 
stalling for a locked up d u tc h  is om itted .

O ther cost functionals have been exam ined and explored using the  following 
optim isation  techniques, l or instance a cost functional is included which is a cost 
equal to  the  tim e of d u tc h  engagem ent.

the powertrain states and controls. As the energy dissipation only occurs when 
the clutch is slipping, the total energy dissipation is

(2.44)

— m in{xj) (2.45)

(2.40)

0 otherw ise

I 7 (2.47)
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This cost can ho used to ensure that the clutch engagement process is completed 
as quickly as is possible. Most of the remaining costs measure subjective charac­
teristics such as vehicle acceleration or vehicle speed, which can be used to ensure 
that the optimisation techniques result in acceptable control strategies. A control 
strategy for the engagement from rest problem resulting in excessive acceleration 
and possible wheel spin is probably undesirable. Again a cost functional measuring 
excessive acceleration does not naturally arise in the required form. However, the 
vehicle speed at the time of clutch lock up is closely related to large accelerations. 
So the cost

Fs = x 3 ( tf ) (2.48)
can be used to prevent excessive vehicle accelerations. Another way to limit this 
acceleration is to artificially lim it the engine torque upper bound. Other physically 
based costs ensuring practical solutions are left to autom otive engineers more 
perceptive to these demands.

2.4 M u lti-O b jectiv e  O p tim al C ontrol P rob lem
The form of the powertrain model, together with the form of the  individual cost 
functionals, means that when they are combined a m ulti-objective optimal control 
problem of the form

minu 6 U [/',(m) =  /  '  M l , m)dt +  f , i (x ( t j ) ,u ( t j ) )  Jo for all i (2.49)
subject to

dx = z(0) =  JU,U (2.50)
Ii(u) = f  ’ r(x,u)(tl +i:t(x(l j ) ,  n(t¡))  = Jo 0 (2.51)

Q ( u ) (2.52)
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results, where R  and Q represent p t equality constraints and p2 inequality con­
straints respectively, t f  is the tim e of clutch lock up, and /  : 3?" x Rm i—► 3?",

continuously differentiable. This optimal control problem allows for the inclu-

the terminal time t j  is indeed the time of clutch lock up, at least one equality 
constraint

can vary instantaneously. For the clutch engagement problem, due to the noted 
fast dynamics of the engine, instantaneous variation of the engine torque is not 
that unrealistic. The gear ratio during clutch engagement can not change, and is 
thus taken as a constant. So the only problem is with the clutch torque capacity, 
for which an instantaneous variation assumption is unrealistic. The solution to this 
difficulty is to include a clutch actuation mechanism in the state space powertrain 
model, the input to this actuator being the new control. The actuator model used, 
arises from some modelling work [60] of a hydraulic clutch actuation mechanism. 
The inputs to this actuator are electrical and so now instantaneous variations are 
reasonable. The actuator model is a second order linear model, which is critically 
damped (£ =  1), having a natural frequency of 10 rad /s (u>). This results in the 
inclusion of the two state equations

in the powertrain model, where i 5 is the actual clutch torque capacity, u3 is the 
required clutch torque capacity. As u3 is no longer the clutch torque capacity, in

sion of additional equality and inequality constraints, but in order to ensure that

•ri( h )  ~  = 0 (2.53)
must be included.

The theory relating to such optimal control problems assumes that the controls

- 2Çlüx6 -  lo2x 5

(2.54)
(2.55)
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order to reconstruct the optimal control problem x 5 must replace u3 in the previous 
state equations, equations (2.1) - (2.4), and in the individual cost functionals, in 
particular in cost (2.44). The result is a mult ¡-objective optimal control problem of 
the form previously noted which satisfies the instantaneous variation assumptions.

For a good solution to the clutch engagement problem, ideally, all of the cost 
functionals F, should be small. However, as the undesirable effects seem to conflict, 
this might not be possible. As previously mentioned, a compromise must be sought 
when solving the optimal control problem. How to express this compromise is far 
from trivial.

Multi-objective optimisation theory describes how to express such a compro­
mise. T he effects of this theory can be best understood by examining the m ulti­
objective techniques in the cost space, the space of individual cost functionals 
(i.e. 3ffp, where there are p cost functionals). This cost space contains a sub­
set F,  the  set of all feasible costs. For the clutch engagement problem, this set 
is defined by the constrained control values mapped into the cost space by the 
powertrain model and the cost definitions. Note that all of the cost functionals 
previously defined are bounded above and below, due to the restrictions on the 
controls. Hence F  is bounded for the problem in question. Furthermore due to 
the continuity assumptions on the  model and cost forms, the mapping from the 
controls into the cost space is continuous. This ensures that T  is both compact 
and connected, if the set of feasible controls is both compact and connected. This 
observation justifies the graphical representation of F  which is used later in this 
section. W ith this idea of a feasible cost space, the notion of the best, or optimal, 
solution can be defined by designing an ordering on the set of feasible costs F.  
This ordering does not have to be a total ordering, for instance, one technique 
detailed in optimisation theory literature, such as [til], is to define an ordering by

x  < y if there exists z £ C such that x  + z = y (2.56)
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where C is a convex cone in the cost space. An example of such an ordering 
is Pareto optimisation, where the convex cone C’ =  {c E >  0 V«}. Such
techniques do not guarantee a unique optimal solution. As there is no particular 
reason for the clutch engagement problem to adopt this approach, it is felt that 
expressing the compromise using a total ordering is better. For to tal orderings, 
points in the feasible cost space can be indexed by a real number. That is

r  < y if F{-r) < F(y)  (2.57)
where F(.) is the index. Hence the compromise reduces to defining a map F  :

Three such multi-objective optimisation techniques are reviewed and sum­
marised by G arbett [39]. The first method, the most intuitively obvious tech­
nique, is referred to as the weighted sum method. This involves defining F , the 
performance measure, as

N
F  = Pl(w ,F )  = ' £ , w iFi (2.5S)i=i

where F, are the individual cost functionals, w, are their corresponding weights, 
and F  and w are vectors of the costs and weights. Referring to  this method in 
the cost space, the optimal solution is the initial intersection of a hyperplane with 
the feasible cost space, as pictured in figure 2.16. In this figure, the  hyperplanes 
(represented as lines) are contours of constant performance m easure value. The 
direction of the hyperplane progression is determined by the weights.

T he second method described by G arbett is referred to as th e  f - constraint 
method. This involves minimising one cost functional with respect to upper 
bounds on the others. Hence

F =  F, subject to F} < F,mnr for all j  ^  i (2.59)
Graphically, in the cost space (figure 2.17), the optimal solution is the initial 
intersection of a hyperplane, whose direction of progression is in the direction of
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F,. with the intersection of the feasible cost space T  and a set defined by the 
inequality constraints.

The final method described by Garbett is referred to as the goal attainm ent 
method. This method is expressed by defining

F  =  min{e,} subject to F , ------ <  c, for all iWi (2.60)

where u-, and c, are the weights and goals respectively, corresponding to the cost 
functional F,. However this is equivalent to defining F  by

where F . ir and c are vectors of the costs, weights and goals, respectively, a more 
meaningful way to express this method. Graphically (figure 2.18), this can be 
interpreted as locating an optim al solution where a ’corner’ initially intersects the 
feasible cost space, again with the  corners representing contours of constant per­
formance measure value. These corners progress from a fixed point c, the goals, 
with the direction of the progression again being determined by the weights. The 
form of this progressing shape allows for goals to affect the multi-objective solu­
tion. The addition of the goals, an additional multi-objective design parameter, 
allows a better compromise to be expressed.

For the goal attainm ent m ethod, for F  > 0, F  is equal to the maximum norm 
of the weighted difference between the individual cost functions and their goals, 
i.e. F  =  11it’,(F, — c ,) |U . W ith this analogy to standard norms, a new smooth 
goal attainm ent m ethod is proposed, smooth in the sense that for F  >  0 the map 
from F, i—♦ F  is continuous, differentiable and has a continuous derivative. This 
is achieved by defining

F = Poc(lL- £  -  c) =  i {wi(F, -  c,)} (2.61)

F = p2 ( i L - F -  c) = (max{0, u',(F, - c H l ) 2 if 3i s.t. F, > c,



Graphically, the method is interpreted as in figure 2.19, where the optimal solution 
is the initial intersection of a blunted corner’ with the feasible cost set. This new 
method still preserves the significance of the goals and has additional smoothness 
properties, as mentioned above.

Finally, all of the above methods can be embraced in one form by defining

F — pk(iL, F_ — c) for k 6  {1,2, oc} (2.63)
subject to Fj < Fjmax for all j  6 J

This general form allows for the addition of extra inequality constraints, which 
ran be used to prevent undesirable effects. For instance an upper bound on F6, 
the cost measuring the likelihood of stalling can be used to prevent a solution 
that might cause stalling problems. The definition of this general form maps the 
multi-objective optimal control problem into a standard optimal control problem 
of the form

minu e u  [F ( u ) = Pk(m,E_— c)] for k e  { l,2 ,oo} (2.64)
subject to 

di_
I t =  / ( £ , m), £ (0 ) =  £0 (2.65)

£ (« ) =  Q (2.66)
Q(u.) IA 10 (2.67)

where /?. Q  and /  are as previously defined, £  is a vector of the individual 
cost functionals and w and c are the weights and goals of the multi-objective 
compromise. This final general form is the form of the optimal control problem 
that will be examined in the following chapter.
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Clutch Gearbox Compliance

- Flywheel inertia

- Gearbox input shaft inertia
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v - Damping rate 

z - Retarding torque
Figure 2.2: Schematic diagram of powertrain model



To
rqu

e (N
m)

 
Ra

tj0 
To

rqu
e (

Nm
)

E n g in e  to r q u e

Gear ratio

Clutch torque capacity

F ig u r e  2 .3 : V e h ic le  A : a c c e l e r a t i o n  f ro m  r e s t  c o n tro ls



Clutch plate speeds

________ F ly w h e e l  c lu tc h  p la te  s p e e d
________O t h e r  c lu tc h  p la te  s p e e d

Vehicle speed

Driveline torque

F ig u r e  2 .4 : V e h ic le  A : a c c e l e r a t i o n  f ro m  r e s t  s t a t e s

58



To
rqu

e tN
m' 

Rat
io 

To
rqu

e (N
m)

E n g in e  to rq u e

Time (sec)

Time (sec)

Clutch torque capacity
t------------1----------- 1------------1----------- 1------------1----------- r

Time (sec)

I'i^ur*1 '¿Jr. Whirl«- I): id « »•l«,r;it ion from r«-Hl rout,rois

VI



ï

---------  Flywheel clutch plate speed
______ Other clutch plate speed

Clutch plate speeds

Vehicle speed

Driveline torque

F ig u r e  2 .6 : V e h ic le  B : a c c e le r a t io n  f ro m  r e s t  s t a t e s

6 0



Clutch plate speeds

________  F ly w h e e l c lu tc h  p la te  sp eed
________ O th e r  c lu tc h  p la te  sp e e d

Vehicle speed

Driveline torque

F ig u re  2 .7 : V e h ic le  H: a c c e le r a t io n  f ro m  rest, s t a t e s  ( fo r  r e d u c e d  m o d e l)

01



E n g in e  to rq u e

Gear ratio

Clutch torque capacity

F ig u r e  2 .8 : V e h ic le  A : s lo w  e n g a g e m e n t  f ro m  r e s t  c o n t ro ls

6 2



Clutch plate speeds

H y  w h e e l c lu tc h  p la te  s p e e d
.  O t h e r  c lu tc h  p la te  s p e e d

^  400Ì
•a 200I
"  0.0

Time (sec)

100 Rate of clutch energy dissipation

b  50^I

Time (sec)

Vehicle speed

Driveline torque

F ig u re  2 .9 : V e h ic le  A : s lo w  e n g a g e m e n t  f ro m  r e s t  s t a t e s



To
rqu

e (
Nm

) 
Ra

tio 
To

rqu
e (N

m)

E n g in e  to rq u e

Gear ratio

HT

>0
IO

Clutch torque capacity

Time (sec)

F ig u r e  2 .1 0 : V e h ic le  A : f a s t  e n g a g e m e n t  f ro m  r e s t  c o n t r o l s

64



Flywheel clutch plate speed 
______ Other clutch plate speed

Clutch plate speeds
g 4 0 0  -
2 / \  13 200 - i
“  °o----------^ ___________ i___________ i___________ i___________ i___________2 3 4 5 

Time (sec)

100 1-----------------
Rate of clutch energy dissipation

i ■ ........... i i i
i
1 5° -  ~  
1  p

°o---------  ,
A .________ j___________ i i i__________

2 3 4 5 Time (sec)

Vehicle speed
| 4 0  -
| 2 ° -

o -------------0
» « i . i___________
2 3 4 5 Time (sec)

_ 1000 |-----------------
Driveline torque

-------- ------ 7 .....  ;----------------- ; ----~f 1
^  500 /1 .  / — ; 7 .  ; .................. ; ......................

0 1 2 3 4 5 
Time (sec)
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Figure 2.17: Multi-objective compromise in cost space: e constraint
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Figure 2.18: Multi-objective compromise in cost space: goal attainm ent
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7.Í



Parameter Symbol Value Units
Flywheel inertia Jx 0.109 kgm 2
Gearbox input shaft inertia h 0.05 kgm 2
Gearbox output shaft inertia J 3 0.05 kgm 2
Inertia representing car mass J 4 7.945 k g m 2

Compliance spring constant k 217.0 N m r a d _1
Compliance damping rate V 7.3 N m s r a d -1
Car mass M 1340.0 kg
Final drive ratio r\ 0.275 -
Effective tyre radius 0.28 m
Air resistance coefficient b 0.0001689 N m s 2 rad~2
Lower bound of engine torque ^lmin 0.0 N m
Upper bound of engine torque ^ 1  max 100.0 N m
Lower bound of clutch torque capacity ^3 min 0.0 N m
Upper bound of clutch torque capacity ^3mai 225.0 N m
Gear ratios {0.3,0.6,0.8,1.0} -

Table 2.1: Vehicle A: model parameters
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Parameter Symbol Value Units
Flywheel inertia Jx 0.187 kg m 2

Gearbox input shaft inertia h 0.0037 kg m2
Gearbox output shaft inertia J3 0.0065 kg m 2

Inertia representing car mass J4 7.23 kg m 2

Compliance spring constant k 529.22 N m rad~x
Compliance damping rate V 3.0 Nm srad~l
Car mass M 1255.0 kg
Final drive ratio r\ 0.262 -
Effective tyre radius 0.29 m
Air resistance coefficient b 0.0001689 N m s 2 rad ~ 2

Lower bound of engine torque ^ l m t n 0.0 N m
Upper bound of engine torque ^ 1  max 150.0 N m
Lower bound of clutch torque capacity U3 m m 0.0 N m
Upper bound of clutch torque capacity ^3max 250.0 N m
Gear ratios U* {0.31,0.47,0.67... 

...,0.9,1.17}
-

Table 2.2: Vehicle B: model param eters
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C hapter 3
O ptim al control problem  
solution
In the previous chapter, an optim al control problem was formulated. In this chap­
ter, the optimal control problem is analysed with the aim  of obtaining a numerical 
solution. Initial attem pts at obtaining a solution for a  simplified optimal control 
problem, motivates the creation of a related higher order problem. For this new 
problem, the location of such a solution is attem pted by adapting existing gradient 
optimisation techniques to this constrained higher order problem. This involves 
designing a series of algorithms, tailored to  the specific requirements of the clutch 
engagement problem, which carry out the individual tasks of the optimisation 
procedure calculating the numerical solution. The performance of this procedure 
is then analysed, for a variety of clutch engagement circumstances, assessing the 
ability of the algorithm to obtain a solution. Finally, the characteristics of the 
control strategies located by the algorithm are detailed. Some of the details in 
the chapter have been presented a t a recent conference on modelling and control 
[62] .
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3.1 O ptim al control problem  analysis
For clarity, the previously defined optimal control problem under consideration is 

min
u G U [ F ( u) =  Pk(w,F_ — c)} for k £ {1, 2, oo} (3.1)

subject to
dx = f U , u ) ,  x ( 0) =  Xo (3.2)

R(u) = 0 (3.3)
— Q (3.4)

where w  and c are vectors of weights and goals, pk are as defined in equations 
(2.58), (2.61) and (2.62), U is defined by control upper and lower bounds, and f 
is continuously differentiable. In these equations, the functions F_, R  and Q are 
vectors of functionals of the form

Jq '  fo (x ,u)d t  +  f t (x ,u)\ t=tl (3.5)
with f 0 and f t continuously differentiable. This optimal control problem does have 
a solution. This is due to the feasible cost space T  being compact, as noted in 
section 2.4, together with the continuity of each pk, which ensures that the image 
of T,  which is {pk(UL, £  — c)\F_ G T }  C R, is compact. This is enough to insure 
a solution, as this image is closed and bounded, insuring th a t an element of the 
image exists, which is also a lower bound.

The location of such a solution is a different m atter. For optim al control prob­
lems defined using the weighted sum method (using pi), Pontryagin’s maximum 
principle provides some necessary conditions which must be satisfied for locally 
optimal control strategies. Solution techniques utilising these conditions for the 
general non-linear optimal control problem form described in equations (3.1) -
(3.4), could be designed, but as a solution might be easier to  obtain if particular 
characteristics of an optimal control problem representing the clutch engagement
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problem is made use of. this simpler approach is first explored. For instance, after 
the simplification previously discussed, as a result of assumption (2.29), the state 
equations are almost linear, linear apart from the air resistance coefficient term 
which is negligible for low vehicle speeds. Another characteristic of the clutch 
engagement problem is th a t th e  components of the individual cost functionals are 
quadratic. That is, the cost integrands and terminal functions can be expressed 
in the form

These two observations on th e  optimal control problem form suggests th a t the 
problem might be a standard LQR problem. However, this is not the case, even 
when the weighted sum m ethod is used to express the multi-objective compromise 
as: their are m andatory constraints; the linear components qi and q2 are not 
necessarily zero and can not always be nullified by linear transformations; not all 
of the matrices ^ ^ in the cost components are positive semi-definite;
and not all of the matrices Q ? 2  in the cost components are positive definite. This 
last point arises from the  observation that the controls are linear in most of the 
individual cost components. Even if this LQR approach is not applicable, use 
might be made of the linearity of the controls. From Pontryagin’s maximum 
principle, the linearity of the  controls in the problem ensures that the optimal 
solution to an optimal control problem, designed using the weighted sum method, 
is bang-bang. That is, the controls flip between their upper and lower bounds, as 
between their bounds the  necessary conditions of the maximum principle can not 
be satisfied. W ith the assum ption that the optimal solution is bang-bang, then 
the optimal control problem is reduced to a standard optimisation problem

T S - h . *  (3.7)

where n is the number of banging points and J  is defined by the  original optimal
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control problem. The only difficulty is that the number of banging points is not 
known.

The solution of the optimal control problem is not trivial, so as an initial in­
vestigation of solution procedures, a simple case is taken. This case is an optimal 
control problem, designed using the  weighted sum method, with only one con­
straint, the mandatory constraint equation (2.53). A further simplification is that 
the engine torque is taken as a constant, ensuring that the only remaining control 
is the required clutch torque capacity, and that the terminal terms of the costs 
are no longer directly dependent on the controls. In the design of this simplified 
optimal control problem, the weights of the compromise are chosen by trial and 
error, with only a handful of costs having non-zero weights. The costs chosen to 
have non-zero weights are the costs measuring the clutch energy dissipation, the 
clutch lock up time and the excitation of the oscillations at the point of lock up, 
which do not have quadratic control terms. These three costs do not measure 
all the undesirable effects, for instance they do not measure the transient oscil­
lations, only the excitation of the oscillation at the point of lock up. However, 
they do conflict with the costs measuring the clutch energy dissipation and lock 
up time, small, when the clutch engages quickly, whilst the oscillation excitation 
cost is small when the  clutch engages slowly. A reasonable set of weights for these 
costs is detailed in table 3.1. In solving this simplified problem, two different 
solution procedures were tried, one using the assumption that the optimal solu­
tion is bang-bang, and the other by iterating on the necessary conditions of the 
maximum principle.

For the first solution attem pt, it is assumed that the optimal solution is bang- 
bang with just the one banging point, banging from its maximum value to its 
minimum value at a stipulated banging time. Hence an optimisation problem

7  : *  *  (3.8)
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results. W ith this assumption the solution procedure proceeds as follows:

1. Given an initial banging time, calculate the control and hence, calculate the 
model states, the terminal tim e and the performance measure by simulating 
th e  powertrain model, with the term inal time taken to be the time when 
th e  clutch plate speeds first become equal.

2. For two variations about either side of the initial banging time, calculate 
the  performance measure values for these points using the same procedure 
as in step (1).

3. (a) If one of the variations yields a performance measure value smaller than
the initial value, then take steps in that direction until the performance 
measure begins to increase again.

(b) If both of the variations produce higher performance measure values, 
then take smaller variations and continue from step (2)

4. Obtain an interval [a, 6], which m ust contain a locally optimal solution, one 
interval bound being the last banging time reached (whose corresponding 
performance measure value has ju st increased from the last value), and the 
other bound being the banging tim e reached two steps ago.

5. O btain a locally optimal solution, using a standard interval halving proce­
dure.

A similar algorithm was also experim ented with which tries to cope with more 
banging points. This operated as before with very small variations being taken 
about the  initial banging times in order to  numerically estim ate the derivative of 
the performance measure with respect to  the banging times. The step by step 
search was then conducted along the direction of steepest descent using a one 
dimensional search algorithm similar to the algorithm just discussed. On location
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of a reasonable estim ate for the one dimensional local m inimum, the procedure 
is then repeated. This procedure was never very successful, as computational 
requirements rapidly increased with the number of banging tim es, and convergence 
of the procedure was poor.

The second solution technique uses the necessary conditions of the maximum 
principle. For the special case under consideration, the optim al control problem 
is of the form

minu e U  [F(u) = Jo ’ fo(i.,u)dt + ft{z)\t=t, (3.9)
subject to 

dx 
dt = f U , u ) ,  x(0) =  Xo (3.10)

rU)\ , f =  Q (3.11)

where / ,  f 0 and f t are continuously differentiable. For th is special case, the 
corresponding necessary conditions for a locally optimal solution u", with x* the 
resulting optimal states are:

(1)

(2)

.. d H
P ~  dx

*

H ( x m,p ' ,u")  <  //(x*,p*,u) for all u €  IA
(3)
(4)

H'( t )  =  //*(</) =  0
d u
()x

where / /  =  / 0(x,u) + p'  f ( x , u )

(3.12)
(3.13)
(3.14) 
(3-15)

as detailed in [63]. The solution attem pt then proceeded as follows:
1. Given an initial control strategy, again calculate the sta tes and terminal 

time t j  by simulating the model.

2. Calculate the costates by simulating backwards in tim e, which are defined 
by conditions ( If  anil (4) of the necessary conditions, where the constant
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is c a l c u l a t e d  u s in g  t l i t '  t h i r d  c o n d i t io n s  l l ' ( t j )  =  0 , w h ic h  r e s u l t s  in  <> =
J o + :

&  f

3. Calculate / /u front the states and costates.

4. Choose as a new control strategy u i =  u0 +  A//u, where A is a relaxation 
parameter, apply the control bounds, and repeat from step (1).

From examining the necessary conditions and the solution procedure, it can be 
noted that a locally optimal solution which satisfies the necessary conditions is a 
fixed point in the iterative solution procedure. However, as the controls are linear 
in the optimal control problem, the necessary conditions are never satisfied, with 
the controls moving towards their bounds as the controls converge to a solution.

Both of these algorithms run into problems due to the free terminal time t j .  
This is partly due to  the cost F4 =  (x2 — * i ) |( /, which is desired to be small, 
which when small, increases the sensitivity of the terminal time. Indeed it can be 
shown that

6 x 2 ~  f>x 1 
¿2 -  ¿1 t/ (3.16)

where dt¡ is the variation of the terminal tim e and 6 x 1 and 6 x 2 are variations 
of two states at the terminal time. This sensitivity can, and often did, cause 
the terminal time to  become undefined as the clutch plates speeds fail to become 
equal. As an exam ple of this problem, using the first solution procedure applied 
to vehicle A, the da ta  detailed in chapter 2, the algorithm might proceed as in 
figures 3.1 and 3.2. In these figures, simulations are shown for four different bang­
ing times, as the banging time is stepped down. For each of the banging times, 
a graph of the control is detailed, with the control banging down to zero at the 
predefined banging tim e, and returning to the control maximum value1 when the 
flutch plates lock up. 'I his final increase! in the; required clutch teirque capacity 
ensures that the eluteh remains lejckesl up afte;r cngageMiient, but elews not affee't
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the dynamics of the powertrain as the clutch actuation mechanism is decoupled 
from the remainder of the powertrain after engagement. A graph of the clutch 
plate speeds is also shown. The values of the  banging times, along with the cor­
responding performance measures and individual costs, are detailed in tables 3.2. 
From these figures and table, it can be seen that as the banging times decrease, 
the cost measuring clutch energy dissipation and the cost measuring lock up tim e 
both increase, whilst the cost measuring the  excitation of the compliance at lock 
up decreases. The result is that the performance measure decreases. However, 
when the banging time steps down to 0.38, the terminal time becomes undefined, 
although the performance measure has yet to  start increasing again. This problem 
can, of course, be prevented by taking small enough steps (in the example steps 
sizes of 0.1 seconds would suffice), but this increases the computational require­
ments of the solution procedure. Furthermore, if the weights in the optimal control 
problem are poorly chosen, the free term inal time problems are exacerbated.

For the more general solution procedure using the necessary conditions, the 
problems are if anything worse, with the relaxation parameter A required to  be 
reduced to prevent the terminal time becoming undefined. The adjustments to  A 
can be autom ated, by decreasing A if the term inal time becomes undefined. The 
free terminal tim e also causes problems in this solution approach with difficulties in 
the recording of the control on the interval [0, t /]. For a control strategy previously 
calculated using step (4) of the solution procedure, when returning to step (1), 
it is quite possible that the interval [0, t /] is exceeded before the clutch locks up. 
This requires the determination of suitable control values beyond t j ,  perhaps by 
linear extrapolation, or even just by using the  control value at </. This problem 
introduces further complications, that have to be managed, problems which are 
again exaggerated when the cost F4 =  ( i j  — x'i)|( is small.

The previous two solution attem pts are far from state of the art, but they
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demonstrate an important problem with the free terminal time t j .  This motivates 
a trick which removes this free terminal time, a trick that can be used to relate 
the necessarj- conditions for a time invariant fixed terminal tim e optimal control 
problem, to  the necessary conditions for a tim e dependent free terminal time 
optimal control problem [63]. The trick proceeds as follows:

1. Introduce a new independent variable s.

2. Take t (time) to be a state with state equation j-, = where T  is a new
"dummy’ control.

3. Let t f  =  <(s)|j=1.

4. Transform the original optimal control problem defined over the tim e interval 
[0, </] to a new optimal control problem defined over a new interval [0,1], 
using the maps:

[  '  fo(x,u)dt  t-+ f  T 2 (s) f 0 (x,u)ds  (3.17)
Jo Jo

<̂  = f ( x , u )  I-+ = T i( s ) f ( x , u)  (3.18)

This trick embeds the original problem into a higher order fixed optimal control 
problem, having an extra state and an extra control. The optimal control problem 
can now be envisaged as a map

f : i > C i : +1( | 0 , l | ) x r  ~  *  (319)
(u(a ) ,T (s ) ,u f ) ► -+ F

where L ^+1([0 ,1]) represents the set of bounded functions from the interval [0,1] 
to Rm+1 (the controls and the ’dum my’ control on the interval [0, 1]), Uf represents 

and T> is the domain of the map, defined by the set U and the constraints
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H and Q. It should be noted that the controls when 6 =  1 are independent from 
the other control values, the reason for the map being dependent on Uj. The 
solution to the optimal control problem is now to locate an element of the domain 
V  which minimises the value of the mapping, the value of F . For convenience, 
when referring to this higher order problem, u with no underscore represents an 
element of the domain T>. namely the column vector of u, T  and uj.  The great 
advantage of this embedding is that the space. £ ^ +1([0 ,1]) x 3£m, in which the 
domain lies, is a Hilbert space, a complete normed vector space, with the norm 
arising from an inner product. Inner products are maps from two elements of 
the space to the real line with certain properties, and are extensions of the dot 
product in an n-dimensional Euclidean space. In the case of £m+i([0, 1]) x an 
inner product can be defined by

<u"ui)=((¿) ’ ( |J ) = L l ( % Y  { % ) d a + t i t * * *  (3-2o)
with the norm arising from the inner product in the normal way by | |u ||2 =  {u,u),  
a measure of the distance of u from the zero. H ilbert space inner products, as 
well as defining the notion of distance of elements in th e  space, also allow notions 
such as orthogonality to be extended to such spaces. 'I bis in turn allows algebraic 
projection operations, allowing the optimal control problem to be treated as a 
conventional optimisation problem. The completeness of the normed vector space, 
allows differentiation to be extended to such higher order spaces, under certain 
conditions. Indeed, it can be shown, a trivial extension to the derivation found in 
[64], that for a functional of the form

F(u)  = /  7'2(.s)/„(:r, u)rl.i +  / ,(* , ti)|,= i (3.21)
Jo

subject to  =  7'2( s ) / ( i ,  u), x(0)  - Zj, (3.22)an
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where / ,  / 0 and /< are continuously differentiable, then

IIH l" -  0 = o

with VF„
T 2HU 
2 T H  

ftu

IIH I
\

(3.23)

(3.24)

/  u.x.p

where H  =  (f 0 +  pTf )  is the Hamiltonian which is dependent on the states, x, 
corresponding to u, and the costates, p, which are calculated as usual from p =  
- T 2HX and p (l) =  f tx. Hence V F  is the gradient of F  with respect to the controls 
at u. These calculations allow all of the individual cost functional and constraint 
gradients to be calculated. W ith this gradient information, the obvious solution 
technique is to use gradient methods, normally used in optimisation problems with 
the domains subsets of n-dimensional Euclidean spaces, but just as applicable here 
due to the properties of the Hilbert space in which the domain lies.

3.2 G radient m eth od  algorithm
As discussed, this algorithm is an extension of a family of standard optimisation 
solution techniques for locating the local m inima of maps of the form T  : Rn •—» 3? 
to maps of the form F  : T> C Ti *-+ 3®, where H  is a Hilbert space, which result 
from the embedding of the optimal control problem into a higher order problem. 
This extension is well known and is discused in [64] and [65]. As mentioned, with 
such problems two notions can be extended, differentiability and orthogonality 
used to project elements of the  Hilbert space to vector subspaces. As the tech­
niques are mearly an extension, the understanding of the algorithm is aided by 
representing the problem as a map from a 3-D Euclidean space to the real line 
and describing the algorithm in terms of the notions that can be extended. In 
this representation the equality constraints /£ =  Q are represented by a surface in
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Si3, and the inequality constraints Q <  0 and u 6 U are represented by another 
surface partitioning Si3. These constraints create the set of all admissible controls, 
or alternatively, the dom ain V  of the mapping, with each point in the domain, 
and indeed other points outside the domain having a unique performance measure 
value.

With this representation, the algorithm, a standard gradient method algo­
rithm. is as follows with a single iteration of the algorithm being demonstrated in 
figure 3.3. using the 3-D representation.

1. Calculate an initial control u0, which is an element of the domain T>, ie a 
control that satisfies u £ U, R  = 0 and Q_ <  0, by projecting a point onto 
V.

2. Calculate the gradient of the performance measure and the constraints at 
the current control u, € V.

3. Calculate a search direction h from gradient information, which is a tangent 
to the domain at u, and along which the performance measure value will 
initially decrease.

4. Carry out a one dimensional optimisation procedure along the projection of 
h onto the domain.

5. Let the solution of th is  1-D optimisation procedure be iq+i and repeat from 
step (2).

This algorithm produces a sequence of controls in the domain with monotonically 
decreasing performance measure values, a control being added to the sequence 
every time this main iteration, steps (2) - (5), are completed. The details of how 
each of these steps are carried out for the higher order optimal control problem
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representing the clutch engagement problem now follows, with again u represent­
ing an element of ¿ ^ +1([0 ,1]) x 5Rm.

3.2.1 Calculation o f an initial control strategy
An initial control strategy u0 G V  = {u G ¿ ^ +1([0,1]) x3tm|u G U , R  =  0,Q  =  Q}, 
is obtained by taking any control w_i in the Hilbert space and projecting it to  an 
estimate of the tangent space of the domain T> obtained from gradient information 
at u_ i. This projection to T> is very similar to the Newton-Raphson, or quasi- 
Newton, iterative algorithms for solving non-linear equations, with the gradients 
being obtained at the current estimate of the solution in order to estimate a better 
solution. For the projection to the domain, the equations to be solved are

R(u) = 0 (3.25)
Qk,(u) =  0 for all k2 such that Qk,(u^ i) >  0 (3.26)

1 V'lmin if U <  U[minu,(s) = i (3.27)
 ̂ Ulmax if U > Utmax

where u; represents an element of the column vector u, and u(s) = u_ i(a) +  
Dt, Qk, +  Ylkt 0k , ^Q k, (3) +  7 (s ) whh the added restrictions that

0k, = 0 if Qkl < 0 (3.28)
yii3) ~  0 if n/(s) G (u/m,'n, u/max), (3.29)

ensuring that only projection to constraints that are not satisfied occurs. This 
equation is difficult to solve in one step, due to the difference in order of the 
finite dimensional constraints /£ and Q_, and the infinite dimensional constraints 
resulting from the control bounds. For this reason, the projection to the subspace 
defined by H  and Q, and the projection to the subspace defined by the control 
bounds, are performed separately. In the case of the projection to the subspace 
defined by fi and Q, the projection is obtained by solving equations (3.25) and
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(3.26), where u(s) =  i i-t(s)  +  £* . a klV R kl(s) +  £ * 2 A 2V Q fc2(a). The solution of 
these equations is obtained by using a first order approximation of the constraint 
functions and solving for the o ’s and the /?’s. For the projection in question, this 
results in the formula

(3.30)
assuming that the gradients of the constraints are linearly independent, where 
Qki =  {Qfc2|Q/t2(u - i)  > 0), the gradients are calculated at u_i using the proce­
dure described in the following section, and (., ,)vcc is an extension to  the Hilbert 
space inner product with ((ui, • • • , ujv) ,( i>i , • • •, v n ))vcc = ((«i, t>i), • • •, (uN,v N)). 
The second projection to U,  solving equation (3.27), where u(s) = u_ i(s) +  7(a), 
is equivalent to applying the bounds by truncating the values of u=t .

The problem with taking the projections separately is that they interfere with 
each other, with one projection moving the control away from the subspace that 
the other projection is trying to project the control to. For the second projection, 
it is very difficult to carry out the applying of the bounds without moving the 
controls away from the subspace defined by the constraints R  and Q_, as the 
dimensions of the constraints introduced by the bounds exceeds the dimensions of 
the finite dimensional constraints R  and Q.  However the projection onto R  = 0 
and Q  < 0 can be performed so th a t the bounds are not exceeded, or at least 
are not likely to be exceeded by a large am ount. This is done by restricting the 
freedom of the controls, to controls that are not likely to exceed their bounds. In 
practice, this is done by introducing two m  by m matrices Gi(s)  and Gj,  with 
>n the number of controls in the powertrain model, which indicate the controls 
which are likely to exceed their bounds, where the components of the matrices are
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defined by
1 if i = j  and Ki(s) is unlikely to exceed it’s bounds 
0 otherwise (3.31)

II if i =  j  and u,-(l) is unlikely to exceed i t ’s bounds (3.32)
0 otherwise

with u, representing and element of the original set of controls in the optimal 
control problem. These matrices can be used to filter an  element, or elements, 
of the Hilbert space to its components, which are unlikely to exceed the control 

bounds by
TMi(s) • ■ M „ ( s ) >

T
rG i(s )u ,(s )  • • G i ( s ) u n ( s )

G(«i, •••,U n)T  =  G T , • • Tn = T i Tn
k t i i f  ■ ■ t in /  j K G 2 U .1 J G 2 U .n i t

(3.33)
This filter can be used to solve equations (3.25) and (3.26), but this tim e with

/ V r V  ( a \u(s) =  « _ ,(* )+  G ~  , (3.34)
\ v 2 /  W

resulting in the new formula

■ w = » - , w - c ( ) T. a { )T) 7 )
(3.35)

for the projection of the controls to the subspace defined by the constraints. In 
practice the likelihood of whether the controls will invalidate their constraints 
is determined by whether they did on the previous iteration of the projection 
algorithm. Hence, the above analysis results in an algorithm  for calculating an 
initial control Uo G T>, which is as follows
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1. Given any initial control u_ i, define Qk2 =  {Qk2\Qk2{u^x) > 0} an d G i(s )  =  
G-2 =  / m, an m  by m  identity m atrix, equating to no control restrictions.

2. Calculate a new control u using formula (3.35)

3. Calculate a new filter using formulae (3.31) and (3.32), with the likelihood 
of u exceeding i t ’s bounds being determined by whether the new u from step 
(2), has exceeded its bounds.

4. Redefine Qk2 =  {Qk2\Qk2(u) >  0} f°r the new control u.

5. Let u_i =  B(u),  where B(.) is a function that applies the control bounds, 
and repeat from step (2).

It can be seen that any control u G P , will be a stationary point of the 
iteration, steps (2) - (4). In practice as the algorithm, converges to  such a point, 
a tolerance, governing when a control is sufficiently close to T> to be said to be in 
P, must be found. One way of measuring this closeness is to measure the distance 
the control moves under each projection. For the projection carried out in step 
(2), the square of this projection distance is

E, = H u -u - iH 2 (3.36)

which is evaluated after step (2) of the algorithm. For the second projection, the 
square of the projection distance is

E* =  ||J9(u) — u ||2 (3.37)

evaluated at step (4). Another measure of how close a control is to the domain is 
to look at the individual error of the constraints jg, Q  and, possibly, of individual 
controls at each point in s, if outside their bounds. The later measure was not 
felt to be too im portant, as the measurement, E 2, in equation 3.37, provides a
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p .  f ro m  t h e  c o n t ro ls  a n d  s t a t e s .

f T 2H u' V ( / 0u + p TA ) >
3. Evaluate V F  = 2 T H = 2 T ( f0 + p Tf )

\ F,u ) K Ftu J
This procedure directly provides the required gradient information for the con­
straints and the cost components. The cost component gradients can, in certain 
cases provide the gradient of the performance measure. In particular, it can be 
shown that for the weighted sum multi-objective method (pi) then

lim
I I H I - n + ¿n)) -  p i (ul, F ( û)) -  {p \ (w ,V Eÿ),6u) _

IIH I (3.43)

implying that
V pi(u) =  pi(w,  V F fi) =  wkV F k (3.44)*=i

is the gradient of the performance measure at u, where F* are the individual cost 
functionals and u'* are their corresponding weights. Similarly, for the quadratic 
goal attainm ent method, when F  =  Pi(w_,F_ — c) >  0, it can be shown that the 
gradient of the performance measure is

Vp2(«) =
„ max ,E î= i w \ V F k k { F k - c k ) (3.45)

where Fk and tc* are as previously noted and c* are the goals corresponding to F*. 
In the region where F  < 0, F  is equal to the standard goal attainm ent method. 
Unfortunately, for this method, where F  =  Pr*(yL,E_ — c), no unique value V/t*, 
can be found, so that

I l 4 ^  Q P-x.(rn, £ ( "  +  6u) -  C) -  p^(w,  £ ( m) -  c) -  {Vp^,6u)  _  0 46^
IIH I

as the limit is dependent on the direction that 6u tends to zero. This lack of 
l rechet differentiability can be overcome by introducing a weaker form of direc­
tional, or Gateaux, differentiation [66], where the derivative is now dependent on
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the direction that (u  tends to zero. Indeed, it can be shown that, for the goal 
attainment method.

£ ^  Q p x (lL-E(ii + th)  ~  c) -  poo(w,F(u)  -  c )  -  ^  4 7 ^
e

with the directional gradient defined by

( Y P x ( u ,h ) , \ h )  =  A {(V F*,h)} (3.48)

where h £ such that ||/i|| =  1, defines the direction of the limit to zero.

3.2.3 C alculation o f a search direction
A search direction h 6 H  =  ¿ „ +i( [0 ,1]) x is calculated which is a tangent to 
the domain T> at u,, and along which the performance measure initially decreases. 
The term tangent to T> is used loosely, and refers to a search direction along 
which the linear approximations of the constraints defining T> at u, are satisfied. 
Algebraically, these requirements can be expressed by the conditions

( V F u„ h )  < 0 (3.49)
h e r ,  (3.50)

where V F Ul is the performance measure gradient at u,, and T, is the ’tangent’
subspace of T> at u,, which is defined by h 6 T, if

(VI t k„ h )  = 0 for all it, (3.51)
,h)  <  0 for all such that Qkj = 0 (3.52)

hi(.i) > 0 for all I, a such that u/(s) =  Ufmln (3.53)
/t/(.s) <  0 for all l, a such that ui(a) = u/max (3.54)

where the gradients are evaluated at with hi and ui representing elements of 
the column vectors h and u.
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One way to obtain such a search direction is to choose an element of T, along 
which the rate of decrease of the performance measure is steepest, the so called 
'steepest decent m ethod'. For performance measures that are Frechet differen­
tiable, the direction of steepest decent in 7i  is just the negative of the gradient. 
For the case when the goal attainm ent method has been used (poo)j this steepest 
decent direction in H  is a linear combination of the cost component gradients 
which have cost values equal to the performance measure value (i.e. Fk =  F). 
With this knowledge, the steepest descent direction in 7) is taken to  be the pro­
jection of the steepest decent direction form in onto 7j. As the projection of 
the negative gradient onto T, is obviously a subcase of the projection of a lin­
ear combination of gradients, only the later is detailed. In this general case, not 
only have the projection param eters to be calculated, but also the linear combi­
nation of the cost components. This linear combination is evaluated by taking 
{VFj,, h) = (V F j2, h) for all li ^  l2 such that Fq =  F;2 =  F , with h the final pro­
jected search direction. If th is is not the case, then a new steeper decent direction 
can be found along which the smaller values of (VF|, /i) have increased and the 
larger values decreased. These equations, along with the projection equations, 
result in the problem of locating an h, satisfying

(V F*,,/i) =  0 for all k t
(V i?*,,/1) <  0 for all k2 such that Qk} = 0
(VF*,,/i) =  k for all k3

(3.55)
(3.56)
(3.57)
(3.58)
(3.59)

hi(fi) <  0 for all / , s such that u/(.s) =  Uimax 
hi(s) >  0 for all /, .s such that u;(.s) =

where «, an arbitrary negative number, determines the magnitude of the search 
direction h(s) = £ fcl r,ktV H kl + ¿Tkj fikjV Q kj + (y,VF*, +  r(a) with the pa-



r a m e te r s  r e s t r i c t e d  b y

0 k2 = 0 if (v y * 2,/i) < 0 or Qk2 < 0 (3.60)
Ob =  o if Fk3 < F (3.61)

OIIVj£ if U/(s) Ç (u/min, U/max) (3.62)
or ui(s) =  U(mln and hi(s) > 0
or Ui(s) = uimar and hi(s) < 0

These restrictions ensure that the projection to the inequality constraint bound­
aries only occurs if the search direction invalidates the constraints. These equa­
tions are very similar to the equations for projecting a control onto the admissible 
control space, only this tim e a search direction is being projected onto a ’tangent’ 
space. As a result, a similar algorithm to the algorithm described in section 3.2.1 
is used to effect the calculation of the search direction, similarly assuming that 
the gradients of the constraints and the cost components are linearly independent. 
This algorithm is as follows:

1. Calculate F_k 3 =  {Fk3 \Fk3 =  F } , and a target set for
re.£A.3 re.fi

Z = ('«, • , k, 0, • • •, 0)T where the /c’s are the targets for the cost compo­
nents and the zeros are the targets of the equality constraints.

2. Calculate an initial estim ate of h assuming that the inequality constraints 
and bounds are not exceeded, using

/ ( v E k 3
v / i

h =
’ /  \ T -1

■  r a  >  •'  ' vrc (3.63)

3. Calculate a filter, as in equation (3.33), but with
1 if i = j  and u((s) +  f.(,p/t/(a) € (u/mm * Ulmax) 
0 otherwise9u j (s )  = (3.64)
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9H) — 1 i f /  j  <111(1 / / / (  1 ) T  ( s t t p h  l (  1 ) G ( l / |m m i  H |m a j )  

0 otherwise (3.65)

where t , (ep is a small step size, comparable to the initial step size of the 
following 1-D optimisation procedure

4. Calculate Qk2 =  {Qfc2|<5/t2 =  0 and {VQ/,2 ,h)  >  0} and calculate a new 
r e.FKi re.R

target Z  — (7c, • , k , 0, • • •, 0, Ö, •

5. Calculate a new search direction using

i / j i c w  —  h0[d G
'vEk?TfV£j¿T VF«,T-1 vfk'T VVR ( VR ,G VR ) ( VR , hoidj — Z

<1 JO vec < vec(3.66)

6. Test for convergence and repeat from step (3).

Note that, in practice, in this algorithm the equality conditions are relaxed, by 
taking them as satisfied, if they are satisfied within a given tolerance bound. In 
particular

Qh  = 0  if — ¿/t2 < Qk2 < 6 k7 (3.67)
Fh  = F  if F*3 >  F(1 -  tco, t ) (3.68)

as in equations (3.41) and (3.42). The value k  is chosen so as to normalise the 
calculated search direction, to prevent its m agnitude affecting the 1-D optimi­
sation search. The convergence criteria of the algorithm is when the maximum
norm of the difference betwee and its target Z  is less than a
certain tolerance dmaz3. Some convergence problems have been encountered with 
this algorithm, especially when Fk , is large and its components are nearly linearly
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dependent. Generally, this only occurs when a 'good’ solution has been located 
by the algorithm, or the problem has been poorly posed.

The steepest decent method is a first order gradient technique and, hence, may 
be slow to obtain a solution. As a result, for cases when the gradient is Frechet dif­
ferentiable and second derivatives exist, which is when the multi-objective m eth­
ods using p\ or pi have been used, second order techniques, such as conjugate 
gradient techniques have been investigated. In particular, one such technique 
which does not require the direct evaluation of the second derivative, referred to 
as the Fletcher-Reeves algorithm, can be modified slightly in order to apply it 
to the problem under consideration. W ith this technique, the search direction is 
dependent on an iterative algorithm and is calculated as follows.

1. Let h0 = g0 = P ( - V F „ J

2. Carry out the 1-D search direction along the projection of hi onto T>, in 
order to calculate the local minimum uI+i

3. Let h,+1 =  jf1+1 +  A (hi +  p.) where p, =  P ( —V  Fu>) and A =  .

4. Repeat from step (2)

with P(.) the projection onto the tangent space operation just described and 
Pi = 1 2 k, Q*, V Ri'l +  J2 k2 ftk2 ^ Q k 2 +  r(s) is a projection element, with similar 
restrictions to equations (3.60) and (3.62), calculated during the 1-D optimisation 
procedure, so that h, + p, g 7j+i. Now, as gi+i and hi +  p, are both elements of 
the ’tangent’ space and as A is positive, /tI+i is also an element of this ’tangent’ 
space. Furthermore, it can be shown that ( V F U,+I, /it+i^ =  —q ||p ,+i | |2, where a  
is a positive constant, ensuring that conditions (3.49) - (3.50) are satisfied, that 
is unless a local minima has been located.
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3.2.4 1-D op tim isation  along the search d irection  projec­
tion

Now a search direction has been calculated, a local one dimensional search along 
the projection of this search direction onto the admissible control space T> is 
conducted. This is done by taking a step along this search direction and projecting 
the new control values to T> in order to calculate a segment of the projected search 
direction on which the local optim al solution must lie. An interval halving routine 
is then used to refine the segment on which a local minima lies, in order to calculate 
this local minima.

Steps along the projection of the search direction onto T> are calculated from 
an initial control using

«4° =  / > ! 0) +  t ,Uph,) (3.69)
=  P(u\j) + Xup(u\j) - u p ' 1’)) (3.70)

where ft, is the search direction calculated in the previous section, e,tep is a small 
positive constant governing the size of the steps, Aup is a positive constant slightly 
bigger than unity causing the  step size to increase along the search direction and 
P(.) is the projection mapping described in section 3.2.1, but only projecting 
onto the inequality constraints of which the initial control u|°* is on the  boundary 
(i.e. inequality constraints satisfying (?*,(u,'°*) =  0). In practice, one iteration of 
the algorithm was normally sufficient to achieve a satisfactory projection. From 
iteration to iteration the m agnitude of t , tcp is adjusted by multiplying it by \ Jup, 
where j  is the number of steps of the 1-D optimisation procedure on the previous 
iteration.

The above procedure creates a sequence of controls along the projection of ft,-, 
for which corresponding performance measures can be calculated by simulation of 
the model equations and evaluation of the cost functionals. W ith this calculated
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sequence of performance measures, there are a number of possible occurrences 
requiring different responses. These are as follows:

1. If the performance measure initially increases (F(u[0*) < T'(u[1*)), then 
decrease t 3tcp by dividing it by A ¿own > 1 and restart the calculation of the 
sequence. Note that, from equation (3.49), if e is made sufficiently small, 
the performance measure will decrease.

2. If at any point in the sequence the performance measure begins to  rise again 
with the controls remaining in T>. then locate a segment of the projection 
of h( on which a local 1-D m inim a must lie. In particular, with F’(u,-+1*) > 
F(u \J*) then the local minima must be an element of V =  { P ((l — /r)up-1* +
//Ul<J+1V e [ o , i ] } .

3. If at a point in the sequence any inequality constraint which is not projected 
to, and hence prior to the 1-D optimisation procedure satisfies £J*2(u |0*) <  0, 
is no longer satisfied, stop the  sequence and calculate the point along the 
projection of A, at which the constraints are initially invalidated and replace 
the last step which does not satisfy the constraints by this new control. If 
the performance measure is still decreasing then stop, taking the control 
that just satisfies the constraints to be the local minima and continue with 
a new iteration of the algorithm , otherwise obtain a segment as in step (2) 
on which the local minima m ust lie.

This later calculation, of a point along the the projection of /q, which just satisfies 
the inequality constraints, is obtained using the procedure

1. Given u\J> g V  and
straints, l e t«/ =  /* ( ( ! - /l ) u ^ + /iu 1(J+,,) with /i
I his formula results from approximating the inequality constraint values by
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linear interpolation between the two given values and calculating the inter­
polation param eter // which just satisfies the constraints. This parameter is 
then related back to a linear interpolation between the controls.

2. (a) If u' G V  then replace up* by u' and repeat from step (1).
(b) If u' £  P , as it still does not satisfy all the inequality constraints, then 

replace up+1 by u' and repeat from step (1).
This procedure is repeated until the all the inequality constraints are satisfied 
within a given tolerance. That is

Qkj < for all k2  (3.71)
—Sk < Qk < $k for a particular k. (3.72)

Once a segment, on the projection of h, on which a local m inima must lie, is 
located, the local minima is evaluated using an interval halving procedure. This 
procedure is as follows:

1. Given a segment V =  { P ((l — p )u p -1* +  p u p +1*)|/i € [0,1]} on which the 
minima lies, up* S V \  {up-1*, up +1*}, and performance measure values for 
all three points, F (u p -1*), F (u \■’*), and ir (u(J+1*), calculate

u' =  P  |( u P -»  +  uP*^ (3.73)
l  2 /

u" =  P  |fup* +  u p +1*\ (3.74)l 2 ]
and their performance measure values F(u'), F(u").

2. (a) If F(u')  < F(u\ ■ **), then let =  u \  u*J+1* =  up* and repeat from 
step (1)

(b) If F(u")  < F(up*), then let up* =  u", u p -1* =  up* and repeat from 
step (1)
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(c) Otherwise, let u\J ** =  u', up+1* =  u" and repeat from step (1)

This procedure is repeated until this difference between the largest and the small­
est value of F (u |J *)), F(u*J)) F(uJJ+1*) is less than a given tolerance. This 
tolerance is taken to be the minimum of an absolute value A F  and a relative 
value, py. initial difference of performance measures.

3.2.5 Im plem entation  o f the gradient m ethod  algorithm
The gradient method algorithm just described is implemented using the computer 
packages M atlab and ACSL. Matlab, a m atrix manipulation package, was used 
to perform the majority of the computational tasks, with the simulation package 
ACSL used to  simulate the states and costates, and to evaluate the individual 
cost and constraint functionals.

In performing the algebraic operations of the  algorithm in M atlab, elements of 
the Hilbert space must be stored and the Hilbert space inner product must be eval­
uated. The elements of the infinite dimensional Hilbert space, ¿ „ +i( [0 ,1]) x  3im,

(  -  \which are represented by a vector I T  I with each component of the vector either
V H/ /in Si or ¿°°([0, 1]), is approximated by representing the components in Z,°°([0,1]) 

by a further vector equating to values of the component at regular intervals in 
s. Typically 100 points are taken with such a component u*(s) € L°°([0,1]) rep­
resented by the  vector [u;(0), u/(0.01), tq(0.02), • • •, «1/(1)]. The evaluation of the 
Hilbert space inner product defined by equation (3.20), is accomplished using the 
matrix operations provided in Matlab and evaluating the integral in the equation 
using the trapezium rule. All of the other com putations required can be easily 
performed using standard matrix manipulations provided by M atlab.

The simulation of the states and costates in ACSL is performed using the 
Runge-Kutta 4th order integration procedure, with an integration step size of 
up to 0.01 for the independent variable s. The results of these simulations are
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dumped in ascii form into files at intervals in s. corresponding to the interval on 
which the values of elements in L x ([0.1]) are approximated in Matlab, allowing 
these values to be read into Matlab with out too much difficulty.

In order to aid the performance of the algorithm, the controls, the cost func­
tionals and the constraints are normalised in the described computation. The 
controls are normalised so as to ensure that the importance of one control on the 
solution procedure is similar to the other controls. If the controls were not nor­
malised. then one control would converge faster than the other controls, slowing 
down the overall convergence of the algorithm. The costs and constraints are nor­
malised so as to prevent ill-conditioning problems with the evaluation of equations 
3.35. 3.63 and 3.66.

The resulting algorithm converts ari initial control u_i to a new control u, 
for a given number of iterations. 1  he algorithm is controlled using the various 
tolerances, with lack of convergence of iterative procedures being detected when 
maximum iteration limits are exceeded.

3.3 O ptim al control problem  solution  resu lts
The algorithm described in the previous section is used to solve a variety of op­
timal control problems representing the clutch engagement problem. In this final 
section, the solution of typical problems is analysed, with comments made on the 
performance of the solution technique and on the performance of the powertrain 
for the resulting control strategies.

3.3.1 O ptim al control problem  construction
I he particular du tch  engagement problem considered is an engagement from rest 
problem, with initially, the engine f ly w h e e l speed, jqfO), at 225 rad/s, the dutch 
fully disengaged and all the other powertrain components in steady state, resulting



in zero initial conditions for th e  remaining powertrain model states. This problem 
is felt to be a typical, but difficult clutch engagement problem. The problem 
is addressed, first of all assuming that both the engine torque and the required 
clutch torque capacity are free to be controlled, and secondly assuming that the 
required clutch torque capacity is the only control, with the engine torque set to a 
predefined value. The normalisation values for these controls, used in the solution 
approach are detailed in table 3.3.

For the optimal control problem examples in this section, the performance of 
the optimal control problem is expressed using eight individual cost functionals. 
These costs are F\, F2, F3 , F5, F6, Ft, defined in equations (2.39), (2.40), (2.41), 
(2.44). (2.46), (2.47). and two additional costs. The first additional cost functional 
is

tr v I ~  Z» min )2 if *1 ( t j ) < x lm tn  .Fg =  r(t /)  = i  (3.75)( 0 otherwise
where tj is the time of clutch lock up, which measures the distance of the engine 
flywheel speed below x iml„ at the point of clutch lock up. This is included, as 
cost Fa, equation (2.46), fails to  adequately prevent the flywheel speed dropping 
too low when the engine torque was taken to be a control. This is due to lower 
performance measure values resulting from dramatic reductions in engine torque 
just prior to clutch lock up, which cause the engine flywheel speed to drop sharply. 
This results iri the clutch engaging in less time, reducing many of the individual 
cost functionals, without significant increases in the cost /•’«. The increase in 
/•’s remains small as the time a t which the engine flywheel speed drops below 
•Timm, prior to clutch lock up, is very short. Increases in the weighting of cost /•« 
just caused the drop in engine torque to increase, without causing any significant 
improvements in preventing the engine flywheel speed dropping too far. The other
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additional cost is

which measures the variation of the engine flywheel speed prior to clutch lock 
up. This cost is included to demonstrate how the control strategies resulting 
from the solution of the optimal control problem can be modified by including 
additional cost functionals. The costs F4 and Fg, equations (2.43) and (2.48), are 
not included. Cost F4. which measures the excitation of the compliance at the 
point of clutch lock up. is not included, as the oscillation are adequately measured 
by costs F\. F 2 and F3, and when the engine torque is taken as a control the value 
of i 2 — i i  can be instantaneously varied, just prior to engagement, so that cost F4 

has a small value at engagement, making its value meaningless. In other words, 
altering its value without affecting the dynamics of the powertrain, as this step in 
torque prior to engagement excites the oscillations. The normalisation values for 
these costs used in the solution procedure are detailed in table 3.4.

Using these eight cost functionals and any of the three multi-objective com­
promises, a number of different optimal control problem performance measures 
are designed, with the weights and goals obtained from a combination of physical 
intuition and trial and error. The set of different performance measure values 
presented in this section are detailed in table 3.5, with the weights and goals re­
ferring to the normalised cost functionals. For each multi-objective method, two 
performance measures are designed. The first measure depends on the costs mea­
suring the oscillations after engagement, i.e. the lock up tim e, the clutch energy 
dissipation and the stalling costs. The second measure depends on these costs, 
as well as the cost measuring the oscillations prior to engagement and the cost 
measuring the transients of the engine flywheel speed prior to engagement. Tin- 
inclusion of these last two costs tries to improve, perhaps, the behaviour of the 
powertrain during engagement. In both cases, the weights on the costs are unity,



apart from the costs measuring the likelihood of stalling, which are set to 10.0 so 
as to prevent stalling, and the costs measuring lock up time and clutch energy 
dissipation. These last two costs are felt to be complementary, and as a result, 
for the weighted sum method, their weights are halved, and for the goal attain­
ment methods the weight corresponding to clutch energy dissipation is halved 
with a goal introduced for the lock up time. This is done so as to reduce the 
influence of these costs on the solution. An additional performance measure us­
ing the quadratic goal attainm ent method is also designed, using all of the costs 
in table 3.4, but making greater use of the goals, by introducing goals for costs 
F\ and F\0. The weights of these two costs are also increased to 10.0, so as too 
give these costs great importance when their goals are not met, but little, if any, 
importance when they are met, or nearly met. This ensures that these costs will 
not be excessively high, and that their values will not be too small at the expense 
of other costs.

For all of the above optimal control problems, in addition to the mandatory 
constraint x t =  x 2 at t f ,  an additional constraint

(¿2 -  ¿ i) |(/sign(xi(0) -  x2(0)) > 100 (3.77)
is included, where the state derivatives are evaluated using the state equations 
representing a slipping clutch, and u( tj )  represents the terminal time at which 
point the controls are the terminal controls Uj. This constraint ensures that for 
the clutch engagement problem with X i ( 0 )  > x2(0), ju s t after lock up pu3 > 
r ■*" ~°/i + J a + t /3 * > where r  is as defined in equation (2.11), which ensures that 
the clutch will remain locked up if r  > — //u3, an assumption already made in 
section 2.1. Furthermore, if it is assumed th a t r  > — l,u3i which is
a likely situation of the clutch engagement problem, then the clutch will remain 
locked up with a certain degree of robustness, as /iu3 > | r |  + ^ • The
normalisation of this extra constraint, and the mandatory constraint used in the
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solution of the optimal control problems, are detailed in table 3.6.

3.3.2 Solution perform ance o f  algorithm
The optimal control problems defined by the performance measures in table 3.5 
are solved using the described algorithm. In the solution results presented, the 
tolerances, described in section 3.2, used in the algorithm are detailed in table 3.7. 
These values are chosen by trial and error and seem to produce satisfactory perfor­
mance for a variety of different optimal control problems and solution techniques.

As examples of how the algorithm performs, the case when all the individual 
cost are included (optimal control problems 2,4 and 6 in table 3.5), applied to 
vehicle A, with both the engine torque and the required clutch energy dissipation 
active as controls, is taken. This case is seemingly one of the most difficult cases 
for the algorithm to solve. For this case, solutions have been obtained for all 
three multi-objective methods using the steepest descent gradient m ethod, and 
for the weighted sum method and the quadratic goal attainm ent method using the 
Fletcher-Reeves conjugate gradient method. For these five solutions, the solution 
procedure is run for 50 iterations with the initial control u_i taken as

(u , ,u 3,T )  = (3.78)(100.125.1) for s 6 [ 0 , l )
(100.225.1) for s = \  

taking the engine torque and the final required clutch torque capacity to be at 
their upper limits, with the required clutch torque capacity, up until lock up, 
at a point approximately half way between its upper and lower bounds. Two 
additional solutions are obtained for optimal control problems designed using the 
weighted sum method and the quadratic goal attainm ent method, again using the 
steepest descent method, but with a different initial control of

(50.100.1) for s £ [0,1)
(100.225.1) for s = l

(u ,,i i3, T) = (3.79)
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These seven solution results are detailed in figures 3.4 - 3.10. For each of these 
figures, graphs of the performance measure, the individual cost functionals, and 
the norm of the difference between the control obtained at a current iteration, and 
the control at the previous iteration, are plotted against the number of iterations. 
A graph of the resulting clutch plate speeds, obtained from the simulation of 
the powertrain model, using the control obtained after 50 iterations, or when the 
algorithm stops, is also included in these figures. These graphs are first of all used 
to characterise the general performance of the algorithm, and then to compare 
the various attributes of the different solution techniques for the different m ulti­
objective compromises.

From these graphs, it can be seen that the performance measure values mono- 
tonically decrease against the number of iterations, with the rate of decrease 
decreasing until little improvement is m ade in its value. The individual cost com­
ponents, also generally decrease, again with their rate of change diminishing as 
the iterations continue. However, it is possible for their values to change signifi­
cantly without affecting the performance measure, as in figure 3.6 and figure 3.4 
between iterations 39 and 40. The size of the movement in the controls, also, gen­
erally decreases. However, this control movement seems to be fairly erratic, with 
its value changing from iteration to iteration. Furthermore, large changes in the 
controls occur which fail to  reduce the performance value by any notable value. 
This ensures that convergence of the algorithm can not be guaranteed when the 
rate of change of the performance value is negligible, but only when the rate of 
change of the controls is negligible. Even then, it is possible for the change in 
the controls to be very small for several iterations and then increase again, as in 
figure 3.5, making convergence extremely difficult to detect.

With these difficulties already noted, it would be preferable to identify the 
solution approaches which seem to perform the best. First of all, comparing the
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performance of tlie algorithm applied to the different performance measures de­
signed using the different multi-objective compromises, it can be seen that the 
weighted sum m ethod (figure 3.4) takes longer to obtain a very small performance 
measure value taking about 20 iterations before little  improvement is made, than 
the other two m ethods (figures 3.5 and 3.6), which take about 5 iterations. Simi­
lar results have also been obtained for other problems investigated. For the goal 
attainment m ethod (p0c), although it obtains a satisfactory performance measure, 
its behaviour is far from ideal, with large changes in individual cost components 
resulting in computational difficulties and the algorithm being terminated after 
30 iterations as a smaller performance measure value was unable to be located. 
Furthermore, the performance of the resulting clutch plates speeds could be im­
proved, by decreasing the oscillations after clutch lock up, represented by costs 
F2 and F3. These costs can be decreased by tim ing a dip in the clutch torque 
capacity and a small step in engine torque, without causing the other costs to be 
dramatically altered. However, for the goal attainm ent value, if the values of cost 
F2 and F3 are less than the maximum of the difference between the other costs 
and their goals, then these costs measuring the oscillations after lock up have no 
influence on the performance measure, and hence are not required to be small, 
resulting in the method failing to reduce these oscillations. A final disadvantage 
of the goal attainm ent method is that it is computationally more expensive, as 
noted in table 3.8. This table, details the computational requirements of the algo­
rithm when run as a sole user on a SUN 4/330, over the network. The times have 
been obtained by taking an average of typical runs, rounded to the nearest five 
seconds, with the real time including the ACSL simulation times, the transfer of 
these calculations to and from disc and idle and system time. The Matlah CPU 
time was calculated using appropriate Matlab commands.

Another comparison that can be made from the figures, is the relative perfor-
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niance of the steepest descent method to the Fletcher-Reeves conjugate gradient 
method, applied to the problem designed using the weighted sum m ethod and the 
problem designed using the quadratic goal attainm ent method. In figure 3.11, 
plots of the performance measure against the number of iterations are shown 
for these two problems with the solid line showing the performance measure of 
the steepest decent m ethod and the dashed line of the conjugate gradient method. 
From this figure, it can be seen, especially in the case of the weighted sum method, 
that the 2nd order conjugate gradient method achieves a low performance mea­
sure value in less iterations, with each iteration of this second order technique 
having similar computational requirements to the steepest descent method. Fur­
thermore, the 2nd order method normally achieves a smaller performance measure 
value. However, convergence is still not achieved, with significant control changes 
still occurring right up to 50 iterations, as shown in figure 3.7 and 3.8, with the 
rate of decrease of the performance measure similar to the rate of decrease in the 
steepest descent method.

One final analysis of the performance is to investigate the dependence of the 
algorithm on the initial control u _ i. Figures 3.9 and 3.10 show solutions to the 
same optimal control problem, as in figures 3.4 and 3.5, but starting a t a different 
control. From these figures it can be seen that the values of the performance 
measure located are very similar. However, the values of the individual cost 
components are very different in magnitude and the resulting controls are very 
different, as shown in figures 3.12 and 3.13, with different performance of the clutch 
plates resulting. The conclusion of this is that the solution after 50 iterations is 
dependent on the initial control, and thus after 50 iterations the algorithm has not 
converged. Unfortunately, if the number of iterations is increased, the algorithm 
still fails to converge. The suggested reason for these convergence problems is that, 
for the optimal control problems being solved, there exists a large set of controls
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with performance measure values close to the optimal solution, but which lie 
over a large region of the domain V.  With such a problem, the gradients, and 
the changes in the performance measure along the search direction, are small, 
resulting in very slow convergence, with the behaviour of the solution dependent 
on higher order gradients. It could be argued that such an optimal control problem 
is ill-defined, motivating the inclusion of additional constraints and costs, but it is 
questionable whether this is prudent. For optimal control performance measures, 
which adequately measure the performance of the system, then any ’good’ solution 
will suffice, with the only disadvantage being the lack of uniqueness of such a ’good’ 
but non-optimal solution. This is especially true when the difference between the 
optimal performance measure value and the value obtained is negligible, as in 
the clutch engagement case. This lack of uniqueness may cause difficulties in 
comparing similar but different problems, as the solutions are dependent on the 
initial control, u_!, and the solution procedure. However, it may still be possible 
to compare characteristics which are necessary to achieve ’good’ solutions.

To conclude, analysis of the algorithm’s performance when trying to solve the 
clutch engagement problem identifies that the algorithm locates a ’good’ control 
strategy, which is dependent on the initial control taken, in about 5-10 iterations. 
The algorithm seems to perform, at its best, when solving an optimal control 
problem designed using the quadratic goal attainm ent method, with the search 
direction obtained using the conjugate gradient method.

3.3.3 C haracteristics o f ’g o o d ’ clutch engagem ent
As discussed in the previous section, the location of tin* ’good’ control strategies 
is dependent on the initial control, u_i, the algorithm variables (i.e. the order and 
tolerances of the algorithm ), as well as the optimal control performance measure 
design. l or many solution results obtained, it is possible to identify key character-
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istics of 'good' clutch engagement. These characteristics seem to be independent 
of the multi-objective method used in designing the performance measure. Fur­
thermore. for each method, the characteristics do not seem to be that dependent 
on how each individual cost functional is included in the compromise, only whether 
they are included with a significant weight. This can be demonstrated by com­
paring the two solution results of optimal control problems 4 and 7 in table 3.5, 
with the second optimal control problem performance measure that make greater 
use of the additional adjustability of the goals in the quadratic goal attainm ent 
method. These two optimal control problem performance measures, include the 
same cost functionals, in two different ways, with the control strategies located 
after 50 iterations of the algorithm shown in figures 3.14 and 3.15. In both of these 
figures, graphs of the clutch plate speeds and vehicle velocity are presented, which 
are obtained from simulating the powertrain model, along with the controls th a t 
produce these states. From these figures, it can be seen that the resulting control 
strategies are very similar, with, in both cases, the clutch engaging in about 0.8 
seconds, the vehicle reaching a speed of 10 km /h  in 1.0 seconds, and the controls 
not differing significantly in shape or size. Further analysis of the results, for a 
variety of problems, seem to suggest that the characteristics of the solutions, ob­
tained using the algorithm, are only dependent on the vehicle dataset, the number 
of controls active, and the cost functionals included in the performance measure.

Eight permutations, on which the solution seems to be dependent are now 
detailed. These permutations are of whether all or some of the costs are included 
in the performance measure, whether one or two controls are active, and whether 
vehicle A’s or vehicle B’s dataset is used. Again, for each case, graphs of the 
clutch plate speeds, vehicle speeds and controls, are detailed in figure 3.14 and 
figures 3.16 - 3.22. These solutions have been obtained using the quadratic goal 
attainment method (problems 3 and 4 in table 3.5) and calculated using the
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algorithm for 50 iterations. From these graphs a number of characteristics can 
be identified which are present in all cases. In particular, just prior to clutch 
engagement the clutch torque capacity dips down. This reduction in clutch torque 
capacity reduces the torque jump at the point of clutch lock up, reducing the 
excitation of the oscillations at this point. Another common characteristic when 
the engine torque is active as a control, is the general shape of the engine torque 
transients, with the engine torque initially being small allowing the engine flywheel 
speed to decrease, speeding up engagement, then increasing in order to prevent 
the engine flywheel speed dropping significantly below 100 rad /s. A final common 
characteristic is the small dip in engine torque prior to clutch lock up. This dip, 
just prior to engagement, causes the clutch plate speeds to come together more 
speedily, with a increase at the point of lock up causing the clutch to engage 
smoothly with little excitation of the powertrain compliance.

Other characteristics for individual cases are also present. In particular:

1. when vehicle A’s dataset is used in the optimal control problem, oscillations 
in the required torque capacity prior to engagement and oscillations in the 
powertrain dynamics a short time after starting to engage the clutch result,

2. when all the cost functionals are included in the performance measure, the 
clutch lock up time is longer, with the rate of increase of clutch torque 
capacity smaller than when the costs measuring the oscillations prior to 
lock up and flywheel transients are omitted,

3. for vehicle B, clutch engagement appears to be easier, engaging in less time.

I he first effect is attributed to the significance of the oscillations in the powertrain 
compliance prior to engagement, with the oscillation in clutch torque capacity be­
ing of a similar frequency to  the frequency of the oscillations prior to engagement.



With such oscillations being significant, the oscillations just after the start of en­
gagement are unavoidable without significant increase in lock up time. The third 
observation is put down to the insignificance of the oscillations prior to engage­
ment for vehicle B and to  the greater range of the controls. An interesting case, 
is when the costs F\ and F\o are omitted, with only the  clutch torque capacity 
active as a control, applied to vehicle B (see figure 3.22). In this case, a converged 
solution has almost been obtained.

To conclude, the optim al control problem solution fails, in general, to obtain 
the theoretical optimal solution that exists. However, the  formality of the ap­
proach has enabled ’good' clutch engagement solutions to  be obtained. These 
‘good’ solutions can be used to obtain characteristics inherent in ’good’ clutch 
engagement, or directly as open loop control strategies applied to the problems 
used to generate them.
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R e q u ire d  c lu tc h  to rq u e  c a p a c i ty  (0 .4 4  se c )

Clutch plate speeds (0.44 sec)
2
£.200 

!  o

:

1 < u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time (sec)

Required clutch torque capacity (0.42 sec)

_____  Other clutch plate speed

Figure 3.1: Bang-bang control simulations with banging times of 0.44 and 0.42
seconds

115



R e q u ire d  c lu tc h  to rq u e  c a p a c i ty  (0 .4 0  se c )

Time (sec)

Other clutch plate speed

Figure 3.2: Bang-bang control simulations with banging times of 0.40 and 0.38
seconds
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Figure 3.3: Pictorial representation of algorithm iteration
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W e ig h te d  s u m  p e r f o r m a n c e  m e a s u r e

-----------  Steepest descent method
----------- Conjugate gradient method

Quadratic goal attainment performance measure

Figure 3.11: Comparison of performance measures for 1st and 2nd order gradient 
techniques
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E n g in e  to rq u e

Required clutch torque capacity

First initial control 
Second initial control

Dummy control

Figure 3.12: Different controls resulting from different initial controls: weighted 
sum method
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E n g in e  to rq u e

Required clutch torque capacity

First initial control 
Second initial control

Dummy control

Figure 3.13: Different controls resulting from different initial controls: quadratic 
goal attainm ent method
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F ig u re  3 .1 4 : P o w e r t r a in  p e r f o r m a n c e  o f  c o n t ro l  s o lu t io n :  o p t im a l  c o n t r o l  p r o b le m
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C lu tc h  p la te  s p e e d s
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Engine torque
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n u m b e r  7 in  t a b le  3 .5 ; v e h ic le  A ; tw o  c o n t ro ls  a c t iv e .
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C lu tc h  p la te  s p e e d s

----------- Engine flywheel speed
-----------Other clutch plate speed

Vehicle speed

Clutch torque capacity

----------- Actual clutch torque capacity
-----------Required clutch torque capacity

Engine torque

F ig u r e  3 .16 : P o w e r t r a in  p e r f o r m a n c e  o f  c o n tro l  s o lu t io n :  o p t im a l  c o n t r o l  p r o b le m
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n u m b e r  3 in  t a b l e  3 .5 ; v e h ic le  A ; o n e  c o n tro l  a c t iv e .
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C lu tc h  p la te  s p e e d s
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n u m b e r  3 in  t a b l e  3 .5 ; v e h ic le  B ; tw o  c o n t ro ls  a c t iv e .
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C lu tc h  p la te  s p e e d s
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Costs Weights
(¿2 - 0.03

fo /i-Tski -  X2\dt 0.00005
Jo'' Idi 1.0

Table 3.1: Optimal control problem example: weights

Hanging
time

Performance
measure

0.03 x (¿2 - 0.00005 x fix & |*r i — x 2\dt 1.0 x ¡0’ 1 dt

0.44 1.1629 0.1935 0.4958 0.4735
0.42 1.1047 0.1240 0.4971 0.4835
0.40 1.0774 0.0112 0.5035 0.5625
0.38 OO ? ? OO

Table 3.2: Bang points example

Controls Symbol Normalisation values
Engine torque «1 100.0
Required clutch torque capacity 1*3 225.0
’Dummy’ control T 1.0

Table 3.3: Control normalisation values
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Costs and constraints Normalisation values
Fi =  fò '(x3 -  u2x 2)2di 40.0

F2 =  x42(</) 40.0
F3 =  X42(tf) 400.0

Fi =  /o'' pu3|x! -  x2|d< 10000.0

£ II 100.0
F7 =  /o'' Idi 1.0

£ II *1 100.0
Fio =  /o ' 200000.0

with r(t) = ( J 1 (t ) Ilmin ) 
0

if Xl(t) <  X 1 rmn
otherwise

Table 3.4: Cost normalisation values

Performance Multi-objective (weights, goals)
measure method F, f 2 Fa Fi Fe Fr f 9 Fio

1 P\ (0,0) (1,0) (1,0) (1,0) (10,0) (è,o) (10,0) (0,0)
2 P\ (1.0) (1,0) (1,0) ( |,0 ) (10,0) (J,0 ) (10,0) (1,0)
3 P2 (0,0) (1,0) (1,0) (§,0) (10,0) (1, è) (10,0) (0,0)
4 Pi (1,0) (1,0) (1,0) (§,0) (10,0) (1, è) (10,0) (1,0)
5 Poc (0,0) (1,0) (1,0) (§,0) (10,0) ( l , i ) (10,0) (0,0)
6 Poo (1,0) (1,0) (1,0) (§,0) (10,0) (1 ,J) (10,0) (1,0)
7 Pi (10,1) (1,0) (1.0) (§,0) (10,0) ( l ,è ) (10,0) (10,i)

Table 3.5: Optimal control problem performance measures
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Constraints Normalisation values
Ti -  x 2 80.0

( i l ( tf)  -  ii(</))sign(x,(0) -  x 2(0)) 600.0
Table 3.6: Constraint normalisation values

Tolerance description Symbol Value
Equality constraint relaxation parameter C| 0.005
Inequality constraint relaxation parameter 0.005
Maximum absolute error in control projection dmaxl 0.001
Maximum relative error in control projection d-max 2 0.001
Cost equality relaxation tolerance ¿coat 0.01
Maximum error in search direction projection drnax’i 0.001
Rate of step increase ^up 1.25
Rate of step decrease Adown 5.0
Initial step size atrp 0.01
Maximum absolute error in interval halving procedure A  F 0.005
Maximum relative error in interval halving procedure P 0.1

'labié 3.7: Algorithm tolerances

Multiobjective method Symbol Approximate Mattali CIMJ 
time per iteration

Approximate real time 
per iteration

Weighted sum Pi 20 sec 70 sec
Quadratic goal attainm ent Pi 20 sec 70 sec
Coal attainm ent P,. 60 sec 120 sec

labié 3.b: Algorithm computational time
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Chapter 4
O ptim al feedback control o f  
clutch engagem ent
In this chapter, drawbacks of the open loop optimal control problem for clutch 
engagement from rest are identified. Estimations of perturbations in the optimal 
control problem are then used to create a variational optimal control problem. The 
solution of this variational optimal control problem is used to modify the open 
loop solution, resulting in a feedback control strategy. Finally, the performance 
of this feedback strategy is analysed for a variety of different situations for which 
the open loop strategy is unsatisfactory. Some of this work at been presented at 
a recent international conference on control [67].

4.1 Open loop solution  drawbacks
In the previous chapter, the solution of the optimal control problem results in a 
’good’ control strategy for a given problem. This control strategy is open loop, 
calculated off-line, being dependent on the initial stair's, the model parameters, 
the model equations as well as the performance measure. For this reason, if the 
initial conditions and the model do not adequately portray the clutch engagement 
problem and the powertrain dynamics, then tin? resulting clutch performance may 
deteriorate. In particular, if the initial flywheel speed is different, or if the car
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is initially on a slight gradient, or even if the powertrain model is different, say 
because the vehicle is fully laden, or the clutch is worn, the calculated open loop 
control strategy may no longer maintain ’good’ clutch engagement.

In order to assess the performance of clutch engagement under such pertur­
bations an example is taken. This example is the case studied in the previous 
chapter, the case of engagement from rest, with the initial engine flywheel speed 
at 225 rad/s, both controls active and applied to the dataset representing vehicle 
A. The open loop solution to the optimal control problem, designed using the 
weighted sum method with all the costs included (problem 2 in table 3.5), results 
in good clutch performance as shown in figure 4.1. That is when simulated using 
the model equations used in its calculation. For this case, three model and prob­
lem perturbations are made, to the original problem, with simulations conducted 
to assess how the clutch performance is maintained. The three perturbations 
represent an engagement from rest with

1. the initial engine flywheel speed perturbed to only 175 rad/s

2. the car initially on a 1:10 gradient up hill

3. and the car fully laden (modelled by increasing inertia J4 by 2 kgm i ) with 
a worn clutch (only 95% effective).

For these three perturbations, graphs of the clutch plate speeds resulting from 
simulations are detailed in figure 4.2, with the changes in the calculated costs 
detailed in table 4.1 along with the costs when no perturbations have been applied. 
From the figure, for the first perturbation, it can be seen that the clutch locks up 
very quickly, with only a small increase in the powertrain oscillations. However, in 
accomplishing this the engine flywheel speed, drops significantly below 100 rad/s, 
sufficiently low that the engine would probably stall. This stalling problem is 
also demonstrated by the cost functional values, with the costs measuring the
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likelihood of stalling, costs F6 and F9, dramatically increasing when the initial 
flywheel speed perturbation is made. For the second perturbation, the engine 
flywheel speed remains above 100 rad/s, up until the time at which the clutch 
would lock up, if no perturbation had been made, at a tim e of approximately 1 
second. At this time, as the speed of the clutch plate attached to the gearbox 
is lower than when the vehicle is on level ground, clutch engagement has not 
been completed. After this time, the clutch torque capacity is increased which 
would have ensured that the clutch remains locked up when no perturbation is 
made. This increase causes the clutch plates speeds to quickly converge, resulting 
in the engine flywheel speed dropping below 100 rad/s and the generation of 
oscillations when the clutch finally locks up a short time later. Again, the cost 
functional values indicate theses observations with increases in the costs measuring 
the likelihood of stalling and the costs measuring the oscillations after clutch lock 
up, costs F 2 and F3. For the third perturbation, due to the increase in vehicle 
mass, the speed of the clutch plate attached to  the gearbox is lower than expected, 
and due to  the clutch being worn, the clutch plate speeds are further apart than 
expected. Hence, as before, clutch engagement is not completed at the time 
when clutch lock up is achieved under no perturbations. Again, due to increase 
in clutch torque capacity, the clutch plates speeds come together quickly, with 
large oscillations after engagement resulting. Once again, the individual costs 
demonstrate these findings, with increases in cost Ft and F3.

The above example demonstrates that the  performance of the clutch engage­
ment can deteriorate for realistic variations. Furthermore, it demonstrates that 
the performance measures adequately measure this deterioration. This result 
justifies the development of a refinement to the  open loop control strategy which 
adjusts the controls in order to maintain the good clutch engagement performance 
by maintaining a small value of the performance measure.
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4.2 V ariational op tim al control problem
As demonstrated, perturbations in the clutch engagement problem can cause the 
performance measure to change as the states and controls, on which the perfor­
mance measure is dependent, change from their open loop calculated values. The 
obvious question is, can the changes in the performance measure be estimated? 
Fortunately such changes can be estim ated using calculus of variations. This well 
established theory allows variations of functionals of the form

where / ,  f 0 and f t are all continuously differentiable, to be calculated. The 
functional is of the fixed terminal tim e form as variations of the higher order fixed

(4.1)
subject to  —  =  T 2(s ) f(x ,u ) ,  x(0) — xq (4.2)

terminal tim e problem will be used to  construct a variational optim al control 
problem, although theory exists allowing variations of a free term inal time form 
to be used. The use of this higher order problem form is for sim ilar reasons to  the 
justifications for its development in chapter 3. The first and second variations of 
such functionals with respect to variations of the states and controls at a given 
control u* are

(4.3)

(4.4)

subject to 6x =  f i6 x  +  / „ Au, 6x(0) =  ¿Xj,. (4.5)
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In these expressions: H =  T'2(pr /  + /o) is the Hamiltonian; p are the costates 
evaluated as usual using p =  H j  and p (l) =  f tx\ 6 1  and <52j  are first and second 
order variations of the states; Au represents the variations of the controls; sub­
script 0 denotes the evaluation at s = 0; subscript /  denotes the evaluation at 
s = 1 and subscript * denotes the evaluation of the Hamiltonian and functional 
derivatives at u*, calculated by evaluating corresponding state x m and costates 
p". Note that the constraint, equation (4.5), is just the linearisation of the state 
equations. The calculation of such variations is well described in a tutorial paper
[68]. This allows the functional to be approximated by

F  = F. + 6 F .+  i<52F . (4.6)

at u* with respect to variations of the controls and initial states, neglecting all 
variations of third order or higher. This in turn allows approximations of the indi­
vidual cost functionals and the individual constraint functionals to be calculated.

In order, to obtain a variational optimal control problem, variational approx­
imations of the performance measure are required. In the case of optimal control 
problems designed using the weighted sum method, first and second order varia­
tions of F  = pi(w,F_), as defined in equation (2.58), are just linear combinations 
of the first and second order variations of the individual cost functionals, being

6F= pi(w ,6F .) (4-7)
6i F = Pl(w ,6 i F )  (4.8)

where 6F_ and 62F_ are vectors of the first and second order variations of the indi­
vidual cost functionals. For optimal control problems designed using the  quadratic 
goal attainm ent method, in the region where F  =  pi(w_, £  — c) > 0, as in equation 
(2.62), the first and second order variations are

6F= E. tCi($F,max{0,ic,(F, -  c ,)}
F (4.9)



(4.10)62F = -

where ¿2G, | w26F 2 +  w?62Fi(Fi — Ci) if iv,F, > w,c, 
0 if WiFi < WiCi (4.11)

where ¿F, and ¿2F  are variations of the individual cost functionals. When F, =  c, 
the second variation is dependent on the variation ¿F, or ¿2F, if ¿F, =  0, with 
62Gi obtaining the first value if <5F, > 0 and the second value if ¿F, < 0. Apart 
from the discontinuity of the second variation, the form of the second variation is 
particularly messy, containing a product of two integrals in the term  6F 2. Finally, 
for the optimal control problem designed using the goal attainm ent method with 
F  =  Pcx>(w.,F_ — c), equation (2.60), both th e  first and second order variations 
of performance measures are dependent on the variations 6F, and 82F, of the 
individual cost functionals, with the values of the variations being

6F=  i {F, + S F i } - F  (4.12)
62F = 2 (mi X {F, +  SFi + l- 6 2F i)~  “ f* { F  +  ¿F })- (4.13)

W ith these variations now calculated, a variational optimal control problem 
can be constructed by taking variational approximations of the performance mea­
sure and the constraints in the higher order optimal control problem. For the 
constraints, if it is assumed that the variations about the calculated values are 
small, then the first order variation will dom inate, allowing the second order term 
to be neglected. For the performance value, the first variation, calculated at the 
control strategy resulting from the solution of the optimal control problem in the 
previous chapter, will be very small. This is due to the small gradients that result 
when a ’good’ solution has been obtained. However for generality, this term is still 
accounted for allowing variations about non-optimal solutions to be taken, so long 
as the higher order variations are not significant. This results in an approximation

145



o f t h e  o p t im a l  c o n t ro l  p ro b le m

u-ÎAÜet/ { f „ +  6F. + X- è 2F. J
subject to R , +  hR, =0

+ û-

(4.14)
(4.15)
(4.16)

with u”, with no underscore, representing a column vector of u, T  and Uj, as 
in the previous chapter. In this approximation the values of F„, R m and are 
unaffected by the  control variations. This allows the values of F„ and R ,  to be 
immediately removed as they have no other affect on the solution, with the value of 
Q , being eliminated by assuming that the variations SQk2 are small and equating 
Qk2. +  6Qk2 <  0 with SQk2 <  0 if Qk2. +  > 0 where is the tolerance used
in the open loop solution algorithm to define the boundaries of the inequality 
constraints. Similarly, the controls u , can be eliminated by equating the bounds 
u„ +  Au, 6 [a,, with Au, >  0 if U{. — elcon < a, and Au, < 0 if u„  +  «¿con > 6;,
where t tcon is a param eter relaxing the control bounds. This results in a variational 
optimal control problem

“ l" {¿F . +  ^ 2F .} (4.17)
subject to 6R. = 0 (4.18)

¿(?*<Q if Qk2.+ S k 2 > 0 (4.19)
Au, >  0 if u„  -  eIcon <  a, (4.20)
Au, < 0  if Uim + (-icon > bi• (4.21)

V ariational optim al control problem  solution
The variational optimal control problem in its general form is very difficult to 
solve. In particular, for the cases when the optimal control problem has been 
designed using either the goal attainm ent method or the quadratic goal attain-
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ment method, no easy solution has been found. However, for problems where 
the weighted sum m ethod has been used, the resulting variational optim al control 
problem is of a form th a t allows a solution to be obtained, with a little work. The 
use of such variational optimal control problem solutions for developing optimal 
feedback control is well known, as discused in [65], with details of such solutions for 
constrained optimal control problems discused in [69], along with an application 
to space shuttle guidance.

For variational optim al control problems resulting from an optimal control 
problem designed using the weighted sum method, substituting the variations in 
equations (4.3), (4.4), (4.7) and (4.8) into equations (4.17) - (4.21) yields a vari­
ational optimal control problem which is a Linear Quadratic Regulator (LQR) 
type problem. In this optimal control problem the variational performance mea­
sure is quadratic in term s of first order variations of states and controls subject to 
linearised state space equations and restrictions in the form of linear variational 
constraints and control variational bounds. In the substitution of equations (4.3) 
and (4.4), the first term s can be neglected as the initial states are taken as given, 
they are inherent in th e  problem and not adjustable. Lagrange multiplier vari­
ations can be introduced in order to manage the constraints in equations (4.18) 
and (4.19). The variational Lagrange multipliers add varying magnitudes of the 
variational constraint functionals to the performance measure, so that the solution 
of the new unbounded problem is equal to the solution of the original constrained 
optimal control problem. Furthermore, from Lagrange multiplier theory, in par­
ticular the Kuhn-Tucker theorem for inequality constraint Lagrange multipliers, 
each Lagrange m ultiplier must satisfy

b/ijb  A; =  0 (4.22)
or bQkb\k = {) and 6 A* > 0 (4.23)

depending on whether the Lagrange multiplier equates to an equality or inequality

147



constraint, where f \ a n d  6 A* are the variational Lagrange multipliers. This ju s t 
leaves the control bounds which prevent the variational optimal control problem 
from being a standard LQR problem. For the control bounds, referring back to th e  
open loop solutions results, the calculated controls prior to engagement often fail 
to achieve their bounds, as in figure 4.1, furthermore, if required, a certain degree 
of control bound margin can be introduced by artificially tightening the control 
bounds in the open loop solution procedure, without significantly affecting th e  
performance measure value of the control located. For this reason it is assumed 
that the controls fail to achieve their bounds prior to engagement. For the controls 
after engagement, only the engine torque affects the performance measure value, 
with this control often achieving it’s maximum bound after engagement, as in 
figure 4.1. Fortunately due to the finite dimension of the constraint this bound 
can be easily managed by introducing the variational constraint that the variation 
of the engine torque must be negative, A u i|,=1 <  0, when the engine torque 
achieves its maximum bound (i.e. if u t + t i + >  bt ), which like the other inequality 
constraints can be managed with a variational Lagrange multiplier. Typically, ci + 
is taken to be one percent of the range of the engine torque.

The resulting problem is now a tim e variant LQR problem, with the terms in 
the LQR problem dependent on the independent variable s. If a column vector /, 
of cost and constraint integrands with a corresponding column vector ip of term inal 
terms is introduced this variational optimal control problem can be expressed by

V T V
min /; Ay Pa Ay + T'LZ S i

<A T J ‘1 T L \
(4.24)

subject to 6x.= Tifx6z + T2fuAu + 2T /A 7 ’, ¿i(0) — A-r,, 

where f>(i= Wb\ + w

(4.25)
(4.26)

14H



'

H = wTL  + p f
(

P‘ =  2
T2HzzT2Hxu2THj  
T2HuxT2Hun2THl  
2THX 2THU 2H

\

J .
1 / ftxx ftxu 

\  ftux ftuxi i

(4.27)

(4.28)

(4.29)

In this variational optimal control problem the controls notation refers back to the 
notation where u refers to a vector of the controls in the powertrain model, with 6  

referring to a first variation of a variable, subscript * denoting the evaluation at u* 
with the corresponding state x* and costates p‘ calculated as usual, w and W  being 
th e  performance measure weights and constraint determination matrix relating 
the  weighted sum performance measure and the constraints to the vectors L and 
V’, and 6 \  being a vector of the Lagrange multipliers. The question posed in this 
optim al control problem, is that given an initial state perturbation Sxq, what is the 
best control variation that minimise the performance measure. For a solution to
be obtained for such a problem, matrices Pa and Pi, m ust be positive semi-definite

( T'2 li 2T H t \2 T H U 2 //"  )  anc* f ,uu Pos' t 've definite. Unfortunately, due to 
th e  linearity of some of the controls in the optimal control problem, these last two 
matrices, often fail to be positive definite, with the first matrix often being close to 
the  zero matrix. This problem is overcome by introducing a tracking condition. 
Physically, this says that the modifications of the open loop solution are more 
desirable if they are close to the open loop solution. This tracking condition is 
formulated by adding the term

AmJV.Au,  +  £  (A uA T ) To ds (4.30)

to the variational performance measure, equation (4.24), with the normally diag­
onal positive definite matrices Vo and Vt , define the meaning of closeness as well
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as defining a compromise between tracking along the open loop controls and the 
minimisation of the optimal control problem performance variation. This ensures 
that a solution is theoretically solvable, as by including this tracking condition,

tice, only a very small tracking condition is required as the matrices are at least 
positive semi-definite, although larger tracking conditions aid the computation of 
the solution by reducing ill-conditioning problems. This tracking condition, en­
suring that the control variations are never too large, also helps to ensure that 
the variations remain in a region where the variational approximations used in 
creating the variational optimal control problem are reasonably accurate, with 
the neglected higher order terms negligible.

The solution of this LQR problem is accomplished by assuming that the first 
order variations of the costates satisfy 6 p =  K 6 x+ C 6 Q, and by using the maximum 
principle reducing the  problem to solving a time variant matrix Riccati equation, 
as described in [10]. This assumption can be validated with a trivial extension 
to the validation of a  similar assumption made in [10]. For the LQR problem 
detailed in equations (4.24) - (4.29) with equation (4.30) added to the performance 
measure, this results in the time variant matrix differential equations

matrices (T 2Huu2 T H l2 T H U 2 H ^ + Vo and f tuu + Vt can be made positive definite. In prac-

(4.31)

A 'Cj = [ / , „  £ \  -  f,ru(ftuu + Vt)~' [ f t u . t l (4.32)

(4.33)
277/„ i l l
r xn ui r * f i  t 'LZ
2 T H T 2 T } t 2TLT

(4.34)
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(4.35)T 2 f u 2 T f  
—T 2 HIU—2 T H j

T 2 f x 0 0
- T 2 Hxx- T 2 f J - T 2lZ

(4.36)

where n is the number of states in the powertrain model and l is the number 
of elements in the column vectors L_ and These equations can be solved, 
by simulating them backwards in tim e in order to calculate the matrices, K (s)  
and C(s). In practice, this is accomplished by using ACSL, with the fourth 
order Runge-Kutta integration procedure and an integration step size of 0.01 in s. 
Again, in order to prevent ill-conditioning problems when inverting the positive 
definite matrices, and in order to reduce computational errors, the controls, states, 
costs and constraints are normalised. The control and state normalisation values 
used are just the root mean squared value over the interval [0,1] in s of the 
control and state  values resulting from the optimal control problem solution in 
the previous chapter. The cost and constraint normalisation values are as in 
table 3.4. For the additional variational constraint bounding the value of the 
engine torque if it achieves its maximum bound, the normalisation value used 
is the engine torque maximum value. With the above matrices now calculated, 
the solution of the variational optim al control problem can be formed, with the 
optimal control variations determined by

/  A u (s ) \
U7» / = —M ~x Mb

In 0
K C
0 /,

(4.37)

&u\f = -(ftuu  +  Vt)~ f tu r t l (4.38)

These last formulae provide a solution to the variational optimal control prob­
lem for initial state perturbations if the Lagrange multipliers are known, deter­
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mining fiJ. For initial state perturbations, the Lagrange multiplier values are 
constant, but if they are allowed to  vary then they can be used to cope with other 
more complex perturbations such as parameter variations, which can be inter­

variational optimal control problem solution at any given point s , equations (4.37) 
and (4.38), is independent from th e  variation values of the states and controls prior 
to that point. This allows the s ta te  perturbations at any given point in s to be 
treated as initial state perturbations. At such a point, the calculation of these 
Lagrange multipliers is achieved by estimating the variations of the constraints. 
Given a value of the current independent variable value, J, the variations in the 
constraints up until that point can be calculated directly from

where W  is as in equation (4.26) and superscript * indicates the open loop so­
lution states and controls, assuming that all the states and controls are known 
up to that point. The variations of the constraints after such a point in s can

controls by substituting in equations (4.37) and (4.38), with the values of 6/3_ being 
subsequently eliminated by substituting in equation (4.26). Similarly for the lin­
earised state equations, the controls can be eliminated by the substitution of these 
equations into equation (4.25). This results in the variational approximations of 
the constraints and state equations

In the above equation, the constant terms resulting from an unconverged solution 
are neglected, as for now they can be represented by an additional Lagrange

preted as continual state perturbations. This arises from the observation that the

(4.39)

be approximated using the first variations of the constraints and eliminating the

(4.40)

(4.41)
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multiplier, which will later be set to unity. The state  equation approximation, 
can be used to eliminate ¿j (s ) from the variational constraint approximations by 
simulating equation (4.41) backwards in s over a basis of the states in order to 
evaluate

6 x(s) = <t>(s)6 x } + <P(s)£A(J) (4.42)
which is substituted into equation (4.40). The variations in the integrand in this 
equation are now no longer dependent on s allowing the integrals to be evaluated, 
resulting in the constraint variations being dependent on the Lagrange multipliers 
and the terminal state variations. Again using equation (4.42) the terminal state 
variations can be related back to the states variations at i ,  as $  by definition is 
invertible. This results in the variational approximations for the constraints of

(  A  JR0(5)\= M 1 (s)6 x(s) + A/2(S)£A(S) +  (4.43)
\ ^ ) J

where M \(s) = J  N i(s )$ (s )$ ~ l (s)ds + N3 (4.44)
M 2 (s) = J _* N 2 (s) +  Ni(a) [#(s) -  $ ( a ) $ - 1(S)«(S)] ds +  N 4 (4.45)

In practice the evaluation of these approximations are performed using Matlab 
and ACSL. The computer package ACSL, is used to evaluate $  and 'P in equation
(4.42) and the evaluation of the integrals in equations (4.44) and (4.45). Some 
difficulties in the evaluation of $  and <P were encountered due the difference in 
order of some of the eigenvalues, with some values diverging off to infinity. This 
problem was solved by partitioning the interval [0,1] in s into segments [s;,st+i] 
along which equation (4.41) is solved backwards in time. At the boundaries, 
the initial conditions are reset, calculating a series of $ , ’s and 'P,’s such that for 
»' 6 [s„s,+i]

«£(-') =  * , V ) i i ( a i+i) +  * .V )*A (i). (4.46)
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From these values. i>(.s)$ '(5 ) and 'P(.s) — 4>(s)$ '(s)'I '(s) are directly calculated, 
using the iterative formula coded in Matlab

1. Initially let A = $ / ( s )  and B  = — wher e s lies on the j t h  
segment of the partition.

2. For i from j  + 1 to k, with s lying in the Arth interval calculate

A = Q f(s i)A  (4.47)
fl =  ,B -* + (* )* < (* ) •  (4.48)

3. Finally set

$ ( s ) $ - 1(J) =  $ fc(5)/l (4.49)
V(s) -  $ ( s ) $ - I (J)^ (J )  =  $*;(s)B  +  1>*(s). (4.50)

where 4>1+ is the Moore-Penrose pseudo inverse of <!>,, allowing the evaluation of 
equations (4.44) and (4.45) using ACSL. The use of the pseudo inverse prevents 
ill-conditioning problems, but results in some loss of information in the calculation 
of the pseudo inverse, as explained in [70]. For the problem in question, this loss 
of information relates to neglecting terms which have very little effect on the  
evaluation of equations (4.44) and (4.45).

Now th a t approximations of the constraints have been calculated, the Lagrange 
multipliers can be evaluated. For the equality constraints, this is done by taking 
6 R  =  0, whilst for the inequality constraints from condition (4.23), either the  
Lagrange multiplier ¿X* = 0 or for the corresponding inequality constraint 6 Qk =
0. This last condition results in 2’ cases being considered, where q is the number of 
inequality constraints in the variational optimal control problem, the permutations 
of each inequality constraint or Lagrange multiplier being zero. For each case,
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equation (4.43). can be used to calculate 2q Lagrange multipliers sets, using

^A £o(J)\ (4.51)

where A,- is a q + p by q + p m atrix, with p the number of equality constraints, q the 
number of inequality constraints and q number of active inequality constraints (i.e 
number of none zero inequality Lagrange multipliers). This m atrix  selects the case 
and consists of column vectors with zero entries apart from one entry set to unity 
which identifies which constraints are active. The constant term , results from 
the additional Lagrange multiplier representing the neglected constant terms in 
equations (4.40) and (4.41), which is now set to unity. Again, for safety the Moore- 
Penrose pseudo inverse is used, although for variational constraints sufficiently 
linearly independent this should not be needed. For each case if the Lagrange 
multipliers are substituted back into equations (4.37) and (4.38), the variational 
optimal control solution

/  A u ( i ) \  
^AT(5)j

=  A ,(s)ix(s) +  Bi(s) (  A&(S)\ + ct(J)

A u /  = A f{6x j  +  Bji + Cji

(4.52)

(4.53)

results, where s denotes the current value of the independent variable and sub­
script i denotes the particular case resulting from a particular set of Lagrange 
multipliers. These final calculations are performed using M atlab. Note that the 
constant terms c;(i) and cy, will disappear for a converged solution, or at least be 
negligible for controls at which the gradient of the performance measure is small. 
This last situation is often the case, for a control strategy calculated using the 
algorithm described in section 3.
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4.4 O ptim al feedback control
In section 4.2, the performance variation is approximated in term s of variations 
of the states and controls, with a solution in terms of control perturbations which 
minimise th is variational performance measure being obtained in the previous 
section. Hence, if the controls are perturbed by the calculated amount, then 
the resulting performance measure should remain small, as small as is possible. 
In order to apply this solution to the clutch engagement problem, the terms in 
equations (4.52) and (4.53) must be calculated. If it is assumed that at any time 
after starting to engage the clutch, the current and past states and controls are 
known, along with the elapsed time and the open loop states and controls, then 
all the required terms can be calculated. In particular, the current independent 
variable s, the  current state perturbation, the current constraint perturbations 

and the Lagrange multiplier set resulting from the 2’ cases considered, 
can all be determined.

The current time and the current independent variable are related by the 
’dummy’ control T, allowing the current independent variable to be calculated 
using the relationship

perturbations to be calculated, by subtracting the current states from the open

using equation (4.39), or far more simply by just integrating the difference in the

optimal variation, all that is required is to choose the Lagrange multiplier set. 
This last calculation is slightly more complex, but by substituting equation (4.51) 
for a particular case into equation (4.43), an estimate for the constraint variations

(4.54)

The calculation of the current independent variable then allows the current state

loop solution states. Similarly the current constraints variations can be calculated

constraint integrands up until the current time. Hence, in order to calculate the
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in terms of the current state perturbations and the current constraint perturba­
tions. can be calculated. For each case, this allows the assessment of whether a 
particular Lagrange multiplier set results in a solution which satisfies the inequal­
ity constraints, with the cases that fail to  satisfy the variational approximations 
of the constraints being rejected. For the remaining sets, estimates of the perfor­
mance measure variations are obtained. This is done in an identical way to which 
equation (4.43) is evaluated, which when (4.51) is substituted in again determines 
an estimate for the performance measure which is dependent on the current state 
and constraint variations. This allows a unique Lagrange multiplier set to be cho­
sen, the set which yields the smallest performance measure estim ate and which 
satisfies the estimated constraints. Equation (4.51) could have been used to fur­
ther refine the sets after rejecting the sets which fail the constraints, by rejecting 
the sets that fail to satisfy condition (4.23), but as little computational advantage 
results and as the use of a performance measure estimate has greater physical 
significance, this was not exploited.

The resulting optimal feedback control architecture is detailed in figure 4.3. In 
this feedback control strategy, given the Lagrange multiplier sets to be used, the 
real time evaluation requirements are ju st the on going evaluations of the integral 
terms in equations (4.39) and (4.54) and the evaluation of equations (4.52) and 
(4.53). These last evaluations just require the addition and multiplication of 
matrices dependent on the current independent variable .s, matrices which can 
be acquired from look-up tables. The real time requirements of the Lagrange 
multiplier set choice is, at most, the evaluation of 29 expressions of the form

/ - \ '  f>x(s) '
b n

= M ( s )
A/io(.5)

b 'q Afioii)
l ' /
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the expressions that provide the cost and constraint variational estimates, where 
q is the number of inequality constraints. Again these evaluations only require the 
addition and multiplication of matrices dependent on the independent variable s. 
These real time requirements are felt to be attainable for the clutch engagement 
problem.

4.4.1 Feedback clutch control analysis
In order to assess the performance of this feedback control strategy, simulations are 
carried out for the perturbations discused in section 4.1. Variations of the second 
optimal control problem performance measure in table 3.5 is used to construct the 
variational performance measure. This variational optimal control problem has 
two inequality constraints as well as the mandatory equality constraint, equation 
(2.53). These inequality constraints arise from the inequality constraint, equa­
tion (3.77), in the original problem, and the engine torque upper bound after 
clutch lock up. For the open loop solution to the optimal control problem, the 
control strategy detailed in figure 4.1, both of the inequality constraint bounds 
are reached by the calculated control strategy. Hence, neither constraint can be 
neglected resulting in four Lagrange multiplier sets. In the calculation of the re­
quired feedback matrices, the positive definite matrices, Vo and Vt, are taken to 
be diagonal with the diagonal entries set to  104. The simulations of the feedback 
control strategies is performed using the computer package ACSL, which reads 
the calculated feedback matrices from memory and performs the required real 
time calculations as well as simulating the perturbed model equations. For each 
of the perturbations described in section 4.1, simulations of the feedback strategy 
are detailed in figures 4.4 - 4.6. In each figure four graphs are detailed, the first 
graph of the clutch plates speeds when the open loop control strategy is used to 
control the engagement, the second graph of the clutch plate speeds when the
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feedback strategy is used to control the engagement, and the third and fourth 
graphs detailing the open loop and feedback controls. In these last two graphs 
the solid lines indicate the open loop controls with the dashed lines indicating 
the feedback or closed loop controls. In the third graph, both the required clutch 
torque capacity and the actual clutch torque capacity are detailed with the latter 
identified by its smooth transients.

For the first perturbation, clutch engagement with the initial engine flywheel 
speed lowered to 175 rad/s, when the feedback strategy is used, the engine flywheel 
speed still drops below its unperturbed level but not quite as far as when the 
open loop solution is used, a possible slight improvement. In doing this the clutch 
takes longer to engage with minor increases in the engine torque and a slight 
reduction in the clutch torque capacity prior to engagement. However, as the 
engine flywheel speed still drops below 100 rad/s when feedback is implemented, 
the feedback control strategy is not satisfactory. For the second perturbation, 
the hill start, when the feedback strategy is used, the clutch plates engage more 
smoothly with little  oscillations after engagement. This improvement is achieved 
by small reductions in the engine torque and small increases in the clutch torque 
capacity, causing the  clutch plate speeds to be nearly equal when the required 
clutch torque capacity is stepped up at the point when s =  1, preventing the 
occurrence of the oscillations after engagement. Note that the point when this 
step occurs has been moved to a slightly later tim e with modifications of the 
'dummy1 control. However, again the feedback clutch plate response is far from 
satisfactory with the engine flywheel speed dropping significantly below 100 rad/s, 
a deterioration on the  open loop response. For the third perturbation, simulated 
by perturbing the model parameters in order to represent a fully laden vehicle 
with a worn clutch, the feedback response is improved with a reduction in the 
size of the oscillations after clutch lock up. Again this is accomplished by small
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reductions in the engine torque and small increases in the clutch torque capacity. 
However, just prior to and after clutch lock up large control variations occur, in 
particular large variations of the 'dummy1 control, causing a slight kink in the 
clutch plate speed at a time of about 1.2 seconds.

These three previous feedback simulations assume that both controls are ac­
tive. The feedback procedure developed is just as applicable when only th e  clutch 
torque capacity is active as a control. To demonstrate the ability of the feedback 
procedure to control the three perturbation examples but with only variations in 
the clutch torque capacity, a further three simulations are detailed in figures 4.7 - 
4.9. As in the open loop study, the engine torque is set to 100 Nm, both before and 
after clutch lock up. These one control simulations again show how, in general, 
the feedback control cause improvements in clutch control, reducing oscillations 
after engagement in all three simulations. However, in accomplishing this large 
control variations result, in particular, large control variations are prominent for 
the flywheel speed perturbation and the model parameter perturbation simula­
tions, figures 4.7 and 4.9, with the control reaching its bounds. The greater size of 
the control variations with only one control active, indicates the greater difficulty 
in controlling engagement. Again these excessive control variations can cause un­
desirable dynamics, as in figure 4.7, with the clutch plates initially locking up, 
then briefly returning to a slipping state, before finally locking up, completing 
engagement. Note that due to the large value of engine torque, stalling problems 
do not occur in these simulations. However, for other cases with smaller engine 
torque values stalling can again be a problem with the feedback control again 
struggling to prevent stalling.

Simulations have also been conducted using the dataset set representing ve­
hicle B. As already noted, clutch engagement is a little easier for this dataset as 
oscillations prior to clutch lock up are not significant, the reason for concentrating
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on the dataset representing vehicle A. The only slight difficulty is the increased 
singularity of the matrices used in the calculation of the feedback matrices, with 
care having to be taken when inverting matrices by making greater use of the 
Moores-Penrose pseudo inverse. The results obtained from these simulations of 
vehicle B are very similar to the simulations presented, with no additional points 
to the points already noted being acquired.

To conclude, the simulations indicate that improvements in the clutch plates 
speeds do result from the use of the feedback control strategy, but that the cost 
measuring the likelihood of stalling is not always maintained at a small value, 
and that around the point of clutch lock up, in particular for model parameter 
perturbations and when only one control is active, large variations can result 
which can cause minor undesirable effects. These results have also been obtained 
for the simulation of other model and state perturbations.

4.4.2 Feedback control m odifications
The failure of the feedback strategy to maintain the costs measuring the likeli­
hood of stalling at small values can be easily explained. This failure is due to the 
variations of the costs measuring stalling, F6 and Fg, being zero for control strate­
gies which maintain the engine flywheel speed above its minimum permissible 
value. Hence for such control strategies, such as the open loop solution detailed 
in figure 4.1, the variational optimal control problem will not include any terms 
equating variations of the controls to terms measuring the likelihood of stalling. 
No ideal solution to this difficulty has been found, however, if the variational cost 
u'j-Sxi is added to the variational optimal control problem performance measure, 
then for the resulting closed loop solution, the flywheel speed should remain close 
to the open loop value, which if remaining above i i mln ensures that the closed loop 
flywheel speed will remain above Ximm. In other words, for cases where the fly-
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wheel speed is maintained above x lmln in the open loop solution, the closed loop 
flywheel speed can be maintained above J i mln by introducing a flywheel speed 
tracking condition.

To dem onstrate the success of this feedback control modification, a simula­
tion of the first perturbation example, clutch engagement with a reduced engine 
flywheel speed, is conducted with the weighting parameter wr set to 105 and 
both controls active. This simulation, detailed in figure 4.10, demonstrates that 
this modification, at least for this particular exam ple, eliminates the problem of 
stalling, with the flywheel speed being m aintained above 100 rad/s. This is ac­
complished, almost entirely, by large variations of the engine torque in the first 
0.2 seconds, which cause the flywheel speed to acquire its open loop optimal value 
in this period. The marked behaviour of the engine torque unilaterally control­
ling the engine flywheel speed, results from the dynamics of the flywheel being 
decoupled from the dynamics of the rest of the powertrain when the clutch is slip­
ping, as discussed in chapter 2.1. Furthermore, th e  engine torque variations only 
effect the flywheel dynamics, allowing the engine torque to be used to control the 
flywheel speed, preventing stalling, without interfering with the control aims for 
the remainder of the powertrain. The engine torque is still required to control the 
point of lock up, stepping up and down as required, with the dynamics no longer 
decoupled after this time. This minor difficulty can be overcome by ensuring that 
the m ajority of the engine torque variations, controlling the flywheel speed, occur 
well before the point of lock up, as in figure 4.10, in which only small variations 
occur after a time 0.2 seconds. This is possible for the example in figure 4.10, 
as no other perturbations are present, indicating the  effectiveness of this modifi­
cation for coping with flywheel speed perturbations, a very likely occurrence in 
clutch control. This modification, also has lim ited success in preventing stalling 
for other perturbations, as found by conducting other feedback simulations, but
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unfortunately, it was found that a compromise between preventing stalling and 
achieving the other control aims sometimes results. For problems in which the 
prevention of stalling is extremely difficult, this feedback approach still struggles 
to prevent stalling. As the prevention of stalling is imperative, the suggestion for 
over coming this difficulty is to use a feedback control strategy designed specifically 
for preventing stalling, such as the centrifugal clutch control method discussed in 
the introduction, in these cases, switching back to the optimal feedback control 
strategy when the problem of stalling has diminished. In essence, this is what 
the weighting parameter wz does, determining how much of the control strategy 
should be concerned with preventing stalling by tracking the open loop value, and 
how much concerned with minimising the variational performance measure.

The other problem identified with the feedback control strategy simulations, 
the large variations around the point of clutch lock up, is attributed  to the re­
quirement of the variational constraints being satisfied. These large variations 
are unsatisfactory as they can cause the control bounds to be reached, can cause 
the neglected higher order variations to become significant and together with fast 
transient fluctuations can cause undesirable responses as previously noted. The 
large control variations are required to satisfy the constraints when the indepen­
dent variable s is approaching unity, if small but significant values of th e  constraint 
variations still persist. It can be immediately appreciated that for param eter per­
turbations, as the control strategies are determined using the unperturbed state 
equations, that such problems are more severe. The solution to this problem is 
a little more complex than the previous problem, but by relaxing the variational 
constraints it can be achieved. Equations (4.52) and (4.53) relate the optimal con­
trol variations to the state variations and the constraint variations, a t any given 
independent variable value s. If instead of calculating the equations by setting 
the variational constraint approximations to zero, they are set to an error value £
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then by careful choice of this error term large control variations can be prevented 
whilst still achieving the constraints to a reasonable degree of satisfaction. This 
compromise between small constraint errors and control actuation is accomplished 
by minimising a weighted sum of the control perturbations and the error value, 
in other words by minimising

If it is noted that the constraint errors can be achieved by applying the error

it can be shown th a t the minimal of equation (4.56) is satisfied by the  control 
variations

the number of active inequality constraints, A; is as in equation (4.51), w&u is the 
weighting factor in the previous equation and A,, 5 ,, A/,, £?/, are as in equations 
(4.52) and (4.53). As with the final calculation of equations (4.52) and (4.53), 
these calculations are performed using Matlab. Note that these new equations 
are equivalent to equations (4.52) and (4.53) when the weighting factor w&u is 
set to zero. Also note, that this modification requires no additional real time 
computations, as th e  calculations result in the control variations being dependent 
on matrix equations of the same form as equations (4.52) and (4.53).

(4.56)

vector to the measured equations (4.52) and (4.53), then

(4.57)

(4.58)

where m  is the num ber of controls, p is the number of inequality constraints, q is
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To demonstrate the success of this modification, this new feedback strategy is 
applied to the three cases previously presented, for which large control variations 
result with the unmodified feedback strategy. That is, the parameter pertur­
bation example, with both one and two controls active, and the initial flywheel 
speed perturbation with only the clutch torque capacity active as a control. In 
calculating the modified feedback matrices, the weighting parameter, w a u is set to 
0.01, with the new simulations detailed in figures 4.11 - 4.13. For the parameter 
perturbation example with two controls active, as previously noted in figure 4.6, 
a kink in caused by large variations just after the point of clutch lock up. For the 
same simulation, but using the modified feedback control strategy, this kink has 
disappeared, with the simulation detailed in figure 4.11. This, as expected, is as 
a result of smaller control variations. It should be noted that in figure 4.11, the 
feedback controls are shifted in time by variations of the ’dummy’ control, mak­
ing the control variations appear larger than they really are, with the feedback 
controls shadowing the open loop controls. For the parameter perturbation exam­
ple with only one control active, again large control variations result, although no 
kink occurs. Once again, as shown in figure 4.12, the modification reduces the size 
of the variations, removing the sharp dip that occurs just before 1.2 seconds after 
starting engagement. It should be noted that this dip, can not be blamed for the 
oscillations after engagement, as oscillations still persist on its removal. However, 
the feedback control does reduce the size of the oscillations, an improvement on 
the open loop controls. For the final modified feedback simulation, the perturba­
tion example with the reduces engine flywheel speed, quite large control variations 
still persist. However, the size of the variations has decreased significantly from 
when the modification is not implemented, and the problem of the clutch plates 
locking up twice before completing engagement has been removed. The proposed 
reason for large variations persisting, is that significant variations below the open
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loop clutch torque capacity is required to prevent the clutch engaging too quickly, 
resulting in large oscillations. The size of the variations can still be reduced by 
distributing the variations over the whole interval in s. One way of achieving this, 
is by increasing the weight w&u, in practice, for this case a value of 0.1 was found 
to be sufficient to prevent excessive variations. To conclude, this last modification 
is extremely effective at reducing large control variations at or just prior to clutch 
lock up, removing undesirable dynamics that these large variations create.

4.4.3 G eneralisation o f clutch feedback control
The feedback control engagement strategy developed, arises from taking variations 
of the open loop optimal control problem. Unfortunately, the approach presented 
is only applicable to the case when the performance measure is constructed using 
the weighted sum multi-objective technique. For this reason, some effort has been 
applied to the problem of generalising the feedback control derived from a weighted 
sum performance measure to feedback control strategies relating to goal atta in ­
ment performance measures. In other words, trying to  extend the approach to a 
feedback technique which maintains variations of performance measures designed 
using one of the goal attainm ent methods. As an example, one such approach 
that was proposed, is to represent the goal attainm ent performance measure form
by

F = Hi (4.59)
subject to Hj — Hi<0  for all j  ^  i (4.60)

for some i, where H, are the individual cost functionals. In other words, relating 
this back to the geometric representation of the goal attainm ent method described 
in section 2.4, representing the goal attainm ent value by the facets of the corner 
of points in the cost space of equal value. This allows the variations of the goal 
attainm ent performance measure to be represented by one of the n variations,
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constructed by taking variations of the above performance measure form, where 
n is tlie number of cost functionals included in the multi-objective compromise. 
This is possible, as on each facet the performance measure is of the same form as 
when the weighted sum method has been employed. This fact also allows controls 
variations to be obtained for each facet, using exactly the same algebraic manip­
ulation as previously presented. This just leaves the choice of which facet to use 
to generate the control variations. The proposed approach is to use estimates of 
the performance measure variation, as with the choice of Lagrange multiplier set, 
choosing the facet which results in the smallest estimated performance measure 
value. The problem with this approach is th a t for each facet, an extra n — 1 
inequality constraints have been introduced. As the computational requirements 
increase exponentially with the number of constraints, this dramatically increases 
the real time computational requirements, one of the reasons for not continuing 
with this approach.

The main reason for not exploring the generalisations of feedback clutch en­
gagement fully, is that as small values of performance measures equate to good 
clutch performance, whatever multi-objective technique is employed, a control 
strategy producing small values of a performance measure designed using a goal 
attainment method, will also produce small values for a performance measure de­
signed using the weighted sum method. It is felt th a t the choice of multi-objective 
method is far more important in locating a ’good’ control strategy than for es­
timating the performance of clutch engagement around such a control strategy. 
Indeed, if the feedback control strategy is applied to a perturbation example, 
where the open loop solution is obtained using one of the goal attainm ent m eth­
ods, then the performance of the clutch is still maintained, maintained just as 
with a weighted sum performance measure. This validates the approach of us­
ing the described feedback approach whatever th e  multi-objective method used in
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creating the performance measure.
To conclude, the feedback clutch control method described in this chapter, 

enables 'good' clutch control to be maintained for the majority of realistic state 
and parameter perturbations. This method can be applied to any 'good' solution 
obtained using the method described in the previous chapter, and indeed, due 
to the first variations remaining in the variational optimal control problem, can 
be applied to other non optimal solutions, so long as the neglected higher order 
variations are not significant. Finally, the real time computational requirements 
are felt to be achievable in implementing this feedback strategy.
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Perturbation Performance
measure

Individual cost functionals
Fi f 2 f 3 F, Fe F7 f9 Fl o

None 1.059 0.128 0.004 0.019 0.273 0.000 0.501 0.000 0.134
Flywheel speed 209.86S 0.121 0.006 0.312 0.120 27.805 0.323 181.048 0.133

Hill-start 11.637 0.162 0.916 1.098 0.377 0.091 0.552 8.296 0.146
Fully laden/ 
worn clutch

5.340 0.192 1.463 2.585 0.396 0.000 0.571 0.000 0.135

Table 4.1: Cost functionals for perturbed clutch engagement

182



C hapter 5
O ptim al clu tch  en gagem en t w ith  
variable m odel param eters
In this chapter, powertrain model parameters that may vary are identified, group­
ing them into classes describing how fast these parameters vary in time. Simula­
tions are then conducted, illustrating the significance of each parameter variation, 
as well as the ability of the feedback control to maintain ’good’ clutch engagement 
under such variations. As a result of these simulations, a revised feedback control 
strategy is developed, which utilises known parameter variations. As param eter 
variations may not be known, a method is then presented which yields estimates 
of such variations, one estim ate for each clutch engagement. Finally, a brief out­
line of how such information can be used to design self learning/adaptive control 
strategies is discused.

5.1 C lu tch  engagem ent w ith  rea listic  param eter  
perturbations

In the previous chapter, it was demonstrated that the feedback control is able to 
cope with certain parameter perturbations. In this section, a far more compre­
hensive investigation of the efTects of param eter perturbations on feedback clutch 
control is conducted.
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The dynamics of perturbations in automotive powertrains varies significantly 
from one type of perturbation to another. For this reason, the types of parameter 
perturbations have been grouped into four classes, with examples of particular 
reference to the powertrain model presented in chapter 2 given:

ST A T IC  Perturbations present between different vehicles, but which are con­
stant for the lifetime of a given vehicle, such as perturbations of

• the flywheel inertia
• and the inertias and ratios in the gearbox.

SL O W  Perturbations that occur over the lifetime of the powertrain or powertrain 
components, often due to wear, such as perturbation of

•  the friction between the clutch plates
•  the dynamics of the clutch actuator
•  and the performance of the engine.

D IS C R E T E  Perturbations that occur between each vehicle journey or during 
the first part of the journey, but which remain constant or very similar for 
the remainder of the journey, such as perturbations of

•  the vehicle mass
• and the performance of the engine say through tem perature change.

FA ST Perturbations that may occur sufficiently rapidly that from one clutch 
engagement to  another, such perturbations appear to be uncorrelated, such 
as

• the gradient of the terrain
• the road condition

184



• and the vehicle status, perturbations such as the speed of the vehicle 
and how sharply the vehicle is cornering at the time of clutch engage­
ment.

For the examples of model perturbations in each group, simulations of the 
powertrain model are conducted for realistic perturbations, using both the open 
loop control strategy and the feedback control strategy to control clutch engage­
ment. In these simulations, an engagement from rest case applied to the dataset 
representing vehicle A with only the clutch torque capacity active as a control, is 
taken, again as it is felt that this is the worst case. The other control, the engine 
torque is again set to a constant value of 100Arm. The feedback control strategy 
used is as described in the previous chapter, with the modification preventing 
large control variations around the point of clutch lock up implemented by setting 
the weighting param eter w&u to 0.01. The other modification, tracking the closed 
loop flywheel speed to its calculated open loop solution, is not implemented as 
the problem of stalling is not felt to be significant for this case. This is due to 
the high engine torque, which is set to  its maximum value of lOOJVm. For each 
model parameter perturbation, a figure containing two graphs is detailed, both 
of the clutch plate speeds, one of the open loop control strategy used to con­
trol engagement and the other of the feedback control strategy used to control 
engagement.

For the STATIC perturbations, simulations of perturbations in the flywheel 
inertia, the inertia of the gearbox shaft connected to the clutch and perturbations 
in the gear ratio are conducted, which are detailed in figures 5.1 - 5.3. For the 
flywheel inertia, its value has been perturbed from 0.109A,’srm2 to O.lWkgm1. From 
figure 5.1, it can be seen that this perturbation, of the order of 10 percent, fails 
to produce any deterioration in clutch performance. Similarly, for a perturbation 
of the gearbox inertia from 0.05kgm 2 to 0.055kgm 2, shown in figure 5.2, little
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if any deterioration occurs. For these two model parameters a perturbation of 
10 percent is felt to be excessive, indicating their unimportance in the control 
of the clutch. The final STATIC perturbation simulated, is a perturbation of 
the first gear ratio from a value of 0.3 to 0.35. From the simulation, detailed in 
figure 5.3. it can be observed how the perturbation causes the open loop control 
performance to deteriorate, with the clutch plate speed failing to converge quickly 
enough and oscillations resulting after engagement. For this perturbation, the 
feedback strategy copes very well, bringing the clutch plates speeds together more 
quickly and preventing any significant oscillations after engagement. With again 
the perturbation felt to be large for a change in first gear ratio, this suggests that 
in this instance the feedback strategy is adequate.

For the SLOW perturbations, simulations of a worn clutch, a clutch with a 
slower actuator and of a powertrain with an engine producing less torque than 
expected, are conducted, with the simulations detailed in figures 5.4 - 5.6. The 
first simulation of a worn clutch, is simulated as before by multiplying the clutch 
torque capacity by a given value /¿, chosen to  be 0.9, a reduction of 10 percent in 
the friction between the clutch plates. From figure 5.4, the marked deterioration 
in the clutch performance with the open loop controls can be observed, with the 
clutch plates failing to converge quickly enough resulting in very large oscillations 
when clutch lock up is finally achieved. The feedback control strategy again does 
quite well, eliminating most of the oscillations after engagement. However, some 
small oscillations after engagement still remain, a deterioration of the calculated 
optimal open loop clutch performance. The simulation of the slower clutch actu­
ator, figure 5.5, is conducted by reducing the natural frequency of the critically 
damped actuator from lOrat/s-1 to 8rads-1 . Again a deterioration in the clutch 
performance results with the open loop controls, which the feedback control cor­
rects, in this case with only very small oscillations after engagement. The final
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simulation of a powertrain with an engine producing less torcpie than required, is 
modelled by multiplying the engine torque control by a value of 0.9 to represent a 
10 percent reduction. Referring back to the engine models discused in chapter 2, 
this is to say that for a given flywheel speed, the throttle angle that should pro­
duce the required torque, calculated from the modelled engine map, in practice 
produces a torque 10 percent lower than expected. In other words, the actual 
engine map is 10 percent lower than the modelled map over the entire range of 
throttle angles and flywheel speeds. From figure 5.6, this perturbation causes the 
flywheel speed to drop faster than expected with the open loop controls, caus­
ing premature clutch engagement, resulting in oscillations after engagement. The 
feedback strategy tries to  correct this by increasing the engine torque and decreas­
ing the clutch torque capacity, resulting in a slowing down of the convergence of 
the clutch plates, most noticeable between 0.6 and 0.8 seconds. Unfortunately, 
the feedback control over corrects the problem, with the clutch plate failing to 
engage at a time of 0.8 seconds, engaging later after 1.0 second has elapsed. Be­
tween these two times, the clutch plates speeds move further apart again before 
coming together, with large oscillations after engagement resulting. For this per­
turbation, the feedback control performance is worse than the open loop control 
performance.

For the DISCRETE perturbations, the simulation of clutch engagement with a 
fully laden vehicle is conducted, with the simulation of engine variations omitted 
as it has already been covered. As before, a fully laden vehicle is represented by in­
creasing the inertia representing the vehicle mass from 7.945kgm 2 to 9.945kgm 2. 
From figure 5.7, it can be seen that such variations cause some deterioration 
in clutch performance with the open loop controls, which the feedback strategy 
corrects satisfactorily, with the elimination of significant oscillations after engage­
ment. Again, as there is a clear limit to the magnitude of this perturbation, it
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ran lie stated that the feedback control strategy is satisfactory for perturbations 
in vehicle mass.

Finally for the FAST variations, three simulations are conducted, clutch en­
gagement up and down 1 : 1 0  gradients, and of clutch engagement with reduced 
damping in the compliance, the dynamics between the gearbox output shaft and 
the vehicle mass. The first simulation detailed in figure 5.8, of engagement up 
a 1 : 10 gradient with the open loop control strategy employed, demonstrates 
how the failure of the clutch plate attached to the gearbox to reach the other 
flywheel speed, cause clutch lock up to be delayed and oscillations after engage­
ment . For the simulation in figure 5.9, of engagement down a 1 : 10 gradient, 
a similar deterioration in clutch performance occurs with the open loop controls. 
This time, the speed of the clutch plate attached to the gearbox increases too 
quickly, causing oscillations when clutch lock up occurs prematurely. For both of 
these simulations, the feedback controls improve clutch engagement, resulting in 
satisfactory clutch performance. The final simulation of FAST parameter pertur­
bations, in figure 5.10, of reduced damping in the powertrain compliance, shows 
how the reduced damping cause larger oscillations before clutch lock up. This 
reduced damping is modelled by reducing the model damping coefficient from 
7,3Nmsrad~l to 3.3Nm srad~l . This last perturbation, represents changes in the 
road condition and/or vehicle status. With reference to a typical tyre modelling, 
linearised about a given operating condition, it can be observed that the dam p­
ing in the tyres vary with vehicle speed, road condition and factors such as how 
tightly the vehicle is cornering at the time of clutch engagement. Despite the 
larger oscillations, the general dynamics of the clutch plates remain unaltered 
with engagement being completed in a similar time to the calculated optimal 
value, and little in any oscillations generated after engagement. The feedback 
controls produce nearly identical dynamics, failing to improve on the open loop
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controls. The reason for the lack of improvement is attributed to the difficulty 
in preventing oscillations just after starting to  engage the clutch. With the orig­
inal damping coefficient these oscillations are noticeable but not significant, but 
with the reduced damping they become more prevalent. It is felt that the open 
loop solution does as well as is possible for the engagement problem, with the 
oscillations only able to be reduced by significantly increasing the time taken to 
complete engagement. This apparent independence of the controls on the dam p­
ing coefficient, helps justify the approximation used in the modelling of damping 
in the compliance, previously modelled by a linear damper.

To conclude, the feedback strategy maintains ’good’ clutch performance under 
most realistic model param eter perturbations. However, ’poor’ clutch performance 
still results from the use of the feedback control strategy under some model per­
turbations. In particular, for engine perturbations and to a certain extent for 
changes in the friction between the clutch plates. This motivates the development 
of a revised feedback control strategy which maintains clutch performance in these 
extreme cases.

5.2 C lutch engagem ent w ith  known param eter  
perturbations

In the previous section, it was noted that the  performance of clutch engagement 
can deteriorate with the feedback clutch control strategy. It may be the case that 
such model parameter perturbations are known. In the case of STATIC p ertu r­
bations, perturbations might be known from measurements at manufaction, or 
for other perturbations measured directly via a sensor, or even estimated from 
measurements of existing sensors. For example, sensors exist that are capable of 
measuring the vehicle mass and the gradient or tilt of the vehicle. Such pertu r­
bation information might be useful in modifying the feedback control strategy to
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cope with parameter perturbations, motivating the development of such a control 
strategy.

The feedback control strategy arises by constructing a variational optimal con­
trol problem, equations (4.24) - (4.29). In particular, by taking variations of the 
states and controls. If in addition to taking variations of the states and con­
trols, variations are also taken of the model parameters then a variational optimal 
control problem of the form

T

M ' t 2l_1>
(  6xf )

T
( S x , ) ( i ? \r i Aw Au T 2L l — X

min Jo A T Pa A T + 2 T L t
6£ • ds + A  Uj p b 31<1 + € 6£
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(5.1)

subject to 6x = T 2f z6x + T 2f uAu + 2T f 6 T  +  T 2f zAz ,6x(0)  = Sx^ (5.2) 
where 60= W6X -1- w (5.3)
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results. In this new LQR type problem, as in the previous problem: u refers to a 
vector of the controls in the powertrain model; subscript * denotes the evaluation 
at u’ with the corresponding states x m and costates p* calculated as usual; w 
and W  are the performance measure weights and constraint determination matrix
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relating the weighted sum performance measure and the constraints to the vectors 
L  and r ;  and 6 \  is a vector of the Lagrange multipliers variations, with the new 
vector A r denoting a vector of known model param eter variations. Again, this

term in equation (4.30). The solution of this variational optimal control problem 
can be obtained by solving a time variant m atrix  Riccati equation, this time 
obtained by making the assumption that the optim al variational costates satisfy 
¿p =  I \6x + C6 J  +  D A ;, which can be justified with a minor modification to 
the argument given in [10]. This assumption, results in the time variant matrix 
Riccati equation

elements in the column vectors L and 0 , and p is the number of model parameters

variational optimal control problem can be m ade solvable by the addition of the

/„ 0  0

where
[k c d ] = [f,zz£ f t x z ]  -  f tZu(f,uu + v;)-1 [ftuZ±l f tuz]  (5-8)

(5.9)2 T H U 2 H
T 2HUZ T 2f l  T 2L l  T 2H UZ 
2T H Z 2 T f T2TLT 2T H Z

(5.10)

(5.11)

T 2f z 0 0 T 2fx
-  T 2 Hzz -  T 2f J  -  T 2l Z  -  T 2 //.

(5.12)

where, n is the number of states in the powertrain model, / is the number of
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for which variations of the optimal control problem are taken. These differential 
equations are of the same form as for the feedback control strategy, which when

matrices then allow the optimal control variations to be calculated in terms of 
the current state variations, the Lagrange multiplier variations and the parameter 
variations with

As before, all that is required is to evaluate the Lagrange multiplier variations,

the current value of the independent variable can be evaluated using (4.54). This 
evaluation of the Lagrange multiplier variations is accomplished is a similar way 
to the method employed with the feedback strategy, allowing the value to change 
with time. As before, this evaluation is based on estimating the constraint vari­
ations in terms of known variations and variations of the Lagrange multipliers. 
This time additional variations of the constraints and state equations are taken 
with respect to  the parameters. Furthermore, equations (5.13) and (5.14) contain 
variations of the parameters which when substituted into variations of the con­
straints and state  equations adds the term s / /  N j ^ A z d a  -1- JVgA z  and Nv(a)Az  
to equations (4.40) and (4.41) respectively. Again, the constant term s are repre­
sented by an additional Lagrange multiplier, which will later be set to  unity. The 
state variations at any a can be evaluated by simulating over a suitable basis, as

solved backwards in time evaluates the matrices A'(s), C(s) and D(s).  These

(5.13)

Au |, =  -(/,„„ + V,)"1 (5.14)

as it is assumed that variations of the states and parameters are known, and that
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with tho evaluation of equation (4.42). but this tim e with the additional depen­
dence on the parameter variations. This new expression can be used to  evaluate 
estimates of the constraints in terms of the current state perturbations, the cur­
rent Lagrange multipliers, the parameter variations and the known variations of 
constraint integrands up until the current time, an expression of the form

In this expression, the matrices A/,(J) are evaluated using a similar procedure to 
the procedure described in the previous chapter. As before, 2’ cases are taken to 
evaluate 2’ Lagrange multiplier sets calculated using the slightly modified equation

In this final expression, a is the current independent variable and t denotes the 
Lagrange multiplier set, with all the other terms as previously defined. Again

measure variation, with the  set chosen to be the set minimising the performance 
measure variation which also satisfy the estimated constraints.

As this new control strategy is just an extension to the feedback approach, 
both of the modifications discused in section 4.4.2 can still be included. In par­
ticular, the reduction of large control variations just prior to clutch lock up can

_ _  =  A / , ( J ) f e ( i )  +  M2(s)6\(s) +  M3(s ) Ac +6Q
/A £ o ( i ) \
UfloW/ (5.15)

6^(3) =  - \ , [ \ j A h ( s ) A , } + A j + Mi(s)6x(s)  + M3(s)Az  +  const
(5.16)

which when substituted into equations (5.13) and (5.14) yields the result
Au(s)
AT(s)

(5.18)

the choice of Lagrange multiplier set is performed by substituting the Lagrange 
multipliers into equation (5.15), and a similar equation estimating the performance

193



be performed by pre-multiplying the control variations calculated using equations 
(5.17) and (5.18) by the same terms that the control variations in equations (4.52) 
and (4.53) have been multiplied by in equations (4.57) and (4.58).

In practice the evaluation of the matrices in equations (5.17) and (5.18) is 
achieved using exactly the same programs as in the solution of the feedback prob­
lem. but with the required modifications made to  the coding. In carrying out this 
computation, the model parameters are normalised by the non-perturbed param ­
eter values. The resulting control architect is identical to the architecture show- 
in figure 4.3, but with an additional known input, the parameter variations. This 
new control architecture is shown in figure 5.11. Note that, setting A z to zero 
in this new control strategy, is equivalent to using the original feedback control 
strategy.

In order to demonstrate the ability of this new control strategy to cope with 
parameter perturbations, simulations of this new control strategy are performed. 
For these simulations, the matrices required in the evaluation of the control vari­
ations and the choice of Lagrange multiplier set are calculated with the entries 
of the diagonal matrices Vo and Vt set to 104. The modification preventing large 
control variations just prior to clutch lock up is also implemented by setting w&u 
to 0.01. All the other parameters, such as normalisation constants are as used 
in the previous chapters. Again, as with the feedback simulations, the computer 
package ACSL is used to carry out these simulations, simulating the perturbed 
model equations, as well as calculating the control variations. As before, this last 
calculation only requires the on going evaluation of variations of the constraint 
integrals prior to the current time, and the multiplication of matrices. These m a­
trices are the matrices calculated prior to the simulation and are thus read from 
disk.

The two parameter perturbations presented are the parameter perturbations

194



studied in section 5.1, which are less than satisfactory with the feedback control 
strategy. In particular, perturbations of the engine m ap and to a lesser extent per­
turbations of the clutch plate friction produce unsatisfactory clutch engagement. 
In both cases, graphs of the clutch plate speeds, using the open loop control, us­
ing the feedback strategy and using the new feedback strategy utilising the known 
parameter perturbations, are shown in figures 5.12 and 5.13. From figure 5.12, 
the improvement in clutch performance for the perturbed engine map is dramatic, 
with much smoother engagement resulting with the new approach than with either 
the open loop controls or the feedback strategy. In fact, the engagement is seem­
ingly as good as the open loop optimal solution. Figure 5.13, also demonstrates 
an improvement when the parameter variations are used to improve the feedback 
control strategy. In this case, controlling clutch engagement with a worn clutch, 
the oscillations present after engagement with this new approach are noticeably 
less than with either the open loop control or the feedback control strategy. This 
improvement is not as dram atic as with the engine perturbation, but it is still 
felt to be worthwhile. Other small differences between feedback control, with and 
without making use of the parameter variations have also been identified. In par­
ticular, making use of the parameter variations tends to reduce the size of the 
control variations, especially when the modification, preventing large control vari­
ations just prior to  clutch lock up is not employed. In other words, it seems that 
the use of the param eter variations, makes the feedback control problem easier.

5.3 E stim ation  o f  param eter perturbations
In the previous section, it was demonstrated that knowledge of parameter per­
turbations, can be used to aid the control of clutch engagement. Unfortunately, 
such parameter perturbations might not be known, or might not be measurable, 
with no sensor available to measure a particular param eter. Even if such sensors
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do exist, the implementation of the sensors may be expensive, it might be prefer­
able to estimate the parameter variations from existing measurements. Existing 
theory does exist, which describe how this estimation m ight be conducted. For 
instance, extended Kalman filtering might be applicable, where the states and 
parameters are simultaneously estimated, performed by treating the parameters 
as additional states. This approach is well described in [71]. However, as an 
alternative approach, a different technique is presented, a technique which con­
centrates on estimating parameter variations which describe the perturbations of 
the model dynamics. As will be discused, these param eter variations might not 
be the real variations, but for the purpose of controlling clutch engagement this 
is unimportant.

5.3.1 Param eter estim ation  during clutch engagem ent
The aim of this new approach is to estimate the state variations, in terms of known 
variables and variations of the model parameters. This relationship can then be 
used to choose the parameter variations which predict the actual state variations in 
some optimal way. Such an approach is applicable over the entire operating range 
of the powertrain. However, as previously noted additional dynamics are present 
when the clutch plates are slipping, which allow param eters to be estimated that 
could not be estimated by examining the powertrain dynamics when the clutch is 
locked up. In particular, no estimation of clutch wear could be achieved. For this 
reason it is proposed than the estimation of the state dynamics is performed on an 
interval in time, when the clutch plates are slipping. In particular, during clutch 
engagement, with the engagement being controlled using the feedback control 
strategy.

As before, first variations of the state equations can be taken with respect to
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variations of the states, controls and model parameters by

=  frf>£  +  fu^lL  +  fz^Z. (5.19)

As before, 6x and 6u are first order variations of the states and controls, with 
6:  the first order variation of the actual parameter variations, which is not the 
same as A r, the known parameter variations used in the previous section. For 
generality, the control variations are calculated using an initial estimate of the 
parameter variations, Acn. This allows 6u to be eliminated in equation (5.19), 
by substituting in equation (5.13). This in turn allows the estim ate of the state 
equations

V 1
to be obtained, acquired by simulating the variations of the state  equation over 
a suitable basis, calculated for all s in the interval used for the parameter esti­
mation. In this last equation, Sig and SXg, are the state and Lagrange multiplier 
variations at the start of the estimation interval. The problem left is to calculate 
the Lagrange multiplier variations, enabling the state  variations to be estimated 
in terms of variations of model parameters, and known terms. The difficulty in 
evaluating the Lagrange multiplier variations is that the feedback control proce­
dure allows them alter in time, both in value and choice of Lagrange multiplier set. 
This Lagrange multiplier alteration, allows the feedback control strategy to adapt 
to unmodelled dynamics and external influences. However, if the perturbations in 
the model parameters adequately portray these effects, then the Lagrange mul­
tiplier set and value should remain constant or at least only vary slightly, when 
the true parameter perturbation is used to calculate the control variations. This 
of course will not be the case when an incorrect parameter estimation is used, 
as with poor initial estimations. However, it is still felt that with the assump-
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tion that the Lagrange multipliers remain constant, equation (5.20) is still a good 
approximation of the state variations. The difficulty with the variability of the 
Lagrange multiplier variations, can be helped by making the assumption that the 
choice of Lagrange multiplier set remains constant. This not only removes the 
computationally expensive choice of the Lagrange multiplier set but also helps 
simplify the algebra. This simplification is not unjustified, as from simulations of 
the feedback strategy it can be observed that for most engagement problems the 
bounds of all of the inequality constraints are reached over the entire interval [0,1] 
in s. Even when this is not the case, the restriction that the inequality constraints 
achieve their bounds, results in almost identical control variations. Hence, for 
this parameter estimation, the Lagrange multiplier set corresponding to non-zero 
Lagrange multipliers for all constraints is chosen. This is equivalent to setting 
the inequality constraints whose bounds are achieved by the open loop solution 
to equality constraints in the following feedback calculations.

With this last assumption, th e  required estimation of the state variations can 
be found by substituting equation (5.16), with s corresponding to the start of the 
estimation interval, into equation (5.20), resulting in the relationship

6x(s) = <t>'(s)6xo + *'(s)
r6Bo

1

\

+ fl(s)6z. (5.21)

In this equation, the terms 6Rq and refer to the integral of the constraint 
integrands up until the start of th e  estimation interval, and are assumed to be 
known. Now that the state variations are estimated, param eter variations are 
chosen so that the estimated variations remain as close to the actual state varia­
tions, as close as is possible. Closeness can be measured using the standard norm
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of continuous functions on a fixed interval, measured by

/  IIM O  -£ (* )  +  x*(0l|2«̂  =  [  T 2 ||<5£(s ) -  x(s) +  x*(s)||2 ds. (5.22)
J t \  J  S \

The two forms, question how the interval on which the estimation is conducted 
is defined. As the calculations are performed with s as the independent variable, 
si and Si are used for this definition. This also enables an interval to be chosen 
for which the clutch plates are slipping, by choosing [«1,52] C [0,1]. Substituting 
equation (5.21) into equation (5.22), differentiating with respect to 6z, and setting 
this derivative to zero, yields the equality condition

M 6 z  + N
/  6 £ o \

SBo
%A zq

V 1 /

=  r  t 2u t (i -  x m)ds•'Si

where M  
N

Jsi-rJ s i

r 2n Tnds
2 nTT 2n ds

(5.23)

(5.24)
(5.25)

that must be satisfied for 6z_ to be the parameter variations that minimise the 
distance of the estimated variations from the actual state variations. The diffi­
culty in using this equality condition to calculate an estimation of the parameter 
variations is that the matrix M  might be singular. Fortunately this problem can 
be overcome using the Moores-Penrose pseudo inverse, resulting in

6z = M + n  T 2n TU -  x ‘ )ds -  NJii

/  ¿£0 \¿Bo%
1 )

(5.26)

The use of the Moores-Penrose pseudo-inverse, means that the parameter esti­
mations calculated might not be the real param eter perturbations when M  is 
singular. However, in this case, the effect of the calculated perturbation and the 
real perturbation on the states are indistinguishable, and there use in correcting
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the control variations is just a valid. For the case when M  is non-singular, then 
the estimation should be an explicit estimation of the parameter variations.

It is questionable whether differences in all of the states is necessarily the 
best measure to  use to achieve the param eter estimates. For instance, differ­
ences between both clutch plate speeds only without including the differences 
between the o ther states, or differences between real system measurements, might 
be preferable. For this reason, the approach is generalised slightly, by examining 
the differences between the estimated and actual variations of

y = 9(x), (5.27)

where g is a differentiable function. W ith this generalisation, estimates of first 
variation of y can be calculated, by pre-multiplying estimates of the state varia­
tions in equation (5.21) by gx , the derivative of g with respect to the states. An 
expression describing the closeness of the estimated y, to the actual y, can be ob­
tained in a sim ilar way, which when differentiated with respect to the parameter 
variations, allows the new estimate

6z = M +
( bio \

2 _ ¿Eo/  T W g K n - g U - V d s - N *0*Jai Aso
 ̂ 1 )

where M  = f T 2QTgJgrUds
N =  i ‘2 T 2n TgTl9:•'*1 ds

(5.28)

(5.29)
(5.30)

of the param eter variations to be obtained, where the actual value, j/, is assumed 
to be known. Note that, in both parameter estimations, the term s M  and N  
can be calculated off-line, only being dependent on the predefined interval [s j ,^ ] , 
with the integral in equations (5.26) and (5.28), being calculated on-line.

As a sum m ary of the approach, a geometric interpretation of this estimation 
procedure is now given. This is done by representing the states, controls and
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model parameters as three vertices, describing co-ordinates in a 3-D space. In 
order to maintain this representation as simple as is possible, the  constraints and 
the initial parameter estim ates used in the calculation of the feedback controls, 
are ignored. W ith this representation, the calculation of the param eter estimates 
precedes as follows, with a diagram  of the representation shown in figure 5.14.

In this 3-D space, the s ta te  equations are represent by a surface or manifold. 
The calculation of the open loop optimal solution locates a point (u”, x*, 2“) on this 
manifold, the point which minimises the performance measure, with z* the model 
parameters used in this calculation. The feedback control strategy, describes a 
linear relationship between variations in the states and variations in the controls, 
and is thus represented by a hyperplane, passing through the open loop optimal 
solution. The intersection, of the  manifold describing the state equations and the 
hyperplane describing the feedback relationship, describes the set of all possible 
combinations of states, controls and model parameters, which can occur when 
the feedback control strategy is implemented. In reality, this intersection is a 
manifold of the same dimensions as the number of model param eters allowed to 
vary. Furthermore, as the feedback strategy is independent of the  model parameter 
perturbations, any point in th is manifold can be uniquely described by the model 
parameters. Hence, if the real model parameters are z', then a unique point 
(u(, ¡l ' , l ' ) ,  on this manifold, is determined. The parameter estim ation procedure, 
approximates this manifold of all possible points, by its tangent space a t the open 
loop optimal point ( u " , x ' , z m). The new point (¡<e*(, ¿ ' l , ¿ ’, t ) on this tangent space 
can then be located, the point closest to (w ',x ',z '), in some pre-defined way. The 
param eter estimate can now be read off as z " '.
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5.3.2 Sim ulations o f m odel param eter estim ation
In order to demonstrate the effectiveness of this estimation procedure, simulations 
of clutch engagement are conducted, with param eter perturbations applied and 
with the parameter estimation calculations performed. In particular, the simu­
lations of engagement with a worn engine, a worn clutch, a fully laden vehicle 
and of a hill-start, are conducted. These are four of the simulations used in sec­
tion 5.1 to motivate the param eter adaptation of the feedback strategy, and are 
repeated, this time with the integral in equation (5.26) calculated. In order to 
evaluate this integral, and the matrices M  and N ,  the interval [s i ,s2] must be 
chosen. For these simulations, the interval [0,0.9], was chosen. The last part of 
the interval for which the clutch is slipping is not used, as in this region, larger 
control variations are more likely and the assumption that the Lagrange multiplier 
remain constant is probably incorrect. Indeed, is has been found that using this 
region, can result is poor param eter estimates. The feedback control used, is as 
described in section 5.2, with initial param eter estimates being used to adapt the 
controls. The restriction that the inequality constraints remain on their bounds 
is also applied. In all other aspects the simulations are exactly as in section 5.1. 
For each simulation, the param eter estimation procedure is acquired using all of 
the states, as in equation (5.26).

For each parameter perturbation, three simulations are conducted. The first of 
feedback control, with the controls adjusted using no initial param eter variation, 
the second of feedback control using the correct param eter variation, and the 
final simulation of feedback control using the parameters estim ated in the first 
simulation. Graphs of the clutch plate speeds acquired from these simulations 
along with graphs of the clutch plate speeds when the open loop controls are 
used, are detailed in figures 5.15 and 5.16, for the two perturbations for which 
unadapted feedback control is unsatisfactory. For all three simulations, and for
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all four perturbations, estimates of the param eter variation are obtained. In this 
estimation it is assumed that the param eter which has been altered is the only 
param eter that can vary. In other words, the perturbed parameter, is the only 
param eter estimated. These parameter estim ates are detailed in table 5.1.

From the table, it can be seen that th e  estimation procedure produces good 
estimates for all of the parameter perturbations. In particular, the drop in engine 
torque is estim ated within 9% of its true value, the clutch wear within 16% of its 
true value, the vehicle mass within with 16% of its true  mass, and the gradient 
of the terrain within 3% of its true value. The discrepancies occur mainly as a 
result of the non-linearity of the states and model param eters in the state equa­
tions. Note that, the parameter expressing the gradient of the terrain is the only 
parameter with a linear relationship in the  state equations. This is the probable 
reason for its accurate estimation. It can also be seen th a t the effect of using ini­
tial param eter estimates in calculating the controls, on th e  calculated estimates is 
negligible. Figures 5.15 and 5.16, show how these estim ates can be used to correct 
any problems with the engagement dynamics, with the engagement using the es­
timated param eters as good as engagement using the actual parameter variations. 
In fact, there are no noticeable differences between these engagements for the two 
problematic perturbations.

Unfortunately, it is unlikely that just one parameter will vary. For this reason 
a further three simulations are conducted, of engagement with a worn engine, en­
gagement with a worn clutch, and of engagement with a worn engine with a fully 
laden vehicle, this time with four param eters estimated. In particular, with the 
engine and clutch wear parameters estim ated, along with the parameters measur­
ing the vehicle mass and the gradient of the  terrain. Again for each perturbation, 
three simulations are conducted, as with th e  single param eter estimation, with 
the estim ated values for the perturbations detailed in tables 5.2 - 5.4. From these
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tables, it can be seen that the estimation of the engine perturbation, is achieved, 
just as successfully as when one parameter is estimated. T he estimations of the 
other parameters, not perturbed, also remain small with the their values less the 
10% of typical variations of these parameters. The estim ation of the clutch wear 
is not as quite as accurate, as is shown in table 5.3, getting within 20% of the true 
values and with larger estimates of the non-perturbed param eters being found. 
However, the estimates are reasonable. For the perturbation of engine torque 
and of vehicle mass, again reasonable but not good estim ates are achieved, with 
the estimation of vehicle mass almost 40% out for the first estimation. For all 
three perturbations, engagement using the estim ated param eters located with the 
first simulation, is just as good as with engagement using the  actual parameter 
perturbations, as shown in figures 5.17 - 5.19.

As a final investigation, simulations of clutch engagement with a worn engine 
and with the initial engine flywheel speed lowered to 175rad/s ,  are conducted, in 
order to dem onstrate param eter estimations under state perturbations. For this 
case, the param eter estimation is poorer, not in estimating the  engine wear, but in 
estimating the other parameters, as shown in table 5.5. In particular, the vehicle 
mass is estim ated 10% lighter than it is, with the gradient of the  terrain estimated 
at a 1:40 up hill. The difficulty with this estim ation, is th a t th e  effect of a heavier 
vehicle and of an up hill gradient on the state  dynamics are very similar. This 
means that in essence the lighter vehicle estim ate cancels out with the up hill 
gradient estim ate in the adaptation of the feedback controls. Hence, the use of 
these estimates in controlling clutch engagement, is still valid, with just as good 
engagement resulting, as shown in figure 5.20.

Other simulations, using just the clutch plate speeds to  estim ate the param­
eters have also been conducted. Initial results suggested th a t there was little 
difference in the ability of the procedure to  estim ate the parameter variations,
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with more work being required to firmly establish this hypotheses. Further work, 
identifying the minimal state information enabling successful parameter estim a­
tion is felt appropriate.

To conclude, the  estimation procedure acquires good estimates in most param ­
eter perturbations simulated. Furthermore, even when the estimates are slightly 
different from th e  real values, the use of them to modify the feedback controls is 
just as effective.

5.4 A d a p tiv e /se lf-lea rn in g  control
The previous section has shown th a t good estimates of the model parameters can 
be found. Using the technique described in the previous section, one estimate 
can be achieved for each clutch engagement. Furthermore, it has been shown 
that this param eter estimate can be used to improve clutch engagement. For 
the simulations, one estimation from a single clutch engagement was sufficient to 
correct the feedback strategy. In practice, a variety of variations are present, all 
varying at different rates, making the task more complex. For this reason, a brief 
outline of techniques for creating adaptive or self-learning control strategies from 
these estimations is discused.

As mentioned, in reality, variations of states, other param eter variations, and 
of different external influences occur from one clutch engagement to  another. This 
will cause the estim ations of any particular model parameter, to  vary with such 
variations, even if its value is static. However, its true underlying value may also 
change in time. Hence, the problem is to extract this trend from any sequence of 
estimated model parameters, in order to obtain accurate estim ates of the model 
parameters. These estimates can then be used to modify clutch engagement. One 
way of achieving this is to update a running estim ate of a model parameter with 
the estimates acquired from each clutch engagement. Typically this can be done
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using to formula
n̂eur (1 A)c0/J *f ^*eji (5.31)

where A £ [0,1] is a relaxation param eter and ze,t is a parameter estim ation ac­
quired from a single clutch engagement. In essence, this filters out, high frequency 
variations, higher than would be expected for the param eter in question. In sec­
tion 5.1, the model parameters where grouped into classes describing how fast 
they can vary. This classing can now be used to design values of the relaxation 
parameters for each model param eter being estimated. For instance, for:

•  STATIC model parameters, a small relaxation parameter could be chosen, 
just small enough to filter out all dynamics present in the powertrain, but 
large enough that param eter learning is not excessively long,

•  SLOW model parameters, a small relaxation parameter could again be cho­
sen, possible slightly larger, but probably very similar in m agnitude to the 
value for STATIC model param eters,

•  DISCRETE model parameters, a  larger value needs to be chosen during the 
first part a journey, with the value decreasing for lengthy journeys.

Note that in practise, that the relaxation parameter is not only dependent on the 
speed of the dynamics but on the intervals between clutch engagements. Also 
note, that the first order discrete adaptation, equation (5.31), can be generalised 
to higher order equations, using discrete filter theory, to design a low pass filter.

There is still a difficulty with FAST model parameters. Recall from section 5.1, 
that these model parameters vary sufficiently fast, that from one clutch engage­
ment to another, their value appears to  be uncorrelated. Even if the relaxation 
parameter is set to  1, equivalent to correcting engagement with the previous es­
timate, the estim ate used may be significantly different from its true value. A 
possible solution to  this is to carry out more than one estimation for ever clutch
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engagement. The theory used in calculating these estimates can use any interval 
during clutch engagement. This allows the value used in correcting clutch engage­
ment to be updated  during the engagement, by partitioning the interval [0,1] in 
s into several intervals on which parameters estimation is performed. Initial sim­
ulations, suggest th a t this approach might work, although more work is required 
the establish th is approach.

To conclude, it is felt that the param eter adaptation and estimation techniques 
presented in th is chapter, can be used to design adaptive or self-learning clutch 
engagement controllers.
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O p e n  lo o p  c lu tc h  p la te  s p e e d s

Figure 5.1: Clutch performance of feedback control wwith a heavier flywheel in­
ertia

Open loop clutch plate speeds

Figure 5.2: Clutch performance of feedback control with a heavier gearbox input 
shaft
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O p e n  lo o p  c lu tc h  p la te  s p e e d s

Figure 5.3: Clutch performance of feedback control with a larger gearbox 1st gear 
ratio

Open loop clutch plate speeds

Figure 5.4: Clutch performance of feedback control with reduced clutch plate 
friction
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O p e n  lo o p  c l u t c h  p la te  s p e e d s

Figure 5.5: Clutch performance of feedback control with a slower actuator

Open loop clutch plate speeds

Figure 5.6: Clutch performance of feedback control with an engine producing less 
torque than expected
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O p e n  l o o p  c lu tc h  p la te  s p e e d s

Figure 5.7: Clutch performance of feedback control for a fully laden vehicle

Open loop clutch plate speeds

Figure 5.8: Clutch performance of feedback control up a 1 : 10 gradient
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O p e n  l o o p  c lu tc h  p la te  s p e e d s

Figure 5.9: C lutch performance of feedback control down a 1 : 10 gradient

Open loop clutch plate speeds

Figure 5.10: C lutch performance of feedback control with less damping
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Figure 5.11: Optimal feedback control architecture with known param eter per­
turbations
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O p e n  l o o p  c lu tc h  p la te  s p e e d s

Closed loop clutch plate speeds, with known parameter varia tions

Figure 5.12: Clutch performance with known param eter variations of an engine 
producing less torque than expected
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5 0 0
O p e n  lo o p  c lu tc h  p la te  sp e e d s

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter varia tions

Figure 5.13: Clutch performance with known param eter variations of engagement 
with reduced clutch plate friction
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Figure 5.14: Geometrie interpretation of model parameter estimation
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O p e n  lo o p  c lu tc h  p la te  s p e e d s

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter van ation

Closed loop clutch plate speeds, with parameter estimation

F ig u re  5 .1 5 : F e e d b a c k  c o n t r o l  o f  a n  e n g in e  p r o d u c in g  le s s  t o r q u e  t h a n  e x p e c t e d ,
u s in g  e s t im a t e d  p a r a m e t e r  v a r ia t io n s
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O p e n  lo o p  c lu tc h  p la te  sp e ed s

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter van ation

Closed loop clutch plate speeds, with parameter estimation

Figure 5.16: Feedback control with a worn clutch, using estimated param eter 
variations
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O p e n  lo o p  c lu tc h  p la te  sp e e d s

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter van ation

Closed loop clutch plate speeds, with parameter estimation

F i g u r e  5 .1 7 : F e e d b a c k  c o n t r o l  o f  a n  e n g in e  p r o d u c in g  le ss  t o r q u e  t h a n  e x p e c te d ,
u s in g  t h e  f o u r  p a r a m e t e r s  e s t im a t e d

2 1 9



O p e n  lo o p  c lu tc h  p la te  s p e e d s

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter vari ation

Closed loop clutch plate speeds, with parameter estimation

Time (sec)
Figure 5.18: Feedback control with a worn clutch, using the four parameters 
estimated
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O p e n  lo o p  c lu tc h  p la te  sp e e d s

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter vari ation

Closed loop clutch plate speeds, with parameter estimation

F ig u r e  5 .1 9 : F e e d b a c k  c o n tro l  w i th  a  w o rn  e n g in e  a n d  a  fu l ly  la d e n  v e h ic le ,  u s in g
t h e  f o u r  p a r a m e t e r s  e s t i m a t e d
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O p e n  lo o p  d u t c h  p la te  s p e e d s

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with estimated parameter v ariations

Figure 5.20: Feedback control of an engine producing less torque than expected, 
using the four parameters estim ated and with an initial flywheel perturbation
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Variation Actual Estim ated variation using
Description Symbol Units variation no initial actual estimated

estim ate variation variation
Worn engine - - -0.1000 -0.0996 -0.1083 -0.1083
Worn clutch /' - -0.1000 -0.0955 -0.1158 -0.1151

Fully laden vehicle J 4 k g m 2 2.0000 1.6866 1.6845 1.6822
Hill start a N m 100.7190 100.0245 98.4789 98.4604

Table 5.1: Estimates of param eter perturbations, with just one parameter esti­
mated

Description Worn engine Worn clutch Fully laden 
vehicle

Hill start

Symbol - J4 a
Units - - kgm 2 N m
True variation -0.1000 0.0000 0.0000 0.0000
Estim ated variations with feed­
back

-0.1015 0.0006 -0.2599 7.2413

Estim ated variations with feed­
back using true variations

-0.1029 0.0084 0.0996 -4.9124

Estim ated variations with feed­
back using first estimate

-0.1032 0.0086 0.1063 -5.1487

Table 5.2: Estimates of the engine torque perturbation, with four parameters 
estim ated
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Description Worn engine Worn clutch Fully laden 
vehicle

Hill start

Symbol - J4 a
Units - - kgm 2 N m
True variation 0.0000 -0.1000 0.0000 0.0000
Estimated variations with feed­
back

0.0176 -0.0847 0.2937 -0.5063

Estimated variations with feed­
back using true variations

0.0069 -0.1104 -0.1778 8.0496

Estimated variations with feed­
back using first estimate

0.0063 -0.1106 -0.1890 8.2833

Table 5.3: Estimates of the clutch wear perturbation, with four parameters esti­
mated

Description Worn engine Worn clutch Fully laden 
vehicle

Hill start

Symbol - Ja a
Units - - kgm 2 N m
True variation - 0.1000 0.0000 2.0000 0.0000
Estimated variations with feed­
back

-0.0982 0.0007 1.2517 9.0650

Estimated variations with feed­
back using true variations

-0.0994 0.0072 1.5756 -3.2837

Estimated variations with feed­
back using first estimate

-0.1008 0.0068 1.5779 -3.9517

Table 5.4: Estimates of the engine wear and vehicle mass perturbation, with four 
parameters estimated
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Description Worn engine Worn clutch Fully laden Hill start
vehicle

Symbol - J4 a
Units - - kgm 2 N m
True variation -0.1000 0.0000 0.0000 0.0000
Estimated variations with feed­
back

-0.1099 0.0047 -0.7995 23.0561

Table 5.5: Estimates of the engine torque perturbation, w ith four parameters 
estimated and with an initial engine flywheel perturbation
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C hapter 6 
C onclusions
Most of the aims of the thesis have been completed successfully. In particular:

1. a formal m athematical investigation of clutch engagement has been con­
ducted:

2. the notion of good clutch engagement has been quantified:

3. a procedure to calculate control strategies that result in good clutch engage­
ment has been constructed;

4. and feedback control strategies, that it is felt might be needed in the im­
plementation of clutch control, which cope with perturbations of the model 
states and parameters, have been developed.

The result, is the design of a clutch engagement controller, which under simulation, 
successfully engages the clutch for a variety of undesirable situations. In this 
thesis, the worse case problem of engagement from rest, and quite often with just 
one control active has been concentrated on, to identify, as fully as is possible, 
the limitations of any control strategy. However, the theory is applicable to any 
clutch engagement problem, such as clutch engagement during gear change.

It is is felt that there are two uses of this research in the practical implemen­
tation of a clutch engagement controller.
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The first use of this research, is to  use the designed control strategies, as a 
design aiti in designing simple clutch engagement control laws. These controls laws 
might consist of simple rules, with techniques such as fuzzy logic, describing how to 
implement such rule based control strategies. For instance, the open loop control 
calculation can be used to identify characteristics, which any rule based algorithm 
must ensure, such as the reduction in clutch torque capacity at the point of clutch 
lock up. The feedback control strategy and model parameter adaptation can also 
be used to design simple control laws. For instance, the simulations suggest that 
changes in the flywheel speed are best coped with by varying the engine torque, 
especially when the likelihood of stalling is high. Simulations, might also enable 
rules to be developed suggesting how best to cope with param eter changes such 
as clutch wear.

The second use of this research is to take the designed control strategies forward 
to direct implementation. The possibility of implementing the control strategies 
was envisaged in there development and has influenced their design. This direct 
implementation can be carried out in th ree progressive stages:

•  the implementation of the open loop controls,

•  the implementation of the feedback control strategy,

•  and the implementation of an adaptive or self-learning clutch controller,

with the requirements of each step now outlined.
As mentioned, good open loop control strategies can be calculated for a variety 

of different engagement problems. Assuming th a t each engagement problem can 
be described by known variables, such as the initial flywheel speed in the case 
of engagement from rest, then a series of open loop controls can be calculated, 
describing how best to engage the clutch for each different engagement problem. 
By varying these variables describing th e  engagement problem, open loop controls
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can be found for a class of clutch engagement problem. Any element of the 
class can then be described from these calculated open loop controls, possible by 
using interpolation or by regressing some function through the calculated controls. 
There is a slight difficulty, due to the non-uniqueness of the solution, with the 
solution dependent on the initial control strategy used in the algorithm to calculate 
the open loop controls. This can to a certain extent be overcome by using the same 
initial control strategy for all of the calculated open loop control strategies. The 
data required to evaluate any open loop control strategy in an engagement class, 
whether variables describing a function regressed through the  data or the raw data 
itself, is then required to be stored in some memory on board the vehicle. This then 
allows the required open loop control strategy to be located from this memory by 
an autom otive controller, if it is assumed that the variables required to describe 
the engagement problem are known. For instance, in the case of engagement 
from rest, the initial engine flywheel speed can be used to  determine the open 
loop controls. This approach is also valid for variations in model parameters, 
with open loop controls being calculated for different values of model parameters. 
The difficulty with this is th a t the actual model param eters must be known and 
the the  size of the data required to be stored increases exponentially with the 
number of variables which the open loop controls are dependent on. Furthermore, 
the simulations suggest th a t if incorrect values of the variables describing the 
engagement problem are used to calculate the open loop controls then poor clutch 
engagement might result. There is also the problem th a t the simplistic model 
used in the calculation of the open loop controls, might fail to fully represent the 
dynamics of clutch engagement.

T he implementation of the feedback control strategy is similar. Again several 
open loop control strategies can be calculated, describing a class of engagement 
problems. However, this tim e, due to the ability of the feedback algorithm to
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cope with certain perturbations, the number of open loop controls calculated for 
each class of engagement problem can be dramatically reduced. It even might be 
possible to successfully describe a class of engagement problems by just one typical 
engagement problem. For each set of open loop controls, the required feedback 
matrices can then be calculated, with both the open loops controls and feedback 
matrices for any given engagement problem, again determined by techniques such 
as interpolation or regression. Again data describing the feedback matrices and 
open loop controls needs to  be stored in memory. Again, variables describing 
the problem, if present, are required, along with full model state  information. 
Techniques such as Kalman filtering exist for calculating such state information 
from system measurements. However, these techniques do require the system to 
be observable. In the case of clutch engagement, as the dynamics either side of the 
powertrain are  decoupled whilst the clutch is slipping, this means that at least two 
measurements of the powertrain dynamics from either side of the clutch will be 
required. The memory requirement are also much higher for the  feedback control 
strategy. If tit is the num ber of time points used to  store the controls in s, n is 
the number of states, q is the  number constraints and m is the number of controls, 
then the storage requirement of a single open loop control is m x  n r  floating point 
numbers, whilst the storage of the feedback matrices is m  x n j  x  (n + q + 1) floating 
point numbers, assuming th a t their is no choice of Lagrange multipliers made. If 
the cases of different Lagrange multiplier sets are considered, then this increases 
by a further m ultiple of 2?1, where there are qi inequality constraints, along with 
the addition of matrices estim ating the constraint variations and performance 
measure variations.

The implementation, of an adaptive or self-learning controller, requires the 
implementation of the feedback control strategy described in section 5.2, along 
with an algorithm for estim ating the parameters variations, possibly as described
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in section 5.4. The implementation of the feedback control is as previously de­
scribed with the an increase in size of the stored matrices, due to additional terms 
relating to alterations due to  parameter variations. In particular, the storage re­
quirements of each feedback m atrix increases to m x  n? x (n +  q +  1 +  p) floating 
point numbers, where p is th e  number of model parameters adapted for.

On reflection, the use of this research as a design aid is more appropriate. 
The reasoning behind this is th a t in any clutch engagement implementation, the 
conceived benefits must out weigh the costs of the implementation. With the 
direct implementation, requirements such as full state estimation and large mem­
ory units might make the im plem entation too expensive. However, in the future, 
if more control devises are implemented on automotive vehicles, these difficulties 
may reduce, with components becoming cheaper and with the required powertrain 
states being calculated for o ther control systems.

There is one other im portant use of this research. The optimisation approach 
used to  design clutch enagem ent controllers, is a general non-linear technique 
applicable to other other control problems. In applying this theory to the clutch 
engagement problem a num ber of technical difficulties have been solved, such as 
problems with the free term inal time in the optimal control problem and the 
calculation of the feedback control strategy with variable Lagrange multipliers. 
Other problems might have sim ilar, if not identical problems, solutions to which 
might be provided by this research.
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