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Glossary: 

visceral leishmaniasis: the vector–borne disease caused by infection with either Leishmania 

donovani or L. infantum  

asymptomatic: infection in the absence of clinical signs or symptoms 

super-spreader: infected dogs, or humans, that make a disproportionally high contribution to 

ongoing parasite transmission to the intermediate sand fly host 

rK39: the gold standard recombinant, chimeric polyprotein rK39 used to confirm VL 



DPP CVL: Dual-Path Platform technology (DPP®CVL rapid test) for the serodiagnosis of canine 

visceral. A lateral flow-based test that detects canine IgG antibodies against the rK28 antigen. 

 

 

  



Abstract 

Visceral leishmaniasis (VL) is a life-threatening outcome of Leishmania infantum or L. donovani 

infection. Dogs are the primary domestic reservoir of L. infantum parasites and ownership of 

infected dogs increases the risk of human VL. Controlling infection within dog populations is 

regarded as critical to VL management in endemic countries, both preventing progression of 

canine disease and limiting parasite transmission to humans and dogs. Here we discuss various 

strategies that are used to diagnose canine visceral leishmaniasis (CVL) and the possibilities of 

adapting these for use within population screening and control programs. In addition, given the 

variable transmissibility of L. infantum to the sand fly vector, we outline some possibilities for 

the preferential identification of “super-spreader” dogs among the overall infected population.  

 

 

 

 

  



Leishmania infection and visceral leishmaniasis 

Visceral leishmaniasis (VL) is a vector–borne disease characterized by prolonged fever, 

wasting, splenomegaly, and hepatomegaly, resulting in >90% case–fatality within two years in 

the absence of treatment [1]. Estimates of the number of new human VL (HVL) cases per year 

range from 25,000 to 200,000 accounting for underreporting [2, 3], and although therapeutic 

drug options are available, the control portfolio to prevent transmission are limited. VL due to 

Leishmania donovani is considered anthroponotic, with likely zoonotic transmission in East 

Africa, whereas VL due to L. infantum is considered a zoonosis reliant on domestic dogs as the 

sole proven reservoir [4, 5] (Figure 1). L. infantum infection of dogs can lead to canine VL (CVL), 

a multisystemic disease with a range of clinical signs typically including dermatitis, 

lymphadenomegaly, general muscular atrophy, and renal disease [6]. 

Anthroponotic VL has been targeted for elimination as a public health problem (defined 

as an incidence of <1 VL case/10,000 people per year in specified geographical scales) in the 

Indian subcontinent by 2020 [7]. Substantial investments and political advocacy have been used 

to implement novel case detection strategies, rapid diagnostic testing and vector control 

activities [1, 7]. In contrast, despite the large burdens typically in young children, efforts to 

reduce zoonotic VL (ZVL) in endemic regions of Latin America, East Africa, and central Asia are 

less advanced [3]. The zoonotic nature of L. infantum transmission suggests that controlling 

infection within dog populations, is a reasonable strategy to reduce infection rates in humans 

[8, 9].  The majority of ZVL cases in the Americas occur in Brazil [3], where intervening measures 

of indoor residual spraying (IRS) and dog test-and-slaughter are national policies [10]. The test-

and-slaughter policy has, however, been legally challenged in some Brazilian states with the 

outcome that treatment is now permitted. There is, however, a lack of evidence that these 

strategies have significantly reduced canine or human ZVL incidence [11, 12], and alternative or 

complimentary control methods are presently under evaluation [13-15]. Preventative measures 

against canine infection or disease include the use of topical or oral insecticides, and canine 

anti-Leishmania vaccination, that are shown to provide varying levels of protection to individual 

dogs [16]. That any canine control option corresponds to a reduction in human infection still 

requires well designed randomized field trials [17]. 



Given that many more asymptomatic than symptomatic canine (and human) 

Leishmania infections are identified in cross-sectional surveys, surveillance for both infection 

and disease are essential for the future success of control programs [6]. In this article, we 

discuss various diagnostic strategies, with emphasis on current and new developments in 

antigen-based serological diagnostic tests, their applications, and performance requirements 

for different settings. In doing so, we identify current issues and research priorities.  

 

Diagnosing infection and CVL 

The clinical signs of CVL are quite general and therefore not particularly useful for 

detecting symptomatic infection or differentiating Leishmania from other etiologies [16]. 

Numerous tools are, however, available to aid the diagnosis of both canine and human 

infection, covering an array of direct and indirect detection methods (Figure 2). Direct methods 

include xenodiagnosis and parasite observance in ex vivo cultures, or recognition of 

amastigotes following biopsy or microscopy. Parasite genome equivalents can be detected by 

molecular DNA-based techniques. In clinical settings, confirmation of cure requires 

demonstrating absence of tissue parasites, which depends on the sensitivity of methods and 

sample type to detect low-level parasite burdens. Leishmania burdens generally decline during 

treatment [18-20], although residual parasites were detected in up to 50% of human patients 

that were considered cured based on the resolution of symptoms [19, 21]. Similarly, alleviation 

of symptoms and decreased parasite loads are considered indicators of treatment success in 

CVL patients, though complete parasitological clearance is often not achieved (reviewed by 

[22]).  Some diagnostic techniques used routinely in research laboratories are not suited for 

widespread use in field settings. For example, PCR/qPCR requires nucleic acid extraction, 

amplification in a thermocycler and gel-based analyses to demonstrate specific gene 

expression, each step requiring specialist technical conditions; it may require invasive sample 

collection and is generally costly. Point-of-care assays such as loop-mediated isothermal 

amplification (LAMP) and nanoparticle-based lateral flow biosensors for DNA are being 

developed to address some of these issues [23-28]. The commercially available Leishmania 

OligoC-TesT kit that incorporates standardized PCR reagents with rapid oligochromatographic 



dipstick detection of the PCR products provides greater sensitivity for polysymptomatic and 

oligosymptomatic dogs than for asymptomatic dogs, a trend observed for various other 

qualitative PCR methods [29]. Real-time qPCR typically provides the highest sensitivity. Among 

the recent advances towards development of a field applicable PCR type test for CVL, is a 

combined, duplex qPCR protocol that detects L. infantum kinetoplast (k)DNA simultaneously 

with host (canine 18S) rRNA in a single tube, in a ready-to-use (gelified and freezer-free) format 

[30]. Duplexing of these qPCR protocols permits generation of quality-controlled results with 

reduced overall cost relative to running each assay separately. Higher test sensitivities (e.g. 

92.9%) were achieved using splenic aspirates than skin or blood samples (50% and 35.7%, 

respectively) but relies on invasive sampling [30]. Similarly, an in-clinic point-of-care PCR for the 

diagnosis of canine Leishmania infection (PCRun; Biogal Galed Labs ACS) provided reliable 

confirmation of CVL infection, but was constrained by an inverse correlation between assay 

sensitivity and simplicity of sample collection (ranging from 58.8% in lymph node aspirates to 

10.0% in blood) [31]. 

Despite molecular advances, indirect approaches centered on immune responses to 

Leishmania antigens still provide the most tangible possibilities to support CVL and HVL diagnosis 

in low resource settings. While dogs resistant to developing CVL typically have undetectable or 

low, often transient, anti-Leishmania antibody responses, non-resistant dogs that develop signs 

of CVL typically have high serum antibody titers that positively correlate with tissue parasite 

density and clinical severity [32-34]. Therefore, antibody-based test sensitivities are unlikely to 

be similar for asymptomatic and symptomatic infections [35]. High initial antibody titers against 

crude Leishmania antigen (CLA) are associated with increased risk of developing clinical signs 

[36], and positive rk39 rapid diagnostic test (RDT) results are strongly associated with high 

infection levels and disease progression [35]. In humans, high anti-Leishmania antibody levels 

during the asymptomatic infection phases are similarly indicative of likely progression to VL: in 

India, 12% of individuals with direct agglutination test (DAT) titers >25,600 subsequently 

developed clinical disease, compared to only 1% of those with low but positive DAT results [37]. 

Likewise, in Bangladesh 29% of strongly rK39-seropositive individuals at study intake progressed 



to VL compared to less than 4% of low seropositive or seronegative individuals [38]. Comparable 

estimates using alternative antibody threshold definitions were reported by others [37].  

Diagnostic tests require different attributes dependent upon the particular application. 

High sensitivity is required to prevent inadvertent introduction of infected human or canine 

blood into blood banks; to monitor success of treatment/intervention of either HVL or CVL; to 

detect spread of Leishmania-infected dogs across international borders, and for epidemiological 

studies or trials to differentiate infected and non-infected individuals in the population. 

Refinement from the use of crude Leishmania extracts to purified recombinant antigens 

includes several recombinant antigen-based immunoassays, foremost among these, are 

platforms based on the chimeric polyprotein rK39 used to confirm HVL and CVL infection [39-

41]. The incorporation of rK39 into lateral flow-based rapid tests (Kalazar DetectTM, InBios 

International Inc., Seattle, WA) provided a simple field-friendly format capable of providing 

diagnosis of HVL at the point of care [42, 43]. Modifications of the rK39 antigen yielded a next 

generation rK28 RDT-based rapid diagnostic test for enhanced diagnosis of HVL in Africa (Onsite 

Leishmania Ab Combo Rapid Test, CTK Biotech, San Diego, CA) [44-46]. A dog-specific variant of 

this, DPP® CVL (Chembio Diagnostics, Medford, NJ), retains high performance  [47-49]. and is 

now established within the diagnostic recommendations of the Brazilian Ministry of Health. 

Removal of the laboratory requirements associated with ELISA render these lateral flow-based 

tests applicable in a wider array of settings. 

New antigen targets and refinements to provide further incremental improvements in 

the diagnostic performance of antibody-detection tests are being proposed. For example, the 

use of recombinant protein rLc36 in ELISA enabled differentiation of positive and negative sera 

and showed a sensitivity of 85% and specificity of 71% [50]. Combinatorial approaches can 

enhance sensitivity, while continued screening of genomic expression libraries or adapted 

bioinformatics searches are providing new hits. Indeed, combining rKLO8 and rK26 increased 

sensitivity and specificity (85% and 93%, respectively) over the levels achieved by either antigen 

alone (sensitivities and specificities of 68% and 92% for KLO8, and of 77% and 91% for rK26, 

respectively) [51]. Following selection from a L. infantum amastigote cDNA library, rLci1A and 

rLci2B were combined and incorporated into a prototype rLci1A/rLci2B dual path platform rapid 



test. Evaluation of 154 sera from CVL dogs across endemic regions in Brazil yielded performance 

specifications comparable to those attained with DPP® CVL (sensitivity of 87% and specificity of 

100% for rLci1A/rLci2B DPP versus 88% sensitivity and 97% specificity for DPP® CVL, 

respectively) [52]. Immunoproteomics identified LiHyD, a hypothetical protein, that yielded 

perfect (100%) sensitivity and specificity when tested by ELISA against sera from 44 CVL and 9 

asymptomatic L. infantum-infected dogs [53]. In terms of detecting disease, novel protein-

coding gene fragments that had not previously been studied were used to generate 

polyproteins that in serum ELISA demonstrated better performance to detect CVL than HVL: no 

effective detection of HVL (26-52% sensitivity) was demonstrated whereas 48-91% of CVL dogs 

were detected. These three antigens performed better than rK39 in this particular evaluation 

panel of 46 CVL sera [54]. 

In addition to novel targets, practical advancements are being sought. As mentioned, 

lateral flow-based tests can be used in a wide array of settings and prototype rLci1A/rLci2B DPP 

have been generated [52]. Removal of the laboratory requirements expands applicability and 

other examples fulfill this criterion. Covalent coupling of a k28-like protein onto polystyrene 

latex to provide a substrate for antibody binding yielded an agglutination test capable of 

producing visual results within 5 minutes, with sensitivity, specificity and diagnostic accuracy of 

78%; 100% and over 80%, respectively [55]. Besides formatting, adjustments (or simply 

alternative use) to generate results from other body fluids are also being examined. Anti-rK28 

antibodies are readily detectable in the urine of HVL patients, with performance only marginally 

lower than that obtained with serum [56]. It is likely that similar results would be achieved from 

infected canine urine. Saliva presents another easy way to collect alternative analyte, and a 

time-resolved immunofluorometric assay (TR-IFMA) quantifying anti-rK39 IgG2 antibodies 

indicated that greater discrimination between seropositive and seronegative dogs was achieved 

using saliva than serum [57]. 

 

Detecting Leishmania infection in surveillance and control programs 

VL surveillance programs and epidemiological studies that aim to detect Leishmania 



infection pertinent to either HVL or CVL control require tests with high sensitivity. Under 

specific conditions, such as reservoir control programs that deploy a test-and-slaughter policy, 

low compliance by dog owners fearing the potential removal of their apparently healthy but 

seropositive dogs has a major impact on program success. Thus, high specificity to differentiate 

clinically suspect cases from other etiological agents is of paramount importance, as is the need 

for high sensitivity to detect asymptomatic infections. In the advent of treatment of CVL, 

prompt and specific differential diagnosis is required by veterinary clinics to indicate 

Leishmania chemotherapy. On the other hand, for prevention of canine infection, high test 

sensitivity and specificity to confirm lack of Leishmania infection are required prior to 

application of preventative topical or oral insecticides, or canine vaccination.  

For both humans and dogs, tissue parasite numbers are generally low in asymptomatic 

L. donovani or L. infantum infections [58]. An Indian study recorded an average 500-fold lower 

blood parasite loads in asymptomatic L. donovani-infected individuals than in HVL patients [59], 

but indicated that asymptomatic individuals with higher parasite loads were at increased risk of 

developing VL [60]. The most sensitive technique for diagnosis of infection in dogs is qPCR, with 

qPCR results often, but not always, becoming positive in early infection before seroconversion 

occurs [34, 61]. Comparative evaluations indicate that seroprevalence may be below 30% in 

dog populations where prevalence of DNA detection by PCR can be as high as 80% [6, 62, 63]. 

Comparison between foci and tests is difficult but annual incidence estimates in Europe appear 

to vary greatly (between 40-92%) [61, 64, 65]. Test standardization for surveillance would help 

in data interpretation, but detection of blood or tissue parasites by PCR/qPCR is currently not 

operational within population-based surveillance programs for reasons discussed above. 

Tests detecting immune responses appear more tenable for larger surveillance 

programs than many other current methods. Dogs resistant to developing CVL exhibit 

protective immunity mediated by CD4+ T helper 1 cell responses with prominent expression of 

IFN-y and IL-4 cytokines in association with Th2 regulatory responses [32]. Among immune-

based assays for HVL, Leishmania-specific T cell recall tests have been develop that range from 

the leishmanin skin test, which induces an in vivo delayed type hypersensitivity (DTH) response 

[66, 67], to ex vivo assays measuring secretion of cytokines into stimulated blood [68, 69]. 



Compared to cell-based assays, serological antibody-detection tests, including indirect 

fluorescent antibody test (IFAT), direct agglutination test (DAT) and ELISA, are relatively cheap 

and, although generally more sensitive at detecting symptomatic than asymptomatic infections 

[70], their durability and practicality is considered an advantage particularly for low resource 

settings. Simple strategies can also render DPP CVL semi-quantitative, providing a more 

detailed diagnostic assessment and potentially a broader use in monitoring [71]. Truly 

asymptomatic infections usually revert to seronegative and/or low to moderate titers within 

months of infection and accurate quantification of responses is important in capturing this [72]. 

The Brazilian Ministry of Health changed the diagnostic protocol for CVL in December 

2011, with the current protocol reducing false-positive results relative to the previous protocol. 

A key action within the program has traditionally included euthanasia of all Leishmania 

seropositive or confirmed infected dogs, and not only those that displayed clinical signs. This 

has, however, been legally challenged in several states with the courts generally preferring the 

option of treatment similar to the widely accepted practice in Europe. The current criteria of 

canine infection requires firstly a positive result in DPP CVL, followed by another positive result 

in a confirmatory ELISA using soluble antigens of L. infantum promastigotes. Recent studies 

have demonstrated that adjusting the sequence of testing, from that used in the current 

protocol (DDP followed by ELISA) to the reverse order (ELISA followed by DDP), did not cause a 

significant alteration in the final number of infected dogs detected [73, 74]. Sensitivity and 

specificity were, respectively, 82.3% and 92.8% for DDP, and 85% and 92.3% for ELISA [74]. 

However, conflicting test results lead to interpretation issues, which is perhaps inevitable as the 

tests target different antigens and have variable levels of sensitivity and specificity. Based on 

the surveillance protocol, of 1130 dogs first examined by DPP CVL under field conditions in 

Minais Gerais, then confirmed by lab-based ELISA evaluation, seroprevalence was assessed at 

7.8% (8/101).  This rate was slightly lower than the 8.9% (101/1130) that could be attributed by 

a positive result in either the DPP CVL test or ELISA (in addition to a lab-based DPP CVL) [75]. It 

was noteworthy, but perhaps not too surprising, that in animals initially positive by DDP CVL, 

seroconversion was more frequent in dogs that in follow-up testing were ELISA indeterminate, 

compared to those that were clearly ELISA negative. In another study surveying 975 dogs with 



DPP, ELISA and qPCR, almost 1 in 5 (174/887; 19.6%) of the dogs that were negative in DPP CVL 

tested positive by qPCR of either blood or lymph node aspirates [76]. Further evaluation in a 

second cohort of the DPP negative dogs revealed that almost half (36/79; 45.6%) were 

positively detected in qPCR of at least one of their blood, lymph node or conjunctival swab 

samples that were collected.  

 

Identifying infectious individuals as a means toward controlling transmission 

A major question for HVL control efforts on the Indian subcontinent is whether people 

with asymptomatic infection are sufficiently infectious to sand flies to represent a significant 

reservoir for L. donovani [77]. While it has been demonstrated that HVL and post kala-azar 

dermal leishmaniasis (PKDL) patients can be highly infectious [4, 78], the epidemiological 

significance of asymptomatic L. donovani infection in transmission remains unclear. Given that 

there appear to be between 4- to 17-fold more asymptomatic individuals than HVL patients, 

some believe that even if a subset of asymptomatic individuals are infectious at a very low 

level, the asymptomatic population can make a critical contribution to ongoing transmission 

[72, 79-83]. By cross-sectional study, parasites have been detected in human blood in up to 

58% of asymptomatic infections with L. infantum [19, 58, 84] and L. donovani [59, 85]. Large 

variance also occurs in tissue parasite loads. Fourteen percent of 4695 asymptomatic Ethiopians 

were qPCR-positive in blood, of which 3.2% had high genome equivalent counts [85], suggesting 

that a small proportion of individuals may have a disproportionate role in onward transmission. 

In longitudinal studies, 83% (80/97) of asymptomatic L. infantum-infected individuals living in 

an active transmission region of Brazil tested PCR-positive during 6 years follow-up [86]. 

In the case of zoonotic transmission, whilst it is clear that both asymptomatic and 

symptomatic dogs can infect vectors such as Lu. longipalpis, their relative roles in maintaining 

endemic transmission is best explored by mathematical modelling [5, 87-91]. Meta-analysis of 

the relatively few canine xenodiagnosis studies [35] indicate that the proportion of 

symptomatic dogs that are infectious is generally high (80%), and that this proportion may be 

higher in Europe than in Latin America (86% versus 45%). The meta-analysis also indicated that 



29% of dogs reported as asymptomatic were also infectious, although the definition of true 

asymptomatic infection requires careful clinical, biochemical and hematological classification 

during infection development. While some longitudinally followed dogs contribute little or 

nothing to transmission, there is usually a small fraction of infected dogs that contribute 

disproportionately: current studies indicate that 15% to 44% of dogs are responsible for more 

than 80% of all sand fly infections [5, 92, 93]. A high transmission potential corresponds to skin 

and bone marrow Leishmania parasite loads being higher relative to loads in less infectious and 

non-infectious dogs [94]. Such animals are considered “super-spreaders”, as noted similarly in 

other infection systems [95-97].  

An alternative to blanket intervention programs against dogs may be to target those 

dogs that are most infectious to the sand fly vector, as opposed to targeting L. infantum 

infection or CVL per se. To date, attempts to use serological tests to specifically detect 

infectious individuals have been limited [92, 96], and as mentioned above, high test specificity 

is required to better inform dog owners and ensure compliance with control program 

recommendations. One longitudinal study showed high sensitivities for identifying highly 

infectious dogs with rK39 and CLA (79% and 97%, respectively), but low specificity for the 

detection of non-infectious dogs (50% and 13%, respectively). Alternative thresholds for 

defining positive results derived from receiver operating characteristic curve analysis improved 

the specificity to 68% with respect to non-infectious dogs, and provided an 82% sensitivity for 

predicting highly infectious dogs; differentiation of mildly infectious dogs from non-infectious 

dogs (both contributing relatively little to transmission in xenodiagnosis) was not achieved [92]. 

Similarly in another study, evaluating multiple current serological tests (ELISA, IFAT80, DPP CVL, 

rK39 tests, fast agglutination screening tests (FAST), and DAT) failed to discriminate those 

dogs that transmitted L. infantum from those that did not [98]. Further longitudinal evaluations 

of diagnostic tests to detect the epidemiologically important infectious portions of the infected 

CVL and HVL populations are urgently needed.  

 

Concluding remarks 



CVL is an important veterinary complication that not only deserves attention in its own 

right but could potentially be highly informative for HVL control programs (see Outstanding 

Questions). Control of infection in dogs in L. infantum-endemic regions would  likely create the 

additional benefit of limiting a critical reservoir that maintains the threat of human infection 

and disease. As discussed, many tools currently used to diagnose CVL are now being evolved to 

allow identification and quantification of infection irrespective of symptoms, and both 

serological and molecular assays are being adapted to suit field conditions. Test attributes have 

to be tailored to be fit-for-purpose, conversely, test standardization is desirable to facilitate 

comparative interpretation and for meta-analyses. As alternative preventative measures are 

being evaluated to combat transmission, there are opportunities to develop immunological and 

molecular assays to identify infectious, in addition to infected and diseased individuals.   

  



Figure Legends 

Figure 1. Transmission of VL-causing Leishmania among dogs and humans. A Venn diagram 

depicting the progression of Leishmania-infected dogs and/or humans to an infectious state 

culminating in presentation of VL. While L. infantum can circulate in, and be transferred 

between, dog and human populations via sand fly vectors, L. donovani is limited to human 

populations. 

 

Figure 2. Diagnostic and detection strategies. The progression of diagnostic strategies from 

direct detection methods to indirect, antibody-detection techniques is depicted. As antibody-

detection methods are refined, the possibility of using “simpler-to-collect” (i.e., less invasive) 

samples that are more permissive for large-scale surveillance programs is presenting 

themselves. 
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Highlights 

 Visceral leishmaniasis (VL) is an important disease of dogs and humans, with dogs being the 

primary domestic reservoir of L. infantum parasites.  

 Detection of diseased, infected and parasite-transmitting “super-spreader” dogs is likely critical 

for control 

 Dependent upon scale, direct and indirect detection methods can be used for surveillance 

 Novel molecular assays with point-of-care potential are emerging 

 New antigen targets are being characterized to enhance performance of serological assays 

 Adaptation to provide point-of-care serological tests to permit Leishmania detection and 

facilitate large-scale screening programs 

 

Outstanding questions 

 Does control of the parasite reservoir in dogs impact on the incidence of human infection and 

HVL? 



 Are any tests capable of differentiating between diseased, infected and parasite-transmitting 

“super-spreader” dogs? 

 Can novel molecular assays be implemented in large-scale screening programs? 

 Does asymptomatic infection elicit sufficiently potent antibody responses to permit detection? 

 Can new antigens enhance the performance of serological assays? 

 Are saliva and urine capable of providing performance levels in antibody-detection tests similar 

to those achieved with serum? 

 Can tests developed for canine VL be informative for human VL? 

 How are canine test-and-control options best deployed to provide a protective community 

effect?  
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