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summary

This thesis contains a formal mathematical investigation of clutch engagement
in automotive vehicles. This investigation is conducted by developing a model of
an automotive powertrain, and investigating undesirable effects that can occur in
clutch engagement. This naturally leads to the development of a multi-objective
optimal control problem describing how to best to engage a clutch. An algorithm
for solving this optimal control problem is then presented. Arguments for the de-
velopment of a feedback control strategy are then discussed, with the construction
of such a feedback strategy, along with the computations required to evaluate the
feedback controls detailed. A further extension, of adapting the feedback controls,
to cope with powertrain model perturbations then follows, along with a method
of estimating such perturbations. Finally, the use of this research in implementing
clutch engagement control is outlined. Throughout the thesis, the various control
strategies designed are evaluated by carry out simulations of models representing
the powertrains of two different family cars.



Chapter 1
Introduction

The ability to automatically control processes performing desired tasks to a satis-
factory standard is an important problem that has been addressed in one form or
another for many years. Over a century ago, steam engines were regulated using
Watt flying ball governors and arc lamps were controlled using electromagnetic
devices [1]. Later, at the beginning of this century, controllers which were more
conventional, were manufactured for the purpose of regulating industrial processes
[2]. In these early controllers it is questionable whether much theory was used in
the design process.

The theory of controlling systems has been an area of active research for many
years. Early work tended to concentrate on the stability of processes often by
examining the characteristic equation. In the 1930’s, further performance assess-
ment techniques, analysing the frequency response of systems were developed by
Bode at the Bell Laboratories. Subsequent work through the 1940’s and 1950’
continued to concentrate on performance assessment techniques, generating meth-
ods which are generally referred to as classical control theory. In the late 1950'
and throughout the 19G0's a new form of state space control or modern con-
trol theory was developed. This included the development of concepts such as
observability and controllability, observer theory and optimal control theory, in
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which controllers were designed using predominantly theoretical techniques, and
less engineering intuition. These techniques are very much model based, requir-
ing modelling techniques such as system identification and parameter estimation.
Since the development of state space theory, a number of other control topics
have been studied, notable examples of which are the work on adaptive and learn-
ing control and intelligent control. However, the most significant advances have
been made in the problem of robust control, the problem of controlling uncertain
systems. A more detailed history of control engineering can be found in [3].
Classical control theory includes a variety of performance assessment tech-
niques used as design aids for linear system controllers, which are normally single
input single output (S1SO). Most of the techniques involve interpreting graphical
representations of the system dynamics and require the intuition and experience
of control engineers in controller design. For example, systems can be examined
by analysing their step and impulse responses. Time response features, such as
percentage overshoot, settling time, steady state error, and System gain can be
used to assess controller performance. Other important quantities can be inferred
from these time responses, such as dead time and the system time constant. Fre-
quency response techniques were developed in the telecommunications field at the
Bell Laboratories, and describe how the gain and phase lag of oscillating signals
passing through the system vary as a function of frequency. Bode developed a
method of plotting these variations, in which gain and frequency are scaled log-
arithmically, and can be used to ascertain System characteristics such as cut ofT
frequencies and system order. The graph of gain against phase lag, again with
the gain scaled logarithmically, is accredited to N.B.Nichols. A further graphical
technique useful in stability assessment was developed by Nyquist [4], in which
the gain and phase lag of the frequency responses are plotted in polar coordinates.
Subsequent analysis of these graphs by examining the open loop poles, zeros and



the number of encirclements of the point (1,-180°), often referred as the -1 point,
indicates whether the closed loop system is stable or unstable. An understanding
of how the controller affects the Nyquist plot can be used in their design. A fur-
ther feature of these plots is that the distance between the nyquist plot and the -1
point is @ measure of closed loop robustness. Nyquist plots for single input single
output (SISO) systems can be generalised for multi-input multi-output (MIMOQ).
W.R.Evans [5] developed yet another graphical technique, known as root locus
plots, which depict how the poles of a feedback system move as the gain of the
controller varies. All of the above graphical techniques are particularly useful
in controller design, using modern computer graphics, allowing the plots to be
quickly generated, understood and analysed. An example of a software package
which performs such tasks is the MATLAB control toolbox.

Prior to the introduction of state space control theory, other algebraic assess-
ment techniques were available, such as stability assessment by examining the
roots of the characteristic equation. These roots are not always easy to calculate,
however, a procedure referred to as the Routh-Hurwitz method gives an indication
of system stability, and can be extended to investigate the conditions which would
cause the onset of instability. Lyapunov [6] developed a further general non-linear
stability analysis method in which stability is guaranteed if a Lyapunov function
exists. Unfortunately, finding such a Lyapunov function is often difficult and no
conclusion can be drawn if such a function is not located.

State space control theory allows the analysis and control of general multi-
input multi-output (MIMO) systems. This theory has particular relevance to lin-
ear systems because the notation allows the model to be conveniently expressed,
allowing straight forward algebraic techniques for analysing such systems. Exam-
ples of the theory that has been developed for linear systems include: notions such
as controllability and observability; the placement of closed loop poles; the esti-



illation of system states from system measurements; and stability assessment by
calculating eigenvalues, which are all performed using simple matrix operations.
One of the most important contributions to state space control theory was the
development of optimal control theory, such as the maximum principle of Pon-
tryagin [7] and the dynamic programming of Bellman [8], In general, the solution
of the resulting equations is non-trivial. However, for some linear problems with
quadratic costs, an optimal control problem referred to as the Linear Quadratic
Regulator (LQR) problem, can be solved by solving a matrix Riccati equation. An
extension to the LQR problem, known as the Linear Quadratic Guassian (LQG)
problem, uses a Kalman filter [9], to estimate the system states in the presence
of noise. This filter is designed using optimal stochastic control and forms a dual
problem to the LQR problem. The concepts and theory of optimal control are
well explained by Athans and Fall) [10].

Since the development of modern state space control theory a number of control
topics have been investigated. Three of the most prevalent control topics are now
outlined.

Adaptive and learning control aims to improve upon traditional techniques by
the use of on-line measurements in addition to a priori knowledge. Such control
strategies are necessary for control problems with uncertainties and/or proper-
ties that vary in time. A universal definition of adaptive control is lacking, but
broadly speaking an adaptive controller is a control strategy where a controller
Is automatically adjusted by dynamics which are slower than the dynamics of
the controller. These adjustments react to internal or environmental variations
which may occur. The problem of adaptive control is that the resulting control
systems are inherently non-linear, resulting in slow progress in the development
of adaptive control theory, with much effort addressed to analysing the stability
of the adaptive processes. An introduction to adaptive control which describes
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many of the different approaches and techniques which exist can be found in [L1],
Learning control embraces adaptive control but tends to make greater use of past
and present information in order to predict ‘good’ control strategies from mea-
sured values rather than react to them. An introduction to learning control was
recently presented at a symposium [12], with some of the theory used in such
control strategies found in [13].

Intelligent control is the term referring to control techniques inspired by ob-
servations of biological systems, and tend to use methods borrowed from the field
of artificial intelligence. This area of control has particular importance to the
problem of controlling systems requiring autonomy, the ability of self government
as described in [14]. A common way of constructing such an autonomous system
IS by using a hierarchical structure. For instance a standard PID controller can
be automatically tuned by some higher level devise, in order to cope with system
variations. This devise can then be supervised by an additional level in order to
prevent the system encroaching into undesirable operating conditions, which can
be in turn supervised by yet another level which might be designed to cope with
system failures. Intelligent control in its present form includes the three areas:
fuzzy logic; neural networks; and expert systems.

Fuzzy logic provides a deterministic environment for vague linguistic concepts.
In this environment, operations which are extensions to set operations can be per-
formed, and are used in the operation of fuzzy controllers. The strength of this
fuzzy technique is that it formalises the knowledge and experience of control engi-
neers, transferring this expertise into the control strategy, in essence transferring
the intelligence. An introduction to fuzzy control can be found in [15] with a
recent application of such techniques to automotive control found in [16].

Neural networks, have a parallel architecture, inspired by the interconnections
of neurons in hiological nervous systems. They consist of nodes which are simple
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non-linear functions connected via weights to form a network, allowing the network
to he trained to perforin a desired task by adjusting the weights. Described in
[17) and [18] are applications of neural networks to control.

An expert systems is a term referring to a computer system imitating a human
expert, an expert in performing a particular task. A common example are systems
that are devised to imitate a medical doctor, which try to diagnose a patient’s
iliness. Expert systems consist of two separate units, a knowledge base supplied
by human experts (perhaps containing a list of all illnesses and their symptoms)
and an inference engine, which is a program which uses this knowledge to make
decisions (for instance by asking questions about the patient the program decides
the most probable illness). For control purposes these techniques have particular
importance to controlling systems too complex to model, designing controllers and
fault detection as explained in [19].

In recent years, considerable progress has been made in robust control, the
problem of designing controllers to achieve performance objectives for uncertain
systems. In most robust control theories, the uncertainty of the system is ex-
pressed by treating the model as an element of a set of models. Many different
methods of expressing this set have been used and as a result many different
branches of robust control have been developed. For instance, the system model
set could be represented by a system characteristic equation, with coefficients
bounded by upper and lower limits. In this case the stability of this model set
can be assessed using Kharitonov polynomials [20]. Another method of expressing
the model set is to use differential inclusions, in which the state space model is
extended by allowing the state derivatives to be an element of a set dependent on
the states, the controls and possibly time. An example of some stability theory
resulting from this model set form can be found in [21], The most abundant ro-
bust control theory is referred to as robust Hx control theory, in which a transfer
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function representing the model is perturbed by a parameter, bounded by an //d
norm. Performance is expressed by a tracking condition, where a weighted sensi-
tivity function is again bounded by an HOc norm. Other criteria such as control
effort can also be expressed using //* bounds, with weights in the problem for-
mulation being used to trade ofT performance against robustness. Having defined
the problem, if a solution exists, it can be found using an algorithm known as
T-iteration. The concepts and ideas of Hoo robust control are described in [22],
with details of algebraic solution techniques described in [23]. Other more recent
state space solutions to the standard problem can be found in [24], where the
solution is obtained by solving two Riccati equations. There are a large number
of different ways in which the parameter perturbations can be included in the sys-
tem transfer function. These different approaches have resulted in the existence
of many different robust ~ control theories. One well known method for solving
MIMO robust control problem was initially proposed by McFarlane and Glover
[25], in which, due to the form in which the parameter perturbation is included,
the complexity of the calculations is reduced. Recently the ideas of robust //
control theory have been extended to cope with structured bounds of the pertur-
bation parameters. The concepts and theory of these techniques, referred to as
[¢-synthesis, can be found in [26]. For a detailed hibliography on robust control
refer to [27] and [28],

This thesis is concerned with applying this wealth of control theory to control
problems in automotive engineering. To date most effort has been applied to the
designing of engine management systems, although many other problems have
been successfully examined. As a brief review of automotive control this area is
subdivided into three groups: suspension control; steering control; and propulsion
control. A good reference source for automotive control is [29].

Suspension control is concerned with dynamic adjustments of the suspension
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system in order to improve vehicle ride and handling. In its most complicated
form, referred to as active suspension, hydraulic or pneumatic devices are in-
Cluded in the suspension system which may be connected in parallel or series with
a conventional or passive system components. These additional devices generate
external power which can be used to stiffen or slacken the suspension system as
required. Semi-active suspension system is the term referred to the dynamic ad-
justments of a passive suspension systems characteristics. For instance the damp-
ing can be varied by adjusting an aperture restricting the flow of oil in a damping
strut. Two other terms, referring to suspension control systems are, slow-active
suspension which refers to an active suspension system with a low handwidth so as
not to excite particular vibration modes and roll control. A further application of
control theory in vehicle suspensions is the problem of levelling the vehicle under
variable loading, using self-levelling devices. A recent thesis [30] has looked at
suspension control and contains more details including a review and the history
of suspension control.

A driver can be assisted in steering a vehicle with the use of rear wheel steering
control. This is to say that the rear wheels are steered by a control system, with
the rear wheel steering angle determined from the front wheel steering angle,
steered by the driver, and possibly other variables such as vehicle speed. For
instance, for large front wheel steering angles which normally occur at low vehicle
speeds, if the rear wheels steer in the opposite direction to the front wheels then
the manoeverability of the vehicle can be improved. On the other hand, for small
front wheel steering angles which normally occur at high vehicle speeds, if the
rear wheels steer in the same direction as the front wheels then the yawing of the
vehicle can be reduced. An example of such a control strategy can be found in
[31 Another higher level steering control problem is to design a control system
to track a vehicle along a path, possibly defined by a white line of a submerged
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electric cable. An recent example of literature addressing this problem is [32].

Propulsion control, reviews of which can be found in [33] and [34], is the largest
area of automotive control and can be subdivided into engine control, transmission
control and braking control.

Engine management systems, control the complex combustion and mechanical
processes that occur in the engine and arise from the need to design engines with
smooth and reliable performance, and to meet emission regulations. Examples of
individual control tasks in engine management systems include: the control of the
airffuel ratio prior to combustion, sometimes called lambda control; the control
of engine idle speed allowing the engine to idle at lower speeds; the minimisation
of fuel consumption; and the control of ignition. Details of some of these control
systems can be found in [35] and [3].

Transmission control deals with the problem of scheduling the ratio hetween
the engine flywheel and the driveshaft, in order to influence the engine speed and
the torque being transmitted to the tyres. This can be accomplished using ei-
ther an automatic or semi-automatic transmission with the gear ratios governed
by either a conventional discrete gearbox, or a continuously variable transmission
(CVT). With a conventional gearbox, gear changes must be scheduled, the ‘when
to change problem’, and whilst the gear change is effected, the engine has to he
either fully or partially disengaged from the gearbox using a clutch, fluid coupling
or torque converter, the *how to change’ problem. Examples of research, investi-
gating this problem can be found in [37] and [38]. With a CVT the disengagement
IS unnecessary apart from when idling at rest. However, with the greater avail-
ability of gear ratios and the non-linearity of CVTs, the problem of choosing the
gear ratio is more complex, and has been addressed in a recent thesis [3!)]. The
disconnection of the engine from the transmission using a friction clutch, requires
the clutch to disengage and reengage smoothly bringing the clutch plates speeds
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back together, whilst preventing large torque variations. Many torque converters
also have bypass clutches which lockup when cruising so as to prevent energy loss
through the torque converter, which also needs controlling.

Braking control is concerned with using the braking system, either to prevent
the wheels locking up under braking, known as so called anti-lock breaking sys-
tem (ABS). or to prevent the tyres spinning under acceleration, so called traction
control. Such systems normally consist of rule based algorithm reacting to rapid
changes in the wheel dynamics. For instance, for traction control, a sudden in-
crease in the speed of a particular wheel could be corrected by increasing the brake
pressure to that wheel.

An additional propulsion control problem which mainly involves engine control
but which might also require transmission control is cruise control, in which the
speed of the vehicle is maintained at a reference value by controlling the engine
throttle. An example of this problem can be found in [40].

Two further areas of automotive control that have not yet been mentioned
are: the control of auxiliary systems such as air conditioning systems; and the
hierarchical problem of combining propulsion, steering and suspension control to
manage the total motion of the vehicle [41].

This thesis addresses the task of automatically controlling a friction plate
clutch. A typical friction plate clutch, consists of high friction plate attached to
the gear hox input shaft which is squeezed between two other plates attached
to the flywheel. The force squeezing the plates together is exerted by diaphragm
springs which are released by a release bearing when the clutch pedal is depressed.
There are three distinct problems in controlling the dynamics of such a clutch.
[ hese problems are:

1 to engage the clutch plates,
2. to disengage the clutch plates,
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3. and to control the slipping of the clutch plates allowing the vehicle to travel
at very low speeds.

The first two problems are similar, with the engagement problem being more
difficult as engine stalling has to be avoided and driveline oscillation excitation
occurs at the point of clutch lock up, as will be seen in Chapter 2. The final
problem is that of causing the vehicle speed to follow a reference value. In this
thesis the first problem, the engagement problem is addressed. To date, little
work seems to have been done in the field of clutch control, with most of the work
that has been done using intuitive ideas which fail to consider the problem in a
systematic way. For instance, one technique previously used to engage a clutch
[42], is to initially engage the clutch quickly, then slowly, then quickly again, which
ensures that at the point of clutch lock up the torque being transmitted through
the clutch is not too large, preventing large transient oscillations. The most
popular technique used to automatically engage a clutch is a technique known
as centrifugal clutch control, where the clutch torque pressure is a function of
engine flywheel speed. This centrifugal approach has been studied in the context
of conventional clutches and torque converter bypass clutches [43] and [44]. The
idea behind this technique is that, assuming that the torque being transmitted
through the clutch is proportional to pressure exerted between the clutch plates,
then the clutch torque can be chosen so that:

« for low engine flywheel speeds the engine torque is greater than the clutch
torque,

« for high engine flywheel speeds the engine torque is smaller than the clutch
torque,

« and for an acceptable engine flywheel speed operating range the clutch
torque approximates the engine torque.
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This ensures that: for low engine speeds the resultant torque on the flywheel is
positive: for high engine flywheel speeds it is negative; and for acceptable engine
speeds the resultant torque is small. This ensures that the engine flywheel speed
moves into the acceptable range if it is outside this range. Hence, stalling can be
prevented by preventing the engine speed from falling excessively. An example of
such a piecewise linear function of clutch torque against engine flywheel speed is
shown in figure 1.1, with this approach being well described by [45]. Refinements
to this method can be made by including additional terms such as rate of engine
flywheel speed change and throttle angle, as in [46], to cope with unconsidered
aspests such as dynamics of the clutch actuation mechanism. Other clutch control
problems such as clutch to clutch shift operations have also been studied [47],

In applying control strategies to automotive applications a number of hardware
components are required. Sensors are needed to acquire measurements of systems
variables, a processing unit is needed to carry out the necessary on-line compu-
tations demanded by the control strategy, and actuators are needed to influence
the system.

There are a number of sensors available for automotive control, many of which
are designed for specific automotive applications. Examples of such sensors are:
lambda sensors which measure the number of free oxygen molecules in the exhaust
gases; hot air mass flow flow sensors which can measure the flow of fuel through
the inlet manifold; flywheel reluctance sensors which measure the rotational speed
of the crankshaft by counting teeth in a reluctor ring; and gearbox sensors which
detect the current gear that is engaged. Other universal sensors such as tempera-
ture sensors and pressure sensors are also available. Similarly there are a number
of actuators designed specifically for automotive applications, such as fuel injec-
tion systems and ignition amplifiers. Again universal actuators such as stepper
motors and hydraulic actuators are sometimes used.
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The computations in most modern automotive systems are performed by dig-
ital microelectronic processing units, which consists of a central processing unit
(CPU) together with a large number of additional features. Some of these addi-
tional features include: non-volatile memory usually electronically erasable read
only memory (EEPROM); analogue to digital and digital to analogue converters;
timers to control data flow releasing the CPU from such tasks; an internal clock;
and ports allowing communication with other external devices and allowing hard-
ware extensions to the unit. Often these automotive control units can be tailor
made to individual control applications by the choice of the units modules. Ex-
amples of such control unit systems in current use are the TMS370 [48] and the
8096BH [49] families.

In recent years, sensor and actuator technology has improved, developing new
devices such as smart sensors that may well enable system measurements which
come with appreciation of their reliability. Furthermore, the speed of processors
Is continually increasing; a figure often quoted is that the speed of microelectronic
processors increases by a factor of 10 every five years. An additional innovation,
the development of serial communication between individual control units, allows
devices to share information. Many different automotive serial communication
systems exist as described in [50], whose requirements are discused in [51]. This
continual improvement in automotive electronics, motivated by to use of automo-
tive control, and more importantly the reduction in cost of outmoded components,
has meant that increasingly complex control strategies will become more feasible.

With this background to the current state of control theory, automotive control
applications, and the available technology for the implementation of automotive
control, the aims of this thesis project are as follows:

L to carry out a formal mathematical investigation of the control of clutch
engagement,
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2. to identify design requirements of clutch engagement,

3. to design a control strategies which take account of all of the design require-
ments,

4. and to develop techniques making the implementation of the control strategy
more realistic.

The remaining chapters describe how these aims have been addressed. Chap-
ter 2, develops a mathematical formulation of the clutch engagement, expressed
as an optimal control problem. Chapter 3 attempts to solve this optimal con-
trol problem, locating control strategies which exhibit ‘good’ clutch engagement.
Chapter 4, goes on to consider clutch engagement under perturbations, develop-
ing a method of controlling clutch engagement under such perturbation. Chapter
5, develops this approach one step further, developing a method for coping with
perturbations in the powertrain if they are known, along with approaches for ob-
taining such variations. Finally, the use of this research in implementing automatic
clutch control is discussed.



.......... Engine torque

---------- Clutch torque
Figure L1: Centrifugal clutch control example
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Chapter 2

Mathematical Formulation of the
Clutch Engagement Problem

The first step towards carrying out a rigorous investigation of clutch engagement
Is to develop a mathematical formulation of the problem. This formulation begins
with the development of a simple automotive powertrain model. Analysis and
simulation of this model allows the notion of clutch performance to be expressed.
This quantification of clutch performance, along with the powertrain model, then
naturally results in the formulation of a continuous multi-objective optimal control
problem.

2.1 Powertrain Model

An automotive powertrain consists of vehicle components transmitting power from
the engine to the vehicle mass. Typical powertrains consist of: an engine which
produces the power by burning fuel; a clutch or a fluid coupling which either
fully or partially disengages the engine from the remainder of the powertrain; a
discrete or continuously variable transmission which allows the torque transmitted
to the tyres to be manipulated; a differential incorporating a final drive ratio
which allows the vehicle wheels to rotate at different rates whilst cornering; and
driveshafts which transmit the power between components and finally to the tyres.

21



The tyres and the suspension then convert the power into longitudinal motion.
For this study the powertrain considered is as in most family cars with manual
transmissions, consisting of an engine, a clutch, a discrete gearbox, a differential
and driveshafts.

A simple model of this powertrain is now developed by making a number of
modelling assumptions, from which model equations arise. These assumptions
have been made by considering the powertrain dynamics and other more com-
plex powertrain models including previous powertrain modelling work done at the
University of Warwick [52]. Model details that are either felt to have negligible
efTect for the clutch engagement problem or felt to be too problematic in the later
optimisation techniques for the small improvement in model accuracy, are ignored.

The first component in the powertrain is the engine. Extensive effort has been
applied to engine modelling for control studies, resulting in a wealth of literature
detailing engine models, such as the models described in [53], [>4] and [55]. A
review of automotive engine modelling has been conducted by Powell [56]. The
first progression towards an engine model is normally to describe its steady state
characteristics, acquired from engine test bed data. An example of such a static
map, acquired from previous engine modelling work done at the University of
Warwick [57], is detailed in figure 2.1 In this figure, the throttle angle is the
engine input and the engine output is the engine torque which is also dependent
on the engine flywheel speed fed back from the flywheel dynamics. More detailed
engine maps can incorporate additional engine inputs such as spark advance and
air/fue! ratio. The engine dynamics can, in its simplest form, be represented by
a dynamic lag from the throttle angle to the engine torque, with this lag being
dependent on quantities such as inlet manifold volume, engine temperature and
flywheel speed. More detailed models represent the fluctuations in pressure of
various engine chambers. As the time constants of the dynamics in the engine
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are significantly faster than the time constants of dynamics in the rest of the
powertrain, for the model, the engine dynamics are ignored. Typically the engine
responds to a step in throttle angle in about 0.01 - 0.05 seconds as identified by
[53], with the powertrain dynamics being controlled over a time interval of 0.5
- 2.0 seconds. Furthermore some engine inputs such as spark advance respond
even faster. With this assumption that the engine dynamics are neglected, the
engine torque is taken as a engine input, control u\. The corresponding steady
state throttle angles and other possible engine inputs such as spark advance can, if
required, be obtained from the inverse of an engine map. Additional dynamics in
the engine result from the movement of the engine on its mounts. This movement
can be modeled by ‘earthing’ (connecting to a static mass) the engine block inertia
via a suitable compliance. As other compliance, felt to be more dominant, is
present in other powertrain components, these extra dynamics are ignored with the
engine represented by the engine torque and the flywheel represented by an inertia
Ji. However, this last modelling assumption will result in a lack of oscillations at
the engine side of the clutch, that would be present with this compliance included.

A clutch acts as a torque limiter, limiting the torque transmitted through the
clutch to a maximum value, the clutch torque capacity. This clutch torque capac-
ity is dependent on many factors including the pressure between the clutch plates,
the temperature of the clutch plates and the rate of clutch slip. The variation of
clutch torque capacity with respect to clutch slip has been associated with self
exciting shudder [43]. The variations with respect to temperature requires the
modelling of additional dynamics, examining the dissipation of energy through
the clutch. However, as the variation of clutch torque capacity with respect to
clutch slip is normally small and the dynamics of the clutch temperature fluctua-
tion are slow, both of these effects are neglected, if it is noted that the variations
with respect to temperature induce some uncertainty of the clutch torque capac-
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ity. The remaining correlation between the clutch torque capacity and the clutch
plate pressure previously mentioned, is felt to be the key clutch characteristic.
For this reason, the clutch is modelled by assuming that the torque capacity of
the clutch is proportional to the pressure exerted between the clutch plates. If
this clutch plate pressure is taken to be a control, then the clutch torque capacity
can be taken as a control, control u3, eliminating a proportionality constant in
the model equations. Deterioration of clutch performance, due to clutch wear,
can be modelled by multiplying the expected clutch torque capacity u3 by a pa-
rameter // £ [0,1]. This parameter can also be used to model the uncertainty
of the clutch torque capacity due to temperature changes noted above. Other
compliance dynamics, resulting from clutch springs, is ignored as the compliance
in the remainder of the powertrain is felt to be dominant.

A typical automotive gearbox consists of oiled cogs contained in a chamber
with the input shaft connected to the clutch and the output shaft connected to a
driveshaft or differential. As well as exhibiting the desired gear ratio, due to the
meshing of the cogs, lash is present in the gearbox, and due to friction between
the cogs and their bearings, some torque loss is present. In new gearboxes the
size of the lash is not too large, of the order of 4 or 5 degrees. Furthermore,
if only positive torque is being transmitted through the gearbox, the lash effect
Is redundant, a likely situation for the clutch engagement problem. Hence for
this simple model, lash is neglected. The torque drop through the gearbox is
also ignored, just introducing some uncertainty on the torque being transmitted
through the powertrain. Hence the gearbox is modelled by taking the gearbox
input and output shafts to be lumped inertias, inertias /2 and /3 respectively,
with the gearbox itself being modelled by setting the ratio of the output shaft
speed to the input shaft speed to a constant value, control u2.

The remaining components between the gearbox output shaft and the vehicle



mass consist of driveshafts, a differential, tyres and a suspension system. These
components exhibit compliance, a drop in the torque being transmitted through
the components (referred to as rolling resistance) and an effect referred to as
wheel slip, where the expected vehicle speed calculated from the gearbox output
shaft speed differs from the actual vehicle speed. One way of modelling these
components is to model them as a spring in series with a non-linear damper,
which is a tyre model. This modelling is relatively complex, a simpler model
would be preferable. As identified by previous powertrain modelling work done at
the University of Warwick [52], the key dynamic efTect is the compliance in these
components, which does not seem to be too noidinear. Indeed, comparison of a
typical tyre model linearised about a particular vehicle speed, in series with a linear
spring, indicates that these components can be represented by a linear spring and
damper iri parallel. Hence for this model these components are represented hy a
linear spring (having a spring constant k) and a damper (with damping rate «), in
parallel, connected to a lumped inertia (inertia J.) representing the vehicle mass
reflected up the powertrain through the differential. It should be observed that
the analysis of tyre models suggests that the compliance parameters, in particular
the damping rate, may vary with vehicle speed. It should also be observed that
this model fails to represent rolling resistance arid wheel slip. However, for the
case of rolling resistance a constant torque term representing the torque drop can
be included in the retarding torque z, or the torque drop can be treated as a
further uncertainty of the torque being transmitted through the powertrain. This
retarding torque can also be used to represent air resistance and retarding force's
due to the gradient of the terrain the vehicle is travelling over.

Ihe above modelling assumptions result in a model diagram, detailed in lig
ure 2.2. Model equations can be constructed from the above modelling assuinp
lions, or the model diagram, either by considering the transfer of energy between



the rotational inertias or by considering resultant torques acting on the inertias
and using Newton's second law. The limitation on the transfer of torque through
the clutch induced by the clutch model (the torque being limited by the clutch
torque capacity) results in the model equations being dependent on whether the
clutch is slipping or locked up. The two conditions of the clutch will be referred
to as the inodes of the clutch.

The first clutch mode is when the clutch is slipping. For this mode, the torque
being transmitted through the clutch is equal in magnitude to the clutch torque
capacity, with the sign of this torque being determined by the direction of the
clutch plate slip, a standard representation of friction between slipping surfaces.
With this clutch characteristic, the model equation construction results in the
following equations

Jia = U MuXign(i’] x2) (2.1)
(Jo+ 132)X2 = pussign(xi - x2)- u (22)
Jie = p-1 (2.3)
o — x3 —UbX (24)

Vs kX I3 —U2x)

In these equations: p is the torque being transmitted up the powertrain from the
inertia J4to the gearbox output shaft; x\ is the engine flywheel clutch plate speed;
1215 the other clutch plate speed; X is the rotational speed of the inertia  and
o4 is the wind up in the compliance. All the other variables and parameters are
as previously noted. Note that the dynamics of the flywheel is only dependent
on the sign of the clutch plate slip. Hence, in essence, the flywheel dynamics
are independent from the rest of the powertrain when the clutch is slipping. Air
resistance is modelled by taking the retarding torque z to be proportional to the
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square of the vehicle's velocity
Le. r=0b-l (2.5)

Vehicle load resulting from a constant gradient is modelled by a constant retarding
torque
§ = Mgrir.sin(0) (2-6)

where M is the vehicle mass; g is the gravitational constant; ri is the final drive
ratio:  is the effective tyre radius and « is the angle of the constant gradient
from the horizontal,

The second clutch mode is when the clutch plates are locked up. With the
clutch plate speeds equal, the following equations result

X = X (2.7)
(J14 J2+ J3uV)I2 = til —=UP (2.8)
Jals = p—1 (2.9)

X\ — X =X (2.10)

with the variables and parameters as previously defined. This set of model equa-
tions implicitly determine the transfer of torque through the clutch, the value of
which is that required to maintain the clutch plate speeds equal. This torque is
r= _ . (2.11)
I +Ji + 30\

In order to fully describe the dynamics at any instant in time, the clutch
mode which is active must be determined. This is done by describing conditions
determining which mode is initially active and switching conditions describing
when the mode of the clutch changes. These conditions arise from considering
the model equations representing a locked up clutch or a slipping clutch and
determining when they become invalid. For instance, when the clutch plates are
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locked up the magnitude of the torque being transmitted through the clutch must
not exceed the torque capacity of the clutch. Hence the clutch switches to being

In its slipping mode when
M > [lu3. (2.12)

The reverse switching condition occurs when the clutch plate speeds return to
being equal, so long as the clutch torque capacity is not exceeded. Hence the
clutch switches to its locked up mode when

Xi = X and |r| < fiu3, (2.13)

The switching conditions also determine the initial clutch modes as they partition,
into two sets, the space of model variables. That is

Clutch locked up when Ji = Xoand || < fus (2-14)
Clutch slipping when X\ A G or || > 3. (2.15)

Initially these conditions are used to define the initial clutch mode. These condi-
tions could also be used to determine the clutch mode at other instants in time,
but are far less convenient for simulation purposes.

A final detail of the powertrain model is the constraints on the controls. For
this simplemodel, the engine torque and the clutch torque capacity are taken to
be bounded above and below. The gearratio value is taken to be an element of a
finite set U2 Hence

G [MImihi Almor] (2.16)
6 Ui — {j, +»+, (217)
"3 G [*3mini "3max]’ (2.18)

The powertrain model now created is a state space model. The four states of
the model are: al - the engine flywheel clutch plate speed: x. - the other clutch



plate speed; r3 - the rotational speed of the inertia Jit (which is proportional to
the vehicle's velocity); and /4 - the wind up in the compliance. The three controls
of the model are: tq - the engine torque; u2- the gear ratio; and u3 - the clutch
torque capacity. This state space model is not of a standard form as the state
equations are dependent on discrete events, the switching conditions, equations
(2.14) and (2.15), between the clutch modes.

Examination of the model equations establishes a reduction in the order of
the model when the clutch is locked up. In this clutch mode the number of
states have reduced by one, as the state equations are no longer dependent on
the engine flywheel speed. Furthermore, the number of active controls has also
reduced by one as the clutch torque capacity control u3 no longer affects the
state equations. However, this control does still effect the switching conditions,
effecting whether the clutch remains in this clutch mode. For this reason in order
to clarify and summarise this variable state order model, a narrow class of state
space models which the powertrain model belongs to is introduced. Rigorous
conditions can then be applied to this model class, conditions which allow the
optimisation techniques of later chapters to be applied.

The powertrain state space model for the first clutch mode, representing the
clutch when the clutch plates are slipping, is of the form

X - f(x,u) (219)

where x and u are vectors representing the n states and the m controls respectively
and / :Fx =3 The second clutch mode is a reduced model form, with
some of the states lacking state equations. The states that lack states equations
are dependent on the states that still have state equations. Furthermore, the state
equation still remaining are not dependent on all of the controls. Algebraically,
this second form can be represented by partitioning the states into states still
having state equations and states that do not, and partioning the controls into



controls still active and controls that are not. With this partitioning the model
form for the second mode is

£l

;2

U (2.20)
h(x 2, Ml) (221)

where X! are the nlstates lacking state equations, x2 are the n. states having
state equations, iij are the mZ1active controls for the second mode, u. are the m.
redundant controls for the second mode, g : R2 t»R"1and h : R™x Rm & R2
The discrete events are of the form

mode 1 —» mode 2ifXj = gx 2) and (x,u) € S (2.22)
mode 2 —> mode Lif(x,u) $ S (2.23)

where S = {(x,u)||r| < jus} for the clutch engagement problem, is a set in
x Jim. The initial conditions and initial modes are given by

X(0) = £0 (224)

initially mode 1if  £i(0) / fffei0)) or (x(0),u(0)) £ (2.25)
initially mode 2 if  Xi(0) = <(x2(0)) and (x (O),«(O)) (2.26)

In order to enable the optimisation techniques of later chapters to be applied

to the clutch engagement problem, conditions on the model form are introduced.
These conditions are that the functions

[, g and h are all continuously differentiable (or smooth) (2.27)

and that
S is a smooth manifold. (2.28)

Ihese conditions are sufficient for all of the optimisation techniques, but can
be relaxed for individual techniques. For instance, for the open loop study it
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is sufficient for f,g and h to only be continuous, differentiable and to have a
continuous derivative.

Inspection of the above powertrain model equations verifies that for the clutch
engagement problem they would be in the desired form if it were not for the sign
term of equations (2.1) and (2.2), and for the fact that S is not a smooth manifold.
If during clutch slip, the sign of Xi —x. remains constant then this sign term can
be replaced by a constant, equal to the sign of jg —x. at an initial starting point or
at a point in time just after the clutch has switched to its slipping mode, thereby
reducing the non-linearity of the state equations. This simplification is not totally
unjustified. From equation (2.13), as the states are continuous in time, for the
sign of a! —x. to change whilst the clutch remains slipping, |r| > /¢u3 at the
point of sign change. However, just prior to clutch plate speed equality it can be
shown that r < fju3. Both of these conditions can only be satisfied if r < —fiu3
For large clutch torque capacities, or for large engine torques, this final condition
Is extremely unlikely. Hence, it is assumed that, when the clutch plates come
together with large clutch torque capacities,

r> —jud (2.29)

With this assumption, not only is the sign simplification valid but the second term
of the switching condition when switching to a locked up clutch, equation (2.13),
Is automatically satisfied (i.e. |r| < ¢*u3). This removes the difficulties with S not
being a smooth manifold, as in the optimal control problem formulation S can be
taken to be S'1x 3m.

With the above simplifications, the model is now in the required form. Any
state space model of this form would be adequate for the optimisation techniques.
Indeed many of the dynamic effects in the powertrain mentioned, but not mod-
elled, could be incorporated without violating the model conditions. However,
additional modelling which includes pure time delay or pure lash, used to model
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the engine or gearbox dynamics respectively, is prohibited, as this would violate
condition (2.27). The penalty of additional modelling is an increase in complexity
of the computation required for the later optimisation techniques. This is the
reason that the powertrain model is kept as simple as possible, only representing
the key dynamics of the powertrain.

Two sets of model data, both representing a typical family car, have been ap-
plied to the model. The first set of data, referred to as vehicle A, is obtained from
previous powertrain modelling work done at the University of Warwick [52], This
modelling work details measurements of inertias, gear ratios, final drive ratio,
vehicle mass, air resistance coefficient and compliance coefficients. These mea-
surements either provide the required model parameters directly or provide data
enabling the parameters to be calculated. For instance, the inertia J4 is calcu-
lated from the vehicle mass, the final drive ratio and the effective tyre radius.
Note that, for this data set, the compliance coefficients, the spring constant and
damping rate, are chosen so that the model approximates the key dynamics of the
components that the compliance represents in the powertrain, when excited, with
their values being obtained by comparisons with experimental data. Bounds on
the controls are also needed. For the engine torque, the upper and lower bounds
are taken so that they are obtainable for a large set of engine speeds. These values
are obtained by studying some previous engine modelling work done at the Univer-
sity of Warwick [57]. The lower bound for the clutch torque capacity, is naturally
chosen to be O Nm, representing a fully disengaged clutch, with the upper bound
taken to be 2.25 times the maximum engine torque. This value was decided upon
after consultation with P.R.Crossley of Ford Research and Engineering Centre
[58]. The values of this first set of data are detailed in table 2.1.

The second set of data, referred to as vehicle B, contains similar information of
adifferent, but realistic, powertrain. This data provides values of the inertias, final
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drive ratio, gear ratios and vehicle mass, enabling calculation of the vast majority
of the model parameters as before. Details of steady state engine characteristics,
again, are used to choose the engine torque bounds, again choosing bounds that
are obtainable for a large set of engine speeds. However, this time, additional
details of clutch actuation characteristics are used to calculate the clutch torque
capacity upper bound. For this data set, the compliance coefficients are calculated
by inspecting tip in (a sudden change in engine torque) simulations of a complex
powertrain model representing the same powertrain, and choosing the values which
give the best comparison. The only parameters not provided, or calculated, is the
air resistance coefficient which is taken as in the first set. The values of this second
set of data are detailed in table 2.2,

Comparing the two sets of data, all of the parameter values are similar in
order, apart from the gearbox inertias. The data representing vehicle B has much
smaller gearbox inertias, sufficiently small that the extra dynamics generated by
the gearbox modelling is negligible. This fact has been ignored for later work as
they are significant for the other set. For vehicle B, this observation could be
utilised in order to simplify later work. In particular, when the clutch is slipping,
ifthe rate of change of the controls is not too great, then the clutch dynamics can
be represented by the following state equations

VXA ut ~ fiu35ign(xt— x2) (2'30)

.\]\X3 /mgsignu(z(i - X2) _ (231)

B (232)
fiudsign(ji - x2)

gu21k (2-33)

with the torque being transmitted through the clutch in order to maintain the



clutch plates speeds equal now being
Uid]12 - U~JI
112 (2-34)

This simplification halves the number of states in the model when the clutch plates
are slipping, leaving the number of controls unchanged. Elimination of  from
the state equations using equations (2.7) and (2.32) results in a model of a similar
form to the form identified by equations (2.19) - (2.23). Similar simplifications
of the sign term can be made to ensure that this new simplified model is in the
desired form, allowing the optimal control techniques to be applied.

There are also some smaller differences between the two data sets. For vehicle
B, the compliance is twice as stiff and less damped, the engine torque upper
bound is higher and the gear ratio steps are smaller with an additional gear ratio
included. These differences are not large enough to alter the modelling but are
large enough to affect the powertrain characteristics, as will be seen in the next
section.

2.2 Model Validation

The powertrain model now developed has been validated by simulating it using
the computer package ACSL. This computer package can simulate state space
equation models and contains a state event finder. This state event finder is used
to effect the discrete events in the form of the switching conditions required to
simulate the powertrain model. For these simulations the control values of the
engine torque and the clutch torque capacity have been ramped up and down as
appropriate, with the gear ratio being stepped up and down as required. A sim-
ulation which indicates many characteristics of the powertrain is an acceleration
from rest simulation, incorporating a gear change from first gear to second gear.
This simulation has been carried out for both sets of vehicle data, with graphs
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detailing the controls, clutch plate speeds, vehicle speeds and driveline torques
being detailed in figures 2.3 - 2.6.

For vehicle A. the controls initially remain at zero, with the vehicle at rest
and first gear engaged. After 0.5 seconds the engine torque is quickly ramped up
to 60 Nm, after which the clutch torque capacity is ramped up, more slowly, to
its maximum value of 225 Nm. The controls then remain constant until a time
of 4 seconds has elapsed, at which point the clutch is disengaged and the engine
torque is ramped down to zero. While the clutch is fully disengaged the gear ratio
Is stepped up to second gear. The re-engagement of the clutch is similar to the
engagement from rest, with the clutch torque capacity being ramped up a little
faster.

The details of the clutch plate speeds, the vehicle speed and the driveline
torque, in figure 2.4, describe the resulting dynamics. From these graphs it can
be observed that as the clutch is engaged and the engine torque is increased, the
vehicle starts to accelerate away from rest, but with some small drive line oscil-
lations being present. Initially the engine flywheel speed increases, but as the
clutch torque capacity continues to increase the engine flywheel speed eventually
decreases. The increase in clutch torque capacity also causes the vehicle to accel-
erate at a faster rate. At the point of clutch lock up, the rate of acceleration steps
down, with large oscillations in the drive line being generated, which then die
away to leave a steady rate of acceleration. The occurrence of these oscillations
Is an effect experienced by learner drivers when engaging a clutch poorly, causing
the car to ’kangaroo' forward in extreme cases. When the clutch is disengaged
and the gear ratio is changed, oscillations are generated in the powertrain. The
re-engagement dynamics are similar to the previous engagement dynamics, with
oscillations being generated at the point of lock up. The resulting steady state
acceleration in second gear is smaller than that for first gear.

41



For vehicle B, a similar simulation is carried out as detailed in figures 2.5
and 2.6. The main differences between the two simulation results are that the
oscillations when the clutch is locked up are faster and less damped, the magnitude
of the gear change is smaller, and that the oscillation frequency when the clutch
Is slipping is much higher, for vehicle B. The first two differences are explained
from noted differences between the two data sets. An appreciation of the high
frequency oscillations when the clutch is slipping, can be obtained from analysing
the model equations. It can be shown that when the clutch is slipping, the natural
frequency and the damping coefficient are

(235)

(236)

For vehicle A, it can be calculated that uia= 19.6rads 1 and = 0.33, and for
vehicle B 43 = 108.Grads-1 and = 0.31, in first gear. As well as confirming
the observed high frequency oscillations, the equations (2.35) and (2.36), demon-
strate that small gearbox inertias equate to high frequency oscillations when the
clutch is slipping, which are heavily damped. These highly damped, high fre-
quency oscillations are the dynamics that the reduced model equations (2.30)
- (2.33) representing a slipping clutch, ignores. An identical simulation carried
out using the reduced order model for vehicle B, detailed in figure 2.7, results in
nearly identical simulation results. The only noticeable difference is the loss of the
fast dynamics at the point of clutch disengagement and gear change. The above
simulation results are consistent with the observed dynamics of an automotive
powertrain in the frequency range up to approximately 10Hz.
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2.3 Performance Quantification

A natural question, when examining clutch performance, is what is 'good" perfor-
mance. In order to analyse this notion clutch performance is quantified. However,
as there are many different aspects to clutch performance, the initial quantification
results in several ‘cost’ values.

In order to carry out this performance quantification for the clutch engagement
problem, a number of engagement for rest simulations have been conducted, for
both vehicles. The simulations for the engagement from rest problem, the worst
case of the clutch engagement problem, identify a number of undesirable effects
that can occur. For each vehicle, two simulations are detailed, a slow and a
fast engagement, from rest, in first gear (see figures 2.8 - 2.15). For the slow
engagement from rest simulation, the engine torque is ramped up to 60 Nm in
0.1 seconds, with the clutch torque capacity being ramped up to its maximum
value in 2.4 seconds (see figures 2.8 and 2.12). For the fast engagement from rest
simulation, the engine torque is ramped up to its maximum value in 0.1 seconds,
with the clutch torque capacity being ramped up to its maximum value in 04
seconds (see figures 2.10 and 2.14). The resulting dynamics for these engagement
simulations are detailed in figures 2.9, 2.11, 2.13 and 2.15. Each figure contains
four graphs, a graph of the clutch plate speeds, a graph showing the rate of clutch
energy dissipation, a graph of the vehicle speed (proportional to the state Xs)
and a graph showing the driveline torque. The rate of clutch energy dissipation
Is calculated from the states and controls, by examining power loss through the
clutch, which isequal to fiu®  —a”. The first two graphs detail the performance
characteristics of the clutch. The last two graphs detail the effect on the vehicle
dynamics and the driver, with the driveline torque being proportional to the force
acting on the driver.

One undesirable effect present in the simulations is the occurrence of driveline
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torque oscillations. The driveline torque directly affects the force felt by the driver,
hence any severe transient fluctuations in this torque, such as the oscillations,
noted in all of the performance quantification simulations, are undesirable, as
they cause driver dissatisfaction. The oscillations are also undesirable as they can
cause driveability problems and can cause the wear, fatigue and eventual failure
of powertrain components. Large fluctuations in driveline torque can occur while
the clutch is slipping, with the driveline torque oscillating about a steady rate of
increase on this torque, as in the fast engagement from rest simulation for vehicle
A (figure 2.11). For vehicle B. the oscillation about the steady rate of increase is
negligible, due to the light gearbox inertia, as previously discussed. However, the
driveline oscillations are more prevalent after clutch lock up, with the oscillations
appearing to be excited at the point of clutch lock up, for all of the simulations.
In general, the oscillations tend to be worse for fast engagements.

Another undesirable effect is the dissipation of energy through the clutch.
This energy dissipation is undesirable, not only for the resulting power loss, but
for the clutch wear and the clutch temperature changes that can result. Excessive
temperature variations can change the characteristics of the clutch, causing further
difficulties including exacerbating clutch wear. Referring to the simulations, it can
be seen that this energy dissipation only occurs when the clutch is slipping. It
can also be noted that the total energy dissipated, for one completed engagement,
Is greatest for slow engagements, the total energy dissipated being the area under
the rate of clutch energy dissipation graph.

Stalling is another problem that must be prevented. Stalling can be prevented
by maintaining the engine flywheel speed above a minimum permissible value.
For vehicle A. an engine flywheel speed below 80 rad/s can cause erratic engine
performance and possible stalling problems. Referring to the fast engagement
graph (figure 2.11), it can be noticed that the engine flywheel speed drops below
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this minimum value, indicating that stalling is a serious and realistic problem.
Stalling problems tend to occur while the clutch plates are slipping and when
tha' clutch plates are being engaged quickly. This is due to large torques which
are transmitted through the clutch when the clutch is slipping, together with
the large clutch torque capacity. These torques are larger than would normally
be experienced with a locked up clutch. This large torque transmits the Kinetic
energy of the flywheel inertia down the powertrain.

These undesirable effects, mentioned above, suggest that in designing a clutch
engagement strategy a compromise must be sought, as the various undesirable
effects seem to conflict. For fast engagements, the oscillations and the problem
of stalling tend to be large, whilst for the slow engagements the clutch energy
dissipation is large. This finding has been separately obtained in parallel research
[59]. This dilemma must be addressed when designing the clutch performance
measure.

Now that these undesirable effects have been observed, they can be quantified
by designing several cost functionals for the clutch engagement problem. These
cost functionals measure the magnitude of the individual undesirable effects by
equating the observed effects with the states and controls of the powertrain model,
high values of the cost functionals equating to poor performance. These cost
functionals are constructed so they take one of two forms. The first form, the
integral form is

Fi= §, Mxu)dt (2.37)

where t] is the time of clutch lock up, x and u are the states and controls of the
powertrain model and /, :  x Tm>+ s a continuously differentiable function.
I'he second form, the terminal form, is a functional dependent on the controls and
states of the model at the time of clutch lock up. Hence

Fi =f,(x(t,),u(t})) (2.38)
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where tf. x and u are as previously defined, and /< : JR'x  +» s again a
continuously differentiable function. This is to say that, for the clutch engagement
problem, the performance is dependent on the controls and states up until the
clutch plates lock up, and the states and control at the point of lock up. The
terminal cost form can, and will, be used to predict the clutch performance after
clutch lock up. The restrictions on the form of the costs enable optimisation used
in later chapters, to be used in order to solve the resulting optimisation problems.
In many cases the cost functions naturally falls into one of the desired forms.
However, this is not always the case, as will be seen with the construction of a
cost measuring the likelihood of stalling.

For the three bad effects previously noted, six cost functions are now con-
structed. The oscillations in the driveline torque are measured using four costs.
One cost measures the oscillation when the clutch is slipping. A reasonable mea-
sure of these oscillations is

(239)

This is just the square of the difference of the rotational speeds across the com-
pliance integrated over the interval whilst the clutch is slipping. Analysis of the
powertrain model determines that a steady state offset of xs —U:X. can be present
during clutch slip. This offset is proportional to the rate of change of the clutch
torque capacity. Hence this cost also measures the rate of increase of the clutch
torque capacity and minimising it will try to slow down engagement, as well as
minimising the oscillations. The oscillations after engagement are measured by
two costs. These costs are just the displacement of the states and controls from
their steady state values at the point of clutch lock up, estimating the oscillations
after clutch lock up, and are

Fl = (,42(“) = (2'3(</) - Uz(tf)Xz(tf))z (240)
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f3=

where the state equations representing a locked up clutch, equations (2.7) - (2.10),
are used to evaluate the expressions. It can be shown that the square of the
resulting oscillation magnitude is proportional to

w2(1l~ e2)j-42¢fry + (~ (fry + & Xa(</))2 (242)

where (>and £ are the natural frequency and damping coefficient of the driveline
oscillations when the clutch is locked up. Hence, if both these costs are small,
small oscillations after clutch lock up will result. The last equation could be used
to replace the two costs F2and F3 but it is particularly messy when expanded
out into the desired form. In the later optimisation techniques, the required
differentiation of this cost would be laborious, hence the reason for using the two
costs. The final cost functional, measuring driveline oscillations, measures the
excitation of the compliance at the point of clutch lock up. Examination of the
two state equation sets, determines that at the point of clutch lock up the torque
being transmitted through the clutch jumps down. This torque jump excites the
compliance as observed. It can be shown that this torque jump is proportional to

where the state equations representing a slipping clutch, equations (2.1) - (2.1),
are used to evaluate the expression. It should be noted that not all the above cost
functionals are needed to ensure small oscillations. For instance, small oscillations
while the clutch is slipping, and a small amount of compliance excitation, will
suffice. Similarly, the excitation cost can be omitted, replacing it with the two
costs measuring the oscillations after engagement.
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The cost functional measuring the dissipation of energy through the clutch,
naturally, arises from the calculation of the rate of clutch energy dissipation from
the powertrain states and controls. As the energy dissipation only occurs when
the clutch is slipping, the total energy dissipation is

(244)

A measure for stalling is a more difficult task, than for previous undesirable
effects, as the natural functional measuring how low the engine flywheel speed
gets is

—min{xj) (2.45)
which is not of the required form. However, a functional which has high values
for low engine flywheel speeds is

(2.40)

0 otherwise

where xjmir is chosen to be sufficiently high in order to prevent the flywheel speed
dropping below its minimum permissible level, a level smaller than .\ «in. This
cost, measures the distance of <. below X|ml, while the clutch is slipping and,
hence, measures the likelihood of stalling. As low engine flywheel speeds are less
of a problem when the dutch is locked up, a cost measuring the likelihood of
stalling for a locked up dutch is omitted.

Other cost functionals have been examined and explored using the following
optimisation techniques, lor instance a cost functional is included which is a cost
equal to the time of dutch engagement.

17 (2.47)



This cost can ho used to ensure that the clutch engagement process is completed
as quickly as is possible. Most of the remaining costs measure subjective charac-
teristics such as vehicle acceleration or vehicle speed, which can be used to ensure
that the optimisation techniques result in acceptable control strategies. A control
strategy for the engagement from rest problem resulting in excessive acceleration
and possible wheel spin is probably undesirable. Again a cost functional measuring
excessive acceleration does not naturally arise in the required form. However, the
vehicle speed at the time of clutch lock up is closely related to large accelerations.
So the cost

Fs = xa(tf) (2.48)
can be used to prevent excessive vehicle accelerations. Another way to limit this
acceleration is to artificially limit the engine torque upper bound. Other physically
based costs ensuring practical solutions are left to automotive engineers more
perceptive to these demands.

2.4 Multi-Objective Optimal Control Problem

The form of the powertrain model, together with the form of the individual cost
functionals, means that when they are combined a multi-objective optimal control
problem of the form

S 1 ()

o M mdt + £i(x(t),u(t])) forall i (2.49)

subject to
0= = (250
i) = 5, ") +ztx(1), a(t)) = 0 (251)
(252)



results, where R and Q represent pt equality constraints and p. inequality con-
straints respectively, tf is the time of clutch lock up, and / : 3”' x Rm i 37"

continuously differentiable. This optimal control problem allows for the inclu-
sion of additional equality and inequality constraints, but in order to ensure that
the terminal time tj is indeed the time of clutch lock up, at least one equality
constraint

ri(h) ~ =0 (253)
must be included.

The theory relating to such optimal control problems assumes that the controls
can vary instantaneously. For the clutch engagement problem, due to the noted
fast dynamics of the engine, instantaneous variation of the engine torque is not
that unrealistic. The gear ratio during clutch engagement can not change, and is
thus taken as a constant. So the only problem is with the clutch torque capacity,
for which an instantaneous variation assumption is unrealistic. The solution to this
difficulty is to include a clutch actuation mechanism in the state space powertrain
model, the input to this actuator being the new control. The actuator model used,
arises from some modelling work [60] of a hydraulic clutch actuation mechanism.
The inputs to this actuator are electrical and so now instantaneous variations are
reasonable. The actuator model is a second order linear model, which is critically
damped (£ = 1), having a natural frequency of 10 rad/s (). This results in the
inclusion of the two state equations

(254)
- 2Cliixe - lo2xs (2.55)

in the powertrain model, where i 5is the actual clutch torque capacity, us is the
required clutch torque capacity. As u3is no longer the clutch torque capacity, in
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order to reconstruct the optimal control problem xs must replace us in the previous
state equations, equations (2.1) - (2.4), and in the individual cost functionals, in
particular in cost (2.44). The result is a mult j-objective optimal control problem of
the form previously noted which satisfies the instantaneous variation assumptions.

For a good solution to the clutch engagement problem, ideally, all of the cost
functionals F, should be small. However, as the undesirable effects seem to conflict,
this might not be possible. As previously mentioned, a compromise must be sought
when solving the optimal control problem. How to express this compromise is far
from trivial.

Multi-objective optimisation theory describes how to express such a compro-
mise. The effects of this theory can be best understood by examining the multi-
objective techniques in the cost space, the space of individual cost functionals
(ie. ¥, where there are p cost functionals). This cost space contains a sub-
set F, the set of all feasible costs. For the clutch engagement problem, this set
is defined by the constrained control values mapped into the cost space by the
powertrain model and the cost definitions. Note that all of the cost functionals
previously defined are bounded above and below, due to the restrictions on the
controls. Hence F is bounded for the problem in question. Furthermore due to
the continuity assumptions on the model and cost forms, the mapping from the
controls into the cost space is continuous. This ensures that T is both compact
and connected, if the set of feasible controls is both compact and connected. This
observation justifies the graphical representation of F which is used later in this
section. With this idea of a feasible cost space, the notion of the best, or optimal,
solution can be defined by designing an ordering on the set of feasible costs F.
This ordering does not have to be a total ordering, for instance, one technique
detailed in optimisation theory literature, such as [til], is to define an ordering by

x <y ifthere exists z £ C such that x +z =y (2.56)
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where C is a convex cone in the cost space. An example of such an ordering
Is Pareto optimisation, where the convex cone C = {¢ E > 0 V«}. Such
technigues do not guarantee a unique optimal solution. As there is no particular
reason for the clutch engagement problem to adopt this approach, it is felt that
expressing the compromise using a total ordering is better. For total orderings,
points in the feasible cost space can be indexed by a real number. That is

r <yif F{-r) < F(y) (257)
where F(.) is the index. Hence the compromise reduces to defining a map F .

Three such multi-objective optimisation techniques are reviewed and sum-
marised by Garbett [39]. The first method, the most intuitively obvious tech-
nique, is referred to as the weighted sum method. This involves defining F, the
performance measure, as

F = Pl(w,F) = 'igi,wiFi (255)
where F, are the individual cost functionals, w, are their corresponding weights,
and F and w are vectors of the costs and weights. Referring to this method in
the cost space, the optimal solution is the initial intersection of a hyperplane with
the feasible cost space, as pictured in figure 2.16. In this figure, the hyperplanes
(represented as lines) are contours of constant performance measure value. The
direction of the hyperplane progression is determined by the weights.

The second method described by Garbett is referred to as the f - constraint
method. This involves minimising one cost functional with respect to upper
bounds on the others. Hence

F = F, subject to F} < F,mnr for all j 7 i (2.59)
Graphically, in the cost space (figure 2.17), the optimal solution is the initial
intersection of a hyperplane, whose direction of progression is in the direction of
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F,. with the intersection of the feasible cost space T and a set defined by the
inequality constraints,

The final method described by Garbett is referred to as the goal attainment
method. This method is expressed by defining

F = min{e,} subject to Fi—yp < for all i (2.60)

where u- and ¢, are the weights and goals respectively, corresponding to the cost
functional F,. However this is equivalent to defining F by

F=PooLf - 0= i {wi(F, - c)} (261)

where F. ir and ¢ are vectors of the costs, weights and goals, respectively, a more
meaningful way to express this method. Graphically (figure 2.18), this can be
interpreted as locating an optimal solution where a ‘corner” initially intersects the
feasible cost space, again with the corners representing contours of constant per-
formance measure value. These corners progress from a fixed point ¢, the goals,
with the direction of the progression again being determined by the weights. The
form of this progressing shape allows for goals to affect the multi-objective solu-
tion. The addition of the goals, an additional multi-objective design parameter,
allows a better compromise to be expressed.

For the goal attainment method, for F > 0, F is equal to the maximum norm
of the weighted difference between the individual cost functions and their goals,
le. F = 1it,(F, —c,)|U. With this analogy to standard norms, a new smooth
goal attainment method is proposed, smooth in the sense that for F > 0 the map
from F, i+ F is continuous, differentiable and has a continuous derivative. This
Is achieved by defining

F=p(iL-F-¢) = (max{0, u',(F, -cH1)2 if3ist F >c¢



Graphically, the method is interpreted as in figure 2.19, where the optimal solution
Is the initial intersection of a blunted corner’ with the feasible cost set. This new
method still preserves the significance of the goals and has additional smoothness
properties, as mentioned above.

Finally, all of the above methods can be embraced in one form by defining

F— pk(iL, F—c) for k ¢ {1,2, oc} (2.63)
subject to Fj < Fjmax for all j 6 J

This general form allows for the addition of extra inequality constraints, which
ran be used to prevent undesirable effects. For instance an upper bound on F6,
the cost measuring the likelihood of stalling can be used to prevent a solution
that might cause stalling problems. The definition of this general form maps the
multi-objective optimal control problem into a standard optimal control problem
of the form

DU Fu) = PKME—o) forke {1200} (2.64)
subject to
b (e m, £(0)= & (2:65)
£(«) = Q (2.66)
o) < (267)

where /2. Q and / are as previously defined, £ is a vector of the individual
cost functionals and w and c are the weights and goals of the multi-objective
compromise. This final general form is the form of the optimal control problem
that will be examined in the following chapter.
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Figure 2.2: Schematic diagram of powertrain model
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Figure 2.3. Vehicle A: acceleration from rest controls
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Figure 2.6: Vehicle B: acceleration from rest states
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Figure 2.8: Vehicle A: slow engagement from rest controls
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Figure 2.9: Vehicle A: slow engagement from rest states



Engine torque

E
=
<
=
=]
Gear ratio
o
g
Clutch torque capacity
HT
£9
z
£0
Time (sec)
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Figure 2.15: Vehicle U: fast engagement from rest states
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Figure 2.17: Multi-objective compromise in cost space: e constraint
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Figure 2.18: Multi-objective compromise in cost space: goal attainment
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Parameter Symbol Value Units

Flywheel inertia ) 0.109 kgm2
Gearbox input shaft inertia h 0.05 kgm2
Gearbox output shaft inertia Js 0.05 kgm2
Inertia representing car mass J4 1.945 kgm.
Compliance spring constant k 2170 Nmrad 1
Compliance damping rate v 13 Nmsrad-1
Car mass M 1340.0 kg
Final drive ratio n 0.275 -
Effective tyre radius 0.28 m

Air resistance coefficient b 0.0001689 Nms.rad~2
Lower bound of engine torque Nmin 0.0 Nm
Upper bound of engine torque A1 max 100.0 Nm
Lower bound of clutch torque capacity — A3min 0.0 Nm
Upper bound of clutch torque capacity — A3mai 225.0 Nm
Gear ratios {0.3,0.6,0.8,1.0}

Table 2.1: Vehicle A: model parameters
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Parameter Symbol Value Units

Flywheel inertia x 0.187 kgm.
Gearbox input shaft inertia h 0.0037 kgm2
Gearbox output shaft inertia 33 0.0065 kgm.
Inertia representing car mass Js 1.23 kgm.

Compliance spring constant k 529.22 Nmrad~x
Compliance damping rate v 30 Nmsrad-~|
Car mass M 1255.0 kg
Final drive ratio r 0.262
Effective tyre radius 0.29 m
Air resistance coefficient b 0.0001689 Nms.rad-.
Lower bound of engine torque Mmtn 0.0 Nm
Upper bound of engine torque M rmex 150.0 Nm
Lower hound of clutch torque capacity — usmm 0.0 Nm
Upper bound of clutch torque capacity  agmax 250.0 Nm
Gear ratios v {0.31,0.47,0.67...

.,0.9,1.17}

Table 2.2: Vehicle B: model parameters
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Chapter 3

Optimal control problem
solution

In the previous chapter, an optimal control problem was formulated. In this chap-
ter, the optimal control problem is analysed with the aim of obtaining a numerical
solution. Initial attempts at obtaining a solution for a simplified optimal control
problem, motivates the creation of a related higher order problem. For this new
problem, the location of such a solution is attempted by adapting existing gradient
optimisation techniques to this constrained higher order problem. This involves
designing a series of algorithms, tailored to the specific requirements of the clutch
engagement problem, which carry out the individual tasks of the optimisation
procedure calculating the numerical solution. The performance of this procedure
Is then analysed, for a variety of clutch engagement circumstances, assessing the
ability of the algorithm to obtain a solution. Finally, the characteristics of the
control strategies located by the algorithm are detailed. Some of the details in
the chapter have been presented at a recent conference on modelling and control
62)
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3.1 Optimal control problem analysis

For clarity, the previously defined optimal control problem under consideration is

JBULF(u) = PKWF_—q) for k £ {1,200} (31)
subject to

%= fu0), x(0) = X (32)

R(U) = 0 (33)

-0 34

where w and ¢ are vectors of weights and goals, pk are as defined in equations
(258), (2.61) and (2.62), U is defined by control upper and lower bounds, and f
Is continuously differentiable. In these equations, the functions F, R and Q are
vectors of functionals of the form

Jg' fo(x,u)dt + ft(x,u)\t=tl (3.5)

with fo and ft continuously differentiable. This optimal control problem does have
a solution. This is due to the feasible cost space T being compact, as noted in
section 2.4, together with the continuity of each pk, which ensures that the image
of T, which is {pk(UL,£ —c)\F_G T} C R, is compact. This is enough to insure
a solution, as this image is closed and bounded, insuring that an element of the
image exists, which is also a lower bound.

The location of such a solution is a different matter. For optimal control prob-
lems defined using the weighted sum method (using pi), Pontryagin’s maximum
principle provides some necessary conditions which must be satisfied for locally
optimal control strategies. Solution techniques utilising these conditions for the
general non-linear optimal control problem form described in equations (3.1) -
(34), could be designed, but as a solution might be easier to obtain if particular
characteristics of an optimal control problem representing the clutch engagement
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problem is made use of. this simpler approach is first explored. For instance, after
the simplification previously discussed, as a result of assumption (2.29), the state
equations are almost linear, linear apart from the air resistance coefficient term
which is negligible for low vehicle speeds. Another characteristic of the clutch
engagement problem is that the components of the individual cost functionals are
quadratic. That is, the cost integrands and terminal functions can be expressed
in the form

These two observations on the optimal control problem form suggests that the
problem might be a standard LQR problem. However, this is not the case, even
when the weighted sum method is used to express the multi-objective compromise
& their are mandatory constraints; the linear components gi and . are not
necessarily zero and can not always be nullified by linear transformations; not all
of the matrices * A in the cost components are positive semi-definite;
and not all of the matrices Q.- in the cost components are positive definite. This
last point arises from the observation that the controls are linear in most of the
individual cost components. Even if this LQR approach is not applicable, use
might be made of the linearity of the controls. From Pontryagin’s maximum
principle, the linearity of the controls in the problem ensures that the optimal
solution to an optimal control problem, designed using the weighted sum method,
Is bang-bang. That is, the controls flip between their upper and lower bounds, as
between their bounds the necessary conditions of the maximum principle can not
be satisfied. With the assumption that the optimal solution is bang-bang, then
the optimal control problem is reduced to a standard optimisation problem

TS-h* (3.7)
where n is the number of banging points and J is defined by the original optimal
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control problem. The only difficulty is that the number of banging points is not
known.

The solution of the optimal control problem is not trivial, so as an initial in-
vestigation of solution procedures, a simple case is taken. This case is an optimal
control problem, designed using the weighted sum method, with only one con-
straint, the mandatory constraint equation (2.53). A further simplification is that
the engine torque is taken as a constant, ensuring that the only remaining control
Is the required clutch torque capacity, and that the terminal terms of the costs
are no longer directly dependent on the controls. In the design of this simplified
optimal control problem, the weights of the compromise are chosen by trial and
error, with only a handful of costs having non-zero weights. The costs chosen to
have non-zero weights are the costs measuring the clutch energy dissipation, the
clutch lock up time and the excitation of the oscillations at the point of lock up,
which do not have quadratic control terms. These three costs do not measure
all the undesirable effects, for instance they do not measure the transient oscil-
lations, only the excitation of the oscillation at the point of lock up. However,
they do conflict with the costs measuring the clutch energy dissipation and lock
up time, small, when the clutch engages quickly, whilst the oscillation excitation
cost is small when the clutch engages slowly. A reasonable set of weights for these
costs is detailed in table 3.1 In solving this simplified problem, two different
solution procedures were tried, one using the assumption that the optimal solu-
tion is bang-bang, and the other by iterating on the necessary conditions of the
maximum principle.

For the first solution attempt, it isassumed that the optimal solution is bang-
bang with just the one banging point, banging from its maximum value to its
minimum value at a stipulated banging time. Hence an optimisation problem

7% (39)
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results. With this assumption the solution procedure proceeds as follows:

L Given an initial banging time, calculate the control and hence, calculate the
model states, the terminal time and the performance measure by simulating
the powertrain model, with the terminal time taken to be the time when
the clutch plate speeds first become equal.

2. For two variations about either side of the initial banging time, calculate
the performance measure values for these points using the same procedure
as in step (1).

3. (a) Ifone of the variations yields a performance measure value smaller than
the initial value, then take steps in that direction until the performance
measure begins to increase again.

(b) 1f both of the variations produce higher performance measure values,
then take smaller variations and continue from step (2)

4. Obtain an interval [a, 6], which must contain a locally optimal solution, one
interval bound being the last banging time reached (whose corresponding
performance measure value has just increased from the last value), and the
other bound heing the banging time reached two steps ago.

5. Obtain a locally optimal solution, using a standard interval halving proce-
dure.

A similar algorithm was also experimented with which tries to cope with more
banging points. This operated as before with very small variations being taken
about the initial banging times in order to numerically estimate the derivative of
the performance measure with respect to the banging times. The step by step
search was then conducted along the direction of steepest descent using a one
dimensional search algorithm similar to the algorithm just discussed. On location
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of a reasonable estimate for the one dimensional local minimum, the procedure
Is then repeated. This procedure was never very successful, as computational
requirements rapidly increased with the number of banging times, and convergence
of the procedure was poor.

The second solution technique uses the necessary conditions of the maximum
principle. For the special case under consideration, the optimal control problem
is of the form

B0 [FW) = Jofo(i. u)dt + frf2)t=t, (39)
subject to

B = U,0), x0) = % (310)

UL = Q (311)

where /, fo and ft are continuously differentiable. For this special case, the
corresponding necessary conditions for a locally optimal solution u", with x* the
resulting optimal states are:

wop G (612
@2y Hxmp',u") < /l(x*,p*.u) for all u € IA (3.13)
) H() = =0 (3.14)
(4 o (315

where /[ = [0(x,u) +p"f(x,u)
8 detailed in [63]. The solution attempt then proceeded as follows:

L Given an initial control strategy, again calculate the states and terminal
time tj by simulating the model.

2. Calculate the costates by simulating backwards in time, which are defined
by conditions (I anil (4) of the necessary conditions, where the constant
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is calculated using tlit' third conditions 11'(tj) = 0, which results in © =

& f
3. Calculate //u front the states and costates.

4. Choose as a new control strategy ui = u0+ A/lu, where A'is a relaxation
parameter, apply the control bounds, and repeat from step (1).

From examining the necessary conditions and the solution procedure, it can be
noted that a locally optimal solution which satisfies the necessary conditions is a
fixed point in the iterative solution procedure. However, as the controls are linear
in the optimal control problem, the necessary conditions are never satisfied, with
the controls moving towards their bounds as the controls converge to a solution.

Both of these algorithms run into problems due to the free terminal time tj.
This is partly due to the cost F4 = (x2—*1)|(/, which is desired to be small,
which when small, increases the sensitivity of the terminal time. Indeed it can be

shown that
eX2 ~ X1 (316)

i2- it
where dtj is the variation of the terminal time and «X. and «X. are variations
of two states at the terminal time. This sensitivity can, and often did, cause
the terminal time to become undefined as the clutch plates speeds fail to become
equal. As an example of this problem, using the first solution procedure applied
to vehicle A, the data detailed in chapter 2, the algorithm might proceed as in
figures 31 and 3.2. In these figures, simulations are shown for four different bang-
ing times, as the banging time is stepped down. For each of the banging times,
a graph of the control is detailed, with the control banging down to zero at the
predefined banging time, and returning to the control maximum valuelwhen the
flutch plates lock up. 'I'his final increase! in the; required clutch teirque capacity
ensures that the eluteh remains lejckesl up afte;r cngageMiient, but elews not affee't
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the dynamics of the powertrain as the clutch actuation mechanism is decoupled
from the remainder of the powertrain after engagement. A graph of the clutch
plate speeds is also shown. The values of the banging times, along with the cor-
responding performance measures and individual costs, are detailed in tables 3.2.
From these figures and table, it can be seen that as the banging times decrease,
the cost measuring clutch energy dissipation and the cost measuring lock up time
both increase, whilst the cost measuring the excitation of the compliance at lock
up decreases. The result is that the performance measure decreases. However,
when the banging time steps down to 0.38, the terminal time becomes undefined,
although the performance measure has yet to start increasing again. This problem
can, of course, be prevented by taking small enough steps (in the example steps
sizes of 0.1 seconds would suffice), but this increases the computational require-
ments of the solution procedure. Furthermore, if the weights in the optimal control
problem are poorly chosen, the free terminal time problems are exacerbated.

For the more general solution procedure using the necessary conditions, the
problems are if anything worse, with the relaxation parameter A required to be
reduced to prevent the terminal time becoming undefined. The adjustments to A
can be automated, by decreasing Aif the terminal time becomes undefined. The
free terminal time also causes problems in this solution approach with difficulties in
the recording of the control on the interval [0, t/]. For a control strategy previously
calculated using step (4) of the solution procedure, when returning to step (1),
It is quite possible that the interval [0,t/] is exceeded before the clutch locks up.
This requires the determination of suitable control values beyond tj, perhaps by
linar extrapolation, or even just by using the control value at </. This problem
introduces further complications, that have to be managed, problems which are
again exaggerated when the cost F4=(ij —x'1)|( is small.

The previous two solution attempts are far from state of the art, but they
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demonstrate an important problem with the free terminal time tj. This motivates
a trick which removes this free terminal time, a trick that can be used to relate
the necessarj- conditions for a time invariant fixed terminal time optimal control
problem, to the necessary conditions for a time dependent free terminal time
optimal control problem [63]. The trick proceeds as follows:

L Introduce a new independent variable s.

2. Take t (time) to be a state with state equation |, = where T is a new
"dummy’ control.

3. Let tf = <(9)|)=L.

4. Transform the original optimal control problem defined over the time interval
[0,<]] to a new optimal control problem defined over a new interval [0,1],
using the maps:

J[;fo(x,u)dt t+ Jfo T2(8)fo(x,u)ds (3.17)
& =f(xu) o =Ti(s)f(x,u) (3.18)

This trick embeds the original problem into a higher order fixed optimal control
problem, having an extra state and an extra control. The optimal control problem
can now be envisaged as a map

fri>Ci+2([0, 1) xr ~ * (319)
(u(a),T(s),uf) ++ F

where L"+1([0,1]) represents the set of bounded functions from the interval [0,1]
to RmtL (the controls and the ‘dummy’control on the interval [0, 1]), Uf represents
and T>is the domain of the map, defined by the set U and the constraints
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Hand Q. It should be noted that the controls when 6 = Lare independent from
the other control values, the reason for the map being dependent on Uj. The
solution to the optimal control problem is now to locate an element of the domain
V' which minimises the value of the mapping, the value of F. For convenience,
when referring to this higher order problem, u with no underscore represents an
element of the domain T> namely the column vector of u, T and uj. The great
advantage of this embedding is that the space. £2+1([0,1]) x ¥m, in which the
domain lies, is a Hilbert space, a complete normed vector space, with the norm
arising from an inner product. Inner products are maps from two elements of
the space to the real line with certain properties, and are extensions of the dot
product in an n-dimensional Euclidean space. In the case of Em+i([0, 1) x  an

inner product can be defined by
N ' ]

{I'L")—(((,) ( ):LI(%Y {% )da+tite>s (32)
with the norm arising from the inner product in the normal way by ||u|]2= {u,u),
a measure of the distance of u from the zero. Hilbert space inner products, as
well as defining the notion of distance of elements in the space, also allow notions
such as orthogonality to be extended to such spaces. 'l bis in turn allows algebraic
projection operations, allowing the optimal control problem to be treated as a
conventional optimisation problem. The completeness of the normed vector space,
allows differentiation to be extended to such higher order spaces, under certain
conditions. Indeed, it can be shown, a trivial extension to the derivation found in
[64], that for a functional of the form

FU) = [ TA9Cr 0+ (5, 1) =i (3.20)

subject to . 72(s)/(i, u), x(0) - 2, (3.22)
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where /, /0and K are continuously differentiable, then

lIH I"- 0 =o (323
IHHI
T2HU
with VF, 2TH (3.24)
ftu J uxp

where H = (f0+ pTf) is the Hamiltonian which is dependent on the states, x,
corresponding to U, and the costates, p, which are calculated as usual from p =
-T2HXand p(l) = ftx. Hence VF is the gradient of F with respect to the controls
at u. These calculations allow all of the individual cost functional and constraint
gradients to be calculated. With this gradient information, the obvious solution
technique is to use gradient methods, normally used in optimisation problems with
the domains subsets of n-dimensional Euclidean spaces, but just as applicable here
due to the properties of the Hilbert space in which the domain lies.

3.2 Gradient method algorithm

As discussed, this algorithm is an extension of a family of standard optimisation
solution techniques for locating the local minima of maps of the form T : Rn «» 3
to maps of the form F : T>C Ti *+ 38 where H is a Hilbert space, which result
from the embedding of the optimal control problem into a higher order problem.
This extension is well known and is discused in [64] and [65]. As mentioned, with
such problems two notions can be extended, differentiability and orthogonality
used to project elements of the Hilbert space to vector subspaces. As the tech-
niques are mearly an extension, the understanding of the algorithm is aided by
representing the problem as a map from a 3-D Euclidean space to the real line
and describing the algorithm in terms of the notions that can be extended. In
this representation the equality constraints /£ = Qare represented by a surface in
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Si3, and the inequality constraints Q < 0 and u 6 U are represented by another
surface partitioning Si3. These constraints create the set of all admissible controls,
or alternatively, the domain V of the mapping, with each point in the domain,
and indeed other points outside the domain having a unique performance measure
value.

With this representation, the algorithm, a standard gradient method algo-
rithm. is as follows with a single iteration of the algorithm being demonstrated in
figure 3.3. using the 3-D representation.

1 Calculate an initial control u0, which is an element of the domain T> ie a
control that satisfies u £ U, R = 0 and Q < 0, by projecting a point onto
V.

2. Calculate the gradient of the performance measure and the constraints at
the current control u, € V.

3. Calculate a search direction h from gradient information, which is a tangent
to the domain at u, and along which the performance measure value will
Initially decrease.

4. Carry out a one dimensional optimisation procedure along the projection of
h onto the domain.

5. Let the solution of this 1-D optimisation procedure be ig+i and repeat from
step (2).

This algorithm produces a sequence of controls in the domain with monotonically

decreasing performance measure values, a control being added to the sequence

every time this main iteration, steps (2) - (5), are completed. The details of how
each of these steps are carried out for the higher order optimal control problem
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representing the clutch engagement problem now follows, with again u represent-
ing an element of ¢~ +1([0,1]) x .

3.2.1  Calculation of an initial control strategy

An initial control strategy u0 GV = {u G ;*+1([0,1]) x3tmju GU,R = 0,Q = Q},
Is obtained by taking any control w_i in the Hilbert space and projecting it to an
estimate of the tangent space of the domain T>obtained from gradient information
at u_i. This projection to T™is very similar to the Newton-Raphson, or quasi-
Newton, iterative algorithms for solving non-linear equations, with the gradients
being obtained at the current estimate of the solution in order to estimate a hetter
solution. For the projection to the domain, the equations to be solved are

Ru)y = 0 (3.25)
Qk,(u) = 0forall k2 such that Qk,(u™i) > 0 (3.26)
0s) = il Vimn - if U < Unin (327)

A Umex if U> Utmex
where U; represents an element of the column vector u, and u(s) = u_i(a) +
Dt, Gk + Ylkt 0k,Qk, (3) + 7(s) whh the added restrictions that

Ok, = 0ifQK <0 (3.28)
yiid) ~ 0ifn/(s) G (u/mn, u/max), (3.29)

ensuring that only projection to constraints that are not satisfied occurs. This
equation is difficult to solve in one step, due to the difference in order of the
finite dimensional constraints /£ and Q, and the infinite dimensional constraints
resulting from the control hounds. For this reason, the projection to the subspace
defined by H and Q, and the projection to the subspace defined by the control
bounds, are performed separately. In the case of the projection to the subspace
defined by fi and Q, the projection is obtained by solving equations (3.25) and
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(3.26), where u(s) = 1i-t(s) + £*. akIVRKI(s) + £¥2A2VQfda). The solution of
these equations is obtained by using a first order approximation of the constraint
functions and solving for the o’s and the /2's. For the projection in question, this
results in the formula

(3.30)
assuming that the gradients of the constraints are linearly independent, where
Qki = {Qf2|Q/t2(u-i) > 0), the gradients are calculated at u_i using the proce-
dure described in the following section, and (., ,)vc is an extension to the Hilbert
space inner product with ((ui, *e*, ujv),(i%, ***, vn))wc = ((«i, ti), +++, (UN,VN)).
The second projection to U, solving equation (3.27), where u(s) = u_i(s) + 7(a),
Is equivalent to applying the bounds by truncating the values of u=t.

The problem with taking the projections separately is that they interfere with
each other, with one projection moving the control away from the subspace that
the other projection is trying to project the control to. For the second projection,
it is very difficult to carry out the applying of the bounds without moving the
controls away from the subspace defined by the constraints R and Q, as the
dimensions of the constraints introduced by the hounds exceeds the dimensions of
the finite dimensional constraints R and Q. However the projection onto R =0
and Q < 0 can be performed so that the bounds are not exceeded, or at least
are not likely to be exceeded by a large amount. This is done by restricting the
freedom of the controls, to controls that are not likely to exceed their bounds. In
practice, this is done by introducing two m by m matrices Gi(s) and Gj, with
> the number of controls in the powertrain model, which indicate the controls
which are likely to exceed their bounds, where the components of the matrices are
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defined by

1 ifi =] and Ki(s) is unlikely to exceed it’s bounds
0 otherwise

| ifi=] and u~(l) is unlikely to exceed it’s bounds (332)

(331)

0 otherwise

with u, representing and element of the original set of controls in the optimal
control problem. These matrices can be used to filter an element, or elements,
of the Hilbert space to its components, which are unlikely to exceed the control

. bounds by
MI(S) -1 ™M, ) rGi(s)u,(s) e+ Gi(s)un(s) T
G(«i, weeunT=6 T, ¢ TIn = Ti Tn
k tiif 11 tin/ j K G2u.l) G2U.ni t
(3.33)
This filter can be used to solve equations (3.25) and (3.26), but this time with
us) =« (mee!VrYo(at (334)

\v2/ W
resulting in the new formula

W =»-,W-¢ ( ) Ta { )-u 7 )

(33)
for the projection of the controls to the subspace defined by the constraints. In
practice the likelihood of whether the controls will invalidate their constraints
Is determined by whether they did on the previous iteration of the projection
algorithm. Hence, the above analysis results in an algorithm for calculating an
initial control W G T> which is as follows
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L Given any initial control u_i, define Qk2 = {Qk2\QkX{u"x) > 0} andGi(s) =
2= /m an m by m identity matrix, equating to no control restrictions.

2. Calculate a new control u using formula (3.35)

3. Calculate a new filter using formulae (3.31) and (3.32), with the likelihood
of u exceeding it’s bounds being determined by whether the new u from step
(2), has exceeded its bounds.

4. Redefine Qk2= {Qk2\Qk2(u) > 0} f°r the new control u.

5 Let u_i = B(u), where B(.) is a function that applies the control bounds,
and repeat from step (2).

It can be seen that any control u G P, will be a stationary point of the
iteration, steps (2) - (4). In practice as the algorithm, converges to such a point,
a tolerance, governing when a control is sufficiently close to T>to be said to be in
P, must be found. One way of measuring this closeness is to measure the distance
the control moves under each projection. For the projection carried out in step
(2), the square of this projection distance is

E, = Hu-u-iH2 (3.36)

which is evaluated after step (2) of the algorithm. For the second projection, the
square of the projection distance is

E* = [19(u) —ul)2 (3.37)

evaluated at step (4). Another measure of how close a control is to the domain is
to look at the individual error of the constraints jg, Q and, possibly, of individual
controls at each point in s, if outside their bounds. The later measure was not
felt to be too important, as the measurement, E2, in equation 3.37, provides a
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p. from the controls and states.

fT2HU'' vV (/u+pTA)>
3 Evaluate VF = 2TH = 2T(f0+pTf)

\VFu) K  Fu J
This procedure directly provides the required gradient information for the con-
straints and the cost components. The cost component gradients can, in certain
cases provide the gradient of the performance measure. In particular, it can be
shown that for the weighted sum multi-objective method (pi) then

i +4n)) - pi(Lill,l_F“(G))- {P\wVER)6u) _ (349

implying that

Vpi(u) = pi(w, VFfi) = e WKV Fk (344)
Is the gradient of the performance measure at u, where F* are the individual cost
functionals and u™ are their corresponding weights. Similarly, for the quadratic
goal attainment method, when F = Pifw_F_—c) > 0, it can be shown that the
gradient of the performance measure is

Vo) = BT WIVEKTE {Flech 345)

where Fk and tc* are as previously noted and c* are the goals corresponding to F*.

In the region where F < 0, F is equal to the standard goal attainment method.

Unfortunately, for this method, where F = Pr<(yL.E —c), no unique value V/t*,
can be found, so that

a4 ~ QPx(mE(" +6u)- Q- pMw,E£(m)- ¢ - {Vp~,6u) _0 467

[IHI

& the limit is dependent on the direction that 6u tends to zero. This lack of

Irechet differentiability can be overcome by introducing a weaker form of direc-

tional, or Gateaux, differentiation [66], where the derivative is now dependent on
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the direction that (u tends to zero. Indeed, it can be shown that, for the goal
attainment method.

£ Qpx (IL-E(ii + th) ~c) - poo(w,F(u) - ¢) - no4TA
e

with the directional gradient defined by
(YPx(u,h)\h) = A {(VF*h)} (3.48)
where h £ such that ||/i|| = 1, defines the direction of the limit to zero.

3.2.3 Calculation of a search direction

Asearch direction h6 H = ¢, +i([0,1]) x s calculated which is a tangent to
the domain T>at u,, and along which the performance measure initially decreases.
The term tangent to T>is used loosely, and refers to a search direction along
which the linear approximations of the constraints defining ™at u, are satisfied.
Algebraically, these requirements can be expressed by the conditions

(VFu,h) < 0 (3.49)
her, (3.50)

where VFU is the performance measure gradient at u,, and T, is the ’tangent’
subspace of T>at u,, which is defined by h 6 T, if

(Vltk,h) = Oforalltt, (3.51)
h) < Oforall such that Qkj = 0 (3.52)
hi(.i) > 0 foralll,asuch that u/(s) = Ummin (3.53)
ftl(s) < 0foralll asuch thatui(a) =u/mex (3.54)

where the gradients are evaluated at  with hi and ui representing elements of
the column vectors h and u.
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One way to obtain such a search direction is to choose an element of T, along
which the rate of decrease of the performance measure is steepest, the so called
‘steepest decent method'. For performance measures that are Frechet differen-
tiable, the direction of steepest decent in 7i is just the negative of the gradient.
For the case when the goal attainment method has been used (poo)j this steepest
decent direction in H is a linear combination of the cost component gradients
which have cost values equal to the performance measure value (i.e. Fk = F).
With this knowledge, the steepest descent direction in 7) is taken to be the pro-
jection of the steepest decent direction form in - onto 7. As the projection of
the negative gradient onto T, is obviously a subcase of the projection of a lin-
ear combination of gradients, only the later is detailed. In this general case, not
only have the projection parameters to be calculated, but also the linear combi-
nation of the cost components. This linear combination is evaluated by taking
{VFj, h) = (VFj2.h) forall li * I such that Fq = F;2=F, with h the final pro-
jected search direction. Ifthis is not the case, then a new steeper decent direction
can be found along which the smaller values of (VF|, ) have increased and the
larger values decreased. These equations, along with the projection equations,
result in the problem of locating an h, satisfying

(VE*, /i) = 0forall kt (3.55)
(Vi?*[) < Oforall k. such that Qk} =0 (3.56)
(VE* /i) = kforall ks (357)
hi(fi) < 0 forall /,s such that u/(:s) = Uimax (3.58)
hi(s) > 0 forall /; ssuch that uj(s) = (3.59)

where «, an arbitrary negative number, determines the magnitude of the search
direction h(s) = £ @ rktVHK + Tk fikVQk +  (y,VF*, + r(a) with the pa-



rameters restricted by

ok =0 if (vy*2/i) < 0or Qk: <0 (3.60)
=0 IifFa<F (361)
en=0 If U/(S) C (u/min, Uimax) (3.62)

or ui(s) = Umln and hi(s) >0

or Ui(s) = uimar and hi(s) < 0
These restrictions ensure that the projection to the inequality constraint bound-
aries only occurs if the search direction invalidates the constraints. These equa-
tions are very similar to the equations for projecting a control onto the admissible
control space, only this time a search direction is being projected onto a ‘tangent’
space. As a result, a similar algorithm to the algorithm described in section 3.2.1
Is used to effect the calculation of the search direction, similarly assuming that
the gradients of the constraints and the cost components are linearly independent.
This algorithm is as follows:

1 Calculate Fks = {Fks\Fks = F}, and a target set for
re£A3  refi
Z = («* k0 o 0)T where the /c's are the targets for the cost compo-
nents and the zeros are the targets of the equality constraints.

2. Calculate an initial estimate of h assuming that the inequality constraints

and bounds are not exceeded, using

h: /(VEk3 ’/ \IT'].

3.63
Vi >\D (36)

3. Calculate a filter, as in equation (3.33), but with
1 ifi=j and u((s) + f.(,pit/(a) € (u/mm*Ulmex) (3.64)

uifs) = 0 otherwise
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Lifl o< (1) T (sttphl(1) G (Ijmmi H|maj) (365

*H) — 0 otherwise

where t,(ep is a small step size, comparable to the initial step size of the
following 1-D optimisation procedure

4. Calculate ka = {ch2|<5/t2 = 0and {VQ/,.,h) > 0} and calculate a new
targetz—(7(:, k.0, °,0,o,'

5. Calculate a new searchd tlon usn-lg -l-
iljicw — h({d G ﬁ E % ti E a é‘[%

6. Test for convergence and repeat from step (3

Note that, in practice, in this algorithm the equallty conditions are relaxed, by
taking them as satisfied, if they are satisfied within a given tolerance bound. In
particular

Qh =0 if —2< Qk. <ok (367)
Fh=F  ifF3> F(L - ta) (3.68)

8 in equations (3.41) and (3.42). The value « is chosen so as to normalise the
calculated search direction, to prevent its magnitude affecting the 1-D optimi-
sation search. The convergence criteria of the algorithm is when the maximum

norm of the difference betwee and its target Z is less than a

certain tolerance dmaz3. Some convergence problems have been encountered with
this algorithm, especially when Fk, is large and its components are nearly linearly
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dependent. Generally, this only occurs when a 'good’ solution has been located
by the algorithm, or the problem has been poorly posed.

The steepest decent method is a first order gradient technique and, hence, may
be slow to obtain a solution. Asa result, for cases when the gradient is Frechet dif-
ferentiable and second derivatives exist, which is when the multi-objective meth-
0ds using p\ or pi have been used, second order techniques, such as conjugate
gradient techniques have been investigated. In particular, one such technique
which does not require the direct evaluation of the second derivative, referred to
as the Fletcher-Reeves algorithm, can be modified slightly in order to apply it
to the problem under consideration. With this technique, the search direction is
dependent on an iterative algorithm and is calculated as follows.

L Letho=go=P(-VF,]J

2. Carry out the 1-D search direction along the projection of hi onto T, in
order to calculate the local minimum ul+i

3. Let h+L=jftsl + A(hi + p.) where p, = P(—V Fuy and A=
4. Repeat from step (2)

with P(.) the projection onto the tangent space operation just described and
P= ok QVRI'l+ Lk ftk"Qk. + r(s) is a projection element, with similar
restrictions to equations (3.60) and (3.62), calculated during the 1-D optimisation
procedure, so that h, +p, g 7j+i. Now, as gi+ and hi + p, are both elements of
the 'tangent’ space and as As positive, /tl+i is also an element of this tangent’
space. Furthermore, it can be shown that (VFUHI, /ithi® = —g||p,+i||2 where a
I a positive constant, ensuring that conditions (3.49) - (3.50) are satisfied, that
I5 unless a local minima has been located.
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3.2.4 t1_-D optimisation along the search direction projec-
jon

Now a search direction has been calculated, a local one dimensional search along
the projection of this search direction onto the admissible control space T is
conducted. This is done by taking a step along this search direction and projecting
the new control values to T>in order to calculate a segment of the projected search
direction on which the local optimal solution must lie. An interval halving routine
Isthen used to refine the segment on which a local minima lies, in order to calculate
this local minima.

Steps along the projection of the search direction onto T>are calculated from
an initial control  using

«4°

[>10)+t,Uph,) (3.69)
P(u\j) + Xup(u\}) -u p ‘L)) (3.70)

where ft, is the search direction calculated in the previous section, e,tep is a small
positive constant governing the size of the steps, Aupis a positive constant slightly
bigger than unity causing the step size to increase along the search direction and
P(.) is the projection mapping described in section 3.2.1, but only projecting
onto the inequality constraints of which the initial control u/* is on the boundary
(i.e. inequality constraints satisfying (?*,(u'*) = 0). In practice, one iteration of
the algorithm was normally sufficient to achieve a satisfactory projection. From
iteration to iteration the magnitude of t,top is adjusted by multiplying it by \dp,
where j is the number of steps of the 1-D optimisation procedure on the previous
iteration.

The above procedure creates a sequence of controls along the projection of ft,
for which corresponding performance measures can be calculated by simulation of
the model equations and evaluation of the cost functionals. With this calculated
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sequence of performance measures, there are a number of possible occurrences
requiring different responses. These are as follows:

L If the performance measure initially increases (F(u[0®) < T'(u[1*)), then
decrease t3op by dividing it by Ajan > 1and restart the calculation of the
sequence. Note that, from equation (3.49), if e is made sufficiently small,
the performance measure will decrease.

2. Ifat any point in the sequence the performance measure begins to rise again
with the controls remaining in T> then locate a segment of the projection
of h( on which a local 1-D minima must lie. In particular, with F'(u,-+1%) >
F(u\* then the local minima must be an element of V = {P((I —/r)up-1*+
[IWK+1V efo,i]}.

3. Ifata point in the sequence any inequality constraint which is not projected
to, and hence prior to the 1-D optimisation procedure satisfies £7<2(u|0% < 0,
is no longer satisfied, stop the sequence and calculate the point along the
projection of A at which the constraints are initially invalidated and replace
the last step which does not satisfy the constraints by this new control. If
the performance measure is still decreasing then stop, taking the control
that just satisfies the constraints to be the local minima and continue with
a new iteration of the algorithm, otherwise obtain a segment as in step (2)
on which the local minima must lie.

This later calculation, of a point along the the projection of /g, which just satisfies
the inequality constraints, is obtained using the procedure

L Given \\>g V and
straints, let«/ = /*((!-M)u™+ fiufd+,) with f
I'his formula results from approximating the inequality constraint values by
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linear interpolation between the two given values and calculating the inter-
polation parameter // which just satisfies the constraints. This parameter is
then related back to a linear interpolation between the controls.

2. (a) Ifu" GV then replace up* by u' and repeat from step (1).
(b) Ifu' £P, as it still does not satisfy all the inequality constraints, then
replace up+L by u' and repeat from step (1).

This procedure is repeated until the all the inequality constraints are satisfied
within a given tolerance. That is

Qkj < for all k. (3.71)
—Sk< Qk <$  fora particular k. (372

Once a segment, on the projection of h, on which a local minima must lie, is
located, the local minima is evaluated using an interval halving procedure. This
procedure is as follows:

L Given a segment V = {P((I —p)up-L*+ pup+L*)/i € [0,1]} on which the
minima lies, up* S V\ {up-1*up+1*}, and performance measure values for
all three points, F(up-1%), F(ulW*), and ir(u(J+1*) calculate

o= p (UP HUP (373)
2
oz p *2”9”} (374)

and their performance measure values F(u'), F(u").

2. (a) IfF(u") < F(u\w™ then let = u\ uw+1*= up* and repeat from
step (1)

(b) If F(u") < F(up*), then let up* = u", up-1*= up* and repeat from
step (1)
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(c) Otherwise, let \J *=u', up+1*= u" and repeat from step (1)

This procedure is repeated until this difference between the largest and the small-
est value of F (u[J *)), F(u*J)) F(uJ3+1* is less than a given tolerance. This
tolerance is taken to be the minimum of an absolute value AF and a relative
value, py. initial difference of performance measures.

3.25 Implementation of the gradient method algorithm

The gradient method algorithm just described is implemented using the computer
packages Matlab and ACSL. Matlab, a matrix manipulation package, was used
to perform the majority of the computational tasks, with the simulation package
ACSL used to simulate the states and costates, and to evaluate the individual
cost and constraint functionals.

In performing the algebraic operations of the algorithm in Matlab, elements of
the Hilbert space must be stored and the Hilbert space inner product must be eval-
uated. The elements of the infinite dimensional Hilbert space, ¢, +i([0,1]) x 3im,

which are represented by a vector | T I with each component of the vector either

inSior ¢°°([0, 1]), is approximated by representing the components in Z,°°([0,1])
by a further vector equating to values of the component at regular intervals in
s. Typically 100 points are taken with such a component u*(s) € L°°([0,1]) rep-
resented by the vector [u;(0), u/(0.01),tq(0.02), e, «(L)]. The evaluation of the
Hilbert space inner product defined by equation (3.20), is accomplished using the
matrix operations provided in Matlab and evaluating the integral in the equation
using the trapezium rule. All of the other computations required can be easily
performed using standard matrix manipulations provided by Matlab.

The simulation of the states and costates in ACSL is performed using the
Runge-Kutta 4th order integration procedure, with an integration step size of
up to 0.01 for the independent variable s. The results of these simulations are
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dumped in ascii form into files at intervals in s. corresponding to the interval on
which the values of elements in Lx ([0.1]) are approximated in Matlab, allowing
these values to be read into Matlab with out too much difficulty.

In order to aid the performance of the algorithm, the controls, the cost func-
tionals and the constraints are normalised in the described computation. The
controls are normalised so as to ensure that the importance of one control on the
solution procedure is similar to the other controls. If the controls were not nor-
malised. then one control would converge faster than the other controls, slowing
down the overall convergence of the algorithm. The costs and constraints are nor-
malised so as to prevent ill-conditioning problems with the evaluation of equations
3.35. 3.63 and 3.66.

The resulting algorithm converts ari initial control u_i to a new control u,
for a given number of iterations. . he algorithm is controlled using the various
tolerances, with lack of convergence of iterative procedures being detected when
maximum iteration limits are exceeded.

3.3 Optimal control problem solution results

The algorithm described in the previous section is used to solve a variety of op-
timal control problems representing the clutch engagement problem. In this final
section, the solution of typical problems is analysed, with comments made on the
performance of the solution technique and on the performance of the powertrain
for the resulting control strategies.

3.3.1 Optimal control problem construction

I he particular dutch engagement problem considered is an engagement from rest
problem, with initially, the engine nywneer Speed, jqfO), at 225 rad/s, the dutch
fully disengaged and all the other powertrain components in steady state, resulting



in zero initial conditions for the remaining powertrain model states. This problem
is felt to be a typical, but difficult clutch engagement problem. The problem
Is addressed, first of all assuming that both the engine torque and the required
clutch torque capacity are free to be controlled, and secondly assuming that the
required clutch torque capacity is the only control, with the engine torque set to a
predefined value. The normalisation values for these controls, used in the solution
approach are detailed in table 3.3,

For the optimal control problem examples in this section, the performance of
the optimal control problem is expressed using eight individual cost functionals.
These costs are F\, F2, Fs, F5, F6, Ft, defined in equations (2.39), (2.40), (2.41),
(2.44). (2.46), (2.47). and two additional costs. The first additional cost functional
IS

v ~2min)2 if*L(t)) <X ime

Eg ()= ( 0 otherwise

where t] is the time of clutch lock up, which measures the distance of the engine
flywheel speed below ximl, at the point of clutch lock up. This is included, as
cost Fa, equation (2.46), fails to adequately prevent the flywheel speed dropping
too low when the engine torque was taken to be a control. This is due to lower
performance measure values resulting from dramatic reductions in engine torque
just prior to clutch lock up, which cause the engine flywheel speed to drop sharply.
This results iri the clutch engaging in less time, reducing many of the individual
cost functionals, without significant increases in the cost /s The increase in
[§ remains small as the time at which the engine flywheel speed drops below
*Timm, prior to clutch lock up, is very short. Increases in the weighting of cost /«
just caused the drop in engine torque to increase, without causing any significant
improvements in preventing the engine flywheel speed dropping too far. The other

(375)
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additional cost is

which measures the variation of the engine flywheel speed prior to clutch lock
up. This cost is included to demonstrate how the control strategies resulting
from the solution of the optimal control problem can be modified by including
additional cost functionals. The costs F. and Fg, equations (2.43) and (2.48), are
not included. Cost F4. which measures the excitation of the compliance at the
point of clutch lock up. is not included, as the oscillation are adequately measured
by costs F\. F2and F3, and when the engine torque is taken as a control the value
of i.—i can be instantaneously varied, just prior to engagement, so that cost F.
has a small value at engagement, making its value meaningless. In other words,
altering its value without affecting the dynamics of the powertrain, as this step in
torque prior to engagement excites the oscillations. The normalisation values for
these costs used in the solution procedure are detailed in table 3.4.

Using these eight cost functionals and any of the three multi-objective com-
promises, a number of different optimal control problem performance measures
are designed, with the weights and goals obtained from a combination of physical
intuition and trial and error. The set of different performance measure values
presented in this section are detailed in table 3.5, with the weights and goals re-
ferring to the normalised cost functionals. For each multi-objective method, two
performance measures are designed. The first measure depends on the costs mea-
suring the oscillations after engagement, i.e. the lock up time, the clutch energy
dissipation and the stalling costs. The second measure depends on these costs,
as Well as the cost measuring the oscillations prior to engagement and the cost
measuring the transients of the engine flywheel speed prior to engagement. Tin-
inclusion of these last two costs tries to improve, perhaps, the behaviour of the
powertrain during engagement. In both cases, the weights on the costs are unity,



apart from the costs measuring the likelihood of stalling, which are set to 10.0 so
as to prevent stalling, and the costs measuring lock up time and clutch energy
dissipation. These last two costs are felt to be complementary, and as a result,
for the weighted sum method, their weights are halved, and for the goal attain-
ment methods the weight corresponding to clutch energy dissipation is halved
with a goal introduced for the lock up time. This is done so as to reduce the
influence of these costs on the solution. An additional performance measure us-
ing the quadratic goal attainment method is also designed, using all of the costs
in table 3.4, but making greater use of the goals, by introducing goals for costs
R and F\0. The weights of these two costs are also increased to 10.0, 5o as too
give these costs great importance when their goals are not met, but little, if any,
importance when they are met, or nearly met. This ensures that these costs will
not be excessively high, and that their values will not be too small at the expense
of other costs.

For all of the above optimal control problems, in addition to the mandatory
constraint xt = x2at tf, an additional constraint

(62 - ¢1)|(sign(xi(0) - x2(0)) > 100 (3.77)

Is included, where the state derivatives are evaluated using the state equations
representing a slipping clutch, and u(tj) represents the terminal time at which
point the controls are the terminal controls Uj. This constraint ensures that for
the clutch engagement problem with xi(0) > x2(0), just after lock up pu3 >
r1i*~fi+)a+t/3*>where r is as defined in equation (2.11), which ensures that
the clutch will remain locked up if r > —/u3, an assumption already made in

section 2.1, Furthermore, if it is assumed that r > —I,u3i which is
a likely situation of the clutch engagement problem, then the clutch will remain
locked up with a certain degree of robustness, as /iud> |r| + 7 * The

normalisation of this extra constraint, and the mandatory constraint used in the
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solution of the optimal control problems, are detailed in table 3.6.

3.3.2 Solution performance of algorithm

The optimal control problems defined by the performance measures in table 3.5
are solved using the described algorithm. In the solution results presented, the
tolerances, described in section 3.2, used in the algorithm are detailed in table 3.7.
These values are chosen by trial and error and seem to produce satisfactory perfor-
mance for a variety of different optimal control problems and solution techniques.

As examples of how the algorithm performs, the case when all the individual
cost are included (optimal control problems 2,4 and 6 in table 3.5), applied to
vehicle A, with both the engine torque and the required clutch energy dissipation
active as controls, is taken. This case is seemingly one of the most difficult cases
for the algorithm to solve. For this case, solutions have been obtained for all
three multi-objective methods using the steepest descent gradient method, and
for the weighted sum method and the quadratic goal attainment method using the
Fletcher-Reeves conjugate gradient method. For these five solutions, the solution
procedure is run for 50 iterations with the initial control u_i taken as

(100.125.1) for s6[0,1)
(100.225.1) for s=\

taking the engine torque and the final required clutch torque capacity to be at
their upper limits, with the required clutch torque capacity, up until lock up,
at a point approximately half way between its upper and lower bounds. Two
additional solutions are obtained for optimal control problems designed using the
weighted sum method and the quadratic goal attainment method, again using the
steepest descent method, but with a different initial control of

(50.100.1)  for s£10,1)
(100.225.1) for s=1

(u,,u3,T) = (378)

(U,i3T) = (379)
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These seven solution results are detailed in figures 34 - 3.10. For each of these
figures, graphs of the performance measure, the individual cost functionals, and
the norm of the difference between the control obtained at a current iteration, and
the control at the previous iteration, are plotted against the number of iterations.
A graph of the resulting clutch plate speeds, obtained from the simulation of
the powertrain model, using the control obtained after 50 iterations, or when the
algorithm stops, is also included in these figures. These graphs are first of all used
to characterise the general performance of the algorithm, and then to compare
the various attributes of the different solution techniques for the different multi-
objective compromises.

From these graphs, it can be seen that the performance measure values mono-
tonically decrease against the number of iterations, with the rate of decrease
decreasing until little improvement is made in its value. The individual cost com-
ponents, also generally decrease, again with their rate of change diminishing as
the iterations continue. However, it is possible for their values to change signifi-
cantly without affecting the performance measure, as in figure 3.6 and figure 34
between iterations 39 and 40. The size of the movement in the controls, also, gen-
erally decreases. However, this control movement seems to be fairly erratic, with
Its value changing from iteration to iteration. Furthermore, large changes in the
controls occur which fail to reduce the performance value by any notable value.
This ensures that convergence of the algorithm can not be guaranteed when the
rate of change of the performance value is negligible, but only when the rate of
change of the controls is negligible. Even then, it is possible for the change in
the controls to be very small for several iterations and then increase again, as in
figure 3.5, making convergence extremely difficult to detect.

With these difficulties already noted, it would be preferable to identify the
solution approaches which seem to perform the best. First of all, comparing the
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performance of tlie algorithm applied to the different performance measures de-
signed using the different multi-objective compromises, it can be seen that the
weighted sum method (figure 3.4) takes longer to obtain a very small performance
measure value taking about 20 iterations before little improvement is made, than
the other two methods (figures 3.5 and 3.6), which take about 5 iterations. Simi-
lar results have also been obtained for other problems investigated. For the goal
attainment method (pQc), although it obtains a satisfactory performance measure,
its behaviour is far from ideal, with large changes in individual cost components
resulting in computational difficulties and the algorithm being terminated after
30 iterations as a smaller performance measure value was unable to be located.
Furthermore, the performance of the resulting clutch plates speeds could be im-
proved, by decreasing the oscillations after clutch lock up, represented by costs
F2and F3. These costs can he decreased by timing a dip in the clutch torque
capacity and a small step in engine torque, without causing the other costs to be
dramatically altered. However, for the goal attainment value, if the values of cost
F2and F3 are less than the maximum of the difference between the other costs
and their goals, then these costs measuring the oscillations after lock up have no
influence on the performance measure, and hence are not required to be small,
resulting in the method failing to reduce these oscillations. A final disadvantage
of the goal attainment method is that it is computationally more expensive, as
noted in table 3.8. This table, details the computational requirements of the algo-
rithm when run as a sole user on a SUN 4/330, over the network. The times have
been obtained by taking an average of typical runs, rounded to the nearest five
seconds, with the real time including the ACSL simulation times, the transfer of
these calculations to and from disc and idle and system time. The Matlah CPU
time was calculated using appropriate Matlabh commands.

Another comparison that can be made from the figures, is the relative perfor-
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niance of the steepest descent method to the Fletcher-Reeves conjugate gradient
method, applied to the problem designed using the weighted sum method and the
problem designed using the quadratic goal attainment method. In figure 3.11,
plots of the performance measure against the number of iterations are shown
for these two problems with the solid line showing the performance measure of
the steepest decent method and the dashed line of the conjugate gradient method.
From this figure, it can be seen, especially in the case of the weighted sum method,
that the 2nd order conjugate gradient method achieves a low performance mea-
sure value in less iterations, with each iteration of this second order technique
having similar computational requirements to the steepest descent method. Fur-
thermore, the 2nd order method normally achieves a smaller performance measure
value. However, convergence is still not achieved, with significant control changes
still occurring right up to 50 iterations, as shown in figure 3.7 and 3.8, with the
rate of decrease of the performance measure similar to the rate of decrease in the
steepest descent method.

One final analysis of the performance is to investigate the dependence of the
algorithm on the initial control u_i. Figures 3.9 and 3.10 show solutions to the
same optimal control problem, as in figures 3.4 and 3.5, but starting at a different
control. From these figures it can be seen that the values of the performance
measure located are very similar. However, the values of the individual cost
components are very different in magnitude and the resulting controls are very
different, as shown in figures 3.12 and 3.13, with different performance of the clutch
plates resulting. The conclusion of this is that the solution after 50 iterations i
dependent on the initial control, and thus after 50 iterations the algorithm has not
converged. Unfortunately, if the number of iterations is increased, the algorithm
still fails to converge. The suggested reason for these convergence problems is that,
for the optimal control problems being solved, there exists a large set of controls
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with performance measure values close to the optimal solution, but which lie
over a large region of the domain V. With such a problem, the gradients, and
the changes in the performance measure along the search direction, are small,
resulting in very slow convergence, with the behaviour of the solution dependent
on higher order gradients. It could be argued that such an optimal control problem
IS ill-defined, motivating the inclusion of additional constraints and costs, but it is
questionable whether this is prudent. For optimal control performance measures,
which adequately measure the performance of the system, then any *good’ solution
will suffice, with the only disadvantage being the lack of uniqueness of such a ‘good’
but non-optimal solution. This is especially true when the difference between the
optimal performance measure value and the value obtained is negligible, as in
the clutch engagement case. This lack of uniqueness may cause difficulties in
comparing similar but different problems, as the solutions are dependent on the
initial control, u_!, and the solution procedure. However, it may still be possible
to compare characteristics which are necessary to achieve ‘good” solutions.

To conclude, analysis of the algorithm’s performance when trying to solve the
clutch engagement problem identifies that the algorithm locates a ‘good’ control
strategy, which is dependent on the initial control taken, in about 5-10 iterations.
The algorithm seems to perform, at its best, when solving an optimal control
problem designed using the quadratic goal attainment method, with the search
direction obtained using the conjugate gradient method.

3.3.3  Characteristics of "good’ clutch engagement

As discussed in the previous section, the location of tin* ‘good’ control strategies
Is dependent on the initial control, u_i, the algorithm variables (i.e. the order and
tolerances of the algorithm), as well as the optimal control performance measure
design. ['or many solution results obtained, it is possible to identify key character-



istics of 'good" clutch engagement. These characteristics seem to be independent
of the multi-objective method used in designing the performance measure. Fur-
thermore. for each method, the characteristics do not seem to be that dependent
on how each individual cost functional is included in the compromise, only whether
they are included with a significant weight. This can be demonstrated by com-
paring the two solution results of optimal control problems 4 and 7 in table 3.5,
with the second optimal control problem performance measure that make greater
use of the additional adjustability of the goals in the quadratic goal attainment
method. These two optimal control problem performance measures, include the
same cost functionals, in two different ways, with the control strategies located
after 50 iterations of the algorithm shown in figures 3.14 and 3.15. Inboth of these
figures, graphs of the clutch plate speeds and vehicle velocity are presented, which
are obtained from simulating the powertrain model, along with the controls that
produce these states. From these figures, it can be seen that the resulting control
strategies are very similar, with, in both cases, the clutch engaging in about 0.8
seconds, the vehicle reaching a speed of 10 km/h in 1.0 seconds, and the controls
not differing significantly in shape or size. Further analysis of the results, for a
variety of problems, seem to suggest that the characteristics of the solutions, ob-
tained using the algorithm, are only dependent on the vehicle dataset, the number
of controls active, and the cost functionals included in the performance measure.

Eight permutations, on which the solution seems to be dependent are now
detailed. These permutations are of whether all or some of the costs are included
in the performance measure, whether one or two controls are active, and whether
vehicle A’s or vehicle B’s dataset is used. Again, for each case, graphs of the
clutch plate speeds, vehicle speeds and controls, are detailed in figure 3.14 and
figures 3.16 - 3.22. These solutions have been obtained using the quadratic goal
attainment method (problems 3 and 4 in table 35) and calculated using the
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algorithm for 50 iterations. From these graphs a number of characteristics can
be identified which are present in all cases. In particular, just prior to clutch
engagement the clutch torque capacity dips down. This reduction in clutch torque
capacity reduces the torque jump at the point of clutch lock up, reducing the
excitation of the oscillations at this point. Another common characteristic when
the engine torque is active as a control, is the general shape of the engine torque
transients, with the engine torque initially being small allowing the engine flywheel
speed to decrease, speeding up engagement, then increasing in order to prevent
the engine flywheel speed dropping significantly below 100 rad/s. A final common
characteristic is the small dip in engine torque prior to clutch lock up. This dip,
just prior to engagement, causes the clutch plate speeds to come together more
speedily, with a increase at the point of lock up causing the clutch to engage
smoothly with little excitation of the powertrain compliance.
Other characteristics for individual cases are also present. In particular:

1. when vehicle A’s dataset is used in the optimal control problem, oscillations
In the required torque capacity prior to engagement and oscillations in the
powertrain dynamics a short time after starting to engage the clutch result,

2. when all the cost functionals are included in the performance measure, the
clutch lock up time is longer, with the rate of increase of clutch torque
capacity smaller than when the costs measuring the oscillations prior to
lock up and flywheel transients are omitted,

3. for vehicle B, clutch engagement appears to be easier, engaging in less time.

[ he first effect is attributed to the significance of the oscillations in the powertrain
compliance prior to engagement, with the oscillation in clutch torque capacity be-
ing of a similar frequency to the frequency of the oscillations prior to engagement.



With such oscillations being significant, the oscillations just after the start of en-
gagement are unavoidable without significant increase in lock up time. The third
observation is put down to the insignificance of the oscillations prior to engage-
ment for vehicle B and to the greater range of the controls. An interesting case,
is when the costs F\ and Flo are omitted, with only the clutch torque capacity
active as a control, applied to vehicle B (see figure 3.22). In this case, a converged
solution has almost been obtained.

To conclude, the optimal control problem solution fails, in general, to obtain
the theoretical optimal solution that exists. However, the formality of the ap-
proach has enabled ‘good" clutch engagement solutions to be obtained. These
‘good’ solutions can be used to obtain characteristics inherent in ‘good’ clutch
engagement, or directly as open loop control strategies applied to the problems
used to generate them.
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Required clutch torque capacity (0.4 sec)

Clutch plate speeds (0.44 sec)
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Required clutch torque capacity (0.42 sec)

Other clutch plate speed

Figure 3.1: Bang-bang control simulations with banging times of 0.44 and 0.42
seconds
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Required clutch torque capacity (0.40 sec)

Time (sec)

Other clutch plate speed

Figure 3.2 Bang-bang control simulations with banging times of 0.40 and 0.38
seconds
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Figure 3.3: Pictorial representation of algorithm iteration
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Performance measure

Cost components
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Engine Flywheel speed
Other clutch plate speed

Clutch plate speeds

Speed (rad/s)

Figure 3.4: Optimal control problem solution: weighted sum; vehicle A; steepest
descent method with initial control defined in equation (3.78)
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Figure 3.5: Optimal control problem solution: quadratic goal attainment; vehicle
A: steepest descent method with initial control defined in equation (3.78)
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Figure 3.6: Optimal control problem solution: goal attainment; vehicle A; steepest
descent method with initial control defined in equation (3.78)
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Figure 3.7: Optimal control problem solution: weighted sum; vehicle A; conjugate
gradient method with initial control defined in equation (3.78)
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Figure 3.8: Optimal control problem solution: weighted sum; vehicle A; conjugate
gradient method with initial control defined in equation (3.78)
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Figure 3.9: Optima) control problem solution: weighted sum; vehicle A; steepest
descent method with different initial control defined in equation (11.79)
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Figure 3.10: Optimal control problem solution: quadratic goal attainment; vehicle
A: steepest descent method with different initial control defined in equation (3.79)

124



W eighted sum performance measure
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--------- Conjugate gradient method

Quadratic goal attainment performance measure

Fiqure 3.11: Comparison of performance measures for 1st and 2nd order gradient
techniques
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Engine torque

Required clutch torque capacity

First initial control
Second initial control

Dummy control

Figure 3.12: Different controls resulting from different initial controls: weighted
sum method
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Engine torque

Required clutch torque capacity

First initial control
Second initial control

Dummy control

Figure 3.13: Different controls resulting from different initial controls: quadratic
goal attainment method

127



Clutch plate speeds

---------- Engine flywheel speed
---------- Other%lutch%s spegd

Vehicle speed

Clutch torque capacity

---------- Actual clutch torque capacity
---------- Required clutch torque capacity

Engine torque

Figure 3.14: Powertrain performance of control solution: optimal control problem
number 4 in table 3.5; vehicle A; two controls active.
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Clutch plate speeds

---------- Engine flywheel speed
---------- Other %Iutch)f)vl\gte spe%d

Vehicle speed

Clutch torque capacity

----------- Actual clutch torque capacity
---------- Required clutch torque capacity

Engine torque

Figure 3.15: Powertrain performance of control solution: optimal control problem
number 7 in table 3.5; vehicle A; two controls active.
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Clutch plate speeds

----------- Engine flywheel speed
----------- Othergclutch );Jvl\gte speped

Vehicle speed

Clutch torque capacity

----------- Actual clutch torque capacity
----------- Required clutch torque capacity

Engine torque

Figure 3.16: Powertrain performance of control solution: optimal control problem
number 3 in table 3.5; vehicle A; two controls active.
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---------- Required clutch torque capacity

Engine torque
150-
¢ 100
S
g 50-
. , 15
03 Time (sec)

Figure 3.17: Powertrain performance of control solution: optimal control problem
number 4 in table 3.-5 vehicle A; one control active.
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Clutch plate speeds

---------- Engine flywheel speed
---------- Other glutch %\Ihéte spegd

Vehicle speed

Clutch torque capacity

----------- Actual clutch torque capacity
---------- Required clutch torque capacity

Engine torque

Figure 3.18: Powertrain performance of control solution: optimal control problem
number 3 in table 3.5; vehicle A; one control active.
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Clutch plate speeds

----------- Engine flywheel speed

----------- QOther clutch plate speed
Vehicle speed
Clutch torque capacit
200 que capacity
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IIIV llllllllllllllllllllllllllllllllllllll
Rogy 2, L
H Xea |
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------- Actual clutch torque capacity
------- Required clutch torque capacity

Engine torque

Figure 3.19: Powertrain performance of control solution: optimal control problem
number 4 in table 3.5; vehicle B; two controls active.
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Clutch plate speeds

---------- Engine flywheel speed
---------- Other glutch )[,J\?(:lte spegd

Vehicle speed

Clutch torque capacity

----------- Actual clutch torque capacity
----------- Required clutch torque capacity

Engine torque

Figure 3.20: Powertrain performance of control solution: optimal control problem
number 3 in table 3.5; vehicle B; two controls active.
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Clutch plate speeds

---------- Engine flywheel speed
---------- Other %lutch mte spe[e)d

Vehicle speed

Clutch torque capacity

Actual clutch torque capacity
Required clutch torque capacity

Engine torque

Figure 3.21: Powertrain performance of control solution: optimal control problem
number 4 in table 3.5; vehicle B; one control active.



Clutch plate speeds

----------- Engine flywheel speed
---------- Other glutch mte spegd

Vehicle speed

Clutch torque capacity

----------- Actual clutch torque capacity
---------- Required clutch torque capacity

Engine torque

Figure 3.22: Powertrain performance of control solution: optimal control problem
number 3 in tahle 3.5; vehicle B; one control active.
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Costs Weights

(i2- 003
fo fi-Tski - X2dt  0.00005
0" 1di 10

Table 3.1: Optimal control problem example: weights

Hanging Performance 0.03 x (;2 - 0.00005 x  fix&Hi —x2dt 1.0 x j0" dt
time measure
0.44 1.1629 0.1935 0.4958 0.4735
0.42 1.1047 0.1240 0.4971 0.4835
0.40 10774 0.0112 0.5035 0.5625
0.38 @ ? ? @

Table 3.2: Bang points example

Controls Symbol  Normalisation values
Engine torque al 100.0
Required clutch torque capacity 13 225.0
'Dummy’ control T 10

Table 3.3: Control normalisation values
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Costs and constraints  Normalisation values

Fi = f0'(x3- uX2)Xi 40.0
F2= x&2(<)) 40.0
F3= Xa(tf) 400.0

Fi = 0" pudx! - x2/k 10000.0

= 100.0
F7=lo" 1di 10
= 1000

Fio = /o' 200000.0

with r(t) = (@Ut) lmin) i XI() < X
0 otherwise

Table 3.4; Cost normalisation values

Performance  Multi-objective (weights, goals)

measure method F, f2 Fa  Fi Fe Fr f9 Fio
1 P\ 00 (1,0) (1,0) (1,0) (2000 (o) (1000 (0,0)
2 P\ (L) (1L0) (Lo) (0) (200) (3,0) (100) (1,0)
3 P 00) (L0) (1.0) (80) (100) (1,¢) (100) (0.0)
4 P (L) (L0) (L0) (80) (100) (1,¢) (100) (L0)
5 P 00) (1) (1,0) (80) (10.0) (1i) (100 (0.0)
6 R (L) (L0) (10) (80) (200) (1) (100) (1,0)
7 P (101) (10) (10) (80) (20,0) (1,8) (20.0) (10,i)

Table 3.5: Optimal control problem performance measures
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Constraints Normalisation values

Ti - x2 80.0
(l(tf) - ii(</))sign(x,(0) - x2(0)) 600.0
Table 3.6: Constraint normalisation values
Tolerance description Symbol  Value
Equality constraint relaxation parameter g 0005
Inequality constraint relaxation parameter 0.005
Maximum absolute error in control projection dmaxl  0.001
Maximum relative error in control projection ¢mex2  0.001
Cost equality relaxation tolerance o 001
Maximum error in search direction projection dmaxi  0.001
Rate of step increase Np o 125
Rate of step decrease Adown 5.0
Initial step size ap 001

Maximum absolute error in interval halving procedure  AF  0.005
Maximum relative error in interval halving procedure p 01

'labié 3.7: Algorithm tolerances

Multiobjective method Symbol  Approximate Mattali CIMJ  Approximate real time

time per iteration per iteration
Weighted sum Pi 20 Sec 70 sec
Quadratic goal attainment  pj 20 sec 70 sec
Coal attainment P, 60 sec 120 sec

|abié 3.b: Algorithm computational time

[ tu



Chapter 4

Optimal feedback control of
clutch engagement

In this chapter, drawhacks of the open loop optimal control problem for clutch
engagement from rest are identified. Estimations of perturbations in the optimal
control problem are then used to create a variational optimal control problem. The
solution of this variational optimal control problem is used to modify the open
loop solution, resulting in a feedback control strategy. Finally, the performance
of this feedback strategy is analysed for a variety of different situations for which
the open loop strategy is unsatisfactory. Some of this work at been presented at
a recent international conference on control [67].

4.1 Open loop solution drawbacks

In the previous chapter, the solution of the optimal control problem results in a
good’ control strategy for a given problem. This control strategy is open loop,
calculated off-line, being dependent on the initial stair's, the model parameters,
the model equations as well as the performance measure. For this reason, if the
initial conditions and the model do not adequately portray the clutch engagement
problem and the powertrain dynamics, then tin? resulting clutch performance may
deteriorate. In particular, if the initial flywheel speed is different, or if the car
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Is initially on a slight gradient, or even if the powertrain model is different, say
because the vehicle is fully laden, or the clutch is worn, the calculated open loop
control strategy may no longer maintain ‘good’ clutch engagement.

In order to assess the performance of clutch engagement under such pertur-
bations an example is taken. This example is the case studied in the previous
chapter, the case of engagement from rest, with the initial engine flywheel speed
at 225 rad/s, hoth controls active and applied to the dataset representing vehicle
A. The open loop solution to the optimal control problem, designed using the
weighted sum method with all the costs included (problem 2 in table 3.5), results
in good clutch performance as shown in figure 4.1. That is when simulated using
the model equations used in its calculation. For this case, three model and prob-
lem perturbations are made, to the original problem, with simulations conducted
to assess how the clutch performance is maintained. The three perturbations
represent an engagement from rest with

L the initial engine flywheel speed perturbed to only 175 rad/s
2. the car initially on a 1.10 gradient up hill

3. and the car fully laden (modelled by increasing inertia J4 by 2 kgmi) with
a worn clutch (only 95% effective).

For these three perturbations, graphs of the clutch plate speeds resulting from
simulations are detailed in figure 4.2, with the changes in the calculated costs
detailed in table 4.1 along with the costs when no perturbations have been applied.
From the figure, for the first perturbation, it can be seen that the clutch locks up
very quickly, with only a small increase in the powertrain oscillations. However, in
accomplishing this the engine flywheel speed, drops significantly below 100 rad/s,
sufficiently low that the engine would probably stall. This stalling problem is
also demonstrated by the cost functional values, with the costs measuring the
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likelihood of stalling, costs F6 and F9, dramatically increasing when the initial
flywheel speed perturbation is made. For the second perturbation, the engine
flywheel speed remains above 100 rad/s, up until the time at which the clutch
would lock up, if no perturbation had been made, at a time of approximately 1
second. At this time, as the speed of the clutch plate attached to the gearbox
is lower than when the vehicle is on level ground, clutch engagement has not
been completed. After this time, the clutch torque capacity is increased which
would have ensured that the clutch remains locked up when no perturbation is
made. This increase causes the clutch plates speeds to quickly converge, resulting
in the engine flywheel speed dropping below 100 rad/s and the generation of
oscillations when the clutch finally locks up a short time later. Again, the cost
functional values indicate theses observations with increases in the costs measuring
the likelihood of stalling and the costs measuring the oscillations after clutch lock
up, costs F2and F3. For the third perturbation, due to the increase in vehicle
mass, the speed of the clutch plate attached to the gearbox is lower than expected,
and due to the clutch being worn, the clutch plate speeds are further apart than
expected. Hence, as before, clutch engagement is not completed at the time
when clutch lock up is achieved under no perturbations. Again, due to increase
in clutch torque capacity, the clutch plates speeds come together quickly, with
large oscillations after engagement resulting. Once again, the individual costs
demonstrate these findings, with increases in cost Ft and F3.

The above example demonstrates that the performance of the clutch engage-
ment can deteriorate for realistic variations. Furthermore, it demonstrates that
the performance measures adequately measure this deterioration. This result
justifies the development of a refinement to the open loop control strategy which
adjusts the controls in order to maintain the good clutch engagement performance
by maintaining a small value of the performance measure.

142



4.2 Variational optimal control problem

As demonstrated, perturbations in the clutch engagement problem can cause the
performance measure to change as the states and controls, on which the perfor-
mance measure is dependent, change from their open loop calculated values. The
obvious question is, can the changes in the performance measure be estimated?
Fortunately such changes can be estimated using calculus of variations. This well
established theory allows variations of functionals of the form

subject to — = Ts)f(x,u), x(0) —xq (42)

where /, f0 and ft are all continuously differentiable, to be calculated. The
functional is of the fixed terminal time form as variations of the higher order fixed
terminal time problem will be used to construct a variational optimal control
problem, although theory exists allowing variations of a free terminal time form
to be used. The use of this higher order problem form is for similar reasons to the
justifications for its development in chapter 3. The first and second variations of
such functionals with respect to variations of the states and controls at a given
control u* are

(43)

(44)

subject to 6x = fi6x + /,Au, 6x(0) = ¢X), (45)
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In these expressions: H = T2(pr/ + /o) is the Hamiltonian; p are the costates
evaluated as usual using p = Hj and p(l) = ftx\'s. and & are first and second
order variations of the states; Au represents the variations of the controls; sub-
script 0 denotes the evaluation at s = 0; subscript / denotes the evaluation at
s = land subscript * denotes the evaluation of the Hamiltonian and functional
derivatives at u*, calculated by evaluating corresponding state xmand costates
p". Note that the constraint, equation (4.5), is just the linearisation of the state
equations. The calculation of such variations is well described in a tutorial paper
[68]. This allows the functional to be approximated by

F=F +6F.+ i<5F, (4.6)

at u* with respect to variations of the controls and initial states, neglecting all
variations of third order or higher. This in turn allows approximations of the indi-
vidual cost functionals and the individual constraint functionals to be calculated.
In order, to obtain a variational optimal control problem, variational approx-
imations of the performance measure are required. In the case of optimal control
problems designed using the weighted sum method, first and second order varia-
tions of F = pi(w,F_), as defined in equation (2.58), are just linear combinations
of the first and second order variations of the individual cost functionals, being

6F=pi(w,6F.) (4-7)
6iF =PI(w,6iF) (4.8)

where 6F and 62F are vectors of the first and second order variations of the indi-
vidual cost functionals. For optimal control problems designed using the quadratic
goal attainment method, in the region where F = pi(w_,£ —c) > 0, as in equation
(2.62), the first and second order variations are

gr= E- tCi($F,maxF{0,ic,(F, - ¢,)} (49)



62 - - (4.10)

|W2BF2+ w?62Fi(Fi —C) if iv,F, > wp,
0 if WiFi < WCi
where ¢F, and ;2F are variations of the individual cost functionals. When F, = ¢,
the second variation is dependent on the variation ¢F, or (2F, if ¢F, = 0, with
62Gi obtaining the first value if <, > 0 and the second value if ;F, < 0. Apart
from the discontinuity of the second variation, the form of the second variation is
particularly messy, containing a product of two integrals in the term 6F2. Finally,
for the optimal control problem designed using the goal attainment method with
F = Poe{w,F_—c), equation (2.60), both the first and second order variations
of performance measures are dependent on the variations 6F, and 82F, of the
individual cost functionals, with the values of the variations being

6F= i {F,+SFi}-F (4.12)
BOF=2(mi X {F, + SFi + F62Fi)~ “F* {F + (F})- (4.13)

where (2G, (4.12)

With these variations now calculated, a variational optimal control problem
can be constructed by taking variational approximations of the performance mea-
sure and the constraints in the higher order optimal control problem. For the
constraints, if it is assumed that the variations about the calculated values are
small, then the first order variation will dominate, allowing the second order term
to be neglected. For the performance value, the first variation, calculated at the
control strategy resulting from the solution of the optimal control problem in the
previous chapter, will be very small. This is due to the small gradients that result
when a ‘good’ solution has been obtained. However for generality, this term is still
accounted for allowing variations about non-optimal solutions to be taken, so long
as the higher order variations are not significant. This results in an approximation

145



of the optimal control problem

U-AUet {f,+ 6F. + X 2F.] (4.14)
subject to R, + hR, =0 (4.15)
+ o (4.16)

with u”, with no underscore, representing a column vector of u, T and Uj, as
in the previous chapter. In this approximation the values of F,, Rmand  are
unaffected by the control variations. This allows the values of F, and R, to be
immediately removed as they have no other affect on the solution, with the value of
Q , being eliminated by assuming that the variations SQK are small and equating
Qk2 + 6Qk2 < 0 with SQk2< 0if Qk2 + > 0 where s the tolerance used
in the open loop solution algorithm to define the boundaries of the inequality
constraints. Similarly, the controls u, can be eliminated by equating the bounds
u, + Au, 6 [a,,  with Au, > 0 if U{ —eloon < @, and Au, < 0if u, + gon > 6
where ttoon is a parameter relaxing the control bounds. This results in a variational
optimal control problem

“I"{(F.+ MR} (4.17)
subject to 6R. =0 (4.18)
¢ (7*<Qif Qk2+Sk2>0 (4.19)
Au,>0ifu, - elon< g, (4.20)
Au, <0 if Um+ (on > bie (4.21)

Variational optimal control problem solution

The variational optimal control problem in its general form is very difficult to
solve. In particular, for the cases when the optimal control problem has been
designed using either the goal attainment method or the quadratic goal attain-
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ment method, no easy solution has been found. However, for problems where
the weighted sum method has been used, the resulting variational optimal control
problem is of a form that allows a solution to be obtained, with a little work. The
use of such variational optimal control problem solutions for developing optimal
feedback control is well known, as discused in [65], with details of such solutions for
constrained optimal control problems discused in [69], along with an application
to space shuttle guidance.

For variational optimal control problems resulting from an optimal control
problem designed using the weighted sum method, substituting the variations in
equations (4.3), (4.4), (4.7) and (4.8) into equations (4.17) - (4.21) yields a vari-
ational optimal control problem which is a Linear Quadratic Regulator (LQR)
type problem. In this optimal control problem the variational performance mea-
sure is quadratic in terms of first order variations of states and controls subject to
linearised state space equations and restrictions in the form of linear variational
constraints and control variational bounds. In the substitution of equations (4.3)
and (4.4), the first terms can be neglected as the initial states are taken as given,
they are inherent in the problem and not adjustable. Lagrange multiplier vari-
ations can be introduced in order to manage the constraints in equations (4.18)
and (4.19). The variational Lagrange multipliers add varying magnitudes of the
variational constraint functionals to the performance measure, so that the solution
of the new unbounded problem is equal to the solution of the original constrained
optimal control problem. Furthermore, from Lagrange multiplier theory, in par-
ticular the Kuhn-Tucker theorem for inequality constraint Lagrange multipliers,
each Lagrange multiplier must satisfy

blijp A=0 (4.22)
or bQkb\k ={ and 6A*> 0 (4.23)
depending on whether the Lagrange multiplier equates to an equality or inequality
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constraint, where f\and «A*are the variational Lagrange multipliers. This just
leaves the control bounds which prevent the variational optimal control problem
from being a standard LQR problem. For the control bounds, referring back to the
open loop solutions results, the calculated controls prior to engagement often fail
to achieve their bounds, as in figure 4.1, furthermore, if required, a certain degree
of control bound margin can be introduced by artificially tightening the control
bounds in the open loop solution procedure, without significantly affecting the
performance measure value of the control located. For this reason it is assumed
that the controls fail to achieve their bounds prior to engagement. For the controls
after engagement, only the engine torque affects the performance measure value,
with this control often achieving it’s maximum bound after engagement, as in
figure 4.1. Fortunately due to the finite dimension of the constraint this bound
can be easily managed by introducing the variational constraint that the variation
of the engine torque must be negative, Aui|,=L < 0, when the engine torque
achieves its maximum bound (i.e. ifut+ti+ > bt), which like the other inequality
constraints can be managed with a variational Lagrange multiplier. Typically, ci+
Is taken to be one percent of the range of the engine torque.

The resulting problem is now a time variant LQR problem, with the terms in
the LQR problem dependent on the independent variable s. If a column vector /,
of cost and constraint integrands with a corresponding column vector ipof terminal
terms is introduced this variational optimal control problem can be expressed by

V'V

min /, Ay Pa Ay + T'LZ Si

wr ATL
(4.24)
subject to 6x.=Tifx6z + T2AUAuU + 2T/A7',:i(0) —AT, (425)
where >(i=Wb\ + w (426)
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H=wTL +p f (4.27)

(T2HzzToHw2TH;
pe=y  T2HIXTZHU2THI (4.28)
2THX2THU 2H
1 [ ftxxftxu
. 4.29
\ ftuxftud i 429

In this variational optimal control problem the controls notation refers back to the
notation where u refers to a vector of the controls in the powertrain model, with s
referring to a first variation of a variable, subscript * denoting the evaluation at u*
with the corresponding state x* and costates p* calculated as usual, w and W being
the performance measure weights and constraint determination matrix relating
the weighted sum performance measure and the constraints to the vectors L and
V, and <\ being a vector of the Lagrange multipliers. The question posed in this
optimal control problem, is that given an initial state perturbation Sxq, what isthe
best control variation that minimise the performance measure. For a solution to
be obtained for such a problem, matrices Paand Pi, must be positive semi-definite

(2TF LFW anc* f uu Pos't've definite. Unfortunately, due to
the linearity of some of the controls in the optimal control problem, these last two
matrices, often fail to be positive definite, with the first matrix often being close to
the zero matrix. This problem is overcome by introducing a tracking condition.
Physically, this says that the modifications of the open loop solution are more
desirable if they are close to the open loop solution. This tracking condition is
formulated by adding the term

AmVAu +£ (AUAT)To  ds (430)

to the variational performance measure, equation (4.24), with the normally diag-
onal positive definite matrices Vo and \t, define the meaning of closeness as well
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as defining a compromise between tracking along the open loop controls and the
minimisation of the optimal control problem performance variation. This ensures
that a solution is theoretically solvable, as by including this tracking condition,
matrices G%‘ﬁl{ﬂzm %+ oand 1+ Vt can be made positive definite. In prac-
tice, only & very small tracking condition is required as the matrices are at least
positive semi-definite, although larger tracking conditions aid the computation of
the solution by reducing ill-conditioning problems. This tracking condition, en-
suring that the control variations are never too large, also helps to ensure that
the variations remain in a region where the variational approximations used in
creating the variational optimal control problem are reasonably accurate, with
the neglected higher order terms negligible.

The solution of this LQR problem is accomplished by assuming that the first
order variations of the costates satisfy p = KesX+CsQ, and by using the maximum
principle reducing the problem to solving a time variant matrix Riccati equation,
as described in [10]. This assumption can be validated with a trivial extension
to the validation of a similar assumption made in [10]. For the LQR problem
detailed in equations (4.24) - (4.29) with equation (4.30) added to the performance
measure, this results in the time variant matrix differential equations

(4.31)

ACj =[l,, £\ - fru(ftuu+ Vo~ [ftu.tl (432)

2171, il (433)

rxnuir*fit'LZ (4.34)
,THT2T}t2TLT
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T.fu 2Tf
_T.HIU=2THj

T.fx 0 0

- ToHxx-Tof)-T 2Z
where n is the number of states in the powertrain model and | is the number
of elements in the column vectors L and ~ These equations can be solved,
by simulating them backwards in time in order to calculate the matrices, K(s)
and C(s). In practice, this is accomplished by using ACSL, with the fourth
order Runge-Kutta integration procedure and an integration step size of 0.01 in s,
Again, in order to prevent ill-conditioning problems when inverting the positive
definite matrices, and in order to reduce computational errors, the controls, states,
costs and constraints are normalised. The control and state normalisation values
used are just the root mean squared value over the interval [0,1] in s of the
control and state values resulting from the optimal control problem solution in
the previous chapter. The cost and constraint normalisation values are as in
table 34. For the additional variational constraint bounding the value of the
engine torque if it achieves its maximum bound, the normalisation value used
Is the engine torque maximum value. With the above matrices now calculated,
the solution of the variational optimal control problem can be formed, with the
optimal control variations determined byh

(4.35)

(436)

U\HIS(;)):_M~XMb KC (437)
01,
&u\f=-(ftuu + Vi)~ fturtl (4.38)

These last formulae provide a solution to the variational optimal control prob-
lem for initial state perturbations if the Lagrange multipliers are known, deter-
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mining fiJ. For initial state perturbations, the Lagrange multiplier values are
constant, but if they are allowed to vary then they can be used to cope with other
more complex perturbations such as parameter variations, which can be inter-
preted as continual state perturbations. This arises from the observation that the
variational optimal control problem solution at any given point s, equations (4.37)
and (4.38), is independent from the variation values of the states and controls prior
to that point. This allows the state perturbations at any given point in s to be
treated as initial state perturbations. At such a point, the calculation of these
Lagrange multipliers is achieved by estimating the variations of the constraints.
Given a value of the current independent variable value, J, the variations in the
constraints up until that point can be calculated directly from

(439)

where W is as in equation (4.26) and superscript * indicates the open loop So-
|ution states and controls, assuming that all the states and controls are known
up to that point. The variations of the constraints after such a point in s can
be approximated using the first variations of the constraints and eliminating the
controls by substituting in equations (4.37) and (4.38), with the values of 63 being
subsequently eliminated by substituting in equation (4.26). Similarly for the lin-
earised state equations, the controls can be eliminated by the substitution of these
equations into equation (4.25). This results in the variational approximations of
the constraints and state equations

(4.40)
(4.40)

In the above equation, the constant terms resulting from an unconverged solution
are neglected, as for now they can be represented by an additional Lagrange
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multiplier, which will later be set to unity. The state equation approximation,
can be used to eliminate ¢j (s) from the variational constraint approximations by
simulating equation (4.41) backwards in s over a basis of the states in order to
evaluate

sX(5) = B x} + <P(S)EA() (4.42)
which is substituted into equation (4.40). The variations in the integrand in this
equation are now no longer dependent on s allowing the integrals to be evaluated,
resulting in the constraint variations being dependent on the Lagrange multipliers
and the terminal state variations. Again using equation (4.42) the terminal state
variations can be related back to the states variations at i, as § by definition is
invertible. This results in the variational approximations for the constraints of

=M. (s)eX(s) + AR(SEAS) + (A Ros) (4.43)
VAl

where M\(s)=J  Ni(s)$(s)$~1(s)ds + Ns (4.44)
M. (s)=J *N2(s) + Ni(a) [#(s) - $(a)$-1(S)«(S)] ds + N. (4.45)

In practice the evaluation of these approximations are performed using Matlab
and ACSL. The computer package ACSL, is used to evaluate $ and P in equation
(442) and the evaluation of the integrals in equations (4.44) and (4.45). Some
difficulties in the evaluation of $ and < were encountered due the difference in
order of some of the eigenvalues, with some values diverging off to infinity. This
problem was solved by partitioning the interval [0,1] in s into segments [s;,St+]
along which equation (4.41) is solved backwards in time. At the boundaries,
the initial conditions are reset, calculating a series of $,’s and 'P,’s such that for
» 6 [8,5,+]

«E(-) = * \V)ii(ai+) + *.V)*A(i). (4.46)
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From these values. i>(5)$ '(5) and 'P(.s)—4>(5)$ '(s)'I'(s) are directly calculated,
using the iterative formula coded in Matlab

L Initially let A = $/(s) and B = — where s lies on the jth
segment of the partition.

2. For i fromj + L1to k, with s lying in the Ath interval calculate

A=Qf(si)A (4.47)
fl= B-*4(*)*<(*)e (4.48)
3. Finally set
$(s)$-1(2) = $a5)/l (4.49)
V(s) - $(s)8-1(3)"(J) = $%(s)B + 1>*(s). (4.50)

where 4% is the Moore-Penrose pseudo inverse of <, allowing the evaluation of
equations (4.44) and (4.45) using ACSL. The use of the pseudo inverse prevents
ill-conditioning problems, but results in some loss of information in the calculation
of the pseudo inverse, as explained in [70]. For the problem in question, this loss
of information relates to neglecting terms which have very little effect on the
evaluation of equations (4.44) and (4.45).

Now that approximations of the constraints have been calculated, the Lagrange
multipliers can be evaluated. For the equality constraints, this is done by taking
R = 0, whilst for the inequality constraints from condition (4.23), either the
Lagrange multiplier ¢X* = 0 or for the corresponding inequality constraint ¢ Qk =
0. This last condition results in 2’ cases being considered, where g is the number of
inequality constraints in the variational optimal control problem, the permutations
of each inequality constraint or Lagrange multiplier being zero. For each case,
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equation (4.43). can be used to calculate 2q Lagrange multipliers sets, using

MAEO(I)\ 450

where A-isa q+p by q+p matrix, with p the number of equality constraints, g the
number of inequality constraints and g number of active inequality constraints (i.e
number of none zero inequality Lagrange multipliers). This matrix selects the case
and consists of column vectors with zero entries apart from one entry set to unity
which identifies which constraints are active. The constant term, results from
the additional Lagrange multiplier representing the neglected constant terms in
equations (4.40) and (4.41), which is now set to unity. Again, for safety the Moore-
Penrose pseudo inverse is used, although for variational constraints sufficiently
linearly independent this should not be needed. For each case if the Lagrange
multipliers are substituted back into equations (4.37) and (4.38), the variational
optimal control solution

TAUDY & (9)ix(s) + Bi(s) (ASON 4t (452
NAT(5)]
Aul = Af{Bi + B +Gj (453

results, where s denotes the current value of the independent variable and sub-
script i denotes the particular case resulting from a particular set of Lagrange
multipliers. These final calculations are performed using Matlab. Note that the
constant terms ¢;(i) and cy, will disappear for a converged solution, or at least be
negligible for controls at which the gradient of the performance measure is small.
This last situation is often the case, for a control strategy calculated using the
algorithm described in section 3.
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4.4 Optimal feedback control

In section 4.2, the performance variation is approximated in terms of variations
of the states and controls, with a solution in terms of control perturbations which
minimise this variational performance measure being obtained in the previous
section. Hence, if the controls are perturbed by the calculated amount, then
the resulting performance measure should remain small, as small as is possible.
In order to apply this solution to the clutch engagement problem, the terms in
equations (4.52) and (4.53) must be calculated. If it is assumed that at any time
after starting to engage the clutch, the current and past states and controls are
known, along with the elapsed time and the open loop states and controls, then
all the required terms can be calculated. In particular, the current independent
variable s, the current state perturbation, the current constraint perturbations
and the Lagrange multiplier set resulting from the 2" cases considered,

can all be determined.
The current time and the current independent variable are related by the
‘dummy” control T, allowing the current independent variable to be calculated

using the relationship

(454)

The calculation of the current independent variable then allows the current state
perturbations to be calculated, by subtracting the current states from the open
loop solution states. Similarly the current constraints variations can be calculated
using equation (4.39), or far more simply by just integrating the difference in the
constraint integrands up until the current time. Hence, in order to calculate the
optimal variation, all that is required is to choose the Lagrange multiplier set.
This last calculation is slightly more complex, but by substituting equation (4.51)
for a particular case into equation (4.43), an estimate for the constraint variations
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in terms of the current state perturbations and the current constraint perturba-
tions. can be calculated. For each case, this allows the assessment of whether a
particular Lagrange multiplier set results in a solution which satisfies the inequal-
ity constraints, with the cases that fail to satisfy the variational approximations
of the constraints being rejected. For the remaining sets, estimates of the perfor-
mance measure variations are obtained. This is done in an identical way to which
equation (4.43) is evaluated, which when (4.51) is substituted in again determines
an estimate for the performance measure which is dependent on the current state
and constraint variations. This allows a unique Lagrange multiplier set to be cho-
sen, the set which yields the smallest performance measure estimate and which
satisfies the estimated constraints. Equation (4.51) could have been used to fur-
ther refine the sets after rejecting the sets which fail the constraints, by rejecting
the sets that fail to satisfy condition (4.23), but as little computational advantage
results and as the use of a performance measure estimate has greater physical
significance, this was not exploited.

The resulting optimal feedback control architecture is detailed in figure 4.3. In
this feedback control strategy, given the Lagrange multiplier sets to be used, the
real time evaluation requirements are just the on going evaluations of the integral
terms in equations (4.39) and (4.54) and the evaluation of equations (4.52) and
(4.53). These last evaluations just require the addition and multiplication of
matrices dependent on the current independent variable s, matrices which can
be acquired from look-up tables. The real time requirements of the Lagrange
multiplier set choice is, at most, the evaluation of 29 expressions of the form

.
o= A
" =N Afioii)

|
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the expressions that provide the cost and constraint variational estimates, where
q is the number of inequality constraints. Again these evaluations only require the
addition and multiplication of matrices dependent on the independent variable s.
These real time requirements are felt to be attainable for the clutch engagement
problem.

4.4.1 Feedback clutch control analysis

In order to assess the performance of this feedback control strategy, simulations are
carried out for the perturbations discused in section 4.1. Variations of the second
optimal control problem performance measure in table 3.5 is used to construct the
variational performance measure. This variational optimal control problem has
two inequality constraints as well as the mandatory equality constraint, equation
(2.53). These inequality constraints arise from the inequality constraint, equa-
tion (3.77), in the original problem, and the engine torque upper bound after
clutch lock up. For the open loop solution to the optimal control problem, the
control strategy detailed in figure 4.1, both of the inequality constraint bounds
are reached by the calculated control strategy. Hence, neither constraint can be
neglected resulting in four Lagrange multiplier sets. In the calculation of the re-
quired feedback matrices, the positive definite matrices, Vo and \t, are taken to
be diagonal with the diagonal entries set to 104. The simulations of the feedback
control strategies is performed using the computer package ACSL, which reads
the calculated feedback matrices from memory and performs the required real
time calculations as well as simulating the perturbed model equations. For each
of the perturbations described in section 4.1, simulations of the feedback strategy
are detailed in figures 44 - 4.6. In each figure four graphs are detailed, the first
graph of the clutch plates speeds when the open loop control strategy is used to
control the engagement, the second graph of the clutch plate speeds when the
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feedback strategy is used to control the engagement, and the third and fourth
graphs detailing the open loop and feedback controls. In these last two graphs
the solid lines indicate the open loop controls with the dashed lines indicating
the feedback or closed loop controls. In the third graph, both the required clutch
torque capacity and the actual clutch torque capacity are detailed with the latter
identified by its smooth transients.

For the first perturbation, clutch engagement with the initial engine flywheel
speed lowered to 175 rad/s, when the feedback strategy is used, the engine flywheel
speed still drops below its unperturbed level but not quite as far as when the
open loop solution is used, a possible slight improvement. In doing this the clutch
takes longer to engage with minor increases in the engine torque and a slight
reduction in the clutch torque capacity prior to engagement. However, as the
engine flywheel speed still drops below 100 rad/s when feedback is implemented,
the feedback control strategy is not satisfactory. For the second perturbation,
the hill start, when the feedback strategy is used, the clutch plates engage more
smoothly with little oscillations after engagement. This improvement is achieved
by small reductions in the engine torque and small increases in the clutch torque
capacity, causing the clutch plate speeds to be nearly equal when the required
clutch torque capacity is stepped up at the point when s = 1, preventing the
occurrence of the oscillations after engagement. Note that the point when this
step occurs has heen moved to a slightly later time with modifications of the
‘dummyZcontrol. However, again the feedback clutch plate response is far from
satisfactory with the engine flywheel speed dropping significantly below 100 raa/s,
a deterioration on the open loop response. For the third perturbation, simulated
by perturbing the model parameters in order to represent a fully laden vehicle
with a wom clutch, the feedback response is improved with a reduction in the
size of the oscillations after clutch lock up. Again this is accomplished by small
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reductions in the engine torque and small increases in the clutch torque capacity.
However, just prior to and after clutch lock up large control variations occur, in
particular large variations of the ‘dummyZ2control, causing a slight kink in the
clutch plate speed at a time of about 1.2 seconds.

These three previous feedback simulations assume that both controls are ac-
tive. The feedback procedure developed isjust as applicable when only the clutch
torque capacity is active as a control. To demonstrate the ability of the feedback
procedure to control the three perturbation examples but with only variations in
the clutch torque capacity, a further three simulations are detailed in figures 4.7 -
4.9. As in the open loop study, the engine torque is set to 100 Nm, both before and
after clutch lock up. These one control simulations again show how, in general,
the feedback control cause improvements in clutch control, reducing oscillations
after engagement in all three simulations. However, in accomplishing this large
control variations result, in particular, large control variations are prominent for
the flywheel speed perturbation and the model parameter perturbation simula-
tions, figures 4.7 and 4.9, with the control reaching its bounds. The greater size of
the control variations with only one control active, indicates the greater difficulty
in controlling engagement. Again these excessive control variations can cause un-
desirable dynamics, as in figure 4.7, with the clutch plates initially locking up,
then briefly returning to a slipping state, before finally locking up, completing
engagement. Note that due to the large value of engine torque, stalling problems
do not occur in these simulations. However, for other cases with smaller engine
torque values stalling can again be a problem with the feedback control again
struggling to prevent stalling.

Simulations have also been conducted using the dataset set representing ve-
hicle B. As already noted, clutch engagement is a little easier for this dataset as
oscillations prior to clutch lock up are not significant, the reason for concentrating
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on the dataset representing vehicle A. The only slight difficulty is the increased
singularity of the matrices used in the calculation of the feedback matrices, with
care having to be taken when inverting matrices by making greater use of the
Moores-Penrose pseudo inverse. The results obtained from these simulations of
vehicle B are very similar to the simulations presented, with no additional points
to the points already noted being acquired.

To conclude, the simulations indicate that improvements in the clutch plates
speeds do result from the use of the feedback control strategy, but that the cost
measuring the likelihood of stalling is not always maintained at a small value,
and that around the point of clutch lock up, in particular for model parameter
perturbations and when only one control is active, large variations can result
which can cause minor undesirable effects. These results have also been obtained
for the simulation of other model and state perturbations.

4.4.2 Feedback control modifications

The failure of the feedback strategy to maintain the costs measuring the likeli-
hood of stalling at small values can be easily explained. This failure is due to the
variations of the costs measuring stalling, F6 and Fg, being zero for control strate-
gies which maintain the engine flywheel speed above its minimum permissible
value. Hence for such control strategies, such as the open loop solution detailed
in figure 4.1, the variational optimal control problem will not include any terms
equating variations of the controls to terms measuring the likelihood of stalling.
No ideal solution to this difficulty has been found, however, if the variational cost
Uj-Sxi is added to the variational optimal control problem performance measure,
then for the resulting closed loop solution, the flywheel speed should remain close
to the open loop value, which if remaining above i minensures that the closed loop
flywheel speed will remain above Ximm. In other words, for cases where the fly-
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wheel speed is maintained above xImin in the open loop solution, the closed loop
flywheel speed can be maintained above Jimin by introducing a flywheel speed
tracking condition.

To demonstrate the success of this feedback control modification, a simula-
tion of the first perturbation example, clutch engagement with a reduced engine
flywheel speed, is conducted with the weighting parameter wr set to 105 and
both controls active. This simulation, detailed in figure 4.10, demonstrates that
this modification, at least for this particular example, eliminates the problem of
stalling, with the flywheel speed being maintained above 100 rad/s. This is ac-
complished, almost entirely, by large variations of the engine torque in the first
0.2 seconds, which cause the flywheel speed to acquire its open loop optimal value
in this period. The marked behaviour of the engine torque unilaterally control-
ling the engine flywheel speed, results from the dynamics of the flywheel being
decoupled from the dynamics of the rest of the powertrain when the clutch is slip-
ping, as discussed in chapter 2.1. Furthermore, the engine torque variations only
effect the flywheel dynamics, allowing the engine torque to be used to control the
flywheel speed, preventing stalling, without interfering with the control aims for
the remainder of the powertrain. The engine torque is still required to control the
point of lock up, stepping up and down as required, with the dynamics no longer
decoupled after this time. This minor difficulty can be overcome by ensuring that
the majority of the engine torque variations, controlling the flywheel speed, occur
well before the point of lock up, as in figure 4.10, in which only small variations
occur after a time 0.2 seconds. This is possible for the example in figure 4.10,
as no other perturbations are present, indicating the effectiveness of this modifi-
cation for coping with flywheel speed perturbations, a very likely occurrence in
clutch control. This modification, also has limited success in preventing stalling
for other perturbations, as found by conducting other feedback simulations, but
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unfortunately, it was found that a compromise between preventing stalling and
achieving the other control aims sometimes results. For problems in which the
prevention of stalling is extremely difficult, this feedback approach still struggles
to prevent stalling. As the prevention of stalling is imperative, the suggestion for
over coming this difficulty is to use a feedback control strategy designed specifically
for preventing stalling, such as the centrifugal clutch control method discussed in
the introduction, in these cases, switching back to the optimal feedback control
strategy when the problem of stalling has diminished. In essence, this is what
the weighting parameter wz does, determining how much of the control strategy
should be concerned with preventing stalling by tracking the open loop value, and
how much concerned with minimising the variational performance measure.

The other problem identified with the feedback control strategy simulations,
the large variations around the point of clutch lock up, is attributed to the re-
quirement of the variational constraints being satisfied. These large variations
are unsatisfactory as they can cause the control bounds to be reached, can cause
the neglected higher order variations to become significant and together with fast
transient fluctuations can cause undesirable responses as previously noted. The
large control variations are required to satisfy the constraints when the indepen-
dent variable s is approaching unity, if small but significant values of the constraint
variations still persist. It can be immediately appreciated that for parameter per-
turbations, as the control strategies are determined using the unperturbed state
equations, that such problems are more severe. The solution to this problem is
a little more complex than the previous problem, but by relaxing the variational
constraints it can be achieved. Equations (4.52) and (4.53) relate the optimal con-
trol variations to the state variations and the constraint variations, at any given
independent variable value s. If instead of calculating the equations by setting
the variational constraint approximations to zero, they are set to an error value £
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then by careful choice of this error term large control variations can be prevented
whilst still achieving the constraints to a reasonable degree of satisfaction. This
compromise between small constraint errors and control actuation is accomplished
by minimising a weighted sum of the control perturbations and the error value,
in other words by minimising

(456)

If it is noted that the constraint errors can he achieved by applying the error
vector to the measured equations (4.52) and (4.53), then
it can be shown that the minimal of equation (4.56) is satisfied by the control
variations

(457)

(458)

where m is the number of controls, p is the number of inequality constraints, g is
the number of active inequality constraints, A; is as in equation (4.51), w&u is the
weighting factor in the previous equation and A,, 5,, Al,, £7, are as in equations
(452) and (4.53). As with the final calculation of equations (4.52) and (4.53),
these calculations are performed using Matlab. Note that these new equations
are equivalent to equations (4.52) and (4.53) when the weighting factor w&u is
set to zero. Also note, that this modification requires no additional real time
computations, as the calculations result in the control variations being dependent
on matrix equations of the same form as equations (4.52) and (4.53).
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To demonstrate the success of this modification, this new feedback strateqy is
applied to the three cases previously presented, for which large control variations
result with the unmodified feedback strategy. That is, the parameter pertur-
bation example, with both one and two controls active, and the initial flywheel
speed perturbation with only the clutch torque capacity active as a control. In
calculating the modified feedback matrices, the weighting parameter, wau s set to
0.01, with the new simulations detailed in figures 4.11 - 4.13. For the parameter
perturbation example with two controls active, as previously noted in figure 4.6,
a kink in caused by large variations just after the point of clutch lock up. For the
same simulation, but using the modified feedback control strategy, this kink has
disappeared, with the simulation detailed in figure 4.11. This, as expected, is as
a result of smaller control variations. It should be noted that in figure 4.11, the
feedback controls are shifted in time by variations of the ‘dummy’ control, mak-
ing the control variations appear larger than they really are, with the feedback
controls shadowing the open loop controls. For the parameter perturbation exam-
ple with only one control active, again large control variations result, although no
kink occurs. Once again, as shown in figure 4.12, the modification reduces the size
of the variations, removing the sharp dip that occurs just before 1.2 seconds after
starting engagement. It should be noted that this dip, can not be blamed for the
oscillations after engagement, as oscillations still persist on its removal. However,
the feedback control does reduce the size of the oscillations, an improvement on
the open loop controls. For the final modified feedback simulation, the perturba-
tion example with the reduces engine flywheel speed, quite large control variations
still persist. However, the size of the variations has decreased significantly from
when the modification is not implemented, and the problem of the clutch plates
locking up twice before completing engagement has been removed. The proposed
reason for large variations persisting, is that significant variations below the open
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loop clutch torque capacity is required to prevent the clutch engaging too quickly,
resulting in large oscillations. The size of the variations can still be reduced by
distributing the variations over the whole interval in s. One way of achieving this,
Is by increasing the weight w&u, in practice, for this case a value of 0.1 was found
to be sufficient to prevent excessive variations. To conclude, this last modification
Is extremely effective at reducing large control variations at or just prior to clutch
lock up, removing undesirable dynamics that these large variations create.

4.4.3 Generalisation of clutch feedback control

The feedback control engagement strategy developed, arises from taking variations
of the open loop optimal control problem. Unfortunately, the approach presented
is only applicable to the case when the performance measure is constructed using
the weighted sum multi-objective technique. For this reason, some effort has been
applied to the problem of generalising the feedback control derived from a weighted
sum performance measure to feedback control strategies relating to goal attain-
ment performance measures. In other words, trying to extend the approach to a
feedback technique which maintains variations of performance measures designed
using one of the goal attainment methods. As an example, one such approach
that was proposed, is to represent the goal attainment performance measure form

by
F=H (4.59)
subject to Hj —Hi<0 for all j ~ i (4.60)

for some i, where H, are the individual cost functionals. In other words, relating
this back to the geometric representation of the goal attainment method described
in section 2.4, representing the goal attainment value by the facets of the corner
of points in the cost space of equal value. This allows the variations of the goal
attainment performance measure to be represented by one of the n variations,
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constructed hy taking variations of the above performance measure form, where
n is tlie number of cost functionals included in the multi-objective compromise.
This is possible, as on each facet the performance measure is of the same form as
when the weighted sum method has been employed. This fact also allows controls
variations to be obtained for each facet, using exactly the same algebraic manip-
ulation as previously presented. This just leaves the choice of which facet to use
to generate the control variations. The proposed approach is to use estimates of
the performance measure variation, as with the choice of Lagrange multiplier set,
choosing the facet which results in the smallest estimated performance measure
value. The problem with this approach is that for each facet, an extra n —1
inequality constraints have been introduced. As the computational requirements
increase exponentially with the number of constraints, this dramatically increases
the real time computational requirements, one of the reasons for not continuing
with this approach.

The main reason for not exploring the generalisations of feedback clutch en-
gagement fully, is that as small values of performance measures equate to good
clutch performance, whatever multi-objective technique is employed, a control
strategy producing small values of a performance measure designed using a goal
attainment method, will also produce small values for a performance measure de-
signed using the weighted sum method. It is felt that the choice of multi-objective
method is far more important in locating a ‘good’ control strategy than for es-
timating the performance of clutch engagement around such a control strategy.
Indeed, if the feedback control strategy is applied to a perturbation example,
where the open loop solution is obtained using one of the goal attainment meth-
ods, then the performance of the clutch is still maintained, maintained just as
with a weighted sum performance measure. This validates the approach of us-
ing the described feedback approach whatever the multi-objective method used in
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creating the performance measure.

To conclude, the feedback clutch control method described in this chapter,
enables 'good' clutch control to be maintained for the majority of realistic state
and parameter perturbations. This method can be applied to any 'good" solution
obtained using the method described in the previous chapter, and indeed, due
to the first variations remaining in the variational optimal control problem, can
be applied to other non optimal solutions, so long as the neglected higher order
variations are not significant. Finally, the real time computational requirements
are felt to be achievable in implementing this feedback strategy.
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figure 4.1: Clutch performance of open loop control strategy
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Figure 4.2: Clutch plate speed simulations for perturbed clutch engagement

170






Open loop clutch plate speeds

Speed (radss)

Closed loop clutch plate speeds

Speed (rad/s)

Clutch torque capacity
=
=
)
=
2
OFen loap controls
Closed loop controls
Engine torque
E
=
=
=]

igure 4.4 Feedback control with a reduced initial engine flywheel speed

172



Open loop clutch plate speeds

Closed loop clutch plate speeds

Clutch torque capacity

Closed loop controls
Engine torque

Figure 4.5: Feedback control of a hill start
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Figure 4.6: Feedback control of a fully laden vehicle with a worn clutch
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Perturbation  Performance Individual cost functionals

measure Fi f2  f3 F Fe F7

None 1.059 0128 0.004 0019 0273 0000 0501

Flywheel speed ~ 209.86S 0121 0.006 0312 0120 27.805 0.323

Hill-start 11637 0162 0916 1098 0377 0091 0552

Fully laden/ 5,340 0192 1463 258 0.39% 0000 0571
worn clutch

Table 4.1: Cost functionals for perturbed clutch engagement
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Chapter 5

Optimal clutch engagement with
variable model parameters

In this chapter, powertrain model parameters that may vary are identified, group-
ing them into classes describing how fast these parameters vary in time. Simula-
tions are then conducted, illustrating the significance of each parameter variation,
as well as the ability of the feedback control to maintain ‘good’ clutch engagement
under such variations. As a result of these simulations, a revised feedback control
strategy is developed, which utilises known parameter variations. As parameter
variations may not be known, a method is then presented which yields estimates
of such variations, one estimate for each clutch engagement. Finally, a brief out-
line of how such information can be used to design self learning/adaptive control
strategies is discused.

5.1 Clutch engagement with realistic parameter
perturbations

In the previous chapter, it was demonstrated that the feedback control is able to
cope with certain parameter perturbations. In this section, a far more compre-
hensive investigation of the efTects of parameter perturbations on feedback clutch
control is conducted.
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The dynamics of perturbations in automotive powertrains varies significantly
from one type of perturbation to another. For this reason, the types of parameter
perturbations have been grouped into four classes, with examples of particular
reference to the powertrain model presented in chapter 2 given:

STATIC Perturbations present between different vehicles, but which are con-

stant for the lifetime of a given vehicle, such as perturbations of
+ the flywheel inertia
« and the inertias and ratios in the gearbox.

SLOW Perturbations that occur over the lifetime of the powertrain or powertrain

components, often due to wear, such as perturbation of
« the friction between the clutch plates
« the dynamics of the clutch actuator
* and the performance of the engine.

DISCRETE Perturbations that occur between each vehicle journey or during
the first part of the journey, but which remain constant or very similar for
the remainder of the journey, such as perturbations of

+ the vehicle mass
« and the performance of the engine say through temperature change.

FAST Perturbations that may occur sufficiently rapidly that from one clutch
engagement to another, such perturbations appear to be uncorrelated, such
8

+ the gradient of the terrain
+ the road condition



« and the vehicle status, perturbations such as the speed of the vehicle
and how sharply the vehicle is cornering at the time of clutch engage-
ment.

For the examples of model perturbations in each group, simulations of the
powertrain model are conducted for realistic perturbations, using both the open
loop control strategy and the feedback control strategy to control clutch engage-
ment. In these simulations, an engagement from rest case applied to the dataset
representing vehicle A with only the clutch torque capacity active as a control, is
taken, again as it is felt that this is the worst case. The other control, the engine
torque is again set to a constant value of 100Arm. The feedback control strategy
used is as described in the previous chapter, with the modification preventing
large control variations around the point of clutch lock up implemented by setting
the weighting parameter w&u to 0.01. The other modification, tracking the closed
loop flywheel speed to its calculated open loop solution, is not implemented as
the problem of stalling is not felt to be significant for this case. This is due to
the high engine torque, which is set to its maximum value of I00JVim. For each
model parameter perturbation, a figure containing two graphs is detailed, both
of the clutch plate speeds, one of the open loop control strategy used to con-
trol engagement and the other of the feedback control strategy used to control
engagement,

For the STATIC perturbations, simulations of perturbations in the flywheel
inertia, the inertia of the gearbox shaft connected to the clutch and perturbations
in the gear ratio are conducted, which are detailed in figures 5.1 - 5.3. For the
flywheel inertia, its value has been perturbed from 0.109A’srm2to O.IWkgmZ. From
figure 5.1, it can be seen that this perturbation, of the order of 10 percent, fails
to produce any deterioration in clutch performance. Similarly, for a perturbation
of the gearbox inertia from 0.05kgm2 to 0.055kgm2, shown in figure 5.2, little
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if any deterioration occurs. For these two model parameters a perturbation of
10 percent is felt to be excessive, indicating their unimportance in the control
of the clutch. The final STATIC perturbation simulated, is a perturbation of
the first gear ratio from a value of 0.3 to 0.35. From the simulation, detailed in
figure 5.3. it can be observed how the perturbation causes the open loop control
performance to deteriorate, with the clutch plate speed failing to converge quickly
enough and oscillations resulting after engagement. For this perturbation, the
feedback strategy copes very well, bringing the clutch plates speeds together more
quickly and preventing any significant oscillations after engagement. With again
the perturbation felt to be large for a change in first gear ratio, this suggests that
in this instance the feedback strategy is adequate.

For the SLOW perturhations, simulations of a worn clutch, a clutch with a
slower actuator and of a powertrain with an engine producing less torque than
expected, are conducted, with the simulations detailed in figures 5.4 - 56. The
first simulation of a worn clutch, is simulated as before by multiplying the clutch
torque capacity by a given value /;, chosen to be 0.9, a reduction of 10 percent in
the friction between the clutch plates. From figure 5.4, the marked deterioration
in the clutch performance with the open loop controls can be observed, with the
clutch plates failing to converge quickly enough resulting in very large oscillations
when clutch lock up is finally achieved. The feedback control strategy again does
quite well, eliminating most of the oscillations after engagement. However, some
small oscillations after engagement still remain, a deterioration of the calculated
optimal open loop clutch performance. The simulation of the slower clutch actu-
ator, figure 5.5, is conducted by reducing the natural frequency of the critically
damped actuator from [Orat/s-1 to 8rads-1. Again a deterioration in the clutch
performance results with the open loop controls, which the feedback control cor-
rects, in this case with only very small oscillations after engagement. The final
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simulation of a powertrain with an engine producing less torcpie than required, is
modelled by multiplying the engine torque control by a value of 0.9 to represent a
10 percent reduction. Referring back to the engine models discused in chapter 2,
this is to say that for a given flywheel speed, the throttle angle that should pro-
duce the required torque, calculated from the modelled engine map, in practice
produces a torque 10 percent lower than expected. In other words, the actual
engine map is 10 percent lower than the modelled map over the entire range of
throttle angles and flywheel speeds. From figure 5.6, this perturbation causes the
flywheel speed to drop faster than expected with the open loop controls, caus-
ing premature clutch engagement, resulting in oscillations after engagement. The
feedback strateqy tries to correct this by increasing the engine torque and decreas-
ing the clutch torque capacity, resulting in a slowing down of the convergence of
the clutch plates, most noticeable between 0.6 and 0.8 seconds. Unfortunately,
the feedback control over corrects the problem, with the clutch plate failing to
engage at a time of 0.8 seconds, engaging later after 1.0 second has elapsed. Be-
tween these two times, the clutch plates speeds move further apart again before
coming together, with large oscillations after engagement resulting. For this per-
turbation, the feedback control performance is worse than the open loop control
performance.

For the DISCRETE perturbations, the simulation of clutch engagement with a
fully laden vehicle is conducted, with the simulation of engine variations omitted
8s it has already been covered. As before, a fully laden vehicle is represented by in-
creasing the inertia representing the vehicle mass from 7.945kgm?2 to 9.945kgm2.
From figure 5.7, it can be seen that such variations cause some deterioration
In clutch performance with the open loop controls, which the feedback strategy
corrects satisfactorily, with the elimination of significant oscillations after engage-
ment. Again, as there is a clear limit to the magnitude of this perturbation, it
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ran lie stated that the feedback control strateqy is satisfactory for perturbations
in vehicle mass.

Finally for the FAST variations, three simulations are conducted, clutch en-
gagement up and down 1:10 gradients, and of clutch engagement with reduced
damping in the compliance, the dynamics between the gearbox output shaft and
the vehicle mass. The first simulation detailed in figure 5.8, of engagement up
a 1: 10 gradient with the open loop control strategy employed, demonstrates
how the failure of the clutch plate attached to the gearbox to reach the other
flywheel speed, cause clutch lock up to be delayed and oscillations after engage-
ment . For the simulation in figure 5.9, of engagement down a 1: 10 gradient,
a similar deterioration in clutch performance occurs with the open loop controls.
This time, the speed of the clutch plate attached to the gearbox increases too
quickly, causing oscillations when clutch lock up occurs prematurely. For both of
these simulations, the feedback controls improve clutch engagement, resulting in
satisfactory clutch performance. The final simulation of FAST parameter pertur-
bations, in figure 5.10, of reduced damping in the powertrain compliance, shows
how the reduced damping cause larger oscillations before clutch lock up. This
reduced damping is modelled by reducing the model damping coefficient from
7,3Nmsrad~1 to 3.3Nmsrad~I. This last perturbation, represents changes in the
road condition and/or vehicle status. With reference to a typical tyre modelling,
linearised about a given operating condition, it can be observed that the damp-
ing in the tyres vary with vehicle speed, road condition and factors such as how
tightly the vehicle is cornering at the time of clutch engagement. Despite the
larger oscillations, the general dynamics of the clutch plates remain unaltered
with engagement being completed in a similar time to the calculated optimal
value, and little in any oscillations generated after engagement. The feedback
controls produce nearly identical dynamics, failing to improve on the open loop
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controls. The reason for the lack of improvement is attributed to the difficulty
in preventing oscillations just after starting to engage the clutch. With the orig-
inal damping coefficient these oscillations are noticeable but not significant, but
with the reduced damping they become more prevalent. It is felt that the open
loop solution does as well as is possible for the engagement problem, with the
oscillations only able to be reduced by significantly increasing the time taken to
complete engagement. This apparent independence of the controls on the damp-
ing coefficient, helps justify the approximation used in the modelling of damping
in the compliance, previously modelled by a linear damper.

To conclude, the feedback strategy maintains ‘good’ clutch performance under
most realistic model parameter perturbations. However, ‘poor’clutch performance
still results from the use of the feedback control strategy under some model per-
turbations. In particular, for engine perturbations and to a certain extent for
changes in the friction between the clutch plates. This motivates the development
of a revised feedback control strategy which maintains clutch performance in these
extreme cases.

5.2 Clutch engagement with known parameter
perturbations

In the previous section, it was noted that the performance of clutch engagement
can deteriorate with the feedback clutch control strategy. It may be the case that
such model parameter perturbations are known. In the case of STATIC pertur-
bations, perturbations might be known from measurements at manufaction, or
for other perturbations measured directly via a sensor, or even estimated from
measurements of existing sensors. For example, sensors exist that are capable of
measuring the vehicle mass and the gradient or tilt of the vehicle. Such pertur-
bation information might be useful in modifying the feedback control strategy to
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cope with parameter perturbations, motivating the development of such a control
strategy.

The feedback control strateqy arises by constructing a variational optimal con-
trol problem, equations (4.24) - (4.29). In particular, by taking variations of the
states and controls. If in addition to taking variations of the states and con-
trols, variations are also taken of the model parameters then a variational optimal
control problem of the form

T
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results. In this new LQR type problem, as in the previous problem: u refers to a
vector of the controls in the powertrain model; subscript * denotes the evaluation
at U’ with the corresponding states xmand costates p* calculated as usual; w
and W are the performance measure weights and constraint determination matrix
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relating the weighted sum performance measure and the constraints to the vectors
L and r; and 6\ is a vector of the Lagrange multipliers variations, with the new
vector Ar denoting a vector of known model parameter variations. Again, this
variational optimal control problem can be made solvable by the addition of the
term in equation (4.30). The solution of this variational optimal control problem
can be obtained by solving a time variant matrix Riccati equation, this time
obtained by making the assumption that the optimal variational costates satisfy
¢p = 1\6x + C6J + DA;, which can be justified with a minor modification to
the argument given in [10]. This assumption, results in the time variant matrix
Riccati equation

/,0 0
Where

[kcd] =[fuzEftxz] - fta(fuu +v;)-1 [fuztlftuz] (58)
2THU 2H 59)
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(5.11)
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where, n is the number of states in the powertrain model, / is the number of
elements in the column vectors L and 0, and p is the number of model parameters
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for which variations of the optimal control problem are taken. These differential
equations are of the same form as for the feedback control strategy, which when
solved backwards in time evaluates the matrices A'(s), C(s) and D(s). These
matrices then allow the optimal control variations to be calculated in terms of
the current state variations, the Lagrange multiplier variations and the parameter
variations with

(51

Au |1: _(/1"" + Vl)ul (5-14)

As before, all that is required is to evaluate the Lagrange multiplier variations,
as it is assumed that variations of the states and parameters are known, and that
the current value of the independent variable can be evaluated using (4.54). This
evaluation of the Lagrange multiplier variations is accomplished is a similar way
to the method employed with the feedback strategy, allowing the value to change
with time. As before, this evaluation is based on estimating the constraint vari-
ations in terms of known variations and variations of the Lagrange multipliers.
This time additional variations of the constraints and state equations are taken
with respect to the parameters. Furthermore, equations (5.13) and (5.14) contain
variations of the parameters which when substituted into variations of the con-
straints and state equations adds the terms // Nj*Azda -+ Az and Nv(a)Az
to equations (4.40) and (4.41) respectively. Again, the constant terms are repre-
sented by an additional Lagrange multiplier, which will later be set to unity. The
state variations at any a can be evaluated by simulating over a suitable basis, as
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with tho evaluation of equation (4.42). but this time with the additional depen-
dence on the parameter variations. This new expression can be used to evaluate
estimates of the constraints in terms of the current state perturbations, the cur-
rent Lagrange multipliers, the parameter variations and the known variations of
constraint integrands up until the current time, an expression of the form

i N . ey [AEO(
50 = AL(D)fe(i) + MXs)6\(s) + M3(s) UfloW/

In this expression, the matrices A/,(J) are evaluated using a similar procedure to
the procedure described in the previous chapter. As before, 2* cases are taken to
evaluate 2" Lagrange multiplier sets calculated using the slightly modified equation

(5.15)

67(3) = -\, [\jAh(s)A,}+Aj + Mi(s)6x(s) + M3(s)Az + const
(5.16)
which when substituted into equations (5.13) and (5.14) yields the result
Au(s)
AT(s)
(5.18)

In this final expression, a is the current independent variable and t denotes the
Lagrange multiplier set, with all the other terms as previously defined. Again
the choice of Lagrange multiplier set is performed by substituting the Lagrange
multipliers into equation (5.15), and a similar equation estimating the performance
measure variation, with the set chosen to be the set minimising the performance
measure variation which also satisfy the estimated constraints.

As this new control strategy is just an extension to the feedback approach,
both of the modifications discused in section 4.4.2 can still be included. In par-
ticular, the reduction of large control variations just prior to clutch lock up can
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be performed by pre-multiplying the control variations calculated using equations
(5.17) and (5.18) by the same terms that the control variations in equations (4.52)
and (4.53) have been multiplied by in equations (4.57) and (4.58).

In practice the evaluation of the matrices in equations (5.17) and (5.18) is
achieved using exactly the same programs as in the solution of the feedback prob-
lem. but with the required modifications made to the coding. In carrying out this
computation, the model parameters are normalised by the non-perturbed param-
eter values. The resulting control architect is identical to the architecture show-
in figure 4.3, but with an additional known input, the parameter variations. This
new control architecture is shown in figure 5.11. Note that, setting Az to zero
in this new control strategy, is equivalent to using the original feedback control
strateqgy.

In order to demonstrate the ability of this new control strategy to cope with
parameter perturbations, simulations of this new control strategy are performed.
For these simulations, the matrices required in the evaluation of the control vari-
ations and the choice of Lagrange multiplier set are calculated with the entries
of the diagonal matrices Vo and W set to 104. The modification preventing large
control variations just prior to clutch lock up is also implemented by setting w&u
to 0.01. All the other parameters, such as normalisation constants are as used
in the previous chapters. Again, as with the feedback simulations, the computer
package ACSL is used to carry out these simulations, simulating the perturbed
model equations, as well as calculating the control variations. As before, this last
calculation only requires the on going evaluation of variations of the constraint
integrals prior to the current time, and the multiplication of matrices. These ma-
trices are the matrices calculated prior to the simulation and are thus read from
disk.

The two parameter perturbations presented are the parameter perturbations
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studied in section 5.1, which are less than satisfactory with the feedback control
strategy. In particular, perturbations of the engine map and to a lesser extent per-
turbations of the clutch plate friction produce unsatisfactory clutch engagement.
In both cases, graphs of the clutch plate speeds, using the open loop control, us-
ing the feedback strategy and using the new feedback strategy utilising the known
parameter perturbations, are shown in figures 5.12 and 5.13. From figure 5.12,
the improvement in clutch performance for the perturbed engine map is dramatic,
with much smoother engagement resulting with the new approach than with either
the open loop controls or the feedback strategy. In fact, the engagement is seem-
ingly as good as the open loop optimal solution. Figure 5.13, also demonstrates
an improvement when the parameter variations are used to improve the feedback
control strategy. In this case, controlling clutch engagement with a worn clutch,
the oscillations present after engagement with this new approach are noticeably
less than with either the open loop control or the feedback control strategy. This
improvement is not as dramatic as with the engine perturbation, but it is still
felt to be worthwhile. Other small differences between feedback control, with and
without making use of the parameter variations have also been identified. In par-
ticular, making use of the parameter variations tends to reduce the size of the
control variations, especially when the modification, preventing large control vari-
ations just prior to clutch lock up is not employed. In other words, it seems that
the use of the parameter variations, makes the feedback control problem easier.

5.3 Estimation of parameter perturbations

In the previous section, it was demonstrated that knowledge of parameter per-
turbations, can be used to aid the control of clutch engagement. Unfortunately,
such parameter perturbations might not be known, or might not be measurable,
with no sensor available to measure a particular parameter. Even if such sensors
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do exist, the implementation of the sensors may be expensive, it might be prefer-
able to estimate the parameter variations from existing measurements. Existing
theory does exist, which describe how this estimation might be conducted. For
instance, extended Kalman filtering might be applicable, where the states and
parameters are simultaneously estimated, performed by treating the parameters
as additional states. This approach is well described in [71]. However, as an
alternative approach, a different technique is presented, a technique which con-
centrates on estimating parameter variations which describe the perturbations of
the model dynamics. As will be discused, these parameter variations might not
be the real variations, but for the purpose of controlling clutch engagement this
IS unimportant.

5.3.1 Parameter estimation during clutch engagement

The aim of this new approach is to estimate the state variations, in terms of known
variables and variations of the model parameters. This relationship can then be
used to choose the parameter variations which predict the actual state variations in
some optimal way. Such an approach is applicable over the entire operating range
of the powertrain. However, as previously noted additional dynamics are present
when the clutch plates are slipping, which allow parameters to be estimated that
could not be estimated by examining the powertrain dynamics when the clutch is
locked up. In particular, no estimation of clutch wear could be achieved. For this
reason it is proposed than the estimation of the state dynamics is performed on an
interval in time, when the clutch plates are slipping. In particular, during clutch
engagement, with the engagement being controlled using the feedback control
strategy.

As hefore, first variations of the state equations can be taken with respect to
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variations of the states, controls and model parameters by
= frf>£ + furlL + fznZ. (519)

As before, 6x and 6u are first order variations of the states and controls, with
6. the first order variation of the actual parameter variations, which is not the
same as Ar, the known parameter variations used in the previous section. For
generality, the control variations are calculated using an initial estimate of the
parameter variations, Acn. This allows 6u to be eliminated in equation (5.19),
by substituting in equation (5.13). This in turn allows the estimate of the state
equations

to be obtained, acquired by simulating the variations of the state equation over
a suitable hasis, calculated for all s in the interval used for the parameter esti-
mation. In this last equation, Sig and SXg, are the state and Lagrange multiplier
variations at the start of the estimation interval. The problem left is to calculate
the Lagrange multiplier variations, enabling the state variations to be estimated
in terms of variations of model parameters, and known terms. The difficulty in
evaluating the Lagrange multiplier variations is that the feedback control proce-
dure allows them alter in time, both in value and choice of Lagrange multiplier set.
This Lagrange multiplier alteration, allows the feedback control strategy to adapt
to unmodelled dynamics and external influences. However, if the perturbations in
the model parameters adequately portray these effects, then the Lagrange mul-
tiplier set and value should remain constant or at least only vary slightly, when
the true parameter perturbation is used to calculate the control variations. This
of course will not be the case when an incorrect parameter estimation is used,
as with poor initial estimations. However, it is still felt that with the assump-
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tion that the Lagrange multipliers remain constant, equation (5.20) is still a good
approximation of the state variations. The difficulty with the variability of the
Lagrange multiplier variations, can be helped by making the assumption that the
choice of Lagrange multiplier set remains constant. This not only removes the
computationally expensive choice of the Lagrange multiplier set but also helps
simplify the algebra. This simplification is not unjustified, as from simulations of
the feedback strategy it can be observed that for most engagement problems the
bounds of all of the inequality constraints are reached over the entire interval [0,1]
in's. Even when this is not the case, the restriction that the inequality constraints
achieve their bounds, results in almost identical control variations. Hence, for
this parameter estimation, the Lagrange multiplier set corresponding to non-zero
Lagrange multipliers for all constraints is chosen. This is equivalent to setting
the inequality constraints whose bounds are achieved by the open loop solution
to equality constraints in the following feedback calculations.

With this last assumption, the required estimation of the state variations can
be found by substituting equation (5.16), with s corresponding to the start of the
estimation interval, into equation (5.20), resulting in the relationship

r6Bo"
6X(5) = <t>(s)ox0 + *'(s) + fl(s)6z. (5.21)
1

In this equation, the terms 6Rq and refer to the integral of the constraint
integrands up until the start of the estimation interval, and are assumed to be
known. Now that the state variations are estimated, parameter variations are
chosen so that the estimated variations remain as close to the actual state varia-
tions, as close as is possible. Closeness can be measured using the standard norm
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of continuous functions on a fixed interval, measured by
1 1IMO -£(*) + x*(012¢* = [ T2|[<%E(s) - x(s) + x*(s)[2ds.  (5.22)

The two forms, question how the interval on which the estimation is conducted
Is defined. As the calculations are performed with s as the independent variable,
si-and Si are used for this definition. This also enables an interval to be chosen
for which the clutch plates are slipping, by choosing [«1,52] C [0,1]. Substituting
equation (5.21) into equation (5.22), differentiating with respect to 6z, and setting
this derivative to zero, yields the equality condition

/S6I§0\

M6z + N KO - g tout(i - xmis (523)
2
Vi/

where M ] r 1Tnds (5.24)

N -JrT%T ds (5.25)

that must be satisfied for & to be the parameter variations that minimise the
distance of the estimated variations from the actual state variations. The diffi-
culty in using this equality condition to calculate an estimation of the parameter
variations is that the matrix M might be singular. Fortunately this problem can
be overcome using the Moores-Penrose pseudo inverse, resulting in

[ )
6z=M+ B THOTU - x*)ds - N &? (5.26)
1)

The use of the Moores-Penrose pseudo-inverse, means that the parameter esti-
mations calculated might not be the real parameter perturbations when M s
singular. However, in this case, the effect of the calculated perturbation and the
real perturbation on the states are indistinguishable, and there use in correcting
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the control variations is just a valid. For the case when M is non-singular, then
the estimation should be an explicit estimation of the parameter variations.

It is questionable whether differences in all of the states is necessarily the
best measure to use to achieve the parameter estimates. For instance, differ-
ences between hoth clutch plate speeds only without including the differences
between the other states, or differences between real system measurements, might
be preferable. For this reason, the approach is generalised slightly, by examining
the differences between the estimated and actual variations of

y = 9(x), (5.27)

where g is a differentiable function. With this generalisation, estimates of first
variation of y can be calculated, by pre-multiplying estimates of the state varia-
tions in equation (5.21) by gx, the derivative of g with respect to the states. An
expression describing the closeness of the estimated y, to the actual y, can be ob-
tained in a similar way, which when differentiated with respect to the parameter
variations, allows the new estimate

(bio)

- 2 qU-Vds-N 4
6z=M+ jal TWgKn-gU-Vds-N AAQo (5.28)
where M= T T2QTgJgrUds (5.29)
N= j,{ZTZthID: ds (5.30)

of the parameter variations to be obtained, where the actual value, j/, is assumed
to be known. Note that, in both parameter estimations, the terms M and N
can be calculated off-ling, only being dependent on the predefined interval [s],"],
with the integral in equations (5.26) and (5.28), being calculated on-line.

As a summary of the approach, a geometric interpretation of this estimation
procedure is now given. This is done by representing the states, controls and
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model parameters as three vertices, describing co-ordinates in a 3-D space. In
order to maintain this representation as simple as is possible, the constraints and
the initial parameter estimates used in the calculation of the feedback controls,
are ignored. With this representation, the calculation of the parameter estimates
precedes as follows, with a diagram of the representation shown in figure 5.14.

In this 3-D space, the state equations are represent by a surface or manifold.
The calculation of the open loop optimal solution locates a point (u”, x*, 2“) on this
manifold, the point which minimises the performance measure, with z* the model
parameters used in this calculation. The feedback control strategy, describes a
linear relationship between variations in the states and variations in the controls,
and is thus represented by a hyperplane, passing through the open loop optimal
solution. The intersection, of the manifold describing the state equations and the
hyperplane describing the feedback relationship, describes the set of all possible
combinations of states, controls and model parameters, which can occur when
the feedback control strategy is implemented. In reality, this intersection is a
manifold of the same dimensions as the number of model parameters allowed to
vary. Furthermore, as the feedback strategy is independent of the model parameter
perturbations, any point in this manifold can be uniquely described by the model
parameters. Hence, if the real model parameters are z', then a unique point
(uGq',1"), on this manifold, is determined. The parameter estimation procedure,
approximates this manifold of all possible points, by its tangent space at the open
loop optimal point (u",x',zm. The new point (<X, 'l,; t)on this tangent space
can then be located, the point closest to (w',x',z'), in some pre-defined way. The

parameter estimate can now he read off as z"".
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5.3.2 Simulations of model parameter estimation

In order to demonstrate the effectiveness of this estimation procedure, simulations
of clutch engagement are conducted, with parameter perturbations applied and
with the parameter estimation calculations performed. In particular, the simu-
lations of engagement with @ wom engine, @ worn clutch, a fully laden vehicle
and of a hill-start, are conducted. These are four of the simulations used in sec-
tion 5.1 to motivate the parameter adaptation of the feedback strategy, and are
repeated, this time with the integral in equation (5.26) calculated. In order to
evaluate this integral, and the matrices M and N, the interval [si,sZ must be
chosen. For these simulations, the interval [0,0.9], was chosen. The last part of
the interval for which the clutch is slipping is not used, as in this region, larger
control variations are more likely and the assumption that the Lagrange multiplier
remain constant is probably incorrect. Indeed, is has been found that using this
region, can result is poor parameter estimates. The feedback control used, is as
described in section 5.2, with initial parameter estimates being used to adapt the
controls. The restriction that the inequality constraints remain on their bounds
is also applied. In all other aspects the simulations are exactly as in section 5.1,
For each simulation, the parameter estimation procedure is acquired using all of
the states, as in equation (5.26).

For each parameter perturbation, three simulations are conducted. The first of
feedback control, with the controls adjusted using no initial parameter variation,
the second of feedback control using the correct parameter variation, and the
final simulation of feedback control using the parameters estimated in the first
simulation. Graphs of the clutch plate speeds acquired from these simulations
along with graphs of the clutch plate speeds when the open loop controls are
used, are detailed in figures 5.15 and 5.16, for the two perturbations for which
unadapted feedback control is unsatisfactory. For all three simulations, and for
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all four perturbations, estimates of the parameter variation are obtained. In this
estimation it is assumed that the parameter which has been altered is the only
parameter that can vary. In other words, the perturbed parameter, is the only
parameter estimated. These parameter estimates are detailed in table 5.1,

From the table, it can be seen that the estimation procedure produces good
estimates for all of the parameter perturbations. In particular, the drop in engine
torque is estimated within 9% of its true value, the clutch wear within 16% of its
true value, the vehicle mass within with 16% of its true mass, and the gradient
of the terrain within 3% of its true value. The discrepancies occur mainly as a
result of the non-linearity of the states and model parameters in the state equa-
tions. Note that, the parameter expressing the gradient of the terrain is the only
parameter with a linear relationship in the state equations. This is the probable
reason for its accurate estimation. It can also be seen that the effect of using ini-
tial parameter estimates in calculating the controls, on the calculated estimates is
negligible. Figures 5.15 and 5.16, show how these estimates can be used to correct
any problems with the engagement dynamics, with the engagement using the es-
timated parameters as good as engagement using the actual parameter variations.
In fact, there are no noticeable differences between these engagements for the two
problematic perturbations.

Unfortunately, it is unlikely that just one parameter will vary. For this reason
a further three simulations are conducted, of engagement with a worn engine, en-
gagement with a worn clutch, and of engagement with a worn engine with a fully
lacen vehicle, this time with four parameters estimated. In particular, with the
engine and clutch wear parameters estimated, along with the parameters measur-
ing the vehicle mass and the gradient of the terrain. Again for each perturbation,
three simulations are conducted, as with the single parameter estimation, with
the estimated values for the perturbations detailed in tables 5.2 - 5.4. From these

203



tables, it can be seen that the estimation of the engine perturbation, is achieved,
just as successfully as when one parameter is estimated. The estimations of the
other parameters, not perturbed, also remain small with the their values less the
10% of typical variations of these parameters. The estimation of the clutch wear
IS not as quite as accurate, as is shown in table 5.3, getting within 20% of the true
values and with larger estimates of the non-perturbed parameters being found.
However, the estimates are reasonable. For the perturbation of engine torque
and of vehicle mass, again reasonable but not good estimates are achieved, with
the estimation of vehicle mass almost 40% out for the first estimation. For all
three perturbations, engagement using the estimated parameters located with the
first simulation, is just as good as with engagement using the actual parameter
perturbations, as shown in figures 5.17 - 5.19.

As a final investigation, simulations of clutch engagement with a worn engine
and with the initial engine flywheel speed lowered to 175rad/s, are conducted, in
order to demonstrate parameter estimations under state perturbations. For this
case, the parameter estimation is poorer, not in estimating the engine wear, but in
estimating the other parameters, as shown in table 5.5. In particular, the vehicle
mass is estimated 10% lighter than it is, with the gradient of the terrain estimated
at a 1:40 up hill. The difficulty with this estimation, is that the effect of a heavier
vehicle and of an up hill gradient on the state dynamics are very similar. This
means that in essence the lighter vehicle estimate cancels out with the up hill
gradient estimate in the adaptation of the feedback controls. Hence, the use of
these estimates in controlling clutch engagement, is still valid, with just as good
engagement resulting, as shown in figure 5.20.

Other simulations, using just the clutch plate speeds to estimate the param-
eters have also been conducted. Initial results suggested that there was little
difference in the ability of the procedure to estimate the parameter variations,
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with more work being required to firmly establish this hypotheses. Further work,
identifying the minimal state information enabling successful parameter estima-
tion is felt appropriate.

To conclude, the estimation procedure acquires good estimates in most param-
eter perturbations simulated. Furthermore, even when the estimates are slightly
different from the real values, the use of them to modify the feedback controls is
just as effective.

.4 Adaptive/self-learning control

The previous section has shown that good estimates of the model parameters can
be found. Using the technique described in the previous section, one estimate
can be achieved for each clutch engagement. Furthermore, it has been shown
that this parameter estimate can be used to improve clutch engagement. For
the simulations, one estimation from a single clutch engagement was sufficient to
correct the feedback strategy. In practice, a variety of variations are present, all
varying at different rates, making the task more complex. For this reason, a brief
outline of techniques for creating adaptive or self-learning control strategies from
these estimations is discused.

As mentioned, in reality, variations of states, other parameter variations, and
of different external influences occur from one clutch engagement to another. This
will cause the estimations of any particular model parameter, to vary with such
variations, even if its value is static. However, its true underlying value may also
change in time. Hence, the problem is to extract this trend from any sequence of
estimated model parameters, in order to obtain accurate estimates of the model
parameters. These estimates can then be used to modify clutch engagement. One
way of achieving this is to update a running estimate of a model parameter with
the estimates acquired from each clutch engagement. Typically this can be done
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using to formula

Mer (1 A)e) *f M (5.31)
where A£ [0,1] is a relaxation parameter and zet is a parameter estimation ac-
quired from a single clutch engagement. In essence, this filters out, high frequency
variations, higher than would be expected for the parameter in question. In sec-
tion 5.1, the model parameters where grouped into classes describing how fast
they can vary. This classing can now be used to design values of the relaxation
parameters for each model parameter being estimated. For instance, for:

* STATIC model parameters, a small relaxation parameter could be chosen,
just small enough to filter out all dynamics present in the powertrain, but
large enough that parameter learning is not excessively long,

* SLOW model parameters, a small relaxation parameter could again be cho-
sen, possible slightly larger, but probably very similar in magnitude to the
value for STATIC model parameters,

* DISCRETE model parameters, a larger value needs to be chosen during the
first part a journey, with the value decreasing for lengthy journeys.

Note that in practise, that the relaxation parameter is not only dependent on the
speed of the dynamics but on the intervals between clutch engagements. Also
note, that the first order discrete adaptation, equation (5.31), can be generalised
to higher order equations, using discrete filter theory, to design a low pass filter.

There is still a difficulty with FAST model parameters. Recall from section 5.1,
that these model parameters vary sufficiently fast, that from one clutch engage-
ment to another, their value appears to be uncorrelated. Even if the relaxation
parameter is set to 1, equivalent to correcting engagement with the previous es-
timate, the estimate used may be significantly different from its true value. A
possible solution to this is to carry out more than one estimation for ever clutch
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engagement. The theory used in calculating these estimates can use any interval
during clutch engagement. This allows the value used in correcting clutch engage-
ment to be updated during the engagement, by partitioning the interval [0,1] in
s into several intervals on which parameters estimation is performed. Initial sim-
ulations, suggest that this approach might work, although more work is required
the establish this approach.

To conclude, it is felt that the parameter adaptation and estimation techniques
presented in this chapter, can be used to design adaptive or self-learning clutch
engagement controllers.
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Open loop clutch plate speeds

Figure 5.1: Clutch performance of feedback control wwith a heavier flywheel in-
erfla

Open loop clutch plate speeds

SFigft{re 5.2: Clutch performance of feedback control with a heavier gearbox input
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Open loop clutch plate speeds

Fipure 5.3: Clutch performance of feedback control with a larger gearbox 1st gear
rafio

Open loop clutch plate speeds

1EFi,g%J_re 54: Clutch performance of feedback control with reduced clutch plate
riction
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Open loop clutch plate speeds

Figure 5.5: Clutch performance of feedback control with a slower actuator

Open loop clutch plate speeds

Figure 5.6: Clutch performance of feedback control with an engine producing less
torque than expected
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Open loop clutch plate speeds

Figure 5.7: Clutch performance of feedback control for a fully laden vehicle

Open loop clutch plate speeds

Figure 5.8: Clutch performance of feedback control up a 1: 10 gradient
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Open loop clutch plate speeds

Figure 5.9: Clutch performance of feedback control down a 1: 10 gradient

Open loop clutch plate speeds

Figure 5.10: Clutch performance of feedback control with less damping
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Figéjre 5.11: Optimal feedback control architecture with known parameter per-
turbations
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Open loop clutch plate speeds

Closed loop clutch plate speeds, with known parameter varia tions

Figure 5.12: Clutch performance with known parameter variations of an engine
producing less torque than expected
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Open loop clutch plate speeds
500 p p p p

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter varia tions

Fi_%ure 5.13: Clutch performance with known parameter variations of engagement
with reduced clutch plate friction
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Figure 5.14: Geometrie interpretation of model parameter estimation
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Open loop clutch plate speeds

Closed loop clutch plate speeds (feedback)

Closed loap clutch plate speeds, with known parameter van ation

Closed loop clutch plate speeds, with parameter estimation

Figure 5.15: Feedback control of an engine producing less torque than expected,
using estimated parameter variations
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Open loop clutch plate speeds

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter van ation

Closed loap clutch plate speeds, with parameter estimation

Figure 5.16: Feedback control with a worn clutch, using estimated parameter
variations
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Open loop clutch plate speeds

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter van ation

Closed loopclutch plate speeds, with parameter estimation

Figure 5.17: Feedback control of an engine producing less torque than expected,
using the four parameters estimated

219



Open loop clutch plate speeds

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter vari ation

Closed loop clutch plate speeds, with parameter estimation

Time (sec)

Fiﬁure 5.18: Feedback control with a wom clutch, using the four parameters
esfimated
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Open loop clutch plate speeds

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with known parameter vari ation

Closed loop clutch plate speeds, with parameter estimation

Figure 5.19: Feedback control with a worn engine and a fully laden vehicle, using
the four parameters estimated
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Open loop dutch plate speeds

Closed loop clutch plate speeds (feedback)

Closed loop clutch plate speeds, with estimated parameter v ariations

Figure 5.20: Feedback control of an enginelproducin? less torque than ex?_ected,
using the four parameters estimated and with an inifial flywheel perturbation
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Variation Actual  Estimated variation using
Description Symbol  Units variation no initial ~ actual estimated
estimate variation  variation

Worn engine - - -0.1000 0099  -0.1083  -0.1083
Worn clutch [ - -0.1000  -0.0955  -0.1158  -0.1151
Fully laden vehicle ;4 «gm2 20000 16866  1.6845 1.6822
Hill start a Nm 1007190 100.0245 984789  98.4604

Tatiled 5.1: Estimates of parameter perturbations, with just one parameter esti-
mate

Description Worn engine Worn clutch  Fully laden  Hill start
vehicle

Symbol . U a

Units - - kgm2 Nm

True variation -0.1000 0.0000 0.0000 0.0000

Estli(m ated variations with feed-  -0.1015 0.0006 -0.2599 71.2413
ac

Estimated variations with feed- ~ -0.1029 0.0084 0099%  -4.9124
back using true variations

Estimated variations with feed-  -0.1032 0.0086 01063 -5.1487
back using first estimate

Table 5.2: Estimates of the engine torque perturbation, with four parameters
estimated
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Description Worn engine - Worn clutch  Fully laden  Hill start

vehicle
Symbol - N a
Units - - kgm2 Nm
True variation 0.0000 -0.1000 0.0000 0.0000
E;&l(m ated variations with feed-  0.0176 -0.0847 02937 -0.5063
Estimated varla jons with feed-  0.0069 -0.1104 -0.1778 8.04%

back using true variations

Estimated variations with feed- 0.0063 -0.1106 -0.1890 8.2833
back using first estimate

Tatiled 5.3: Estimates of the clutch wear perturbation, with four parameters esti-
mate

Description Worn engine  Wom clutch  Fully laden  Hill start
vehicle

Symbol - Ja a

Units - - kgm2 Nm

True variation 0.1000 0.0000 2.0000 0.0000

lEstii(m ated variations with feed-  -0.0982 0.0007 1.2517 9.0650
ac

Estimated variations with feed-  -0.0994 0.0072 1.5756 -3.2837
back using true variations

Estimated variations with feed-  -0.1008 0.0068 15779 -3.9517
back using first estimate

Table 5.4 Estimates of the engine wear and vehicle mass perturbation, with four
parameters estimated
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Description Worn engine Worn clutch  Fully laden Hill start

vehicle
Symbol . 14 a
Units - kgm2 Nm
True variation -0.1000 0.0000 0.0000 0.0000

Est{(m ated variations with feed-  -0.1099 0.0047 -0.7995 23.0561
ac

Table 55: Estimates of the engine torque perturbation, with four parameters
estimated and with an initial engine flywheel perturbation

225



Chapter 6
Conclusions

Most of the aims of the thesis have been completed successfully. In particular:

1 a formal mathematical investigation of clutch engagement has been con-
ducted:

2. the notion of good clutch engagement has been quantified:

3. aprocedure to calculate control strategies that result in good clutch engage-
ment has been constructed;

4. and feedback control strategies, that it is felt might be needed in the im-
plementation of clutch control, which cope with perturbations of the model
states and parameters, have been developed.

The result, is the design of a clutch engagement controller, which under simulation,
successfully engages the clutch for a variety of undesirable situations. In this
thesis, the worse case problem of engagement from rest, and quite often with just
one control active has been concentrated on, to identify, as fully as is possible,
the limitations of any control strategy. However, the theory is applicable to any
clutch engagement problem, such as clutch engagement during gear change.

It is is felt that there are two uses of this research in the practical implemen-
tation of a clutch engagement controller.
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The first use of this research, is to use the designed control strategies, as a
design aiti in designing simple clutch engagement control laws. These controls laws
might consist of simple rules, with techniques such as fuzzy logic, describing how to
implement such rule based control strategies. For instance, the open loop control
calculation can be used to identify characteristics, which any rule based algorithm
must ensure, such as the reduction in clutch torque capacity at the point of clutch
lock up. The feedback control strategy and model parameter adaptation can also
be used to design simple control laws. For instance, the simulations suggest that
changes in the flywheel speed are best coped with by varying the engine torque,
especially when the likelihood of stalling is high. Simulations, might also enable
rules to be developed suggesting how best to cope with parameter changes such
as clutch wear.

The second use of this research is to take the designed control strategies forward
to direct implementation. The possibility of implementing the control strategies
was envisaged in there development and has influenced their design. This direct
implementation can be carried out in three progressive stages:

« the implementation of the open loop controls,
« the implementation of the feedback control strategy,
* and the implementation of an adaptive or self-learning clutch controller,

with the requirements of each step now outlined.

As mentioned, good open loop control strategies can be calculated for a variety
of different engagement problems. Assuming that each engagement problem can
be described by known variables, such as the initial flywheel speed in the case
of engagement from rest, then a series of open loop controls can be calculated,
describing how best to engage the clutch for each different engagement problem.
By varying these variables describing the engagement problem, open loop controls
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can be found for a class of clutch engagement problem. Any element of the
class can then be described from these calculated open loop controls, possible by
using interpolation or by regressing some function through the calculated controls.
There is a slight difficulty, due to the non-uniqueness of the solution, with the
solution dependent on the initial control strategy used in the algorithm to calculate
the open loop controls. This can to a certain extent be overcome by using the same
initial control strategy for all of the calculated open loop control strategies. The
data required to evaluate any open loop control strategy in an engagement class,
whether variables describing a function regressed through the data or the raw data
itself, is then required to be stored in some memory on board the vehicle. This then
allows the required open loop control strategy to be located from this memory by
an automotive controller, if it is assumed that the variables required to describe
the engagement problem are known. For instance, in the case of engagement
from rest, the initial engine flywheel speed can be used to determine the open
loop controls. This approach is also valid for variations in model parameters,
with open loop controls being calculated for different values of model parameters.
The difficulty with this is that the actual model parameters must be known and
the the size of the data required to be stored increases exponentially with the
number of variables which the open loop controls are dependent on. Furthermore,
the simulations suggest that if incorrect values of the variables describing the
engagement problem are used to calculate the open loop controls then poor clutch
engagement might result. There is also the problem that the simplistic model
used in the calculation of the open loop controls, might fail to fully represent the
dynamics of clutch engagement.

The implementation of the feedback control strategy is similar. Again several
open loop control strategies can be calculated, describing a class of engagement
problems. However, this time, due to the ability of the feedback algorithm to
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cope with certain perturbations, the number of open loop controls calculated for
each class of engagement problem can be dramatically reduced. It even might be
possible to successfully describe a class of engagement problems by just one typical
engagement problem. For each set of open loop controls, the required feedback
matrices can then be calculated, with both the open loops controls and feedback
matrices for any given engagement problem, again determined by techniques such
as interpolation or regression. Again data describing the feedback matrices and
open loop controls needs to be stored in memory. Again, variables describing
the problem, if present, are required, along with full model state information.
Techniques such as Kalman filtering exist for calculating such state information
from system measurements. However, these techniques do require the system to
be observable. In the case of clutch engagement, as the dynamics either side of the
powertrain are decoupled whilst the clutch is slipping, this means that at least two
measurements of the powertrain dynamics from either side of the clutch will be
required. The memory requirement are also much higher for the feedback control
strategy. If tit is the number of time points used to store the controls in's, n is
the number of states, g is the number constraints and m is the number of controls,
then the storage requirement of a single open loop control is m x nr floating point
numbers, whilst the storage of the feedback matrices is m x nj x (n+q+ 1) floating
point numbers, assuming that their is no choice of Lagrange multipliers made. If
the cases of different Lagrange multiplier sets are considered, then this increases
by a further multiple of 271, where there are gi inequality constraints, along with
the addition of matrices estimating the constraint variations and performance
measure variations.

The implementation, of an adaptive or self-learning controller, requires the
implementation of the feedback control strategy described in section 5.2, along
with an algorithm for estimating the parameters variations, possibly as described
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in section 54. The implementation of the feedback control is as previously de-
scribed with the an increase in size of the stored matrices, due to additional terms
relating to alterations due to parameter variations. In particular, the storage re-
quirements of each feedback matrix increases to m x n? x (n + g+ 1+ p) floating
point numbers, where p is the number of model parameters adapted for.

On reflection, the use of this research as a design aid is more appropriate.
The reasoning behind this is that in any clutch engagement implementation, the
conceived benefits must out weigh the costs of the implementation. With the
direct implementation, requirements such as full state estimation and large mem-
ory units might make the implementation too expensive. However, in the future,
if more control devises are implemented on automotive vehicles, these difficulties
may reduce, with components becoming cheaper and with the required powertrain
states being calculated for other control systems.

There is one other important use of this research. The optimisation approach
used to design clutch enagement controllers, is a general non-linear technique
applicable to other other control problems. In applying this theory to the clutch
engagement problem a number of technical difficulties have been solved, such as
problems with the free terminal time in the optimal control problem and the
calculation of the feedback control strategy with variable Lagrange multipliers.
Other problems might have similar, if not identical problems, solutions to which
might be provided by this research.
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