## A Thesis Submitted for the Degree of PhD at the University of Warwick

## Permanent WRAP URL:

http://wrap.warwick.ac.uk/107725

## Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

## WARWICK

# Genome-wide mapping of chromatin landscape and regulatory networks in decidualizing human endometrial stromal cells and cultured mesenchymal stem cells 

## Raffaella Lucciola

A thesis submitted to the University of Warwick for the degree of Doctor of Philosophy Joint PhD with Monash University

Warwick Medical School<br>University of Warwick

## Table of Contents

ACKNOWLEDGEMENTS ..... i
DECLARATION ..... ii
ABSTRACT ..... iii
LIST OF ABBREVIATIONS ..... iv
Chapter 1: INTRODUCTION
1.1. Human endometrium ..... 21
1.2. Decidualization of the human endometrium ..... 25
1.3. Morphological and biochemical reprogramming of EnSCs ..... 25
1.4. Decidualizing hormonal cues ..... 27
1.5. Regulation of decidual gene expression ..... 31
Transposable elements ..... 31
Key decidual TFs for decidualization ..... 32
CEBPs ..... 32
FOXOs ..... 32
HOX proteins ..... 33
Genome-wide chromatin remodelling governs decidual gene expression ..... 33
1.6 Endometrial regeneration requires stem/progenitor cells ..... 35
Identity and gene profile of eMSCs ..... 36
eMSCs in regenerative medicine ..... 37
1.7 ATAC-seq ..... 38
Nucleosome positions ..... 42
ATAC-seq discloses the position of DNA-binding proteins and the interplay between their genomic location and nucleosome positioningATAC-seq ..... 43
Epigenomic profiling on clinical timescales ..... 44
1.8 Research Justification and Aims ..... 45
Chapter 2: MATERIALS AND METHODS
2.1 Materials and Methods Part1
2.1.1 Human endometrium tissue sampling ..... 47
2.1.2 Primary cell culture ..... 47
2.1.2.1 Isolation of EnSCs ..... 47
2.1.2.2 Decidual timecourse ..... 48
2.1.3 ATAC-seq ..... 49
2.1.3.1 ATAC-seq Nuclei Harvest and Library Preparation ..... 49
Extract nuclei ..... 49
Transposase reaction (tagmentation) ..... 49
Purify DNA ..... 50
PCR ..... 50
PCR clean up ..... 51
2.1.3.2 Quantification of amplified DNA library ..... 51
2.1.3.3. Quality Control ..... 52
2.1.3.4 Sequencing ..... 52
2.1.3.5 Sequencing data analysis ..... 52
2.1.3.6 Comparison between ATAC-seq data and other sequencing datasets ..... 53
2.1.3.7 Mapping of differential ATAC-seq peaks to proximal genes ..... 54
2.1.3.8 Binding Motif Discovery ..... 54
2.1.4 RNA Sequencing ..... 55
2.1.4.1 RNA Extraction ..... 55
2.1.4.2 RNA Quality Control and RNA Libraries47
2.1.4.3 RNA Sequencing ..... 56
2.1.4.4 Sequencing data analysis ..... 56
2.2 Materials and Methods Part 2 ..... 57
2.2.1 Human endometrium tissue sampling ..... 57
2.2.2 Primary cell culture ..... 57
2.2.2.1 Isolation and magnetic-activated cell sorting of eMSCs ..... 57
2.2.2.2 Cell culture ..... 58
2.2.3 Flow cytometry ..... 59
2.2.4 RNA Sequencing ..... 60
2.2.4.1 RNA Extraction ..... 60
2.2.4.2 RNA Quality Control and RNA Libraries
53
2.2.4.3 RNA Sequencing ..... 61
2.2.4.4 Sequencing data analysis ..... 61
2.2.5 ATAC-seq ..... 62
2.2.6 in vitro colony-forming unit-fibroblast (CFU-F) assay ..... 62
2.2.7 Statistical Analysis ..... 62
Chapter 3: CHROMATIN PROFILING IN DECIDUALIZING HUMAN ENDOMETRIAL STROMAL CELLS
3.1 Introduction ..... 65
3.2 Results ..... 66
3.2.1 Optimization of incubation time for transposase reaction ..... 66
3.2.2 Chromatin profiling in primary human EnSCs ..... 67
3.2.3 Binding Motif Enrichment in decidualizing EnSCs ..... 74
3.2.4 Transcriptomic profile of human undifferentiated and decidualizing EnSCs ..... 82
3.3 Discussion ..... 89
Chapter 4: CHARACTERIZATION OF ENDOMETRIAL MESENCHYMAL STEM CELLS EXPANDED IN CULTURE IN RESPONSE TO TGF- $\beta$-RECEPTOR BLOCKADE
4.1 Introduction ..... 92
4.2 Results ..... 93
4.2.1 TGF- $\beta-R$ signalling pathway negatively regulates eMSC expansion in prolonged culture ..... 93
4.2.2 Phenotyping of A83-01 treated eMSCs ..... 97
4.2.3 Impact of A83-01 treatment on clonogenicity of cultured eMSCs ..... 102
4.2.4 Changes in gene expression as result of A83-01 treatment ..... 104
Identification of the most A83-01 responsive genes ..... 107
4.2.5 Gene ontology analysis and genes of interest ..... 112
GO analysis ..... 112
eMSC and perivascular markers ..... 115
4.2.6 Identification of eMSC-associated genes regulated by A83-01 ..... 108
GO analysis of eMSC-associated genes induced by A83-01 ..... 125
Divergent transcriptomic profiles between clonal and A83-01
treated eMSCs in prolonged culture ..... 130
4.2.7 Disease state associated to A83-01-responsive genes ..... 135
4.2.8 Differential regulation of transcription factors upon A83-01 treatment ..... 138
4.3 Discussion ..... 140
Chapter 5: ANALYSIS OF DYNAMIC CHROMATIN CHANGES IN CULTURED eMSCs UPON TGF- $\beta$-R INHIBITION
5.1 Introduction ..... 144
5.2 Results ..... 145
5.2.1 Analysis of chromatin landscape in cultured eMSCs ..... 145
5.2.2 TF Binding Motif Discovery ..... 151
5.3 Discussion ..... 155
Chapter 6: DISCUSSION
Discussion ..... 156
Mapping of dynamic chromatin changes in decidualizing EnSCs ..... 160
Integrated ATAC-seq/RNA-seq analysis of eMSCs expanded
in culture ..... 162
APPENDICES
Appendix 1. Opening Motifs coupled to high affinity TFs ..... 169
Appendix 2. Closing Motifs coupled to high affinity TFs ..... 170
Appendix 3. Up-regulated genes upon decidualization:
Log2-fold change $\geq-1$ ..... 171
Appendix 4. Down-regulated genes upon decidualization: Log2-fold change $\leq-1$ ..... 215
Appendix 5. Up-regulated genes upon A83-01 treatment:
Log2-fold change $\leq-1$ ..... 264
Appendix 6. Down-regulated genes upon A83-01 treatment:
Log2-fold change <-1 ..... 278
Appendix 7. A83-01 Up-regulated GO categories ..... 292
Appendix 8. A83-01 Down-regulated GO categories ..... 294
REFERENCES ..... 300
PUBLICATIONS ..... 327
List of Figures
Chapter 1: INTRODUCTION
Figure 1.1 Human endometrium ..... 23
Table 1.1 Endometrial stroma cell populations ..... 24
Figure 1.2 Circulating steroid hormones regulate the human menstrual cycle ..... 30
Figure 1.3 Chromatin organization ..... 40
Figure 1.4. Schematic representation of ATAC-seq reaction ..... 41
Chapter 3: CHROMATIN PROFILING IN DECIDUALIZING HUMAN ENDOMETRIAL STROMAL CELLS

Figure 3.1 Different times of incubation for transposase reaction generateddifferent library size distributions68
Figure 3.2. Transition of closed to open chromatin exemplified
by ATAC-seq peaks ..... 71
Figure 3.3. Decidualized EnSC chromatin landscape profiled by ATAC-seq incomparison to other endometrium assays 72Figure 3.4. Previous DNase I HS sites in decidualizaed EnSCs describedchromatin regions overlapping with closing genomic regions72Figure 3.5. Correlation between differential organized chromatinand differential gene expression in decidualizing EnSCs73Figure 3.6. Enriched TF binding motifs in opening and closing
chromatin regions ..... 76Figure 3.7. Occurrence of TF binding motifs correlates to differential chromatinopening 78Figure 3.8. Footprint analysis79

Figure 3.9. Top 5 enriched and depleted binding motifs and coupled high binding affinity TFs

Figure 3.10. Mapping of known FOXO1, PGR and FOSL2 binding domains in the differential ATAC-seq peaks in
decidualized EnSCs 81
Figure 3.11. PCA of undifferentiated and decidualizing EnSCs
Figure 3.12. Differential gene expression profile upon decidualization 85

Figure 3.13. Differential expression of candidate TFs
upon decidualization 86
Figure 3.14 Enrichment and depletion of GO categories in
primary EnSCs upon decidualization 87

## Chapter 4: CHARACTERIZATION OF ENDOMETRIAL MESENCHYMAL STEM CELLS EXPANDED IN CULTURE IN RESPONSE TO TGF- $\beta$ RECEPTOR BLOCKADE

Figure 4.1. TGF- $\beta$-R inhibitor improves expansion of eMSCs in culture 95
Figure 4.2. A83-01 increases population doubling (PD) in eMSCs 96
Figure 4.3. Surface phenotype of eMSCs cultured with or without A83-01 98
Figure 4.4. Mean Fluorescence Intensity (MFI) of CD90 in A83-01 treated eMSCs 99

Figure 4.5. CD140b MFI in response to A83-01 treatment of primary eMSCs cultured for 36 days 100

Figure 4.6. SUSD2 MFI in response to A83-01 treatment of primary eMSCs cultured for 36 days 101

Figure 4.7. A83-01 positively regulates eMSC clonal efficiency

Figure 4.8. PCA of A83-01 treated and untreated eMSCs
Figure 4.9. Average gene expression levels between A83-01 treated and untreated eMSC cultures106

Figure 4.10. Top A83-01 responsive genes 109
Figure 4.11. ECM genes down-regulated in response to
A83-01 treatment 110
Figure 4.12. Enrichment and depletion of biological processes upon A83-01 treatment 114

Figure 4.13. eMSC and perivascular markers 115

Figure 4.14. 'Untreated vs A83-01 treated eMSCs’ vs 'Clonal eMSCs vs shortterm cultured PVCs'

Figure 4.15. A83-01 treated and clonogenic eMSCs share a set of commonly upregulated genes 118

Figure 4.16. Cellular distribution of A83-01 responsive genes in cycling human endometrium

Figure 4.17. A83-01 treated and clonogenic eMSCs share a set of commonly downregulated genes 123

Figure 4.18. A83-01 treatment partly recapitulates stem
cell features 127
Figure 4.19. Discordant genes between A83-01 treated and clonogenic eMSCs 133

Figure 4.20. Discordant genes between A83-01 treated and clonogenic eMSCs 134

Figure 4.21. Selected disease states associated to upregulated genes upon A83-01 treatment 137

Figure 4.22. Selected disease states associated to

Figure 4.23. Changes in TF expression upon A83-01

## Chapter 5: ANALYSIS OF DYNAMIC CHROMATIN CHANGES IN CULTURED eMSCs UPON TGF- $\beta-$ R INHIBITION

Figure 5.1. PCA of A83-01 treated and untretaed eMSCs
Figure 5.2. Representative opening ATAC-seq peaks 148
Figure 5.3. Representative closing ATAC-seq peaks 149

Figure 5.4. Differential chromatin opening correlates with gene expression changes in A83-01 treated eMSCs

Figure 5.5. Enrichment of TF binding motifs in opening and closing genomic regions 153

Figure 5.6. Differentially regulated TFs matched to enriched and depleted short sequence binding motifs 154

## Acknowledgments

I have always been taught to pursue my dreams: if 'you can dream it, you can do it' (Walt Disney). Today, I can say that is true! I have dedicated the majority of my life to study and one of my dreams was to do research in the field of reproduction and to do this around the world. This PhD perfectly fitted with my dream and one of the reasons I was able to pursue it, was my English supervisor, Professor Jan Brosens. He trusted me the first time 'I knocked his office door to ask for this PhD' and he gave me the privilege of embarking on this professional adventure with him. As strict as supportive, he has always pushed me to reach the highest levels. He has been a great supervisor and a big brother. As a joint PhD student, I had the opportunity to be supervised by another leading researcher, Professor Caroline Gargett, in Australia. She made me feel at home when I was on the other side of the world. She led me to successfully carry out my research in a short period of time. In light of Australian culture, she encouraged me to actively interact with other researchers, to further build my skills.

During my PhD, I joined two big international groups which opened my mind and enabled me to adopt different approaches to work. In my English lab, I would like to thank Dr Paul Brighton, who has been a reference for me in the lab; Dr Joanne Muter who is a great example of professionality and speed; Dr Emma Lucas, a researcher who can answer any question presented to her; Dr Flavio Barros, Dr Scarlett Salter, Dr Ruban Durairaj, Dr Maru Yojiro and Dr Risa Fujihara who, with their kindness, helped me to settle in the lab; Dr Andy Blanks and Professor Sascha Ott for their extensive knowledge, and last but not least, Dr Pavle Vrjilack who has been a great 'teacher' and a fantastic friend.
On the other side, I would like also to thank my 'Australian' group, particularly Dr Fiona Cousins, a highly qualified colleague and really good friend; Dr Shayanti Mukherjee, a friend of adventures; Dr Shanti Gurung who helped me to settle in the lab; Dr James Dean, a real example of Australian culture, such as healthy and practical; Dr Lisa Xiao and Xiaqing Yang, two real hard workers; and Stuart and Saehadah for their friendship.

An immeasurable gratitude is for my family and friends. My parents who gave me the example of how to live a successful and healthy life. They taught me to work hard, be dedicated in everything that I do and to enjoy the beauty of the world. My brother, Giuseppe, the reflection of happiness, has been supportive, always providing me with the right perspective for my work. To all of my relatives, for being close even if we were miles apart; my 'tremendous little old mum' for the energy she always provides, encouraging me to make the right decisions; my wonderful English friend, Sarah, who has become my little sister, for providing a 'home' away from home; and my oldest friends, Lia who has been able to understand you without even having to say anything, and Rachele, my talking cricket. Thank you to all the people who, in their own ways, contributed to making this time of my life unique.

Finally, I wish to thank the University of Warwick for the Chancellor's scholarship award and the women who trusted science and donated their tissue samples, it's thanks to them that my research was possible.

## Declaration

This thesis is submitted to the University of Warwick in support of my application for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried out by the author except in the cases outlined below:
i) analysis of RNA-seq and ATAC-seq datasets in collaboration with Pavle Vrljicak, PhD (Tommy's national Centre for Miscarrigae Research, Warwick Medical School) and Associate Professor (A/P) Sascha Ott (Tommy's National Centre for Miscarriage Research, Department of Computer Science).
ii) generation of RNA-seq data from undifferentiated and decidualizing EnSCs in collaboration with Dr Joanne Muter.

Parts of this thesis have been published by the author:

Pavle Vrljicak*, Emma S. Lucas*, Lauren Lansdowne*, Raffaella Lucciola*, Joanne Muter, Nigel P. Dyer, Jan J. Brosens, Sascha Ott (2017). Analysis of chromatin accessibility in decidualizing human endometrial stromal cells. In press The FASEB Journal.

* These authors contributed equally to this work.

Raffaella Lucciola, Pavle Vrljicak, Sascha Ott, Jan J Brosens, Caroline Gargett (2017). Genome-wide mapping of regulatory transcriptional networks in human
endometrial mesenchymal stem/stromal cells by ATAC-seq and RNA-seq. Abstract in press Gene Medicine.

Paul J. Brighton, Yojiro Maruyama, Katherine Fishwick, Pavle Vrljicak, Shreeya Tewary, Risa Fujihara, Joanne Muter, Emma S. Lucas, Taihei Yamada, Laura Woods, Raffaella Lucciola, Yie Hou Lee, Satoru Takeda, Sascha Ott, Myriam Hemberger, Siobhan Quenby, Jan J. Brosens (2017). Clearance of senescent decidual cells by uterine natural killer cells drives endometrial remodeling during the window of implantation. In press eLife.


#### Abstract

Decidualization denotes the differentiation of endometrial stromal cells (EnSCs) into specialized decidual cells that control embryo implantation. This process can be recapitulated in culture upon treatment of primary EnSCs with cyclic AMP analogue and progesterone. In this work, I subjected undifferentiated and decidualizing human EnSCs to Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) to map the underlying chromatin changes.

ATAC-seq is a newly developed technique that utilizes the highly active transposase Tn5 to interrogate accessibility of the genome and map open chromatin regions. These putative cis-regulatory DNA regions can be further explored for "footprints" of transcription factor (TF) binding. In this study, I optimized ATAC-seq and used this technique first to investigate the regulatory mechanisms underlying decidualization of the human endometrial cells. A total of 185,084 open DNA loci were mapped accurately in EnSCs. Altered chromatin accessibility within 10 kb of transcription start sites upon was strongly associated with differential gene expression in decidualizing EnSCs. Analysis of 1,533 opening as well as closing chromatin regions revealed overrepresentation of DNA binding motifs for known decidual TFs and identified putative new regulators, including RAR related orphan receptor A (RORA), aryl hydrocarbon receptor nuclear translocator like (ARNTL) and Meis homeobox 1 (MEIS1). Conversely, downregulation of runt related transcription factor 1 and 2 (RUNX1/RUNX2), SRY-box 12 (SOX12), transcription factor 3 (TCF3), and ETS Proto-Oncogene 1 (ETS1) upon decidualization corresponded to loss of corresponding high-affinity binding sites differentiating EnSCs.


Because of its dynamic nature, cyclic human endometrium is a rich source of adult stem cells that could be exploited for clinical purposes. However, clinical use of eMSCs is hampered by differentiation and loss of proliferative capacity of cells in prolonged cultures. As part of my Monash-Warwick alliance studentship, I joined the laboratory of Professor Gargett in Melbourne, Australia, and applied integrated ATAC-seq and RNA-seq analyses to study the impact of TGF- $\beta$ receptor inhibition on endometrial mesenchymal stem cells (eMSCs) maintained in prolonged culture. I demonstrated that culturing of eMSCs in the presence A8301, a small molecule inhibitor the of TGF- $\beta$ receptor, maintains the proliferative capacity and attenuates the loss of stemness features of eMSCs in extended cultures. Furthermore, integrated ATAC-seq and RNA-seq revealed that A83-01 modifies the chromatin accessibility of 5,967 loci and alters the expression 1,463 genes. Mining and cross-referencing of these data sets revealed that A83-01 not only maintains selected stemness-associated genes but also that it represses multiple genes involved in extracellular matrix (ECM) deposition and metabolism. Furthermore, my analysis indicated that induction nuclear receptor subfamily 4 group A member 1 (NR4A1, also known as NUR77) may be an important TF that mediate the repression of ECM genes in response to A83-01 treatment.

In summary, by integrating advanced genome-wide expression and DNA accessibility profiling techniques, my work has advanced our understanding of the dynamic changes in the cis-regulatory DNA landscape underpinning decidualization of EnSCs and in the maintenance of a stem-like phenotype of eMSCs in prolonged cultures. Analyses of these two large data sets revealed
novel transcriptional regulators in cycling endometrium and putative new targets that could be exploited to accelerate clinical translation of autologous eMSC therapies for a variety of reproductive disorders. Furthermore, the data sets generated during the course of my investigations constitute an important resource to interrogate fundamental molecular questions pertaining to human endometrial cell biology.

## List of Abbreviations

| ATAC-seq | Assay for Transposase-Accessible Chromatin through high-throughput sequencing |
| :---: | :---: |
| bZIP | Basic Leucine Zipper Domain |
| 8-br-cAMP | 8-Bromoadenosine-3', 5'-cyclic monophosphate |
| CD90 | Cluster of differentiation 90 |
| CD140b | Cluster of differentiation 140b |
| CEBP/ $\beta$ | CCAAT/ enhancer binding protein $\beta$ |
| ChIP-seq | chromatin immunoprecipitation followed by sequencing |
| DAVID | Database for Annotation, Visualization and Integrated Discovery |
| DESeq | Differential expression analysis for sequence count data |
| DHSs | DNase I hypersensitivity sites |
| DiffM | Differentiated Motifs |
| DNA | Deoxyribonucleic acid |
| DNase-seq | DNase I hypersensitive sites sequencing |
| ECM | Extracellular matrix |
| eMSCs | Endometrial mesenchymal stromal cells |
| ENCODE | Encyclopedia of DNA Elements |
| EnSCs | Endometrial stromal cells |
| FAIRE-seq | Formaldehyde-Assisted Isolation of Regulatory Elements through high-throughput sequencing |
| FOXO | Forkhead box transcription factor O |
| GEO | Gene Expression Omnibus |
| GO | Gene ontology |
| GSK3- $\beta$ | Glycogen synthase kinase 3 beta |
| HOMER | Hypergeometric Optimization of Motif EnRichment |
| HOX | Homeobox |
| IGFBP1 | Insulin-like growth factor binding protein-1 |


| Kb | kilobase |
| :--- | :--- |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| MEK/MAP2K/ MAPKK | Mitogen-activated protein kinase kinase |
| MFI | Mean fluorescence intensity |
| MPA | medroxyprogesterone actetate |
| NHMRC | National Health and Medical Research Council |
| P | Passage |
| PCA | Principal component analysis |
| PD | Progesteron receptor |
| PGR | Pelvic organ prolapse |
| POP | RNA integrity number |
| PRL | regularized log |
| RIN | Ribonucleic acid |
| rlog | sushi domain containing 2 |
| RNA | Transcription factor |
| SUSD2 | Transforming growth factor beta |
| TF | Transforming growth factor beta receptor |
| TGF- $\beta$ | Transcript per million |
| TGF- $\beta$-R | Transcription start site |
| TPM | Undiferentiated Motifs |
| TSS | UndiffM |

## Chapter 1

## Introduction

### 1.1 Human endometrium

The endometrium is the mucosa that lines the uterine cavity. It is composed of two major compartments: the basalis, a basal layer lying on the myometrium, contains the bases of the endometrial glands immerged in a rich stroma, and the functionalis, a functional layer containing the glands extending from surface epithelium and a loose stroma (Figure 1.1) (Gargett et al., 2012; Padykula, 1991).

It consists of surface and glandular epithelial cells and a rich stroma. The latter comprises a heterogeneous population of cells, such as stem/progenitor cells, including mesenchymal stem cells (MSCs) and transit amplifying (TA) cells, mature fibroblasts and decidual cells (Table 1.1) (Gargett, 2007; Gellersen et al., 2007; Gellersen \& Brosens, 2014; Masuda et al., 2012; Schwab \& Gargett, 2007). Both epithelial and stromal cellular compartments are exquisitely responsive to ovarian hormone signalling. During the proliferative phase of the menstrual cycle, rising estrogen levels from the growing ovarian follicle induce proliferation of the tissue (Brosens et al., 2002; Gray et al., 2001). Increasing levels of estrogen positively regulates luteinising hormone (LH) through a positive feedback, resulting in a LH surge that controls ovulation and stimulates progesterone production. By contrast, the post-ovulatory increase in progesterone inhibits the proliferative activity and drives the differentiation of the endometrium, which renders this tissue transiently receptive to blastocyst implantation during the midluteal phase of the cycle (Gellersen \& Brosens, 2003). Acquisition of a receptive phenotype coincides with profound changes in the stromal compartment, characterised by influx of specialized immune cells (predominantly uterine natural killer cells, uNK cells) (Brighton et al., 2017), vascular remodelling, and transformation of endometrial fibroblasts into specialized decidual cells (Table 1.1). In the absence of pregnancy, the corpus luteum will atrophy and progesterone production ceases.

The fall in circulating progesterone levels then triggers breakdown of the functional endometrial layer and menstrual shedding. The underlying basal layer
remains intact and from it a new functional layer regenerates in the following menstrual cycle (Gellersen \& Brosens, 2014).


Figure 1.1. Human endometrium. The endometrium lies on myometrium (grey cells). It consists into two compartments: a basal layer, basalis, that persists in each cycle and the functional layer, functionalis, which cyclically originates from the basalis each month. Blue cells represent endometrial fibroblasts; green cells represent stem progenitor cells located around the spiral arterioles (red vessels) and into the glandular epithelium. Blue vessels are the veins; orange tubular structures represent the glands.

Table 1.1 Endometrial stromal cell populations
$\left.\begin{array}{|l|l|l|l|}\hline \text { Cell types } & \text { Markers/Properties } & \text { References } \\ \hline \text { MSCs } & \text { CD146+PDGFRß+ } & \begin{array}{l}\text { Schwab \& Gargett, } \\ \text { 2007; Masuda et al., } \\ 2012\end{array} \\ \hline & \text { SUSD2+ (W5C5+) } & \\ \hline & \text { clonogenic } \\ \text { high } \\ \text { renewing/multipotent }\end{array}\right]$

### 1.2 Decidualization of the human endometrium

Decidualization, the process of transformation of endometrial stromal cells (EnSCs), is initiated in response to elevated progesterone levels and local rise in cyclic adenosine monophosphate (cAMP) levels, which in turn trigger sustained activation of the protein kinase A (PKA) pathway (Gellersen et al., 2007). Decidualization consists of a dramatic transformation of EnSCs into specialised secretory cells, which undergo integrated changes in morphology and at transcriptome and proteome levels (Gellersen \& Brosens, 2014). In most placental mammals, decidualization of the endometrium is the maternal response to pregnancy and occurs only upon implantation of the blastocyst. The latter attaches and penetrates the epithelium by invading the endometrial connective tissue. However, in humans and a handful of other mammals, decidualization does not require the implantation of the blastocyst but is initiated 'spontaneously' in each ovulatory cycle. In the absence of pregnancy, falling circulating progesterone levels result in breakdown of the decidual superficial endometrial layer, menstrual shedding and tissue regeneration (Evers, 2002). Decidual reprogramming of the endometrium is critical in all placental species for pregnancy. It underpins the acquisition of specialized cell functions, such as the ability to deal with increased levels of reactive oxygen species, to modulate trophoblast invasion, to regulate vascular and immune responses, and hence tolerance to fetal antigens. On the other side, a growing body of evidence suggests that an impaired remodelling of the endometrium may cause a multitude of pregnancy complications, such as miscarriage, abruption, fetal growth restriction and pre-eclampsia (Brosens \& Gellersen, 2006).

### 1.3 Morphological and biochemical reprogramming of EnSCs

During the menstrual cycle, the endometrium exhibits a unique ability to re-build itself in response to hormonal signals in order to be ready to accommodate a future pregnancy. Both in the proliferative phase of the cycle and in culture,

EnSCs are mesenchymal cells with a fibroblast-like appearance (Cornillie et al., 1985). On the other hand, upon decidualization, endometrial cells undergo huge changes in morphology, consisting of a shift from an elongated, spindle shape to rounded, enlarged cells with abundant cytoplasm. Further changes include a well-expanded rough endoplasmic reticulum and Golgi apparatus, accumulation of glycogen and lipid droplets in the cytoplasm, a more rounded nucleus and an increase in numbers of nucleoli. Furthermore, multiple cytoplasmic processes from cell surface to engulf the extracellular matrix (ECM), or extend into the cytoplasm of adjacent cells. Decidualized cells also produce ECM proteins, such as laminin, decorin, type IV collagen, fibronectin and heparin sulphate proteoglycans (Aplin et al., 1988).

EnSCs provide a nutritive matrix that is essential for embryo implantation and placental development and hence critical for successful pregnancy. In order to facilitate this intercellular communication, cadherin-11, a protein belonging to the cadherin family, is upregulated in decidualizing cells, especially in stromal cells located around spiral arteries. Another highly expressed protein in endometrial stromal compartment is protein connexion 43 (CX43), which forms gap junctions, between decidualizing stromal cells. In patients with recurrent early pregnancy loss, a decrease in the expression of CX43 has been observed, a finding that underscores the importance of gap junction-mediated communication (Nair et al., 2011).

Decidualization also denotes a biochemical reprogramming of the proliferative EnSCs into specialized secretory cells. The major products highly secreted by decidualizing cells are prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP1), two proteins widely used as phenotypic markers of decidual EnSCs and to establish the differentiation status of human EnSCs in culture (Gellersen \& Brosens, 2003). In pregnancy, multiple functions have been ascribed to decidual PRL, including stimulating trophoblast growth and invasion in the utero-placental interface, regulating uNK cell survival, immunesuppression, promoting angiogenesis, and modulating the transport of water from the amnion towards the maternal compartment. Decidual secretion of IGFBP1, also known as placental protein 12, reaches its peak around 16 weeks of gestation. However, decidualized stromal cells also produce other secretory
products, including a huge number of cytokines (for instance, interleukin-11 [IL11]), growth factors (e.g., epidermal growth factor [EGF]), heparin-binding (HB-) EGF, Lefty-A, activin A and several neuropeptides. It is thought that these secretory products play a role in amplifying the decidual process in an autocrine or paracrine way (Dimitriadis et al., 2005).

This morphologic and biochemical reprogramming of endometrial stromal fibroblasts into decidual cells is underpinned by integrated changes observed at transcriptome level. In particular, genes encoding superoxide dismutase-2 (SOD2), growth arrest- and DNA damage-inducible protein of 45kd (GADD45), CCAAT enhancer-binding protein b (C/EBP $\beta$ ), and forkhead transcription factors are highly expressed upon differentiation of the endometrial stromal compartment in the mid- to late-secretory phase of the cycle, and induced upon decidualization of primary stromal cells in vitro. Microarray studies confirmed that decidualization involves profound transcriptional changes, which in turn have enabled a molecular definition of this differentiation process based on reprogramming of gene families that are functionally associated and involved in ECM organization, cell adhesion, organization of cytoskeleton, signal transduction, stress response, metabolic pathways, differentiation and apoptosis (Giudice, 2004).

### 1.4 Decidualizing hormonal cues

The physiology of the uterus is regulated by the steroid hormones estrogen and progesterone produced by the ovary (Figure 1.2). Luteinizing granulosa cells within the ovary produce progesterone, whose levels increase during the postovulatory phase of the cycle and play a central role in driving the differentiation process of the endometrium.

Differentiation of the stromal compartment, which starts in cells near the terminal spiral arteries and under the luminal epithelium, only becomes apparent approximately 10 days after the postovulatory rise in progesterone levels. This suggests that the cells require additional signals to initiate this reprogramming process. Similarly, treatment of cells in culture with progesterone, alone or with
estradiol, induces decidualization, but requires 8 to 10 days to be effective (Bra et al., 1997).

The initiating trigger for decidualization is a rise in the cellular levels of cAMP, a ubiquitous second messenger molecule produced by adenylate cyclase. The binding of extracellular ligands to Gs protein-coupled receptors activate Gs protein and the subsequent activation of adenylate cyclase generates cAMP from adenosine triphosphate (ATP). cAMP modifies the gene expression of EnSCs, acting through the protein kinase A (PKA) pathway. PKA phosphorylates and hence activates target molecules such as cAMP response element binding protein (CREB) and cAMP response element modulator (CREM). Consequently, CREB and CREM form a dimer and bind to cAMP response elements (CRE) in target DNA and also allow the binding of CREB-binding protein (CBP), a histone acteyltransferase, to promoter regions of target genes (Maruyama \& Yoshimura, 2008).

Primary cultures treated with a cAMP analogue express PRL and IGFBP1, the phenotypic markers of decidualized cells, within hours, but levels decrease after 6 to 8 days of culture, suggesting decidualization is not sustained in response to cAMP signalling alone. Addition of a progestin not only enhances the cAMP response but also maintains the induction of decidual markers in long-term cultures. Progesterone acts through the activation of the progesterone receptor (PR), a member of the human superfamily of nuclear receptors. It is a receptor with multiple functional domains which allow ligand-mediated activation and signalling to bind DNA and modulate transcription. PR is present as two major isoforms, PR-A and PR-B, which are encoded by a different use of promoter in a single gene (Gellersen \& Brosens, 2014). The two variants of the receptor differ from each other in amino acid content, and in particular PR-B has additional 164 amino acids at the N-terminal compared to PR-A. However, PR-A is thought to be predominant isoform in decidualizing human EnSCs. In female mice, the selective ablation of PR-A causes sterility and negatively affects the decidualization process, in response to an artificial stimulus (Mulac-Jericevic \& Conneely, 2004; Richer et al., 2002).

Cross-talk between cAMP and progesterone signalling pathways drives the decidualization process, inducing changes in both transcriptional and proteomic
landscape (Gellersen \& Brosens, 2003). The mechanisms underlying the synergy between cAMP and progesterone signalling in human EnSCs has been studied intensely. PR is a nuclear receptor and, in common with other nuclear receptors, induces or represses the expression of target genes, depending on its interaction with co-activators and corepressors, respectively. In other cell systems, cAMP has been shown to disrupt the recruitment of co-repressors in favour of the interaction with coactivators. Furthermore, a wide range of transcriptor factors, such as SP1, FOXO1, signal transducers and activators of transcription (STAT) -3 and -5 , and C/EBP $\beta$, are induced by cAMP and have the ability to interact directly with the progesterone receptor. (Lynch et al., 2011) found that, in placental mammals, some genes expressed in the endometrium that were located within transposable elements of the genome. These transposons function as enhancers, repressors and insulators and, in response to cAMP and progesterone, they interact directly with transcription factors indispensable for pregnancy outcome, co-operating in the modulation of gene expression (Lynch et al. 2011).

The transcriptional activity of PR is also tightly regulated by post-translational modifications, including phosphorylation, ubiquitination and sumoylation. Sumoylation is a process whereby small ubiquitin-related modifier (SUMO) family proteins, in an enzymatic reaction similar to the ubiquitin pathway, covalently attach a small peptide to target proteins, mainly transcription factors. This covalent attachment profoundly modifies the subnuclear position and functions of transcription factors. PR-A and PR-B are regulated by SUMO-1 and in particular the binding of small ubiquitin modifiers confers the PR-A repressive properties. Experimental data demonstrated that the mutation of the single SUMO binding site in PR-A changes this isoform into a strong transcriptional activator. It has been observed that cAMP second messenger pathway affects the expression of several conjugating and deconjugating SUMO enzymes. A consequent loss of PR-A sumoylation and increase in receptor activity seems to be related to the cAMP pathway (Jones et al., 2006).


Figure 1.2. Circulating steroid hormones regulate the human menstrual cycle. Schematic representation of the menstrual cycle, which is divided into three main parts, such as menstrual, proliferative and secretory phase, regulated by the steroid hormones estrogen and progesterone. The postovulatory increase in the progesterone levels and cAMP production initiate the decidual transformation of EnSCs during the mid-secretory phase of the cycle.

### 1.5 Regulation of decidual gene expression

Decidualization is featured by a profound reprogramming in the transcriptome. Changes in gene expression are finely regulated at transcriptional and epigenetic level (Gellersen \& Brosens, 2014).

## Transposable elements

PRL human gene is expressed in anterior pituitary and stromal cells of the endometrium, and in human B-lymphoblastoid cell line IM-9-P3 (Gellersen et al., 1989). Scientific evidence shows that decidual and lymphoid cells use an alternative promoter of human PRL gene compared to pituitary cells. This regulatory region is located 5.9 kilobase (Kb) upstream the pituitary promoter. Selective activation of this promoter results in transcription of a longer PRL transcript. However the resulting protein coding region remains unchanged (Gellersen et al., 1989; Di Mattia et al., 1990). Further studies identified CRE-like element in the decidual promoter, regulated by cAMP signalling, but resulting in a modest transcriptional regulation. Further, a new regulatory region was mapped to -332/-270 upstream the transcriptional start site (TSS) (Telgmann et al., 1997). This enhancer resulted in a consistent increase in PRL expression in response to cAMP signalling (Telgmann et al., 1989; Al-Sabbagh et al., 2011). Interestingly, this enhancer is part of a transposable element, named MER20. Transposable elements are DNA sequences that can move within the genome. Insertion of transposable elements within the chromatin landscape results in addition of active regulatory elements, for example promoters, enhancers, repressors, that alter gene expression (Fedoroff, 2012). Interestingly, MER20 transposons map near genes differentially regulated during decidualization in response to cAMP and progestin signalling, for example PRL, Wnt family member 5A (WNT5A), hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1). Further, MER20 transposons contain short sequence binding motifs for transcription factors (TFs), essential during decidual transformation, such as progesterone receptor (PGR), forkhead box transcription factors of the O subclass (FOXOs), homeobox (HOX) proteins and CCAAT/enhancer-binding proteins (C/EBPß) (Lynch, 2011).

Taken together, these observations highlight the role of transposable elements in the transcriptional regulation of decidual genes.

Key decidual TFs for decidualization

Several TFs have been implicated in driving changes in gene expression of decidual genes. In this section, I will describe the core decidual TFs implicated in decidualization of human EnSCs.

## CEBPs

During early phase of decidualization, EnSCs express increased level of C/EBPs. The latter are members of basic leucine-zipper (bZIP) superfamily of TFs that bind DNA sequences (Lekstrom and Xanthopoulos, 1998). C/EBP $\beta$-isoform, C/EBP $\beta$, has been shown to bind to an enhancer located within MER20 transposon (Pohnke et al., 1999). Subsequently, C/EBPß enables binding of other TFs, such as FOXO1 and PGR-A (Christian et al., 2002; Christian et al., 2002). Immunochemistry shows high levels of C/EBP $\beta$ in the nuclei of decidual cells during the midsecretory phase of the menstrual cycle (Christian et al., 2002; Plante et al., 2009). Several lines of evidence indicate that C/EBP $\beta$ is implicated in interleukin 11 (IL-11) and in cell cycle during decidualization (Wang et al., 2012). Further, deficiency in C/EBP $\beta$ levels in female mice impairs decidual transformation of EnSCs and results in infertility (Mantena et al., 2006). Finally, absence of C/EBP $\beta$ correlates with decreased expression of bone morphogenetic protein 2 (BMP2), a morphogen playing a critical role in mouse and human decidual EnSCs, and in the regulation of WNT4 (Wang et al., 2012).

## FOXOs

FOXOs are proteins belonging to subfamily of forkhead TFs. FOXOs play a role in increase accessibility of genomic regions within chromatin, thereby enabling recruitment of other TF binding (Lalmansingh et al., 2012). FOXOs regulate expression of genes involved in cell growth, differentiation, apoptosis and
senescence (Accili \& Arden, 2004). cAMP and progesterone signalling positively regulate FOXO1 expression upon decidualization. Activation of FOXO1 results in cell cycle exit of EnSCs and induce expression, amongst others, of decidual markers, PRL and IGFBP-1 (Takano et al., 2007). In response to progesterone withdraw, FOXO1 translocate into the nucleus of decidual stromal cells and promote apoptosis (Labied et al., 2006). In addition, recent evidence has highlighted the role of FOXO1 in driving senescence of EnSCs in an IL-8 dependent manner (Brighton et al., 2017). Hence, FOXO1 is central role in orchestrating cell cycle exit, differentiation and senescence of EnSCs during decidualization.

## HOX proteins

HOX proteins are a family of TFs controlling body plan along the anteriorposterior axis. They are featured by conserved sequence, the homeobox (Favier \& Dolle, 1997). In the human endometrium, HOXA10 and HOXA11 are markedly upregulated in the midluteal phase of the menstrual cycle (Taylor et al., 1999). Silencing of HOXA10 in vitro negatively impact on PRL and IGFBP1 gene expression and result in higher expression of IL-11 and IL-15 (Godbole \& Modi, 2010). Interestingly, a combination between HOXA10 and FOXO1 seem to modulate transition from proliferation to differentiation of stromal compartment, through differential regulation of the same target genes (Lu et al., 2008). Finally, HOXA11 and FOXO1 converge to regulate PRL expression. Specifically, HOXA11 binds MER20 transposon within PRL promoter and negatively regulate gene expression. Conversely, in the presence of FOXO1, HOXA11 acts an activator (Lynch et al., 2009).

## Genome-wide chromatin remodelling governs decidual gene expression

Different cellular phenotypes result from distinct gene expression profiles. Chromatin organization and a dynamic epigenetic code regulate gene transcription. Epigenetic modifications, including nucleosome positioning, DNA modifications, TF binding and chromatin regulators, alter genomic structure,
thereby sequestering some DNA regions and leaving others open or accessible to TF binding (Chen \& Dent, 2014).

Gene expression profiling study revealed that genes coding for epigenetic modulators are up-regulated during decidualization, and they include histonemodifiers and binding proteins, DNA methyltransferases and CpG-binding proteins. This suggests that a dynamic epigenetic code operates on the chromatin landscape of the EnSCs during decidualization and is responsible of the acquisition of the decidual identity (Grimaldi et al., 2012). Specifically, an example is provided by declining expression level for the histone methyltransferase enhancer of Zeste homolog 2 (EZH2) during decidualization. This results in a gradual loss of trimethylation of histone 3 on lysine 27 (H3K27me3) within the proximal promoters PRL and IGFBP1. A coordinated loss of methylation and gain of acetylation at the same loci results in increased accessibility of the chromatin, which is indicative of a positive regulation of the transcription. This chromatin remodelling underpins the acquisition of decidual phenotype (Grimaldi et al., 2011).

Also, another study indicates that the use of the DNA methylation inhibitor 5-aza-2'-deoxycytidine in human EnSCs alters genomic conformation and results, amongst others, in the up-regulation fo decidual genes involved in cellular properties that feature decidual cells, for example ECM organization and cell adhesion (Logan et al., 2010). Conversely, inhibition of methylation prior to and after implantation in the mouse impairs decidualization and correlates with pregnancy failure (Gao et al., 2012).

These observations suggest that a dynamic epigenetic code operates on the chromatin structure as decidualization unfolds. This results in wholesale chromatin remodelling underpinning profound changes occurring in the transcriptome of the endometrial decidual cells.

### 1.6 Endometrial regeneration requires stem/progenitor cells

The human endometrium exhibits an extraordinary ability to cyclically regenerate during each menstrual cycle. As mentioned, endometrial tissue undergoes menstrual shedding in response to estrogen and progesterone withdrawal in the absence of pregnancy (Gellersen \& Brosens, 2014). Menstruation is a rare event occurring only in a few species all characterised by spontaneous decidualization, such as higher primates, elephant shrews, fruit bats and the common (Cairo) spiny mouse (Bellofiore et al., 2017; Emera et al., 2012). One of the theories about the evolutionary purpose of menstruation infers its unique role in restarting the next reproductive cycle (Emera et al., 2012), through cyclic activation of stem/progenitor cells (Evans et al., 2016).

Human endometrium harbours two stem cell populations, such as epithelial stem/progenitor cells and mesenchymal stem cells (MSCs) (Chan et al., 2004; Garget et al., 2009; Masuda et al., 2012). The latter represents the major fraction of stem cells within the endometrial cell population (about 1-5\%) (Gargett et al., 2009). Endometrial MSCs (eMSCs) exhibit high proliferative potential, selfrenewal capacity in vitro, and ability to differentiate into more mature progeny in vivo (Gargett et al., 2016; Miyazaki et al., 2012; Wolff et al., 2007). Bone marrowderived cells have been shown to migrate into the endometrium of both human and mice, although at low levels. These observations suggest that human endometrium regeneration mainly depends on the endogenous stem cell population (Gargett et al., 2012).

Several approaches have been employed to isolate endometrial stromal populations enriched in MSCs, including flow activated cell sorting of cells that co-express cluster of differentiation 140b (CD140b), also known as plateletderived growth factor receptor $\beta$ (PDGFRß) and CD146 (also known as melanoma cell adhesion molecule, MCAM) (Schwab \& Gargett, 2007). Recently, a monoclonal antibody (W5C5) has been identified to selectively isolate clonogenic perivascular eMSCs using magnetic-activated cell sorting (Masuda et al., 2012). Subsequent studies demonstrated that W5C5 antibody binds the type 1 integral membrane protein Sushi domain containing 2 (SUSD2)
(Sivasubramaniyan et al., 2013). This method makes it possible to overcome damaging effects on cell viability associated with the use of flow cytometry (Schwab \& Gargett, 2007).

## Identity and gene profile of eMSCs

eMSCs exhibit the ability to both self-renew and differentiate. Cell fate decisions are determined by signals emanating from the cellular niche (Li \& Xie, 2005). Understanding of the gene signature defining eMSC identity provides insights into their role in the endometrial regeneration. A recent genome-wide expression profiling study compared freshly isolated CD146+ PDGFR- $\beta+$ eMSCs to endometrial fibroblasts and endothelial cells. The study showed increased expression in eMSCs of genes associated with Notch, insulin-like growth factor (IGF), epidermal growth factor (EGF), Hedgehog, transforming growth factor $\beta$ (TGF- $\beta$ ), WNT and G-protein-coupled receptor signalling pathways, which have been associated with both self-renewal and differentiation, highlighting the role of eMSCs in endometrial regeneration and remodelling (Spitzer et al., 2012). CD146+ PDGFR- $\beta+$ eMSCs express high levels of SUSD2, the integral protein used as single marker for eMSC prospective isolation (Spitzer et al., 2012; Masuda et al., 2012).
eMSCs locate in the perivascular niche of the endometrium and express pericyte markers, genes associated with angiogenesis, immunomodulation and responses to hypoxia (Spitzer et al, 2012). A gene profiling study comparing SUSD2+ and SUSD- cells showed that cells derived from SUSD2+ cells are characterised by a perivascular gene signature. Interestingly, SUSD2+ cells become the major source of cytokines and chemokine production during decidualization. This suggests a role for eMSCs in promoting trophoblast migration towards maternal vessels and mediating maternal immune response in pregnancy (Murakami et al., 2014).
eMSCs hold great promise for cell-based therapy for women with reproductive disorders. eMSCs are clonogenic, self-renewing, highly proliferative, immunomodulatory and multipotent, hence they are attractive candidates of cellbased therapy in regenerative medicine (Darzi et al., 2016).
eMSCs represent an easily accessible source of cells. They can be selectively isolated from endometrial biopsy, which can be obtained in a routine office procedure without anaesthesia (Garget et al., 2016). They have been detected also in post-menopausal endometrium. This enables an autologous use of eMSCs for reproductive disorders, including pelvic organ prolapse (POP) in postmenopausal women (Ulrich et al., 2014). Synthetic polypropylene meshes have mainly been used for POP treatment. However, adverse side effects, including contraction and pain, raised warnings on their clinical use (Darzi et al., 2016). Ulrich et al. (2012) developed a new kind of mesh, composed of polyamide and gelatin, with enhanced mechanical properties. eMSCs seeded with these new meshes promoted angiogenesis and collagen deposition, compared with mesh alone, when implanted into an immunocompromised rat model. Furthermore, an early inflammatory response was observed and characterized by an influx of M1 macrophages, that switched to M2 would healing phenotype and then gradually decreased (Edwards et al., 2015). In vitro, eMSCs seeded with polyamide/gelatin meshes have been shown to differentiate into smooth muscle cells and fibroblasts, suitable to regenerate vaginal tissue structure and ultimately restore its function. Further studies have been undertaken to determine if delivered eMSCs function through paracrine effect or they differentiate themselves and reconstitute the vaginal wall (Gargett et al., 2016).

Altered endometrial stem/progenitor cell function may potentially hinder endometrial regeneration and ultimately compromise the ability of the endometrium to support embryo implantation (Yu et al., 2008). Women with a thin endometrial layer unable to respond to estrogen stimulation are particularly challaging in IVF treatment. Asherman's syndrome is a reproductive disorder characterized by a thin dysfunctional endometrium and it has been hypothesized
that it might be related to lack of eMSCs or compromised eMSC function (Gargett et al., 2016). In a rat model of Asherman's syndrome, adipose-derived MSCs administrated in the uterine horn promoted angiogenesis and cell proliferation, and together with estrogen, reduced fibrosis. Even though, a local delivery of MSCs resulted in an apparent improved endometrial regeneration, results in terms of endometrial receptivity were not assessed (Kilic et al., 2014; Gargett et al., 2016). In several case studies, cultured autologous bone-marrow cells were injected into the uterine cavity or the sub-endometrial zone, together with estrogen administration. This cell-based approach resulted in a modest increase of thickness of the endometrium, no sufficient to guarantee a successful pregnancy outcome. However, because of lack of controls, data need to be interpreated with caution (Singh et al., 2014; Gargett \& Healy, 2011).

Endometrium is a promising, alternative source of MSCs for autologous and allogenic cell-based therapy, that might be exploited to treating gynaecological disorders, including POP and Asherman's syndrome. However, because of their rarity the use of eMSCs for clinical trials first requires their expansion in culture (Ulrich et al., 2013). As in the case of MSCs from other cell systems (Baxter et al., 2004), cultured eMSCs undergo spontaneous differentiation (Gurung et al., 2015). Further, the telomeres of eMSCs become shortened due to replicative stress. Consequently, eMSCs lose their proliferative capacity as well as the ability to reconstitute tissue in vivo (Baxter et al., 2004; Banfi et al., 2002). These observations predate the realization that prolonged culture of eMSCs results in reduced clinical efficacy (Darzi et al., 2016). Gurung et al., (2015) showed that culturing eMSCs in medium containing TGF- $\beta$ Receptor (TGF- $\beta-\mathrm{R}$ ) inhibitor, A8301, in serum free conditions, maintains eMSCs in an undifferentiated state in prolonged culture. Their findings describe the use of small molecules, to selectively inhibit signalling pathways associated to differentiation and improve the purity of cells during culture expansion for therapeutical applications.

Nevertheless, for clinical trials it is of paramount importance to understand molecular 'programming' underlying pharmacological approaches. Development of novel techniques, such as Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-seq), for fast and sensitive epigenomic
profiling of chromatin structure of defined cell populations provides a powerful strategy to address this question (Buenrostro et al., 2013).

### 1.7 ATAC-seq

The human genome contains approximately two metres of DNA, which is hierarchically packed into chromatin within a five-micron nucleus. DNA is wrapped around a core of proteins, called histones, to form nucleosomes, and nucleosomes are compacted into chromatin (Figure 1.3) (Kornberg, 1974; Sha \& Boyer, 2009). This hierarchical packaging plays a central role in the regulation of gene expression (Gross \& Grarrard, 1988; Bell et al., 2011). In the genome, two different varieties of chromatin are distinguishable, heterochromatin and euchromatin. The former identifies inactive genomic regions, whereas the latter refers to regions where DNA is lightly packed and hence accessible to transcription factors, and therefore is potentially biologically active (Buenrostro et al., 2015). Chromatin states are regulated by a dynamic epigenetic code which include DNA methylation, histone modification, chromatin remodellers, nucleosome positioning, non-coding RNAs, as well as changes due to the interaction with transcriptions factors (Kouzarides, 2007). Epigenetic mechanisms manipulate chromatin structure and its compaction level, regulating chromatin accessibility. Hence, their role in determining cellular phenotypes is obvious (Chen \& Dent, 2014).

Open chromatin profiling methods are highly effective means to understand the epigenetic code governing chromatin remodelling. They interrogate chromatin accessibility and probe regions of nucleosome positioning and TF binding. Mapping of differential chromatin opening enables identification of the cisregulatory landscape responsible for different cellular functions, including cell proliferation and differentiation (Tsompana \& Buck, 2014). ATAC-seq is a recently developed method for genome-wide analysis of the chromatin structure. By contrast to earlier techniques, including DNase-seq (Song \& Crawford, 2010), ATAC-seq does not require many cells as starting material. The number of cells
required to successfully map chromatin accessibility by ATAC-seq ranges between 500 and 50,000. Hence, ATAC-seq provides a powerful new method for genome-wide chromatin analysis of rare cell types, including stem cells (Buenrostro et al., 2013). It uses hyperactive Tn5 transposase to probe DNA accessibility by inserting sequencing adapters into relatively open regions of chromatin (Figure 1.4).

ATAC-seq simultaneously reveals information on chromatin compaction, allows mapping of nucleosome positions and genomic locations of transcription-factor binding. Finally, the whole assay requires less complex and time-consuming protocols when compared to previous genome-wide analysis methods (Buenrostro et al., 2013).


Sha and Boyer, StemBook 2009

Figure 1.3. Chromatin organization. The DNA is wrapped around a core of eight proteins, called histones, to form nucleosome (light blue). The latter is the basic unit in which the chromatin is organized. Nucleosome packaging into higher order structures generates two varieties of chromatin organization, such as euchromatin and heterchromatin. The level of the packaging regulates chromatin accessibility and consequently gene expression.


Buenrostro JD et. al, Nat Methods 2013

Figure 1.4. Schematic representation of ATAC-seq reaction. Tn5 transposase (green) simultaneously cuts and tagments accessible genomic regions (mapped between nucleosomes, in gray) with unique sequencing adapters (blue and red). This reaction generates genomic fragments that can be amplified via PCR and subjected to high-throughput sequencing.

## Nucleosome positions

ATAC-seq discloses detailed genome-wide information on chromatin compaction. In particular, paired-end reads generated by high-throughput sequencing reveal nucleosome positioning in regulatory elements.

Specifically, the DNA winds 1.7 turns around the nucleosome wrapping a total length of 147 bp (McGinty \& Tan, 2015). Buenrostro et al., (2013) showed that the fragment size distribution of sequenced paired-end reads from human chromatin has a periodicity of 200 bp , suggesting that some regions in the DNA are protected by steric hindrance which makes the transposition less probable (Buenrostro et al., 2013). Hence, fragments with a length of 200 bp may include a single nucleosome and larger fragments may be protected by multiple nucleosomes. Therefore, high molecular weight fragments may contain chromatin in a more compact state compared to short fragments, hence refractory to the transcription machinery that drives differential gene expression.

Buenrostro et al. (2013) also demonstrated that ATAC-seq provides information about the different functional states of chromatin, showing that short fragments of DNA were enriched in CCCTC-binding factor (CTCF)-bound regions, whereas transcription start sites (TSSs) were differentially reduced to fragments associated with one, two and three nucleosomes. Furthermore, this study showed that transcribed sequences of DNA and regions mapped to promoters had longer multi-nucleosomal fragments, and were hence less accessible compared to TSSs. These large fragments of the DNA were enriched in heterochromatin that is inaccessible to nuclease digestion (Ghirlando et al., 2004). This body of evidence suggests that ATAC-seq reveals functional states of chromatin that are differentially accessible.

In order to show the efficacy of ATAC-seq to map nucleosomes within the genome, Buenrostro et al. (2013) separated sequencing datasets into shorter reads generated from nucleosome-free regions and reads generated by nucleosome-associated chromatin, based on the observations related the periodicity of the insert size distributions (about 200 bp ). Then, a data track was calculated and used to map nucleosomes within accessible regions of chromatin
using a simple heuristic model, which measures positively nucleosomeassociated fragments and negatively weights nucleosome-free fragments. The nucleosome-free regions were massively enriched in TSSs when compared to distant elements, which tended to be enriched in nucleosomes.

Thus, ATAC-seq allows high-resolution readouts of regions protected by nucleosomes and nucleosome-free regions in the regulatory chromatin landscape (Buenrostro et al., 2013).

ATAC-seq discloses the position of DNA-binding proteins and the interplay
between their genomic location and nucleosome positioning

According to Buenostro et al. (2013), transposition is less probable in chromatin regions bound by DNA-binding proteins. Footprints generated from ATAC-seq inferred the presence of DNA-binding proteins at specific sites in the genome, similar to data obtained from DNase digestion footprints; thus providing information on transcription factor occupancy. In other words, ATAC-seq promises to be a powerful technique to delineate genome regulatory frameworks (Hesselberth et al., 2009).

As aforementioned, ATAC-seq allows detailed mapping of nucleosome positions. With respect to the nucleosome locations mapped through ATAC-seq data, Buenrostro et al. (2013) identified the position of four major classes of DNAbinding proteins. A class of proteins has been shown to strongly avoid nucleosomes, with binding sites approximately at 180 nucleotides from the closest nucleosome positions (NFYA, C-FOS and IRF3 included). A gradation of different behaviours, resulting in avoiding or overlapping nucleosome, has been mainly ascribed to transcription factors (TFs). The other two groups include cohesin-complex subunits RAD21 and SMC3 and chromatin looping factors, which belong to a group of factors whose binding sites locate next to nucleosome boundary, and proteins which tend to bind DNA associated to nucleosomes (Buenrostro et al., 2013).

## Epigenomic profiling on clinical timescales

ATAC-seq is a rapid and information-rich genome-wide analysis method and thus might provide a powerful tool to generate epigenomic analysis on a diagnostic timescale. In order to show that clinically remarkable information might be inferred by ATAC-seq, Buenrostro et al. (2013) applied the assay to a healthy volunteer's T cells to profile their regulatory chromatin landscape. In particular, IL2 locus was the subject of this study. IL-2 is a cytokine which plays a key role in autoimmune and inflammatory diseases and is responsible of T-cell growth (Fraser et al., 1991). ATAC-seq data revealed the drug target involved in the therapeutic IL-2 inhibition in proband $T$ cells. Through footprints the method enabled the profiling of personalised gene regulatory networks and demonstrated that ATAC-seq might be compatible with future diagnostic applications.

Taken together, ATAC-seq might have a wide applicability to understand genome regulatory networks and thus gene expression and offer the possibility to be applicable to the translational research for mapping an individual's epigenome. It may potentially be applied to rare, relevant cellular subtypes during the different stages of differentiation to improve the understanding of the development of human diseases (Buenrostro et al., 2013).

### 1.8 Research Justification and Aims

ATAC-seq is a newly developed technique that utilizes the highly active transposase Tn5 to interrogate accessibility of the genome and map open chromatin regions. These putative cis-regulatory DNA regions can be further explored for "footprints" of transcription factor (TF) binding (Buenrostro et al., 2013). In the first part of this study, I applied ATAC-seq to investigate the regulatory mechanisms underlying decidualization of the human endometrial cells, an obligatory transformation for embryo implantation (Gellersen \& Brosens, 2013). As part of my Monash-Warwick alliance studentship, I joined the laboratory of Professor Gargett in Melbourne, Australia, where I studied the impact of TGF- $\beta$ receptor inhibition on endometrial mesenchymal stem cells (eMSCs) maintained in prolonged culture.

To address these questions:

1. I established ATAC-seq on EnSCs and mapped dynamic changes in the cis-regulatory DNA landscape underpinning decidualization of EnSCs.
2. I integrated ATAC-seq and RNA-seq analyses to probe changes in the chromatin landscape and the transcriptome of cultured eMSCs in response to TGF- $\beta$ inhibition.

## Chapter 2

## Materials and Methods

### 2.1 Materials and Methods Part 1

The first part of this work has been carried out in the laboratory of Professor Jan J Brosens, at the Universtity of Warwick, UK.

### 2.1.1 Human endometrium tissue sampling

These studies were conducted on endometrial biopsies obtained from women undergoing uterine Natural Killer cell test, in the Implantation Clinic, at University Hospitals Coventry and Warwickshire (UHCW) National Health Service Trust. Pipelle biopsies, timed from mid-secretory phase of the cycle, were obtained from patients who gave written informed consent in according with the guidelines in The Declaration of Helsinki 2000. Experiments were performed on undifferentiated and decidualizing EnSC cultures, established from one patient awaiting IVF treatment and 2 recurrent miscarriage $(\mathrm{n}=3)$. None of the patients received hormonal therapy for at least 2 cycles prior the biospsy cycle. The study was approved by the NHS National Research Ethics-Hammersmith and Queen Charlotte's \& Chelsea Research Ethics Committee (1997/5065).

### 2.1.2 Primary cell culture

### 2.1.2.1 Isolation of EnSCs

Endometrial biopsies were collected individually in DMEM-F12 medium (Invitrogen) supplemented with 10\% dextran coated charcoal (DCC) fetal bovine serum and processed for primary culture as previously described (Barros et al., 2016). Briefly, after removing the excess media, biopsies were cut into small pieces using sterile scalpels in a Petri dish and enzymatically dissociated in
phenol-free DMEM-F12 (Invitrogen) containing $0.5 \mathrm{mg} / \mathrm{ml}$ collagenase (Sigma Aldrich) and $0.1 \mathrm{mg} / \mathrm{ml}$ deoxyribonuclease type I (DNAse I, Roche) for 1 hour at $37^{\circ} \mathrm{C}$, with vigorous shaking every 20 minutes to aid digestion. DNase and collagenase were inactivated by $10 \%$ DCC supplemented DMEM-F12 followed by centrifugation at 200 g for 5 minutes. After centrifuge, cell pellets were resuspended in DMEM-F12 containing 10\% DCC, 1nM estradiol (Sigma-Aldrich), $2 \mathrm{mg} / \mathrm{ml}$ insulin (Sigma-Aldrich), $100 \mathrm{IU} / \mathrm{mL}$ penicillin (Gibco), $100 \mathrm{~g} / \mathrm{mL}$ streptomycin (Gibco) and 2 mM L-glutamine (Gibco), and then transferred to tissue culture flasks, mixed gently to ensure distribution of cells and incubated in a humidified environment at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ overnight. Media was changed the following day. EnSCs were separated from epithelial cells by attachment timings. Here, any suspended cells (epithelial and blood cells), were removed by washing attached cells with fresh $10 \%$ supplemented media, which was subsequently changed every other day. Confluent monolayers of EnSCs were passaged by washing with Dulbecco's Phosphate Buffered Saline (PBS) and lifted with 1 ml trypsin-EDTA $\left(0.25 \%\right.$, Gibco) for 5 min at $37^{\circ} \mathrm{C}$. Any remaining attached cells were dislodged by gentle agitation. Subsequently, trypsin activity was inhibited by the addition of $9 \mathrm{ml} 10 \%$ DCC supplemented media. Cells were collected by centrifugation for 5 min at 200 g and seeded into 6 -well plates and 35 mm dishes, as required, and cultured in 10\% DCC-supplemented media.

### 2.1.2.2 Decidual timecourse

Confluent monolayers of EnSCs were placed in phenol red-free DMEM/F-12 containing, L-glutamine, antibiotic/antimycotic and $2 \%$ DCC overnight at $37^{\circ} \mathrm{C}$. In order to induce the differentiated phenotype, human EnSCs were treated with 0.5 mM 8-bromo-cAMP (Sigma-Aldrich) and $1 \mu \mathrm{M}$ medroxyprogesterone acetate (MPA, Sigma-Aldrich) in DMEM-F12 containing 2\% DCC, for the indicated timepoints. All experimental treatments were carried out before the third cell passage.

### 2.1.3 ATAC-seq

Decidualized and control EnSC monolayers were subjected to ATAC-seq as previously described (Buenrostro et al., 2013; Buenrostro et al., 2015), albeit with some modifications.

### 2.1.3.1 ATAC-seq Nuclei Harvest and Library Preparation

## Extract nuclei

Nuclei EZ prep kit (Sigma-Aldrich) was used to harvest nuclei from undifferentiated and decidualizing human EnSC cultures. Confluent cell monolayers were washed with ice cold PBS and then lysed using ice cold lysis buffer ( 10 mM Tris-HCl, pH 7.4, $10 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl} 2$ and $0.1 \%$ IGEPAL CA630, Sigma-Aldrich).The cells were scraped and then transferred to pre-labelled cold RNase/DNase free 1.5 ml eppendorfs. The tubes were vortexed, left on ice for 5 min and then pelleted in a fixed-angle refrigerated benchtop centrifuge. The latter was used to avoid losing nuclei and the supernatant was carefully discarded by pipetting away from the pellet.

## Transposase reaction (tagmentation)

Following the nuclei preparation, the pellet was re-suspended in the transposase reaction mix, containing $25 \mu \mathrm{l}$ Tagment DNA Buffer, $5 \mu$ I Tagment DNA Enzyme and $20 \mu \mathrm{l}$ nuclease free water (Nextera DNA sample preparation kit - Illumina). In order to optimize the time of incubation, the transposition reaction was carried out for $30,45,60,90$ and 120 min at $37^{\circ} \mathrm{C}$. Directly after incubation, samples were
pulse-spun to collect reaction and purified using a Zymo DNA Clean and Concentrator-5 Purification kit.

## Purify DNA

Transposome may bind tightly to DNA ends and interfere with the subsequent steps. It is therefore critical to purify tagmented DNA from transposome. Zymo DNA binding buffer was added to the $50 \mu \mathrm{l}$ sample which was vortexed and transferred to the column. Samples were then spun at 17 g for 30 seconds (s) at room temperature (RT). The resulting flow through was discarded and 200 $\mu$ I DNA wash buffer (Zymo DNA Clean and Concentrator-5 Purification kit, Zymo Research) added, which was centrifuged as described previously. The wash and centrifugation steps were repeated twice. After removing the residual liquid, the columns were changed to clean tubes and 23 $\mu$ l pre-warmed elution buffer (Zymo DNA Clean and Concentrator-5 Purification kit) added to the columns. The samples were incubated for 2 min at RT. To elute the DNA, columns were centrifuged for 2 min.

## PCR

Following purification, library fragments were re-suspended $20 \mu \mathrm{l}$ sample in a 0.2 mL PCR tube containing the following reagents (Nextera DNA preparation kit and Nextera DNA sample preparation index kit, Illumina):

- $5 \mu \mathrm{l}$ Primer Cocktail (PPC)
- $15 \mu \mathrm{l}$ Master mix (NPM)
- $5 \mu$ index 1
- $5 \mu$ index 2

Subsequently, they were amplified in a traditional PCR machine (AB Applied Biosystem, Vetri 96 Well Thermal Cycler, Foster City, CA, USA), using the following PCR conditions:

- 1 cycle: $72^{\circ} \mathrm{C}$ for 3 min $98^{\circ} \mathrm{C}$ for 30 s
- 15 cycles: $98^{\circ} \mathrm{C}$ for 10 s $63^{\circ} \mathrm{C}$ for 30 s $72^{\circ} \mathrm{C}$ for 1 min


## PCR clean up

The libraries were purified using AMPure XP, as recommended on the lllumina Nextera kit protocol. Each sample was added to 1.5 mL Eppendorf lobind tubes and then re-suspended in $30 \mu \mathrm{l}$ AMPure beads. The samples were first incubated for 5 min at RT and then placed on the magnetic stand. The supernatant was carefully aspirated and $200 \mu$ l of freshly prepared $80 \% \mathrm{EtOH}$ was added to wash the pellet. After 30 s , the supernatant was aspirated and the washing step was repeated. All supernatant was then removed and the beads were allowed to air dry for 15 min at RT. The samples were removed from the magnetic stand and 23 $\mu$ I Resuspension Buffer (RSB) (Nextera DNA preparation kit - Illumina) was added. The beads were re-suspended, incubated for 2 min at RT and then placed on magnet for 2 min . The supernatant was carefully collected into clean tubes.

### 2.1.3.2 Quantification of amplified DNA library

The amplified libraries were quantified by using Qubit HS DNA Assay, according to the manufacturer's instructions. Briefly, Qubit dsDNA HS dye and Buffer (Qubit Assays kit, Invitrogen by life technology Qubit 2.0 Fluorometer) at a ratio 1:200
were used to prepare working solution. Qubit dsDNA HS Standard 1 and Standard 2 (Qubit Assays kit, Invitrogen by life technology Qubit 2.0 Fluorometer) were re-suspended separately in $190 \mu \mathrm{l}$ working solution. They were vortexed and left to stand at RT for 2 min . $1 \mu$ l of the sample was added to $199 \mu$ l of working solution, vortexed and incubated for 2 min at RT. Qubit 2.0 Fluorometer machine was used to measure both standards and samples, according to the manufacturer's instructions.

### 2.1.3.3 Quality Control

Library sizes were assessed on an Agilent Technologies 2100 Bioanalyzer and the High Sensitivity DNA chip was used.

### 2.1.3.4 Sequencing

ATAC-seq library samples were sequenced on an Illumina HiSeq 2500 at Source Bioscience. A depth of thirty million paired end reads were sequenced per sample, with a read length of 100 bp .

### 2.1.3.5 Sequencing data analysis

Sequencing data and bioinformatics analysis have been performed in collaboration with Pavle Vrljicak, PhD (Tommy's national Centre for Miscarrigae Research, Warwick Medical School) and Associate Professor (A/P) Sascha Ott (Tommy's National Centre for Miscarriage Research, Department of Computer Science). Sequenced paired-end reads were aligned to the University of California Santa Cruz (UCSC) human genome 19 (hg19) assembly using bowtie2-2.2.6 (Langmead and Salzberg, 2012) and samtools-1.2.0 (Li et al.,
2009) and peak calling performed using MACS-2.1.0 (Zhang et al., 2008). 185,087 out of 202,169 identified peaks were significant ( $q<1 \times 10^{-4}$ ).

HTSeq-0.6.1 (Anders et al., 2015) was used to count the reads overlapping the peaks and differential expression analysis of sequencing data 2 (DESeq2) (Anders and Huber, 2010) was used to determine opening and closing regions of the chromatin. Significant ATAC-seq peaks were ranked based on their $p$-value (p) and their fold change, so that opening and closing peaks correspond to lower and higher values, respectively. Data have been submitted to Gene Expression Omnibus (GEO) (accession number GSE104720).

### 2.1.3.6 Comparison between ATAC-seq data and other sequencing datasets

ATAC-seq data were cross-referenced with other sequencing data. The analysis was performed in collaboration with Pavle Vrljicak, PhD (Tommy's national Centre for Miscarrigae Research, Warwick Medical School) and A/Professor Sascha Ott (Tommy's National Centre for Miscarriage Research, Department of Computer Science). More accurately, chromatin immunoprecipitation followed by sequencing (ChIP-seq) data obtained from decidualizing EnSCs from GEO, for FOSL2 (GSM1703568), PGR (GSM1703567) and FOXO1 (GSM1703607). Also, Formaldehyde-Assisted Isolation of Regulatory Elements through highthroughput sequencing (FAIRE-seq) data from whole endometrial tissue from GEO, GSM1011119, and DNase I hypersensitivity (HS) data obtained from decidualized EnSCs from GEO, GSE61793. Finally, ATAC-seq data were compared to ENCODE DNasel HS dataset from other cell systems, from the UCSC genome browser (The Encyclopedia of DNA Elements (ENCODE) Project Consortium, 2012; Thurman et al., 2012; Karolchic et al., 2004).

### 2.1.3.7 Mapping of differential ATAC-seq peaks to proximal genes

Differential open chromatin regions were mapped to cis-regulatory elements of their proximal genes using ENCODE DNasel hypersensitivity data (Thurman et al., 2012). Physical interaction and distance no greater than 10 kb were used as criteria to assess association between ATAC-seq peak and proximal gene regulatory element. The analysis was carried out in collaboration with Pavle Vrljicak, PhD (Tommy's national Centre for Miscarrigae Research, Warwick Medical School) and A/Professor Sascha Ott (Tommy's National Centre for Miscarriage Research, Department of Computer Science).

### 2.1.3.8 Binding Motif Discovery

Hypergeometric Optimization of Motif EnRichment (HOMER) v.4.8 was used to determine enrichment and depletion of TF short sequence binding motifs in the differential ATAC-seq peaks. Footprint analysis was performed using Wellington (Piper et al., 2013). TFs associated to high affinity binding motifs were crossreferenced with RNA-seq data obtained from three independent undifferentiated and decidualizing primary EnSC cultures. The analysis was performed in collaboration with Pavle Vrljicak, PhD (Tommy's national Centre for Miscarrigae Research, Warwick Medical School) and A/Professor Sascha Ott (Tommy's National Centre for Miscarriage Research, Department of Computer Science).

### 2.1.4 RNA Sequencing

### 2.1.4.1 RNA Extraction

To reduce the risk of RNA degradation, RNase and DNase free 1.5 mL eppendorfs and nuclease-free water were used. Supernatant was collected from the cells and frozen at $-80^{\circ} \mathrm{C}$ for further future studies. Total RNA was extracted from EnSCs cultures using 200 $\mu$ RNA Stat-60 reagent per well in a 6 well plate ensuring all cells were covered. The cells were scraped thoroughly with appropriate cell scraper, transferred to pre-labelled RNase-free 1.5 ml eppendorfs, left at room temperature for 5 mins and then placed on ice. Subsequently, $40 \mu \mathrm{l}$ of $100 \%$ chloroform was added to the Stat- 60 solution. The samples were mixed vigorously, left to stand at room temperature for 3 mins and then centrifuged. This step separates the samples into three distinct phases, such as, an aqueous phase, a white layer and a pink phase. RNA remains exclusively in the colourless upper aqueous phase. The aqueous phase was carefully transferred into $1 / 2$ a volume of $100 \%$ isopropanol, vortexed and centrifuged at $12,000 \mathrm{~g}$ at $4^{\circ} \mathrm{C}$ for 15 minutes, washed twice with $1 \mathrm{ml} 75 \%$ ice cold ethanol and dried at RT and dissolved in an appropriate volume of nuclease free water. RNA concentration and quality assessed by nanodrop. Satisfactory values were considered equal to or greater than 1.80 on the 260/280 absorbance scale, indicating pure RNA without contamination of protein. Samples were stored at $80^{\circ} \mathrm{C}$.

### 2.1.4.2 RNA Quality Control and RNA Libraries

RNA quality control was assessed on an Agilent Technologies 2100 Bioanalyzer according to the manufacturer's instructions RNA samples with RNA Integrity Number (RIN) > 8 were used to generate RNA libraries. High quality RNA
samples were used to generate RNA libraries according to the Illumina Stranded mRNA protocol at Source Bioscience. Library size was assessed on an Agilent Technologies 2100 Bioanalyzer and quantified by Qubit and quantitative polymerase chain reaction (qPCR).

### 2.1.4.3 RNA Sequencing

RNA libraries were sequenced on the Illumina HiSeq3000 at Source Bioscience. Fifty million single end reads were sequenced per sample with a read length of 100 bp.

### 2.1.4.4 Sequencing data analysis

RNA-seq data analysis was performed in collaboration with Pavle Vrljicak, PhD (Tommy's National Centre for Miscarriage Research, Warwick Medical School) and Associate Professor Sascha Ott (Tommy's National Centre for Miscarriage Research, Department of Computer Science, University of Warwick). Transcriptomic maps were identified using bowtie-2.2.3, samtools-0.1.19 and tophat-2.0.12 against the UCSC hg19 transcriptome reference from the Illumina iGenomes resource (2014). Counts were assessed using HTSeq -0.6.1 and transcripts per million (TPM) were calculated. Three different methods for detection of differentially expressed genes were used to analyse count data, such as DESeq2, baySeq and edgeR. To characterize differentially expressed genes, the latter were subjected to Gene Ontology (GO) enrichment analysis using the Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8.

### 2.2 Materials and Methods Part 2

The second part of this work has been carried out in the laboratory of Professor Caroline Gargett, at Monash University, The Ritchie Centre, Hudson Institute, Australia.

### 2.2.1 Human endometrium tissue sampling

The study was approved by the Monash Health and Monash University Human Research Ethics committees. Endometrial biopsies were obtained from premenopausal women ( $n=3$ ), without endometrial pathologies, who gave written informed consent according to The Declaration of Helsinki (2000) guidelines. Women were excluded if they had taken any hormonal treatment for the preceding three months.

### 2.2.2 Primary cell culture

### 2.2.2.1 Isolation and magnetic-activated cell sorting of eMSCs

Endometrial biopsies were processed and single-cell suspension of eMSCs obtained as previously described (Masuda et al., 2012). Briefly, endometrial tissue was finely minced and enzymatically digested in Dulbecco's modified Eagle's medium (DMEM-F12) supplemented with 0.5 collagenase type । (Worthington Biochemical Corporation) and $40 \mu \mathrm{~g} / \mathrm{ml}$ DNase I (Worthington Biochemical Corporation) at $37^{\circ} \mathrm{C}$ on a rotating MACSmix (Miltenyi Biotech) for 60 min . The digested tissue was filtered through $40 \mu \mathrm{~m}$ nylon mesh cell strainer (BD Bioscience) to remove epithelial glandular cells then centrifuged at 1100rpm for 5 min. Supernatant was carefully aspirated and red blood cells removed using

Ficoll-Paque (GE healthcare Bio-science), a density gradient media. After centrifuge at 1500 rpm for 15 min , the interface containing EnSCs was carefully aspirated and washed in DMEM/F12 containing 10\% fetal calf serum (FCS, Thermo Fisher) (Invitrogen), 1\% antibiotic/antimycotic (Life Technologies) and 2 mM glutamine (Invitrogen). EnSC single-cell suspension were re-suspended in separation buffer, such as $0.5 \%$ FCS/PBS, and $10 \mu \mathrm{~g} / \mathrm{ml}$ phycoerythrin (PE)conjugated anti-human SUSD2 (BioLegend) added. Cells were incubated for in the dark at $4^{\circ} \mathrm{C}$ for 30 min . After incubation, the cells were washed to remove unbound primary antibody in separation buffer and centrifuged at 1100rpm for 5 min. The supernatant was then carefully aspirated and the pellet was resuspended in separation buffer ( $80 \mu \mathrm{l} / 10^{7}$ total cells, according to the manifacturer's instructions) and $20 \mu \mathrm{l}$ of anti-PE magnetic active cell sorting (MACS) microbeads (Miltenyi Biotec) in the dark at $4^{\circ} \mathrm{C}$ for 30 min . The cells were washed in separation buffer and centrifuged at 1100rpm for 5 min. The conjugated pellet was re-suspended in separation buffer ( $500 \mu \mathrm{l} / 10^{7}$ ) and applied to a Miltenyi column (Myltenyi Biotec) in the magnetic field (MACS separator). Columns were flushed three times with buffer and unlabelled cells that passed through were collected in a sterile tube. Magnetically labelled cells, such as SUSD2+eMSCs, were eluted with buffer away from the magnetic field and cell number was determined using glasstic slide 10 with grids according to the manufacturer's instructions.

### 2.2.2.2 Cell culture

SUSD2+ eMSCs yielded from MACS separation were cultured in DMEM-F12 medium containing 10\% FCS (Invitrogen), 1\% antibiotic/antimycotic (Life Technology) and 2 mM glutamine (Invitrogen), supplemented with $10 \mathrm{ng} / \mathrm{ml}$ basic fibroblast growth factor (bFGF) and slowly scaled-down to an in-house DMEM/F12 serum free medium (SFM) at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$, as previously described (Rajaraman et al., 2013) in the presence or absence of $1 \mu \mathrm{M}$ TGF- $\beta-R$ inhibitor, A83-01) (Tocris Bioscience). Cells were seeded at conventional density (5,000 cells $/ \mathrm{cm}^{2}$ ) and media was changed every 48 h . Both untreated and A83-01 treated
eMSC cultures were passaged on day 15, 22, 29 and 36 in fibronectin-coated T25 culture flasks ( $10 \mu \mathrm{~g} / \mathrm{ml}$; Becton Dickinson, BD, Bioscience) as previously described (Gurung et al., 2015). At each passage, cells were counted as described above and cumulative cell population (total cell number) was calculated by multiplying total number of cells yielded at the current passage by total number of cells yielded at the previous passage, and then divided by the number of cells seeded at the current passage, as previously described (Gargett et al., 2009). Cell proliferation at each passage was also assessed by calculating the number of population doublings (PDs) using the following formula: $\mathrm{PD}=$ 3.322logN/N0, where $N$ is the total cumulative cell number calculated at each passage and NO represents the initial number of seeded primary cells (Pellegrini et al., 1999). At day 36, untreated and A83-01 treated eMSC cultures were subjected to flow cytometry, RNA-seq and ATAC-seq.

### 2.2.3 Flow cytometry

Surface phenotype for untreated and A83-01 treated eMSCs was assessed by flow cytometry for three stem cell markers, such as SUSD2, CD140b and CD90, as previously described, albeit with some modifications (Gurung et al., 2015). eMSCs were incubated with 1:20 allophycocyanin (APC)- and PE- conjugated primary antibodies or matched isotype control antibodies, in PBS containing 2\% FCS for 1 h at $4^{\circ} \mathrm{C}$ in dark. The primary antibodies used were APC-conjugated SUSD2 (Biolegend), PE- conjugated CD140b (R\&D) and APC- conjugated CD90 (BD Pharmingen). After incubation, cells were washed with PBS containing 2\% FCS to remove unbound cells and then fixed with 4\% paraformaldehyde (PFA) in PBS containing 2\% FBC. Untreated and A83-01 treated eMSCs were analysed using BD FACSCanto II (BD Bioscience) (10,000 events captured/sample per flow) and software FlowJo v. 10.

### 2.2.4 RNA Sequencing

### 2.2.4.1 RNA Extraction

Total RNA was extracted from untreated and A83-01 treated eMSCs using RNeasy Mini kit (Qiagen) according to the manifacturer's instructions, albeit with some variations. Briefly, eMSC monolayers were washed with PBS and trypsinised using TryLE ${ }^{\text {TM }}$ (Life Technologies). DMEM/F12 containing 5\% heatinactivated newborn calf serum was added to cell-suspension to inactivate trypsin and cells were transferred to an RNase-free centrifuge tube to minimize risk of RNA degradation. Cell suspensions were then centrifuged at 300 g for 5 min . To disrupt the cells, RNeasy Lysis (RLT) Buffer, containing $\beta$-mercaptoethanol, was added to cell pellets ( $600 \mu \mathrm{l}$ up to $10^{7}$ cells) and mixed by pipetting/vortexing. After adding 1 volume of $70 \%$ ethanol, cell suspensions were transferred to an RNeasy spin column placed in a 2 ml collection tube. Samples were centrifuged at maximum speed ( $\geq 8000 \mathrm{~g}$ ) for 15 sec . Flow-through was discarded. To minimize genomic DNA contamination, the optional four steps were performed. $350 \mu \mathrm{l}$ RNA wash (RW1) Buffer was added to the RNeasy spin column to wash column membrane. Samples were centrifuged at maximum speed for 15 sec and flow-through discarded. $80 \mu \mathrm{I}$ DNase I incubation mix, prepared according to the manufacturer's instructions, were added carefully on the membrane of the RNeasy spin column and left at room temperature for 15 min . To wash the membrane, $350 \mu \mathrm{l}$ Buffer RW1 were added to the RNeasy spin column and samples were centrifuged and flow-through discarded. To further wash the column membrane, $500 \mu \mathrm{l}$ Buffer RPE were added to tube. Samples were centrifuged at maximum speed for 15 sec . The washing step was repeated again, but this time samples were centrifuged for 2 min to further wash the column membrane. Flow-through was discarded and, to eliminate Buffer RPE completely, the RNeasy spin column was placed in another 2 ml collection tube and centrifuged at maximum speed for 1 min. To elute the RNA, the RNeasy spin column was transferred to a new collection tube and 30 to $50 \mu$ I RNase-free water
was added carefully to the membrane of the column.

### 2.2.4.2 RNA Quality Control and RNA Libraries

RNA quality control and RNA libraries were performed at the Monash Health Translation Precinct (MHTP) Medical Genomic Facility. The former was assessed on an Agilent Technologies 2100 Bioanalyzer according to the manufacturer's instructions RNA samples with RNA Integrity Number (RIN) > 8 were used to generate RNA libraries. The latter were produced according to the Illumina Stranded mRNA protocol. Library size was assessed on an Agilent Technologies 2100 Bioanalyzer and quantified by Qubit and quantitative polymerase chain reaction (qPCR).

### 2.2.4.3 RNA Sequencing

RNA libraries were sequenced on the Illumina HiSeq3000 at MHTP Medical Genomic Facility. Fifty million single end reads were sequenced per sample with a read length of 50 bp .

### 2.2.4.4 Sequencing data analysis

RNA-seq data analysis was performed as described in 2.1.4.4 in collaboration with Pavle Vrljicak, PhD (Tommy’s National Centre for Miscarriage Research, Warwick Medical School) and Associate Professor Sascha Ott (Tommy’s National Centre for Miscarriage Research, Department of Computer Science, University of Warwick).

### 2.2.5 ATAC-seq

Freshly isolated MSCs were treated with or without TGF- $\beta$-R inhibitor for 36 days and then subjected to ATAC-seq. ATAC-seq libraries were processed as described in 2.2.3 and data analysed in collaboration with Pavle Vrljicak, PhD (Tommy's National Centre for Miscarriage Research, Warwick Medical School) and Associate Professor Sascha Ott (Tommy's National Centre for Miscarriage Research, Department of Computer Science, University of Warwick).

### 2.2.6 in vitro colony-forming unit-fibroblast (CFU-F) assay

eMSCs were cultured with or without A83-01 for 2 passages (29 days) and then seeded at a low density ( 50 cells/cm²) to assess colony efficiency as previously described, albeit with some modifications (Gurung et al., 2015). Briefly, untreated and A83-01 treated eMSCs were seeded on fibronectin ( $10 \mu \mathrm{~g} / \mathrm{ml}$ ) pre-coated 10 mm culture dishes (BD Falcon) and cultured in SFM, supplemented with bFGF ( $1 \mu \mathrm{l} / \mathrm{ml}$, Peprotech) and EGF ( $1 \mathrm{ul} / \mathrm{ml}$; Invitrogen), in the presence or absence of A83-01 ( $0.1 \mu \mathrm{l} / \mathrm{ml}$, Tocris Bioscience) at $37^{\circ} \mathrm{C} 5 \% \mathrm{CO}_{2}$, further for 2 weeks. Media was changed every 48h. Untreated and treated eMSC cultures were fixed in 10\% formalin for 10 min and stained with haematoxylin (Amber Scientific). Samples were washed twice with distilled water and the Scott's tap water was used to enhance blue colour of the colonies stained. The number of colonies was counted and colony efficiency percentage estimated by dividing total number of colonies yielded by number of cells seeded $\times 100$.

### 2.2.7 Statistical Analysis

Statistical analyses were performed with GraphPad Prism 6. Where appropriate, two-way analysis of variance (ANOVA) or paired non parametric Wilcoxon test was applied. Data represent mean $\pm$ standard error of the mean (S.E.M). Values of $p$-value $(p)<0.05$ were considered statistically significant.

For RNA-seq data analysis, statistical significance was assessed on a large number of variables (i.e. genes). Benjamini-Hochberg procedure was applied to control the false discovery rate. Changes in gene expression were deemed statistically significant if the adjusted $p$-value ( $q$-value) was less than 0.05 .

## Chapter 3

## Chromatin profiling

in decidualizing human endometrial stromal cells

### 3.1 Introduction

Decidualization is a profound transformation of EnSCs from fibroblast-like to secretory decidual cells that occurs 'spontaneously' in menstruating species (Brosens et al., 2006). Decidual transformation involves large-scale gene expression changes (Gellersen \& Brosens, 2014; Takano et al., 2007). Genomewide remodeling of the chromatin architecture underlies the wholesale transcriptomic reprogramming upon decidualization (Munro et al., 2010; Zelenko et al., 2012). Gene expression profiling studies revealed that genes coding for epigenetic modulators are up-regulated during decidualization, and they include histone-modifiers and binding proteins, DNA methyltransferases and CpGbinding proteins. This suggests that a dynamic epigenetic code operates on the chromatin landscape of the EnSCs during decidualization and is responsible of the acquisition of the decidual identity (Grimaldi et al., 2012). Specifically, an example is provided by declining expression level for the histone methyltransferase enhancer of Zeste homolog 2 (EZH2) during decidualization. This results in a gradual loss of trimethylation of histone 3 on lysine 27 (H3K27me3) within the proximal promoters PRL and IGFBP1. A coordinated loss of methylation and gain of acetylation at the same loci results in increased accessibility of the chromatin, which is indicative of a positive regulation fo the transcription. This chromatin remodelling underpins the acquisition of decidual phenotype (Grimaldi et al., 2011). Also, another study indicates that the use of the DNA methylation inhibitor 5-aza-2'-deoxycytidine in human EnSCs alters genomic conformation and results, amongst others, in the up-regulation fo decidual genes involved in cellular properties that feature decidual cells, for example ECM organization and cell adhesion (Logan et al., 2010). Conversely, inhibition of methylation prior to and after implantation in the mouse impairs decidualization and correlates with pregnancy failure (Gao et al., 2012). These observations suggest that a dynamic epigenetic code operates on the chromatin structure as decidualization unfolds.

Recent technological advances have enabled the rapid profiling of open chromatin landscapes using genome-wide analysis techniques, such as ATAC-
seq. This assay probes regions of increased accessibility and further interrogates them for "footprints" of TF binding (Buenrostro et al., 2013). Footprints are sequences of tens of basepairs (bp) that infer the presence of DNA-binding proteins (Hesselberth et al., 2009). The latter makes the chromatin less accessible and hence refractory to transposase activity (Buenrostro et al., 2013). Previous work has characterized whole endometrial open chromatin signatures by Formaldehyde-Assisted Isolation of Regulatory Elements through highthroughput sequencing (FAIRE-seq) and DNase-seq in decidualized EnSCs (Lynch et al., 2015; Thurman et al., 2012). This provided genome-wide views of open chromatin regions, but did not show what changes occur in decidualization.

In this chapter, I performed ATAC-seq to map global changes in the chromatin landscape of EnSCs upon decidualization. The most enriched short sequence binding motifs were determined in opening and closing genomic regions. To examine factor occupancy, footprint analysis was performed and resulting footprints inferring DNA-binding proteins were interrogated. Finally, ATAC-seq data were integrated with RNA-seq data to examine gene expression of potential binding TFs and ultimately identify novel transcriptional regulators implicated in decidualization.

### 3.2 Results

### 3.2.1 Optimization of incubation time for transposase reaction

ATAC-seq uses hyperactive Tn5 that simultaneously cuts and probes accessible regions of chromatin. This process generates genomic libraries that can be subjected to high-throughput sequencing (Buenrostro et al., 2013). High quality library size distribution varies between 250 and 1000 bp (Illumina guidelines). To successfully perform ATAC-seq, I optimized incubation time for transposase reaction on undifferentiating and decidualizing human EnSCs.

Briefly, primary human EnSCs were decidualized in response to 8-br-cAMP and MPA for 4 days. Paired undifferentiated and decidualizing cultures were subjected to ATAC-seq. Buenrostro et al. (2015), optimized 30 min as incubation time for transposase reaction on lymphoblastoid cells. To determine the optimal reaction time for primary endometrial cells, the transposase reactions were run for either $120,90,60,45$ or 30 min . To determine the fragment length distribution of the genomic libraries, samples were subjected to quality control on Agilent Technologies 2100 Bioanalyzer using the High Sensitivity DNA chip. As shown in Figure 3.1, subjecting cultures to a transposase reaction lasting 120 min resulted genomic libraries with a fragment lenght distribution with a predominant peak at lower range (200-300 bp). Short fragments can map to inaccessible regions of the genome, generating noise during sequencing. A 90 min reaction yielded larger fragments (average $\sim 500 \mathrm{bp}$ ) and a modest increase in fragment length was observed when the transposase reaction was stopped after 60 and 45 min . For the latter, as the sample was too concentrated the software was not able to assign the bp scale to the x-axis, but measured the detection of fluorescence intensity over time (seconds). The ladder was used to manually calculate the approximate fragment size (e.g. fragments 200 bp long were detected at 60 seconds). Finally, the 30 min reaction resulted in the largest fragment size, suggesting insufficient transposition. The 30 min incubation time
generated too large molecular fragments, that can result in a reduced clustering efficiency during sequencing (Figure 3.1).

Considering the length of DNA wrapped around a nucleosome ( $\sim 200 \mathrm{bp}$ ), I inferred that fragments containing a single nucleosome were likely to be present in the genomic library of the 120 min . On the other hand, 90, 60 and 45 min incubation times were all likely to yield similar library size distributions. However, Bioanalyzer traces were not really indicative of the average fragment size generated. Hence, I arbitrarily chose 90 min and 45 min (half of the former) as incubation times and make the data more informative by sequencing.

Taken together, data suggested that subjecting cell cultures to a transposase reaction lasting 120 and 30 min results in average library fragment size as small as 250 bp and as big as 1000 bp . On the other hand, incubation times in between seemed to be all equivalent and Bionalyzer traces not to be predictive of successfully sequenced genomic libraries. Hence, to infer if 45 and 90 min incubation time could generate libraries with high clustering efficiency, I proceeded with sequencing.


Figure 3.1 Different times of incubation for transposase reaction generated different library size distributions. EnSCs were seeded in 35 mm dishes, nuclei were harvested and subjected to ATAC-seq. Representative genomic library size distribution generated from 120, 90, 60, 45 and 30 min incubation time was assessed on Agilent Technologies 2100 Bioanalyzer. The graphs show detection of fluorescence by the genomic fragments. The Y -axis shows fluorescent intensity (FU). The X-axis represents the size (bp) of the fragments or time of detection, for samples that were too concentrated. The standard in each experimental sample is shown as two peaks labelled as the lower (a) and upper (b) marker.

### 3.2.2 Chromatin profiling in primary human EnSCs

To map genome-wide dynamic changes in the chromatin landscape upon decidualization, undifferentiated and decidualizing human EnSCs were subjected to ATAC-seq.

Briefly, primary human EnSCs were decidualized in response to 8-br-cAMP and MPA for 4 days. ATAC-seq libraries were sequenced on the Illumina HiSeq1500. Thirty million paired end reads were sequenced per sample, with a read length of 100 bp . Surprisingly, data revealed that despite Bioanalyzer data were not convincing, subjecting genomic libraries to transposase reaction lasting either 45 or 90 min , results in high clustering efficiency. As both incubation times generated the same sequencing data, they could be equally chosen for future experiments and I chose 45 min to further optimize the time of the whole procedure.

More accurately, ATAC-seq analysis identified a total of 185,087 significant differential ATAC-seq peaks, revealing profound chromatin remodelling in response to decidual cues. The resulting ATAC-peaks were ranked from the most strongly opening to the most strongly closing peak. Transition of closed to open chromatin at major differentiation genes, such as PRL and IGFBP1 (Figure 3.2AB), confirmed ATAC-seq as powerful tool to accurately probe genomic regions that change dynamically upon decidualization.

Previous work had interrogated the chromatin landscape of the decidualized EnSCs and the whole endometrium, using DNase-seq and FAIRE-Seq, respectively (Lynch et al, 2015). Therefore, the profile of the chromatin architecture resulting from the ATAC-seq analysis was compared to the previous data to investigate if the use of ATAC-seq provided additional enrichment in the description of genome-wide landscape of chromatin of EnSCs. Results showed that less than $20 \%$ of the genomic regions of the decidual cells and of the whole endometrium were previously identified showed that compared to the proportion of the ATAC-seq data. Furthermore, a comparison with Encyclopedia of DNA Elements (ENCODE) project's DNase-seq data from 125 human cells and tissue
types (Thurman et al., 2015) confirmed that more than 90\% of the ATAC-seq peaks represent true regions of differential opening (Figure 3.3). More accurately, when DNase I hypersensitivity sites (DHSs) identified by DNase-seq were compared to the ATAC-seq peaks, they overlapped with the closing ATAC-seq peaks rather than with the opening peaks (Figure 3.4).

Even though, prediction of gene expression cannot exclusively be based on opening or closing chromatin because it likely results from a combination of different TFs at different genomic locations, analysis of 100 genes associated with the most open and closed ATAC-seq peaks revealed that genes with opening ATAC-seq peaks were also upregulated during decidualization, whereas closing ATAC-seq peaks were associated to genes that were down-regulated upon decidualization ( $p=2.6510^{-9}$, $t$-test) (Figure 3.5).

Taken together the data revealed that ATAC-seq strongly contributes to increase our knowledge of the chromatin architecture of EnSCs before and after decidualization.


Figure 3.2. Transition of closed to open chromatin exemplified by ATACseq peaks. Examples of ATAC-seq peaks showing significant opening and closing in the chromatin landscape at major decidual markers, such as PRL (A) and IGFBP1 (B). Black and red traces represent ATAC-seq signal in the undifferentiated and differentiated cells, respectively. For both PRL and IGFBP1, ATAC-seq peaks preferentially localize around the promoters. Additionally, IGFBP1 has differential opening peaks upstream of the transcription start site and downstream of the termination site.


Figure 3.3. Decidualized EnSC chromatin landscape profiled by ATAC-seq in comparison to other endometrium assays. DNase I hypersensitivity (HS) sites and FAIRE-seq in decidualized EnSCs and in the whole endometrium, respectively, identified less than $20 \%$ of the open chromatin regions described by ATAC-seq. More than $90 \%$ of the ATAC-seq regions have been identified in other cell systems.

## A



B


Figure 3.4. Previous DNase I HS sites in decidualizaed EnSCs described chromatin regions overlapping with closing genomic regions. ATAC-seq peaks were ranked from the ones that strongly open down to the ones that strongly close during decidualization and grouped according to this ranking; then, the number of peaks that overlapped with previously identified genomic regions was calculated. A cross-referencing with ENCODE showed a uniform distribution of the overlapping regions across this ranking (A). Previously identified DNase I HS sites in decidualized EnSCs mainly overlapped with closing ATAC-seq peaks (B).


Figure 3.5. Correlation between differential organized chromatin and differential gene expression in decidualizing EnSCs. Opening and closing of chromatin correlate to changes in gene expression during decidualization. Box plots showing increase or decrease in transcript levels of 100 genes (within 10 kb of the TSS) associated with the most open and closed ATAC-seq peaks. Yaxis shows relative changes in transcript levels, expressed as log2-fold change: +ve and -ve values relate to up- and down-regulated genes, respectively. X-axis shows ATAC-seq peaks clustered in opening, no changing ( $\mathrm{N} / \mathrm{C}$ ) and closing peaks. Green dots represent the genes and the red asterisk represents mean log2-fold change ( $p=2.6510^{-9}, t$-test).

### 3.2.3 Binding Motif Enrichment in decidualizing EnSCs

Differential chromatin opening makes the chromatin more accessible in some genomic regions rather than in others and therefore more accessible to the binding of specific TFs, likely involved in the regulation of nearby gene expression. Hence, de novo binding motif enrichment analysis, using Hypergeometric Optimization of Motif EnRichment (HOMER), was performed on statistically significant opening and closing ATAC-seq peaks (Bonferroni adjusted $p<0.05$ ) to identify the overepresented binding motifs and putative TFs that underly changes in gene expression upon decidualization.

A total of 17 motifs, named differentiated motifs 1-17 (DiffM1-17), were significantly enriched in 1,225 differential ATAC-seq peaks that significantly open upon decidualization and 7 motifs, named undifferentiated motifs 1-7 (UndiffM17), were significantly overepresented in 278 closing ATAC-seq peaks (Figure 3.6). Data showed that closing or opening of genomic regions could also be predicted by the occurrence of the motifs (Figure 3.7). Within regions of chromatin opening, TF occupancy should result in a footprint. To investigate if the identified motifs were indicative of TF binding, ATAC-seq signal was averaged over all expected locations of the identified conserved motif sequences. Average ATACseq signal profile centered at each motif revealed sequence footprint reflecting factor occupancy (Figure 3.8). DNA-protein binding makes the occupied genomic region refractory to transposition, causing enrichment of positive strand reads 5' of the binding motif paired with excess of negative strand reads 3 ' of the motifs. Evidence of footprints revealed the presence of DNA-binding protein in all the conserved motifs except for Opening motif 10 and Closing motif 2. Absence of footprint at these genomic sites suggested that there was no evidence of TF occupancy. However, these chromatin regions might still play a role in the regulation of gene expression. For example, they might be involved in the folding of the chromatin to facilitate interactions between functionally related genes spatially separated along the genome.

Next, to identify the putative TFs that might bind at these genomic locations, the short sequence motifs were matched against known TF datasets and their expression level was examined. HOMER motif analysis revealed overepresentation of binding sites representing high affinity binding motifs for known decidual TFs, including CCAAT/enhancer binding protein beta and delta (CEBPB/CEBPD), Fos-like antigen (FOSL2 or FRA2), forkhead box O1 (FOXO1), progesterone receptor (PGR), and signal transducer and activator of transcription 3 and 5 (STAT3/STAT5) (Mazur et al., 2015; Kaya et al., 2015; Jiang et al., 2015; Kim et al., 2005). Depletion of TEA domain transcription factor 1 (TEAD1) binding motif was dectected upon decidualization (Figure 3.9). Interestingly, TEAD1 was previously shown to negatively regulate the expression of PRL, a well-established decidual marker (Kessler et al., 2008). A full list of the best match of TFs for all of the binding motifs enriched in the opening and closing motifs are shown in Appendix 1 and 2, respectively.

Cross-referencing the resulting ATAC-seq regions with available chromatin immunoprecipitation followed by sequencing (ChIP-seq) data (e.g. ENCODE database), for PGR, FOXO1 and FOSL2 in EnSCs, provided confidence in the identified binding domains (Vasquez et al., 2015). In agreement with their key role in decidualization, ChIP-seq data revealed that FOXO1 and PGR binding sites were overepresented in open chromatin regions. Particularly, chromatin regions enriched with both PGR and FOSL2 binding motifs were associated to open chromatin in decidualized EnSCs, whereas in absence of PGR binding site, FOSL2 binding domain was enriched in closing chromatin regions (Figure 3.10).

Taken together, data showed that ATAC-seq accurately mapped dynamic changes upon decidual transformation. It identified binding sites for TFs known to play an essential role in promoting decidualization. However, ATAC-seq yielded novel candidate TFs likely to be involved in licensing genomic regions for remodelling in response to decidual transformation. The role of these putative novel transcriptional regulators in decidual transformation of EnSCs requires further investigations. Experimentally, RNA-seq or RT-qPCR and western blot could be applied to validate the induction of TFs of interest at a transcript and protein level. ChIP-qRT-PCR or cross-referencing with available ChIP-seq data
(e.g. ENCODE database) would provide confidence in the transcriptional regulation of genes of interest by specific TFs. Furthermore, silencing of the most highly ranked conserved TFs by siRNA-mediated gene silencing could be performed to validate their role during the decidual process. In this work, RNAseq was performed to examine gene expression of new putative decidual TFs. However, time limitations prevented me of persuing this line of investigation even further.


Closing Motifs


Figure 3.6. Enriched TF binding motifs in opening and closing chromatin regions. De novo short sequence binding motif enrichment analysis revealed overrepresentation of 17 and 7 binding sites in statistically significant opening
and closing ATAC-seq, respectively. The frequency (\%) of peaks (blue bars) containing a given motif is shown relative to genomic regions randomly selected from the genome (orange bars) ( $\pm 50 \mathrm{~Kb}$ from TSS, matching size, and GC/CpG content).


Figure 3.7. Occurrence of TF binding motifs correlates to differential chromatin opening. The short sequence binding motifs resulted from HOMER motif analysis were associated with chromatin opening and closing over the whole ATAC-seq dataset. The frequency of opening and closing motifs ( Y -axis) was identified in all ATAC-seq peaks. Peaks were sorted from most opening to most closing peak and ranks of peaks containing motifs were plotted as histograms ( X -axis). ATAC-seq peaks containing Opening Motifs 1-17 are most frequently opening, whereas ATAC-seq peaks containing Closing Motifs 1-7 are more frequently closing. Empty bars indicate random expectation based on genomic background frequency.


Figure 3.8. Footprint analysis. Footprint at the enriched motifs indicating evidence of TF occupancy. Graphs show average ATAC-seq signal profile centred at the opening (A) and closing (B) binding motifs, calculated within $\pm 200$ bp on enriched motif. Red and blue represent positive and negative strand cuts, respectively. Reduced read numbers in the region of the motif together with increase in positive and negative strand reads at 5' and 3' of the motif indicate enrichment of fragments that span the uncut (protected) region of DNA binding.


Figure 3.9. Top 5 enriched and depleted binding motifs and coupled high binding affinity TFs. Bar graphs showing top 5 binding motifs, enriched in the opening and closing ATAC-seq peaks, matched with the most plausible differentially expressed TFs, based on motif specificity. In the bar graphs, the frequency (\%) of peaks (blue bars) containing the motif is shown relative to genomic regions randomly selected from the genome (orange bars) ( $\pm 50 \mathrm{~Kb}$ from TSS, matching size, and GC/CpG content). $P$ indicates the $p$ of the short sequence binding motifs.


Figure 3.10. Mapping of known FOXO1, PGR and FOSL2 binding domains in the differential ATAC-seq peaks in decidualized EnSCs. Cross-reference of ATAC-seq data with public ChIP-seq data for the indicated key transcription factors during decidualization, revealed enrichment of FOXO1 and PGR binding motifs in the opening genomic regions; FOSL2 binding motif was enriched in closing chromatin regions, whereas FOSL2 in the presence of PGR binding domain was associated to opening chromatin regions. Again, ATAC-seq peaks were ranked from the most strongly opening to the most strongly closing peak.

### 3.2.4 Transcriptomic profile of human undifferentiated and decidualizing EnSCs

Microarray studies described profound changes in the transcriptome of EnSCs as the decidual transformation unfolds (Gellersen \& Brosens, 2014; Giudice, 2004; Clock et al., 2008; Takano et al., 2007). Compelling lines of evidence indicate the presence of a dynamic epigenetic code governing differential gene expression upon decidualization (Munro et al., 2010; Zelenko et al., 2012). For the first time, ATAC-seq accurately mapped changes in chromatin accessibility in undifferentiated and decidualizing human EnSCs upon decidualization. Binding motif discovery confirmed enrichment in cis-regulatory regions of the genome for short sequence binding motifs with high affinity for TFs known as key decidual core TFs. However, ATAC-seq data potentially revealed novel candidate TFs that might play a role in the acquisition of the decidual phenotype. To examine gene expression of TFs likely to bind high specificity short sequence motifs, EnSCs decidualized in response to 8 -br-cAMP and MPA for 4 days were subjected to RNA-seq.

RNA libraries, generated using high integrity samples with a RIN >8.0, were sequenced on the Illumina HiSeq3000. Fifty million single end reads were sequenced per sample, with a read length of 50 base pairs (bp). Principal Component Analysis (PCA), a multivariate analysis, was performed on the regularized $\log$ (rlog) transformation of the counts from differential expression analysis of sequencing data (DESeq) to explore how the samples clustered or segregate. In this work, PCA was perfomed in an unsupervised manner, i.e. undifferentiated and decidualizing samples were not 'labeled' as such. PC1, which accounted for $83 \%$ of variation in gene expression segregated undifferentiated from decidualizing EnSCs, thus reflecting the cellular response to deciduogenic cues. PC2, which accounted for $12 \%$ of variation, clustered the undifferentiated samples 198 and 200, apart from the 208; and the decidualizing samples 208, apart from 200 and 198, thus reflecting intrinsic interpatient variability (Figure 3.11).

Based on Benjamini adjusted $p(q)<0.05$, DESeq identified a robust list of 2,931 differentially expressed genes between undifferentiated and decidualizing cultures (Figure 3.12). Out of 2,931 differentially expressed genes, 1,432 (49\%) were up-regulated and 1,499 (51\%) were down-regulated upon decidualization. Amongst the most highly enriched genes, data confirmed up-regulation of key decidual markers, such as PRL $\left(q=2.60 \times 10^{-93}\right)$ and IGFBP1 $\left(q=5.32 \times 10^{-98}\right)$ (Gellersen \& Brosens, 2003). A full list of differentially up- and down- regulated genes is shown in Appendix 3 and 4, respectively.

Mining of RNA-seq data to infer gene expression of putative candidate TFs likely to bind short sequence motifs mapped in opening and closing motifs confirmed gene expression for known key decidual TFs, including CEBPB/CEBPB, FOSL2 (or FRA2), FOXO1, PGR and STAT3/STAT5. However, data revealed differential gene regulation for several candidates (Figure 3.13). For example RAR related orphan receptor A (RORA), aryl hydrocarbon receptor nuclear translocator like (ARNTL) and Meis homeobox 1 (MEIS1). Conversely, combined RNA-seq and ATAC-seq revealed downregulation of runt related transcription factor 1 and 2 (RUNX1/RUNX2), SRY-box 12 (SOX12), transcription factor 3 (TCF3), and ETS Proto-Oncogene 1 (ETS1) in parallel with depletion of genome-wide depletion of high affinity binding sites in decidualized EnSCs.

Gene Ontology (GO) enrichment analysis was performed using DAVID version 6.8 to characterize differentially expressed genes in EnSCs upon decidualization and infer associated biological functions, cellular components and molecular functions and ultimately confirm if the EnSC cultures were properly decidualized. Amongst the most up-regulated GO categories, data showed enrichment for extracellular matrix organization ( $p=3.30 \times 10^{-7}$ ), inflammatory response ( $p=$ $1.29 \times 10^{-6}$ ) and angiogenesis ( $p=5.85 \times 10-6$ ). Down-regulated genes were enriched for cell division ( $p=3.99 \times 10^{-21}$ ), DNA replication ( $p=1.08 \times 10-19$ ) and mitotic nuclear division ( $p=5.34 \times 10^{-18}$ ) (Figure 3.14A-B). Enrichment and depletion of the identified GO categories were consistent with the known spectrum of functions differentially regulated upon decidualization, confirming what was already broadly studied (Gellersen \& Brosens, 2014).

Taken together, data confirmed a broadly wholesale reprogramming of gene expression upon decidualization and captured expression of novel putative modulators that might be implicated in promoting the acquisition of the decidual phenotype.


Figure 3.11. PCA of undifferentiated and decidualizing EnSCs. PCA of RNAsequencing data from three independent EnSC cultures, decidualized in response to 8 -br-cAMP and MPA for 4 days. PC1 distinguished between undifferentiated and decidualizing samples, whereas PC2 segregated different primary cultures.


Figure 3.12. Differential gene expression profile upon decidualization. Clustered heatmap representing differential gene expression pattern in EnSCs decidualized in response to 8 -br-cAMP and MPA for 4 days. The colour key is represented on the right side of the heatmap, with the most highly enriched genes indicated in green.


Figure 3.13. Differential expression of candidate TFs upon decidualization. Graph showing changes in the transcript levels of selected significantly up- and down-regulated TFs, expressed as log2-fold change. +ve and -ve values indicate increase and decrease in gene expression, respectively.


Figure 3.14 Enrichment and depletion of GO categories in primary EnSCs upon decidualization. GO enrichment analysis was applied to differentially expressed genes and the significant GO annotations ( $p<0.05$ ) summarized using REVIGO and clustered based on semantic similarities, which means that if they are described by a common ontology they cluster close in the graph. (A) GO categories associated to the up-regulated genes. (B) GO categories enriched for down-regulated genes. The colour key is represented on the right. The most highly enriched GO categories are indicated in green. The size of the circles indicates the number of genes in the GO term and reflects the frequency of the GO term. The results were consistent with the known spectrum of biological processes differentially regulated upon decidualization and hence validated previous findings.

### 3.3 Discussion

Cyclic decidualization of the endometrium is a coordinated process essential for embryo implantation and placental development, and hence is critical for successful reproductive outcome (Gellersen \& Brosens, 2014; Salker et al., 2011). Several lines of evidence show that a dynamic epigenetic code operates atop the cis-regulatory landscape of the genome and governs decidual cell identity (Grimaldi et al., 2012; Zelenko et al., 2010; Munro et al., 2010).

In this work, I used ATAC-seq to accurately probe regions of differential chromatin opening in undifferentiated and decidualizing human EnSCs. ATAC-seq data showed wholesale remodelling of the chromatin structure. A total of 185,084 open DNA loci were accurately mapped in EnSC. Changes in genomic accessibility at major decidual genes, such as PRL and IGFBP1 confirmed the ability of ATACseq to accurately map changes in the cis-regulatory elements of the chromatin. Combined ATAC-seq and RNA-seq revealed a strong association between changes in DNA accessibility and in gene expression.

De novo binding motif discovery using HOMER revealed enrichment and depletion of 17 and 7 short sequence motifs, respectively. Analysis of footprints confirmed factor occupancy in 22 out of 24 binding motifs, highlighting the presence of DNA-binding proteins in the majority of the biding sites. Highly enriched motifs in the opening ATAC-seq peaks showed high binding affinity for known decidual TFs, including CEBPB/CEBPD, FOSL2, FOXO1, PGR, and STAT3/STAT5 (Gellersen \& Brosens, 2014; Mazur et al., 2015). Previous studies reported that interactions between TFs can differently modify chromatin accessibility (Christian et al., 2002; Christian et al., 2002; Lynch et al., 2009). More accurately, cross-referencing of ATAC-seq data with ChIP-seq data showed that enrichment for both FOXO1 and PGR binding sites correlated to opening chromatin (Mazur et al., 2015; Vasquet et al., 2015). Additionally, FOSL2 is a putative PGR co-regulator (Mazur et al., 2015). Interestingly, the presence of both FOSL2 and PGR binding sites correlated with opening chromatin. However, binding sites with high affinity for FOSL2 in the absence of PGR were enriched in closing chromatin regions.

Cross-referencing the identified binding motifs with RNA-seq data revealed induction of novel putative TFs not yet implicated in decidualization, in parallel with genome-wide enrichment for high affinity binding sites, for example RORA, ARNTL, and MEIS1. Conversely, down-regulation of other TFs, including RUNX1/RUNX2, SOX12, TCF3 and ETS1 upon decidualization correlated with depletion of high affinity binding sites.

The role of these putative transcriptional regulators in decidual transformation of EnSCs requires further investigation. Experimentally, Real Time quantitative PCR (RT-qPCR) and western blot could be applied to validate the induction of TFs of interest at a transcript and protein level. ChIP-qRT-PCR or crossreferencing with available ChIP-seq data (e.g. ENCODE database), would provide confidence in the transcriptional regulation of genes of interest by specific TFs. Furthermore, silencing of the most highly ranked conserved TFs by siRNAmediated gene silencing could be performed to validate their role upon decidualization. Time limitations prevented me of persuing this line of investigation even further, although a graduate student subsequently demonstrated that siRNA-mediated knockdown of ARNTL, NFE2L1 and TFC3 perturbated the induction of PRL and IGFBP1 in decidualizing cultures.

The ATAC-seq analysis of undifferentiated and decidualizing EnSCs is important on multiple levels. First, it provides an important resource to analyse chromatin changes associated with differential gene expression at specific loci. The footprint analysis provides insight into the transcriptional drivers of genes of interests, although confirmation still requires ChIP-PCR or cross-referencing with existing ChIP-seq data sets. Nevertheless, the ATAC-seq data will greatly facilitate mechanistic analysis of the pathways and downstream TFs that regulate specific genes or gene networks. Finally, my analysis provided proof of principle that ATAC-seq is a powerful tool to screen rapidly for dynamic chromatin changes in human endometrial cells. I envisage that applying this technique to various reproductive disorders associated with aberrant endometrial function, such as endometriosis, endometrial cancer, infertility and recurrent miscarriage, will yield important mechanistic insights into the underlying pathological pathways.

## Chapter 4

## Characterization of endometrial mesenchymal stem cells expanded in culture in response to TGF- $\beta$-Receptor blockade

### 4.1 Introduction

The endometrium is a highly dynamic tissue that undergoes cyclic waves of proliferation, differentiation (decidualization) and menstruation. Its extraordinary ability to adapt to changes, physiological or otherwise, depends on eMSCs (Gargett et al., 2016).
eMSCs are a rare group of cells (around 1-4\%) recently identified in the perivascular niche of the endometrium (Masuda et al., 2012; Schwab \& Gargett, 2007) from where they can be selectively isolated on basis of co-expression of two cell surface markers, CD140b and CD146 (Schwab \& Gargett, 2007), or with a single marker, SUSD2. By using a single marker, eMSCs can be isolated using magnetic-activated cell sorting, which results in a higher yield of viable cells when compared to flow cytometry and cell sorting (Masuda et al., 2012).
eMSCs are immune-privileged, clonogenic and self-renewing cells. eMSCs also exhibit high proliferative potential and have the ability to differentiate into more mature progeny and regenerate tissue (Gargett et al., 2016; Miyazaki et al., 2012; Wolff et al., 2007). The perivascular niche is a privileged site for eMSCs to contribute to cyclic endometrial regeneration and formation of the placenta during pregnancy (Murakami et al., 2014). eMSCs are also promising candidates for cellbased therapy for women's reproductive health disorders, including pelvic organ prolapse, urinary incontinence and regeneration of scarring endometrium in women affected by Asherman's syndrome (Darzi et al., 2016; Emmerson \& Gargett, 2016; Gargett \& Healy, 2011).

Because of their rarity, the use of eMSCs for clinical trials first requires their expansion in culture (Ulrich et al., 2013). As in the case of MSCs from other cell systems (Baxter et al., 2004), eMSCs spontaneously differentiate over several passages (Zhu et al., 2011; Ulrich et al., 2014; Barragan et al., 2016; Gargett et al., 2016). During prolonged expansion in culture, the telomeres of eMSCs become shortened due to replicative stress. Consequently, eMSCs lose their proliferative capacity as well as the ability to reconstitute tissue in vivo (Baxter et
al., 2004; Banfi et al., 2002). Therefore, the effectiveness of eMSCs in cell-based therapies is curtailed by the need for extended cultures.

The use of small molecules that modulates stem cell specification and function offers significant opportunities to study the cell biology and enhance our knowledge of the therapeutic potential of stem cells (Yu et al., 2014; Li et al., 2013). Small molecules can act as activators or repressors of signalling pathways. In this way, they regulate downstream gene transcription (Yun et al., 2014). The use of a TGF- $\beta$ type I receptor ALK4, 5 and 7 kinase inhibitor, A8301, to maintain self-renewal of induced pluripotent stem (iPS) cells in prolonged culture exemplified such approach (Li et al., 2009). A recent study showed that the use of a small molecule, A83-01, a selective inhibitor of TGF- $\beta$ type I receptor ALK4, 5 and 7 kinase, increases eMSC proliferation and prevents senescence, thereby maintaining the functional properties of eMSCs (Gurung et al., 2015). The use of small molecules, such as A83-01, which are purported to control selfrenewal and proliferative ability of eMSCs, might be an effective strategy to maintain eMSCs in a stem cell-like state during prolonged culture.

For clinical application, it is of paramount importance to understand the mechanisms underlying pharmacological expansion of eMSCs in culture. In this chapter, I validated the effect of A83-01-induced TGF- $\beta$-Receptor (TGF- $\beta$-R) blockade on the proliferative capacity of cultured eMSCs and the expression of stem cell markers. Furthermore, I combined RNA-sequencing with ATACsequencing to define the impact of TGF- $\beta-R$ inhibition on the transcriptome and chromatin landscape of cultured eMSCs.

### 4.2 Results

### 4.2.1 TGF- $\beta-R$ signalling pathway negatively regulates eMSC expansion in prolonged culture.

To assess the effect of the TGF- $\beta$-R inhibitor A83-01 on proliferation, eMSCs isolated from three independent human endometrial biopsies using SUSD2magnetic bead sorting were expanded in culture in the presence or absence of 1 $\mu \mathrm{M}$ A83-01 for 36 days. The cells were seeded at low density ( 10,000 cells/well in 24-well plate) and passaged on day 15, 22, 29 and 36. The plating density at passaging was 5,000 cells $/ \mathrm{cm}^{2}$. At each passage, the cells were counted using glasstic slide 10 with grids and cumulative cell population calculated as an indicator of proliferative potential.

As shown in Figure 4.1A, the effect of A83-01 on eMSC proliferation was consistent between different primary cultures (Figure 4.1A). Cumulative cell population was comparable between A83-01 treated and untreated cells up to 22 days in culture, after which cells treated with A83-01 exhibited a clear proliferation advantage (Figure 4.1B; $p<0.05$ ). The relative difference in cumulative cell population in 3 paired treated and untreated primary cultures at day 36 was $400 \%, 500 \%$, and $1,800 \%$ (Figure 4.1C).

The effect of the TGF- $\beta$-R inhibitor on cell proliferation was evaluated further by calculating the number of population doublings (PDs) using the following formula: $\mathrm{PD}=3.322 \log \mathrm{~N} / \mathrm{N} 0$, where N is the total cumulative cell number calculated at each passage and N0 represents the initial number of seeded primary cells (Pellegrini et al., 1999). The effect of A83-01 on the number of population doublings was consistent between different samples (Figure 4.2A). Figure 2B shows that, after the first 15 days of culture, A83-01 treatment progressively increased the number of PDs, confirming that A83-01 positively regulates the proliferative potential of eMSCs. A83-01 treatment consistently resulted in increased population doubling, although statistical significance, as determined by ANOVA, was not reached ( $p>0.05$ ).

Taken together, the data suggest that TGF- $\beta-\mathrm{R}$ signalling plays a role in limiting the proliferative potential of eMSCs maintained in continuous cultures. As the proliferative capacity of freshly isolated eMSCs is very high, A83-01 treatment conferred proliferation advantage only after 3 weeks in culture.


Figure 4.1. TGF- $\beta$-R inhibitor improves expansion of eMSCs in culture. Primary human eMSCs, isolated using SUSD2 magnetic bead sorting, were cultured with or without $1 \mu \mathrm{M}$ A83-01 for 5 weeks. (A) Individual biological replicates. (B) Relative change in cumulative cell population in 3 independent cultures. Data represent mean $\pm$ SEM; * indicates $p<0.05$. Note the logarithmic scale of the Y -axis. (C) Percentage change in cumulative cell population in eMSC cultures treated with A83-01 compared to untreated cultures at the indicated timepoints.


Figure 4.2. A83-01 increases population doubling (PD) in eMSCs. Proliferative activity was assessed by calculating the number of PDs according to the formula: $\mathrm{PD}=3.322 \mathrm{logN} / \mathrm{NO}$, where N is the total cumulative cell number calculated at each passage and NO represents the initial number of seeded primary cells. (A) Impact of A83-01 on PD of 3 individual primary cultures at the indicated time-points. (B) Relative change in population doublings. Data represent mean $\pm$ SEM of three independent samples.

### 4.2.2 Phenotyping of A83-01 treated eMSCs

eMSCs express specific surface markers that are widely used to define cell identity and stemness, including CD146, CD140b, SUSD2 and CD90 (Gargett \& Masuda, 2010). Co-expression of CD146 and CD140b (Schwab \& Gargett, 2007), or single marker SUSD2 (Masuda et al., 2012) can be used to selectively isolate eMSCs, using magnetic flow cytometry and magnetic bead sorting, respectively. However, magnetic isolation of clonogenic eMSCs increases the number of viable cells compared with flow cytometry, as it is less damaging to the cells (Schwab \& Gargett, 2007; Masuda et al., 2012). The percentage of CD146+ cells has been already previously shown not to change upon A83-01 treatment (Gurung et al., 2015), hence it was excluded for this analysis. CD90 is a marker of endometrial stromal cells, but not epithelial cells and it has been shown that SUSD2+ cells are predominantely CD90+ perivascular cells (Schwab et al., 2008; Gargett et al., 2016). Hence, it is been included in this study. To assess the effect of TGF- $\beta$-R inhibition on the expression of these phenotypic markers, A83-01 treated and untreated primary eMSCs were subjected to flow cytometry at day 36. This time-point was chosen as the impact of A83-01 on cell proliferation was apparent.

The effect of A83-01 on the expression of these surface markers was consistent between different eMSC cultures (Figure 4.3aA). The percentage of CD90 positive cells did not change upon TGF- $\beta-R$ blockade. By contrast, A83-01 treatment resulted in an increase in the percentage of CD140b- and SUSD2positive cells when compared to untreated eMSCs, although statistical significance was not reached ( $p>0.05$ ) (Figure 4.3aB-C; 43b).

Mean Fluorescence Intensity (MFI) was also calculated to evaluate if there was an increase in the abundance of cell surface molecules per cell. Again, A83-01 cellular effects were consistent between different primary cultures (Figure 4.4A, 4.5A and 4.6A). The MFI for CD90 expression did not change significantly upon A83-01 treatment, although the response was variable between cultures (Figure 4.4A-B). By contrast, the MFI of CD140b consistently increased in response to

A83-01treatment (Figure 4.5B) although statistical significance was not reached ( $p>0.05$ ). For SUSD2 expression, the MFI increased markedly in 2 out of 3 primary cultures (Figure 4.6A). This induction was not statistically significant when paired non parametric Wilcoxon test was applied (Figure 4.6B).

Altogether, these results confirm that A83-01 has a positive effect on the percentage of CD140b- and SUSD2-positive cells in prolonged culture. However, the data also reveal marked variation in the responsiveness of primary cultured eMSCs to A83-01. This intrinsic variability between primary cultures accounted for the lack of statistically significance.


Figure 4.3a. Surface phenotype of eMSCs cultured with or without A83-01. A83-01 cellular effects were consistent on different eMSC primary cultures (A). Flow cytometry analysis for three eMSC surface markers in 3 independent eMSC culture (B). Mean change ( $\pm$ SEM) in positive cells for the indicated cell surface markers. (C) Representative flow cytometry histograms of SUSD2 positive cells in eMSC cultures, treated with or without A83-01. The X -axis shows the fluorescence intensity and the Y -axis the number of cells (count); the grey curves represent the isotype control $\operatorname{lgG}$.


Figure 4.3b. Representative flow cytometry representation. These graphs show representative flow cytometry figures for SUSD2 marker in untreated (A-BC) and A83-01 treated eMSC (D-E-F) cultures, showing serial gating strategies. (A) Forward versus side scatter density plot used to gate cells of interest based on size and granularity. Based on light refraction, forward scatter area (FSC-A) indicates cell size and side scatter area (SSC-A) relates to granularity of the cells. (B). Forward scatter height (FSC-H) versus FSC-A density plot is used to exclude doublets. (C). Single paramenter histogram for identifying cells expressing SUSD2 marker. Similar gating strategies were used for flow cytometry analysis in A83-01 treated eMSC cultures.


Figure 4.4. Mean Fluorescence Intensity (MFI) of CD90 in A83-01 treated eMSCs. (A) MFI for CD90 in 3 independent eMSC cultures cultured for 36 days in the presence or absence of A83-01. Each graph represents an individual culture. (B) Relative change (mean $\pm$ SEM) in CD90 MFI.


Figure 4.5. CD140b MFI in response to A83-01 treatment of primary eMSCs cultured for 36 days. (A) MFI for CD140b in 3 independent eMSC cultures cultured in the presence or absence of A83-01. Each graph represents an individual culture. (B) Relative change (mean $\pm$ SEM) in CD140b MFI.


Figure 4.6. SUSD2 MFI in response to A83-01 treatment of primary eMSCs cultured for 36 days. (A) MFI for SUSD2 in 3 independent eMSC cultures cultured in the presence or absence of A83-01. Each graph represents an individual culture. (B) Relative change (mean $\pm$ SEM) in SUSD2 MFI.

### 4.2.3 Impact of A83-01 treatment on clonogenicity of cultured eMSCs

Inhibition of TGF- $\beta$-R signalling pathway has been purported to increase eMSC colony efficiency in late passage (Gurung et al., 2015). To validate this observation, in vitro colony-forming unit-fibroblast (CFU-F) assay was performed to investigate the impact of A83-01 treatment on colony formation.
eMSCs were cultured with or without A83-01 for 2 passages (29 days) and then seeded at a low density ( 50 cells $/ \mathrm{cm}^{2}$ ) to allow colony formation and treated further for 2 weeks. Again, the response to A83-01 treatment was consistent between primary cultures, although the magnitude of the response markedly varied (Figure 4.7A). Blockade of TGF- $\beta-\mathrm{R}$ signalling increased the ability of eMSCs to form colonies when compared to control cultures (Figure 4.7B), although statistical significance was not reached ( $p>0.05$ ). Haematoxylin stained representative colonies of three independent cultures are shown in Figure 4.7C. In addition, colonies generated by A83-01 treated eMSCs were smaller and more rounded (Figure 4.7C, bottom right panel), compared to more elongated clonal cells resulting from control (untreated) cultures (Figure 4.7C, top right panel).

Data showed that TGF- $\beta$-R signalling blockade increases the ability of eMSCs to form colonies, although the magnitude of the A83-01 effect differs between primary cultures.


Figure 4.7. A83-01 positively regulates eMSC clonal efficiency. (A). Colony forming unit efficiency was determined in 3 primary eMSC cultures treated with or without A83-01. Each graph represents an individual culture. (B) Mean change ( $\pm$ SEM) in colony forming capacity upon A83-01 treatment compared to untreated cultures.. (C) Representative images of eMSC colonies established from untreated (control) and A83-01 treated cultures. The right panel shows higher magnification (10X) images of colonies. Typically, clonal cells following A83-01 were smaller and lacked the elongated fibroblast-like morphology of untreated cells

### 4.2.4 Changes in gene expression as result of A83-01 treatment

My next aim was to define the molecular mechanisms through which A83-01 maintains cells in a more undifferentiated state upon prolonged culture. Hence, total RNA obtained from three paired eMSC cultures, treated with or without of the TGF- $\beta$-R inhibitor for 36 days, was subjected to RNA-sequencing. This timepoint was chosen because it clearly showed the proliferation advantage of A8301 treated compared to control cultures (Figure 4.1).

Briefly, eMSCs were selectively isolated from 3 independent endometrial biopsies using magnetic bead sorting and treated with or without TGF- $\beta-R$ inhibitor for 36 days. RNA libraries, generated using RNA samples with a RIN > 8.0, were sequenced on the Illumina HiSeq3000. Fifty million single end reads were sequenced per sample, with a read length of 50 bp . PCA was performed on the rlog transformation of the counts from DESeq to explore how the samples clustered or segregated. In this analysis, Principal Component 1 (PC1), which accounted for $48.10 \%$ of variation in gene expression, reflected intrinsic differences in primary cultures. It clustered the treated samples 63 and 64 apart from the 74 ; and the control samples 64 and 74 apart from 63. As aforementioned, intrinsic variation in the responsiveness of primary cultures was also observed in the functional assays (Figure 4.2-4.7). PC2, which accounted for $28.44 \%$ of variation in gene expression, separated control from A83-01 treated cultures, thus reflecting the effect of TGF- $\beta$-R blockade on gene expression (Figure 4.8). Based on $q<0.05$, DESeq identified a robust list of 1,463 differentially expressed genes between control and treated cultures (Figure 4.9). Out of 1,463 differentially expressed genes, 759 (52\%) were up-regulated and 704 (48\%) were down-regulated following A83-01 treatment. All the differentially up- and down- regulated genes are listed in Appendix 5 and 6, respectively.


Figure 4.8. PCA of A83-01 treated and untreated eMSCs. PCA of RNAsequencing data from three independent eMSC cultures, treated with or without A83-01 for 36 days. PC1 segregated different primary cultures, whereas PC2 reflects the response to treatment.


Figure 4.9. Average gene expression levels between A83-01 treated and untreated eMSC cultures. The scatter plot shows the average expression of differentially expressed genes between control and A83-01 treated libraries. Red dots represent significantly differentially expressed genes ( $q<0.05$ ), whereas black dots are no differentially expressed genes. The axes show the average gene expression levels expressed as log2 transformed counts normalized to library size.

To identify genes most enriched or depleted upon A83-01 treatment, differentially expressed genes were ranked according to the log2-fold change. The top three most up-regulated genes were $\operatorname{DMKN}\left(q=8.28 \times 10^{-28}\right)$, $\operatorname{DPP} 6\left(q=1.35 \times 10^{-19}\right)$ and CPVL $\left(q=4.09 \times 10^{-18}\right)$. DMKN encodes for dermokine, a protein upregulated in inflammatory diseases (Naso et al., 2007); DPP6 encodes for dipeptidyl-peptidase 6, a transmembrane protein (Van Es et al., 2008); and CPVL encodes a carboxypeptidase that cleaves a single amino acid from the carboxyl termini of peptides (Mahoney et al., 2001).

The top three most down-regulated genes were CST1 ( $q=2.80 \times 10^{-64}$ ), PMEPA1 ( $q=1.67 \times 10^{-57}$ ) and LINC00643 ( $q=7.08 \times 10^{-37}$ ). CST1 encodes for cystatin SN, a cysteine protease inhibitor (Cao et al., 2015); PMEPA1 encodes for prostate transmembrane protein androgen induced 1, a transmembrane protein with a SMAD interacting motif (Koido et al., 2016); and LINC00643 encodes for long intergenic non-protein coding RNA 643 (Figure 4.10).

Next, I ranked all genes differentially regulated by A83-01 in prolonged cultures on basis of the abundance of transcript levels, i.e. transcripts per million (TPMs). Out of the top 50 most abundantly expressed genes in prolonged eMSC cultures, 7 were up-regulated in response to A83-01 treatment and 43 were downregulated. Interestingly, 20 out of the 43 down-regulated genes encode ECM proteins or factors involved in ECM turn-over. Figure 4.11 shows the repression of these genes in response to A83-01 treatment. The TPMS of these genes ranged between 342.33 to 14,586.59. Notable examples of A83-01 repressed ECM genes include COL1A1 (collagen type I alpha chain; $q=1.37 \times 10^{-9}$ ), COL1A2 (collagen type I alpha 2 chain; $q=1.44 \times 10^{-3}$ ) and SPARC (secreted protein acidic and cysteine rich; $q=8.43 \times 10^{-4}$ ).

ECM production by fibroblasts is a well characterized response to injury. In the case of tissue damage, fibroblasts transit from a quiescent to an activated state, where TGF- $\beta$ signalling, amongst others signalling pathways, activates genes
encoding for ECM proteins and cytoskeletal remodelling (Nakerakanti \& Trojanowska, 2012; Biernacka et al, 2011).

Taken together, the results suggest that inhibition of TGF- $\beta-\mathrm{R}$ signalling maintains eMSCs in a less differentiated state by preventing fibroblast activation in prolonged culture.

Most A83-01 responsive genes


Figure 4.10. Top A83-01 responsive genes. The data show relative changes in gene expression, shown as log2-fold change, of the most A83-01 responsive genes in eMSC cultures treated with A83-01 compared to control.


Figure 4.11. ECM genes down-regulated in response to A83-01 treatment.
Graphs showings changes in level of gene expression of ECM genes negatively
regulated by TGF- $\beta$-R inhibitor, represented as changes in TPMs. Data represent mean $\pm$ SEM; Y-axis shows TPMs; * indicates $q<0.05$, ** $q<0.01$ and *** $q<$ 0.001 .

### 4.2.5 Gene ontology analysis and genes of interest

GO analysis

GO enrichment analysis was performed using the Database for Annotation, DAVID v. 6.8 to characterize differentially expressed genes in eMSC A83-01 treated compared to untreated cultures. Based on $p<0.05$, GO analysis revealed that up- and down- regulated genes in response to A83-01 treatment were enriched for 61 and 72 categories, respectively, encompassing biological processes, cellular components, and molecular functions (Appendix 7 and 8, respectively). As shown in Figure 4.12A, up-regulated genes were enriched for intracellular receptor signalling pathways ( $p=4.54 \times 10^{-4}$ ) and regulation of cell growth ( $p=7.76 \times 10^{-4}$ ). Collagen catabolism $\left(p=1.73 \times 10^{-13}\right)$ and cell fate commitment ( $p=4.29 \times 10^{-3}$ ) were GO terms enriched in genes negatively regulated upon A83-01 treatment. Significantly enriched GO terms for both upand down-regulated genes were visualized using Reduce and Visualize Gene Ontology (REVIGO) server (Figure 4.12).

A
GO categories upregulated upon A83-01 treatment


B


Figure 4.12. Enrichment and depletion of biological processes upon A83-01 treatment. GO enrichment analysis was applied to differentially expressed genes and the significant GO annotations ( $p<0.05$ ) summarized using REVIGO and clustered based on semantic similarities, which means that if they are described by a common ontology they cluster close in the graph. (A) GO categories associated to the up-regulated genes. (B) GO categories enriched for downregulated genes. The colour key is represented on the right. The most highly enriched GO categories are indicated in blue. The size of the circles reflects the frequency of the GO term.

## eMSC and perivascular markers

Mining of the RNA-seq sequencing data for established eMSC markers revealed that A83-01-induced TGF- $\beta$-R blockade markedly upregulated the expression of SUSD2, consistent with increase in the SUSD2- positive cells and MFI for the same marker shown by flow cytometry (Figure 3.3 and 3.6). However, manual mining of the RNA-seq data also revealed that A83-01 treatment resulted in the downregulation of other notable perivascular markers (Murakami et al., 2014, including MCAM $\left(q=3.97 \times 10^{-2}\right), E L N\left(q=7.83 \times 10^{-15}\right)$ and $\operatorname{MYH11}(q=4.43 \times$ $10^{-2}$ ) (Figure 4.13).


Figure 4.13. eMSC and perivascular markers. Selected eMSC and perviscular markers. The data show relative change, expressed as log2-fold change, in gene expression in cultures treated with A83-01 compared to control

### 4.2.6 Identification of eMSC-associated genes regulated by A83-01

In a previous study in our laboratory, RNA-sequencing was used to determine the transcriptome profiles of clonal eMSCs and time-matched unselected perivascular cells (PVCs). Briefly, total mRNA was isolated of eMSCs subjected to clonal assay for 12 days and matched to primary PVCs also cultured for 12 days. To determine if A83-01 maintains cultured eMSCs in a less differentiated state, I examined the overlap in differentially expressed genes in both datasets. Figure 4.14 shows a graphic representation of the two datasets compared in this part of the study.


Clonogenic eMSCs vs short-term cuktured PVCs

Figure 4.14. 'Untreated vs A83-01 treated eMSCs' vs 'Clonal eMSCs vs short-term cultured PVCs'. Graphic representation of the two datasets compared. (A) shows dataset one where freshly isolated eMSCs were cultured in the presence or absence of TGF- $\beta-R$ inhibitor for 36 days and then subjected to ATAC-seq and RNA-seq. (B) represent dataset two where clonal eMSCs were subjected to CFU assay for 12 days and compared to primary PVCs cultured for 12 days. At day 12 clonal eMSCs and PVCs were subjected to RNA-seq.

Comparison between the two dataset showed that A83-01 treated cells and clonal eMSCs share 38 commonly upregulated genes, including SUSD3 ( $q=1.36 \times 10$ $\left.{ }^{11}\right), \operatorname{LPAR3}\left(q=2.67 \times 10^{-5}\right)$ and ITGA8 $\left(q=7.07 \times 10^{-6}\right)$ (Figure 4.15A-B). The Human Protein Atlas was used to determine the spatial expression of these genes in the endometrial tissue (Uhlén et al, 2015), particularly in the perivascular niche. As shown in Figure 4.16 (left panel), immunohistochemistry analysis revealed that SUSD3 (sushi domain containing 3), LPAR3 (lysophosphatidic acid receptor 3), and ITGA8 (integrin subunit alpha 8) are indeed expressed in cells surrounding the terminal spiral arteries, in keeping that eMSCs reside predominantly in the perivascular niche (Masuda et al., 2012).

A total of 120 genes were commonly down-regulated in both A83-01 and clonal eMSCs and included several genes coding for extracellular matrix (ECM) proteins such as MFAP5 $\left(q=1.07 \times 10^{-5}\right)$, FN1 $\left(q=2.35 \times 10^{-8}\right)$, and $\operatorname{VCAN}(q=2.72 \times$ $10^{-7}$ ) (Figure 4.17). Again, the Human Protein Atlas was used to annotate the cellular distribution of these genes in the perivascular regions of the endometrial tissue. As shown in Figure 4.16B, MFAP5 (microfibrillar associated protein 5), FN1 (fibronectin) and VCAN (versican) were abundantly expressed in the stromal compartment but less prominently in perivascular cells around the terminal spiral arteries.

Taken together, these results suggest that A83-01-induced TGF- $\beta-R$ blockade upon prolonged eMSC culture only partly recapitulates the gene signature of clonal eMSCs. In keeping with the known role of TGF- $\beta$ in regulating ECM (Verrecchia \& Mauviel, 2002), the effect of A83-01 on eMSCs in prolonged culture may equally relate to the inhibition of ECM components in prolonged cultures.

A


Figure 4.15. A83-01 treated and clonogenic eMSCs share a set of commonly upregulated genes. (A) Venn diagram showing overlap of 38 genes commonly upregulated both in A83-01 treated and clonogenic eMSCs (Log2-fold change $\geq$ 1; $q<0.05$ ). (B) Heatmap representing the gene expression level of the 38 commonly upregulated genes, which are listed on the right. The colour key is represented above the heat map, the most highly enriched genes are indicated in red.


Upregulated genes

Figure 4.16. Cellular distribution of A83-01 responsive genes in cycling human endometrium. (A) The Human Protein Atlas was mined to determine the tissue distribution of 3 proteins (SUSD3, LPAR3, and ITGA8) associated with clonal eMSCs and induced at mRNA level in prolonged cultures in response to A83-01. (B) The same resource was also mined to determine the tissue distribution of 3 proteins (MFAP5, FN1, and VCAN) down-regulated in clonal eMSCs as well as in response to A83-01 treatment of prolonged eMSC cultures. Overall, the selected A83-01 induced genes were more prominent expressed at protein level around the terminal spiral arteries whereas the opposite pattern of expression was apparent for A83-01 repressed genes.



Figure 4.17. A83-01 treated and clonogenic eMSCs share a set of commonly downregulated genes. (A) Venn diagram showing overlap of 120 genes commonly downregulated both in A83-01 treated and clonogenic eMSCs (log2fold change $\leq-1 ; q<0.05$ ). (B) Heatmap showing gene expression level of 120 commonly downregulated genes, which are listed on the right. The colour key is represented above the heat map, the most highly enriched genes are indicated in red. The heatmap was divided into two parts because of the size.

GO analysis of eMSC-associated genes induced by A83-01

GO enrichment analysis of the 38 commonly upregulated genes, i.e. eMSCs versus PVCs and A83-01 treated versus untreated cultures, was performed to identify relevant biological processes.

Based on $p<0.05$, GO analysis showed enrichment for eight GO terms, including 'positive regulation of collateral sprouting' $\left(p=1.56 \times 10^{-2}\right)$, 'oxidation-reduction process' ( $p=2.79 \times 10^{-2}$ ) and 'negative regulation of endothelial cell migration' ( $p$ $=3.48 \times 10^{-2}$ ). GO term associated to 'positive regulation of collateral sprouting' included EFNA5 (ephrin A5) and LPAR3 (lysophosphatidic acid receptor 3); 'oxidation-reduction process' included PTGS2 (prostaglandin-endoperoxide synthase 2; also known as cyclooxygenase-2 or COX-2) and VATL1 (vesicle amine transport 1 like); and 'negative regulation of endothelial cell migration' included DLL4 (delta-like canonical Notch ligand 4) and SLIT2 (slit guidance ligand 2). Interestingly, enrichment analysis of the 38 commonly up-regulated genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed enrichment of the 'vascular endothelial growth factor (VEGF) signalling pathway' ( $p=9.57 \times 10^{-3}$ ), that included RAC2 (Rac family small GTPase 2), PTGS2 (prostaglandin-endoperoxide synthase 2) and PLA2G4A (phospholipase A2 group IVA) (Figure 4.18A).

GO analysis of the 120 commonly downregulated genes showed depletion of ten biological processes. The most significantly ( $p<0.05$ ) down-regulated were 'ECM organization' $\left(p=2.95 \times 10^{-5}\right)$ and 'cell adhesion' $\left(p=1.28 \times 10^{-4}\right)$. 'ECM organization' category included ELN (elastin) and FN1; 'cell adhesion' included TGFBI (transforming growth factor beta induced) and CDH2 (cadherin 2). Enrichment analysis of KEGG pathway showed depletion for seven categories, for example 'signalling pathways regulating pluripotency of stem cells' ( $p=1.17$ $\times 10^{-2}$ ) and 'cell adhesion molecules (CAMs)' ( $p=1.23 \times 10^{-2}$ ) (Figure 18B). 'Signalling pathways regulating pluripotency stem cells' included FGFR2 (fibroblast growth factor receptor 2) and WNT2 (Wnt family member 2); and 'cell
adhesion molecules (CAMs)' included JAM2 (junctional adhesion molecule 2) and CLDN1 (claudin 1).

A
Biological Processes associated with up-regulated genes


- axon guidance
- positive regulation of collateral sprouting
- negative regulation of endothelial cell migration
- regulation of neurogenesis
- memory
- oxidation-reduction process
- retinal ganglion cell axon guidance
- positive regulation of smooth muscle contraction

B
KEGG Pathways associated with up-regulated genes


- Axon guidance - VEGF signaling pathway - Ras signaling pathway

C
Biological Processes associated with down-regulated genes


```
- extracellular matrix organization
- calcium-dependent cell-cell adhesion
- skeletal system development
- homophilic cell adhesion
- synapse assembly
```

- cell adhesion
- lung development
- angiogenesis
- positive regulation of epithelial cell proliferation
- glucose metabolic process

D
KEGG Pathways associated with down-regulated genes


- Rap1 signaling pathway
- Cell adhesion molecules (CAMs)
- Pathways in cancer
- Arginine and proline metabolism
- Signaling pathways regulating pluripotency of stem cells
- Dilated cardiomyopathy
- Ovarian steroidogenesis

Figure 4.18. A83-01 treatment partly recapitulates stem cell features. Enrichment analysis of biological processes and KEGG pathways associated with the 38 and 120 commonly up- (A-B) and down-regulated (C-D) genes, respectively, in both RNA-sequencing datasets: A83-01 treated versus untreated cultured eMSCs and clonal eMSCs versus PVCs. The pie charts showed the
significantly enriched (A-B) or depleted categories (C-D), and the numbers indicate the number of genes contained in each identified biological process or KEGG pathway.

Divergent transcriptomic profiles between clonal and A83-01 treated eMSCs in prolonged culture

Inhibition of TGF- $\beta-\mathrm{R}$ signalling differentially regulated genes that partly recapitulated gene signature of clonal eMSCs, but also resulted in a unique gene signature. Specifically, A83-01 treatment induced 160 genes that were downregulated in the clonal eMSCs when compared to PVCs (Figure 4.19). Also, TGF- $\beta$-R blockade negatively regulated 58 genes, which were enriched in clonal eMSCs when compared to PVCs (Figure 4.20). To identify biological processes associated with these discordant genes, I performed further GO analysis. The top three most significant ( $p<0.05$ ) GO terms uniquely induced in the A83-01 treated eMSCs were 'negative regulation of substrate adhesion-dependent cell spreading' $\left(p=1.43 \times 10^{-4}\right)$, 'response to retinoic acid' $\left(p=3.4 \times 10^{-4}\right)$ and 'regulation of systemic arterial blood pressure by renin-angiotensin' $(p=9.07 \times$ $10^{-4}$ ). The top three most negatively downregulated by A83-01 whereas were 'collagen catabolic process' ( $p=7.13 \times 10^{-4}$ ), 'extracellular matrix disassembly' ( $p=0.02$ ), and 'cellular response to vitamin D ' $(p=0.02)$. It is notable that GO terms related to ECM were down-regulated in prolonged eMSC cultures treated with A83-01.

Taken together, the comparison of the two RNA-seq data sets revealed that TGF-$\beta$-R blockade upon prolonged culturing of eMSCs partly recapitulates the identity of clonal eMSCs, but also modulates a distinct gene network, consisting of 218 genes. A preponderance of genes selectively inhibited by A83-01 in prolonged eMSC culture relate to ECM proteins and ECM turnover.



Figure 4.19. Discordant genes between A83-01 treated and clonogenic eMSCs. (A) Venn diagram showing overlap of 160 genes differentially regulated in A83-01 treated and clonogenic eMSCs ( $q<0.05$ ). (B) Heatmap representing expression level of the 160 discordant genes, which are listed on the right. Again, the heatmap was divided into two parts because of its size.
B

NR2F1-AS1
MMP16 SPRY2 SSTR1 COL7A1 MMP11 TTYH3 NR2F1 KIAA1549 TOX MAP3K7CL TRPA1
MFAP2 CD163L1 ATP2B1 NCKAP5 ADAMTS17 SRPX2 GALNT5 SLC4A4 LRRC61 PIK3R3
ISM1
SLC38A4
GSG1 RASGRF2
CXXC4
MLLT11 TNC PCDH9 HSD17B2 POU2F2 ELFN2 CHN1
F2RL2 LYPD1 SPON2 TFAP2A LRRC17 F2RL1 LRP1B LRRTM3 FAM196B
SEMA3D
ST6GAL2
SLC14A1
MXRA5
AL121578.2
PKIA
NPBWR1
SYTL5
TENM4
HMCN1
TNFSF15
CST4
COL10A1
MMP10
CST1

Figure 4.20. Discordant genes between A83-01 treated and clonogenic eMSCs. (A) Venn diagram showing overlap of 58 genes differentially regulated in A83-01 treated and clonogenic eMSCs $(q<0.05)$. (B) Heatmap representing expression level of 58 discordant genes, which are listed on the right.

### 4.2.7 Disease state associated to A83-01-responsive genes

Next, DAVID v6.8 was used to determine the association between A83-01 responsive genes in prolonged eMSC cultures and disease states.

Interestingly, a conspicuous association was apparent between genes upregulated upon A83-01 treatment of eMSCs and metabolic and vascular disorders (Figure 4.21), especially 'carotid artery diseases' (fold enrichment = 23) and 'diabetes mellitus type 2' (fold enrichment $=23$ ). Term related to 'carotid artery diseases' included three genes encoding APOE (apolipoprotein E), AGT (angiotensin) and ACE (angiotensin I converting enzyme); and 'diabetes mellitus type 2' included NOS3 (nitric oxide synthase 3), APOE and ACE.

Interestingly, 'endometrial neoplasms' (fold enrichment =13) and 'breast and prostate cancer' (fold enrichment $=4$ ) were depleted upon A83-01 treatment (Figure 4.22). 'Endometrial neoplasm' included MMP2 (matrix metallopeptidase 2), MMP7 (matrix metallopeptidase 7) and ESR1 (estrogen receptor 1); and 'breast and prostate cancer' included HSD17B2 (hydroxysteroid 17-beta dehydrogenase 2), IGF2 (insulin like growth factor 2) and PRL (prolactin receptor).

This analysis revealed a potential association between genes differentially regulated upon A83-01 and disease state. However, this does not necesserarly mean that induction or depletion of a particulary set of genes, related to a specific disease, is translated in a disorder. However, alterations of these genes might increase the risk. As the number of genes in each enriched GO term was limited, the data should be interpreted with caution.

# Diabetic Nephropathiesarterialdiseasses 


Carotid Artery Diseases lasesulaf Disisessess
lasular Diseases esophaggeal varices Diahetes Mellitus Type 2 cerebral white matter esion Sumany htaty ivess


Figure 4.21. Selected disease states associated to upregulated genes upon A83-01 treatment. Enrichment analysis of the significantly upregulated genes and their correlation with disease states. The size of the words describing the identified disorders is directly proportional to their fold enrichment (fold change values between 10 and 23).


Figure 4.22. Selected disease states associated to downregulated genes upon A83-01 treatment. Enrichment analysis of the significantly downregulated genes and their correlation with disease states. The size of the words describing the identified disorders is directly proportional to their fold enrichment (fold change values between 3 and 13).

### 4.2.8 Differential regulation of transcription factors upon A8301 treatment

Differentially expressed genes in A83-01 treated and untreated cultures were further interrogated to identify transcription factors (TFs) regulated in response to TGF- $\beta$-R inhibition.

Based on $q<0.05$, a robust list of 104 differentially expressed TFs in response to A83-01 treatment was identified. RARB (retinoic acid receptor beta; $q=1.06 \times$ $10^{-33}$ ); WT1 (Wilms tumor $1 ; q=4.94 \times 10^{-16}$ ), and HEYL (hes related family bHLH transcription factor with YRPW motif-like; $q=2.21 \times 10^{-10}$ ) were amongst the most highly enriched TFs. Highly repressed TFs included MEOX1 (mesenchyme homeobox $1 ; q=1.06 \times 10^{-12}$ ), ESR1 (estrogen receptor $1 ; q=7.04 \times 10^{-29}$ ), and EGR2 (early growth response $2 ; \mathrm{q}=6.59 \times 10^{-11}$ ) (Figure 4.23).

Out of the 104 A83-01 responsive TFs, only 8 were concordantly regulated between clonal eMSCs and matched PVSCs. A83-01-responsive TFs enriched in clonal eMSCs included TFAP2C (transcription factor AP-2 gamma), HOXB3 (homeobox B3) and TOX2 (TOX high mobility group box family member 2). Conversely, A83-01-responsive TFs downregulated upon differentiation of clonal to PVSCs included DLX5 (distal-less homeobox 5), ZFHX2 (zinc finger homeobox 2) and ZNF853 (zinc finger protein 853).


Figure 4.23. Changes in TF expression upon A83-01 treatment. Inhibition of TGF- $\beta-R$ signalling pathways alters expression of genes encoding TFs. Graph shows expression of selected significantly up- and down-regulated TFs (log2-fold change $\geq 1$ and $\leq-1$ ).

### 4.3 Discussion

Cell reprogramming via the use of small molecules that modulates stem cell specification and function offers significant opportunities to study the cell biology and enhance our knowledge of the therapeutic potential of stem cells (Yu et al., 2014; Li et al., 2013). Compared to genetic tools, the use of small molecules for cell reprogramming provide several advantages, for example their effect is reversible, that means that they can temporally regulate cellular function. This allows to yield sufficient amounts of homogeneous cells for clinical applications. Also, small molecules can be used in synergy with other factors, and this may improve their efficacy (Li et al., 2012). Small molecules can act as activators or repressors of signalling pathways. In this way, they regulate downstream gene transcription (Yun et al., 2014). The use of a glycogen synthase kinase (GSK) 3 inhibitor to maintains the pluripotency of induced pluripotent stem (iPS) cells exemplified such approach (Takahashi \& Yamanaka, 2006; Li et al., 2009; Ying et al., 2008; Silva et al., 2008).

A recent study showed that inhibition of TGF- $\beta-\mathrm{R}$ signalling, through TGF- $\beta-\mathrm{R}$ inhibitor A83-01, promotes eMSC proliferation, maintaining their clonogenic phenotype and preventing spontaneous differentiation (Gurung et al., 2015). The use of A83-01 as a signalling pathway modulator has provided a robust tool to generate amount in the large scale manufacture of homogenous eMSC populations for clinical applications. Understanding gene expression programs and mapping of altered chromatin accessibility in response to A83-01 treatment is required to realize regulatory mechanisms that maintains eMSCs in an undifferentiated state.

Data confirmed that TGF- $\beta-R$ inhibition enhances proliferative ability of eMSCs as shown by increased cumulative cell population and number of PDs upon treatment. Furthermore, data revealed that TGF- $\beta-R$ blockade maintains clonogenic phenotype of MSCs. Specifically, A83-01 positively regulated the number of CD140b- and SUSD2- positive cells in prolonged culture and increase for the same markers. Also, results confirmed that TGF- $\beta$-R blockade improves
the ability of cultured eMSCs to form colonies, preventing loss of clonogenicity. Notably, results showed marked variation in the responsiveness of primary cultured eMSCs to treatment, underlying the intrinsic variability between primary cultures.

Gene profiling of cultured eMSCs upon A83-01 treatment revealed that TGF- $\beta$-R blockade involves wholesale reprograming of the transcriptome. The resulting differentially expressed genes are implicated a broad range of functions. For example, A83-01 treatment resulted in upregulation of genes involved in intracellular receptor signalling pathways and regulation of growth, and downregulation of genes encoded for collagen catabolism and cell fate commitment. Notably, RNA-seq revealed upregulation of SUSD2, consistent with flow cytometry data showing increase in the percentage of SUSD2- positive cells and MFI for the same marker. Conversely, transcriptomic profiling revealed depletion of perivascular markers, such as MCAM, MYH11 and ELN.

Mining of the data revealed that TGF- $\beta-\mathrm{R}$ inhibition repressed the expression of numerous genes encoding for ECM components, including COL1A1, COL1A2 and SPARC. ECM production is a well characterized response to injury and TGF$\beta$ signalling is master regulator. More accurately, in the case of tissue damage, fibroblasts transit from a quiescent to an activated state, where TGF- $\beta$ signalling, amongst others signalling pathways, activates genes encoding for ECM proteins and cytoskeletal remodelling (Nakerakanti and Trojanowska, 2012; Biernacka, A., et al, 2011). This suggests that the effect of TGF- $\beta$-R blockade in maintaining eMSCs in a less differentiated state might be mediated by preventing fibroblast activation and limiting ECM deposition in prolonged culture. Hence, it would be interesting to validate the induction of ECM genes at a mRNA and protein level through RT-qPCR and western blot, although time limitations prevented me of pursuing this line of investigation any further.

To determine if A83-01 induces a stem cell signature, I compared the transcriptome profile of A83-01 treated and untreated eMSCs with the RNA-seq data obtained from another dataset, comparing clonal eMSCs to time-matched unselected PVCs.

This analysis revealed a dataset of shared genes accounting for 38 concordant up- and 120 concordant down- regulated loci. Interestingly, functional annotation of the commonly down-regulated genes highlighted an abundance of genes encoding for ECM components or associated to ECM organization.

For therapeutic application, it is of paramount importance to ensure that A83-01 treatment does not alter expression level of transcripts associated to clinical disorders. Functional annotation revealed a majority to be associated with metabolic and vascular disorders, which might alert in terms of clinical use. On the other hand, analysis of the data showed that TGF- $\beta$-R blockade correlates with downregulation of genes associated to cancer, reassuring for a safe use of these cells in regenerative medicine.

Taken together, the current findings suggest that A83-01 effect might be related to prevention of fibroblast activation.

## Chapter 5

Analysis of dynamic chromatin changes in cultured eMSCs upon TGF- $\beta$-R inhibition

### 5.1 Introduction

eMSCs are a rare and promising source of cells for cell-based therapy for women with reproductive disorders, largely because of their self-renewal and differentiation properties (Darzi et al., 2016). As in the case for other cell types, eMSC identity results from a specific gene expression pattern. Chromatin organization and a dynamic epigenetic code govern differential expression of the transcripts. Epigenetic modifications, including nucleosome positioning, TF binding and chromatin regulators, DNA modifications (e.g. acetylation, methylation, sumoylation etc.) alter genomic structure, thereby sequestering some DNA regions and leaving others open or accessible to TF binding (Chen \& Dent, 2014).

Chromatin profiling of bone-marrow MSCs in prolonged culture revealed that changes in acetylation level of histone $3(\mathrm{H} 3)$ negatively regulated the expression of pluripotency factors, such as octamer-binding transcription factor 4 (OCT4) and SRY-box 2 (SOX2) (Li et al., 2011). Other studies also showed that during MSC differentiation, changes in gene expression pattern correlate, amongst others, with dynamic changes in histone modifications (Herlofsen et al., 2013). Understanding of the interplay between genomic modifications and TFs regulating chromatin remodelling is a prerequisite for clinical applications of MSCs.

Gurung et al. (2015) provided a promising approach to promote eMSC proliferation in prolonged culture while preventing differentiation. In the previous chapter, I examined the impact of TGF- $\beta$-R blockade on the transcriptome of cultured eMSCs. Transcriptomic analysis of the differentially expressed genes revealed a wholesale transcriptomic reprogramming in cultured eMSCs treated with A83-01 compared to untreated cultures.

These changes in gene expression pattern must be underpinned by a dynamic genomic remodelling. I postulated that TF binding sites enriched or depleted in opening or closing chromatin loci, respectively, will provide further insights into
the mechanisms of A83-01 action. To test this hypothesis, in this chapter I used ATAC-seq as a robust method to accurately probe regions of differential chromatin opening effective also on rare group of cells.

### 5.2 Results

### 5.2.1 Analysis of chromatin landscape in cultured eMSCs

To map the changes in chromatin accessibility, primary eMSCs were treated with or without TGF- $\beta-\mathrm{R}$ inhibitor for 36 days. The nuclei were harvested and processed for ATAC-seq. ATAC-seq libraries, with a size distribution between 150 and 600 bp, were sequenced on the Illumina HiSeq1500. Twenty-five million paired end reads were sequenced per sample, with a read length of 50 bp . As for the RNA-sequencing, PCA was performed to assess the effect of TGF- $\beta-R$ inhibition on chromatin landscape of cultured eMSC. In this analysis, PC1, which accounted for $43.26 \%$ of variation in chromatin opening, separated A83-01 treated and untreated cultures, reflecting the effect of TGF- $\beta-R$ inhibition on chromatin accessibility. PC2, which accounted for $27.01 \%$ of variation in chromatin opening, reflected intrinsic differences in primary cultures. It separated the control samples 63 and 64 from 74; and treated samples 63 and 64 from 74 (Figure 5.1).

DESeq was used to identify differential ATAC-seq peaks, reflecting genomic regions of active chromatin opening or closing. Based on $q<0.05$, DESeq revealed a total of 5,967 differential ATAC-seq peaks. Specifically, 3,555 (60\%) and $2,412(40 \%)$ genomic regions significantly opened or closed following A8301 treatment over 36 days, respectively. Out of 5,967 peaks, $31 \%$ and $29 \%$ of the opening and closing ATAC-seq peaks, respectively, fell within - 10 to +1 kilobases (kb) around TSSs. For example, RARB, TGFBR3 (transforming growth
factor beta receptor 3) and SUSD2 showed increased chromatin accessibility at and upstream of their proximal promoters upon inhibition of TGF- $\beta-\mathrm{R}$ signalling (Figure 5.2A-C). Cross-referencing with RNA-seq data showed a significant increase in RARB, TGFBR3 and SUSD2 transcript levels in response to A83-01 treatment ( $q<1.1 \times 10^{-32}, q<1.23 \times 10^{-21}$ and $q<2.72 \times 10^{-4}$, respectively). Conversely, CADM1, WNT5A and COL1A1 are three examples of genes repressed upon TGF- $\beta$-R inhibition. As shown in Figure 5.3, downregulation of CADM1 and COL1A1 is associated with closure of their proximal promoters whereas silencing of WNT5A is mediated by closure of a distal enhancer. Again, cross-referencing of the ATAC-seq data with transcriptomic analysis data revealed an association between chromatin remodelling and differential gene expression. Specifically, TGF- $\beta$-R inhibition negatively regulated the expression levels of CADM1 $\left(q<1.93 \times 10^{-46}\right)$, COL1A1 $\left(q<1.37 \times 10^{-9}\right)$ and WNT5A $(q<$ $5.0 \times 10^{-30}$ ).

Dynamic chromatin changes at specific loci alter binding of TFs and thus gene expression. Because TFs can both activate and repress transcription, the correlation between dynamic changes in chromatin landscape and gene expression is not necessarily linear. Nevertheless, analysis of 200 loci associated with the most dynamic ATAC-seq peaks revealed that opening and closing loci (within 10 kb of the TSS) correlate with increased and decreased expression of nearby genes, respectively $\left(p=1.0 \times 10^{-6}\right)$ (Figure 5.4).

Taken together, the ATAC-seq data provided a genome-wide map of chromatin remodelling in response to TGF- $\beta$-R inhibition in prolonged eMSC cultures. Next, I interrogated the informative ATAC-seq peaks to gain insight into the cisregulatory landscape that underpins the transcriptional reprogramming of eMSCs upon A83-01 treatment.


Figure 5.1. PCA of A83-01 treated and untretaed eMSCs. PCA of ATAC-seq data from three paired eMSC cultures, treated in the presence or absence of TGF- $\beta$-R inhibitor for 36 days. PC1 explains variation due to A83-01 treatment, whereas PC2 explians variability due to different primary cultures.


Figure 5.2. Representative opening ATAC-seq peaks. Representative ATACseq peaks showing transition from closing to opening chromatin upstream the promoter of RARB (A), TGFBR3 (B) and SUSD2 (C). Black and red traces represent untreated and A83-01 treated eMSC cultures. The X-axis shows the genomic location of the ATAC-seq peaks and genes. The Y -axis shows the frequency of Tn5 cutting.


Figure 5.3. Representative closing ATAC-seq peaks. Differential ATAC-seq peaks showing closing transition from opening to closing chromatin of the proximal promoter of CADM1 (A) and COL1A1 (B) and of a distal enhancer of WNT5A (C) in response to A83-01. Black and red traces represent untreated and A83-01 treated eMSC cultures. The X-axis shows the genomic location of the ATAC-seq peaks and genes. The Y -axis shows the frequency of Tn5 cutting.


Figure 5.4. Differential chromatin opening correlates with gene expression changes in A83-01 treated eMSCs. Changes in chromatin landscape of eMSCs in response to TGF- $\beta$-R inhibition correlate with differential regulation of gene expression. Box plots showing increase or decrease in transcript levels of 200 genes (within 10 kb of the TSS) associated with the most open and closed ATACseq peaks. $Y$-axis shows relative changes in transcript levels, expressed as log2fold change: +ve and -ve values relate to up- and down-regulated genes, respectively. X-axis shows ATAC-seq peaks clustered in opening and closing peaks. Green dots represent the genes and the red asterisk represents mean log2-fold change ( $p=1.0 \times 10^{-6}, t$-test).

### 5.2.2 TF Binding Motif Discovery

To gain insights into cis-regulatory landscape underpinning differential gene expression in response to TGF- $\beta-\mathrm{R}$ inhibition, de novo short sequence motif enrichment analysis using HOMER was performed on 3,555 opening and 2,412 closing ATAC-seq peaks.

A total of 19 motifs (Opening M1-19) were significantly enriched in opening ATAC-seq peaks and 17 motifs (Closing M1-17) were significantly overrepresented in closing ATAC-seq peaks (Figure 5.5). To identify putative TFs likely to be involved in the binding of the identified motifs, I integrated the short sequence motifs with known TF databases and further examined the expression level of the presumable binding TFs. This analysis revealed a number of motifs enriched in opening and closing ATAC-seq peaks corresponded to high affinity binding sites for TFs enriched or depleted in response to A83-01 treatment, respectively. CEBPB, CEBPD, nuclear receptor subfamily 4 group A member 1 (NR4A1; also known as NUR77), RAR related orphan receptor A (RORA) and forkhead box P2 (FOXP2) were amongst the most plausible differentially induced TFs with high binding affinity for motifs enriched in opening ATAC-seq peaks. Conversely, downregulation of transcription factor 21 (TCF21), TGF $\beta$ induced factor homeobox 2 (TGIF2) and nuclear transcription factor Y subunit alpha (NFYA) in response to A83-01 treatment corresponded to loss of accessibility of their respective high affinity binding sites (Figure 5.6).



Figure 5.5. Enrichment of TF binding motifs in opening and closing genomic regions. Total of 19 and 17 TF binding motifs enriched in the opening and closing ATAC-seq peaks, respectively. The frequency (\%) of peaks (blue bars) containing a given motif is shown relative to genomic regions randomly selected from the genome (orange bars) ( $\pm 50 \mathrm{~Kb}$ from TSS, matching size, and GC/CpG content.


Figure 5.6. Differentially regulated TFs matched to enriched and depleted short sequence binding motifs. Bar graph showing enriched and depleted binding motifs coupled with the most plausible differentially expressed TFs, based on motif specificity. In the bar graph, the frequency (\%) of peaks (blu bars) containing the motif is shown relative to genomic regions randomly selected from the genome (orange bars) ( $\pm 50 \mathrm{~Kb}$ from TSS, matching size, and GC/CpG content). $P$ indicates the $p$-value of the short sequence binding motifs.

### 5.3 Discussion

In this chapter, I examined the interplay between gene expression pattern and dynamic epigenetic code that govern the identity and function of eMSCs in extended culture. Because of their scarcity in tissues, it is challenging to investigate chromatin state of adult MSCs in general. ATAC-seq enables to overcome this limitation. It provides a robust method for genome-wide analysis of the chromatin structure of rare cellular types.

It is quite apparent that A83-01-induced TGF- $\beta$-R blockade provides a powerful approach for eMSC expansion in prolonged culture. In Chapter 4, I provided evidence that TGF- $\beta$-R blockade prevents loss of proliferative capacity of eMSCs in prolonged culture. Transcriptional profiling indicated that A83-01 partly maintains the expression of genes associated with stemness and, importantly, inhibits genes associated with fibroblast activation. ATAC-seq analysis provided unbiased analysis of the changes in the cis-regulatory landscape that underpin the cellular responses to A83-01 treatment.

By integrating the transcriptomic and ATAC-seq analysis, I was able to assign 12 A83-01 induced TFs to high-affinity binding motifs enriched in opening chromatin loci. Conversely, 3 TFs repressed in response to A83-01 corresponded loss of high affinity binding sites. Some of the most highly enriched cis-regulatory motifs showed high affinity for TFs implicated in eMSC differentiation, for example CEBPB and RORA (Frith \& Genever, 2008; Myamoto et al., 2012). Hence, their role in maintaining cultured eMSCs in an undifferentiated state needs further investigation. However, this analysis also revealed some interesting new pharmacological targets to enhance in vitro expansion of eMSCs even further. For example, induction of NR4A1 transcript levels in A83-01 treated cells corresponded to enrichment in putative NR4A1 binding sites. NR4A1, also known as NUR77, is an orphan nuclear receptor that belongs to steroid-thyroid hormoneretinoid receptor superfamily. NR4A1 was recently identified as an endogenous inhibitor of TGF- $\beta$ signalling (Palumbo-Zerr et al., 2015). Nr4a1-null mice exhibit pronounced dermal thickening, massive deposition of collagen, and higher
myofibroblast counts when compared to wild-type mice. Furthermore, lack of Nr4a1 in mice results in exacerbated fibrosis in two model of skin fibrosis. The use of small molecules that function as NR4A1 agonists can restore its activity, re-activating an endogenous negative regulation of TGF- $\beta$ signalling. Hence, they can be used as potential treatment to inhibit fibrosis (Palumbo-Zerr et al., 2015). Importantly, cytosporone-B is a small molecule that acts as a selective agonist for NR4A1 (Zhan et al., 2008). Cytosporone-B increases the nuclear retention of NR4A1 in cultured fibroblasts. In wild-type mice with a constitutively active TGF-$\beta$-R type I, the use of Cytosporone-B results in a down-regulation of TGF- $\beta$ target genes, reduces collagen production and inhibits myofibroblast differentiation. Nr4A1-null mice are not responsive to Cytosporone-B. Moreover, it also has antifibrotic effects, as exemplified by its therapeutical effects in TGF- $\beta$-R type Iinduced skin fibrosis and bleomycin-induced pulmonary fibrosis (Palumbo-Zerr et al., 2015). Hence, it would be interesting to test if cytosporone-B could either replace or synergise with A83-01 to enhance expansion of eMSCs in prolonged culture.

Taken together, TF binding motif discovery and mining of the RNA-seq data revealed enrichment and depletion of putative TFs likely to be involved in the regulation of chromatin configuration underlying the wholesale transcriptomic reprogramming. Interestingly, this exercise yielded a potential novel pharmacological target that might be used enhance in vitro expansion of eMSCs.

## Chapter 6

## Discussion

## Discussion

Cell-specific responses to a given cue, whether hormones, growth factors, cytokines, chemokines or stress signals, are not only determined by the level of expression and activation status of relevant receptors, signal transduction pathways and downstream TFs but also by the organisation of the chromatin on which TFs act in conjunction with interacting partners, such as co-activators, corepressors, histone-modifying protein complexes and the basal transcriptional machinery (Chen \& Dent, 2014).

The structural subunit of chromatin is the nucleosome. It contains approximately 147 bp of DNA wrapped almost twice around a central octamer composed of two molecules each of the four core histones: H2A, H2B, H3 and H4. Generally, the compact structure of the nucleosome prevents TF binding (Kornberg, 1974). Upon chromatin remodelling, active promoters are often depleted of nucleosomes, forming 'nucleosome-depleted regions' that are flanked by relatively unstable nucleosomes containing the histone variants H2A.Z and H3.3 (Jin \& Felsenfeld, 2007). Similarly, enhancers, which are regulatory elements typically located far from their target promoters, are often associated with nucleosomes containing H2A.Z and H3.3, and specific histone modifications. Further, high-throughput chromosome conformation capture (3C)-derived (Dekker et al. 2002) methods have revealed that chromatin is organised in open and closed compartments that tend to be spatially segregated depending on their transcriptional activity (Lieberman-Aiden et al. 2009). At a local level, functionally related genes have been shown to be brought close in space to be transcribed in a correlated fashion during cell differentiation. These genes, which may map to different chromosomes, are organized in spatial clusters that sometimes referred to as transcriptional "factories" (Osborne et al. 2004; Cavalli 2007).

Modulation of chromatin architecture regulates differential exposure of DNA to binding of transcriptional regulators and hence dictates activation or repression of transcription (Voss \& Hager, 2014). 'Initiating factors' localize chromatin remodelling proteins and histone modifiers at specific cis-regulatory elements of
the genome, partly due to the fact that they share common features with histone linkers and hence exhibit the ability of binding nucleosomes and chromatin (Zaret \& Caroll, 2011). Pioneers factors, including FoxA and GATA proteins (Bossard \& Zaret, 1998; Gualdi et al., 1996; Cirillo et al., 1998; Cirillo \& Zaret, 1999), steroid receptors (Swinstead et al., 2016), are a special category of proteins capable to penetrate and open highly compacted DNA structures in coordination with ATPdependent chromatin remodelling complexes, allowing other TF binding (Zaret \& Caroll, 2011). Single-molecule tracking (SMT) experiments showed that pioneer factors have highly transient genomic interactions, displaying a DNA residence time of about 9 sec . This suggests that highly dynamic chromatin/factor interactions initiate regulatory events that modulate chromatin accessibility and ultimately regulate gene expression (Swinstead et al., 2016).

Genome-wide chromatin accessibility mapping assays, including DNase-seq (Thurman et al., 2012; Piper et al., 2013, Tsompana \&Buck, 2014), FAIRE-seq (Giresi et al., 2007; Simon et al., 2012) and the recently identified ATAC-seq (Buenrostro et al., 2013; Buenrostro et al., 2015) directly probe accessible chromatin regions that contain cis-regulatory elements, such promoters, enhancers and other regulatory elements (Valouev et al., 2011; Consortium, 2012; Thurman et al., 2012, Myong et al., 2016). Global identification of DNAprotein interactions in the genome can be studied using 'digital genomic footprinting' (Hesselberth et al., 2009), where short sequence motifs refractory to nuclease digestion infer factor occupancy (Thurman et al., 2012; Baek et al., 2012). This approach provides a good alternative to ChIP-seq, providing higher resolution and avoiding antibody issues (Sung et al., 2016).

ATAC-seq is an advanced genome-wide analysis method that enables mapping of chromatin accessibility and regulatory networks through footprinting analysis and can be applied to rare populations of cells (Buenrostro et al., 2013). Hence, in this work, I applied ATAC-seq to identify dynamic changes in the cis-regulatory DNA landscape underpinning decidualization of EnSCs and in the maintenance of a stem-like phenotype of eMSCs in prolonged cultures.

## Mapping of dynamic chromatin changes in decidualizing EnSCs

Decidualization is a profound transformation of EnSCs from fibroblast-like to secretory decidual cells that occurs 'spontaneously' in menstruating species (Brosens et al., 2006). Decidual transformation involves large-scale gene expression changes (Gellersen \& Brosens, 2014; Takano et al., 2007). Genomewide remodeling of the chromatin architecture underlies the wholesale transcriptomic reprogramming upon decidualization (Munro et al., 2010; Zelenko et al., 2012). Gene expression profiling studies revealed that genes coding for epigenetic modulators are up-regulated during decidualization, and they include histone-modifiers and binding proteins, DNA methyltransferases and CpGbinding proteins. This suggests that a dynamic epigenetic code operates on the chromatin landscape of the EnSCs during decidualization and is responsible of the acquisition of the decidual identity (Grimaldi et al., 2012). Specifically, an example is provided by declining expression level for the histone methyltransferase enhancer of Zeste homolog 2 (EZH2) during decidualization. This results in a gradual loss of trimethylation of histone 3 on lysine 27 (H3K27me3) within the proximal promoters PRL and IGFBP1. A coordinated loss of methylation and gain of acetylation at the same loci results in increased accessibility of the chromatin, which is indicative of a positive regulation fo the transcription. This chromatin remodelling underpins the acquisition of decidual phenotype (Grimaldi et al., 2011). Also, another study indicates that the use of the DNA methylation inhibitor 5-aza-2'-deoxycytidine in human EnSCs alters genomic conformation and results, amongst others, in the up-regulation fo decidual genes involved in cellular properties that feature decidual cells, for example ECM organization and cell adhesion (Logan et al., 2010). Conversely, inhibition of methylation prior to and after implantation in the mouse impairs decidualization and correlates with pregnancy failure (Gao et al., 2012). These observations suggest that a dynamic epigenetic code operates on the chromatin structure as decidualization unfolds.

In this work, I first optimised ATAC-seq and applied the technique to primary EnSCs to map the genome-wide changes in chromatin landscape upon decidualization, a process critical for embryo implantation and placenta formation (Gellersen \& Brosens, 2014; Salker et al., 2011). I reasoned that this differentiation model would be informative as several lines of evidence showed that a dynamic epigenetic code operates atop the cis-regulatory landscape in decidualizing cells (Grimaldi et al., 2012; Zelenko et al., 2012; Munro et al., 2010).

A total of 185,084 regions of accessible chromatin were mapped in EnSCs and, based on a stringent criterion (Bonferroni adjusted $p<0.05$ ), 1,225 and 278 loci opened or closed upon decidualization, respectively. Approximately 27 \% of dynamic loci located within 10 kb upstream of TSSs. Changes in genomic accessibility at major decidual genes, such as PRL and IGFBP1, confirmed the ability of ATAC-seq to accurately map changes in the cis-regulatory elements of the chromatin. Independent primary cultures, either undifferentiated or decidualized for 4 days, were subjected to RNA-seq. In line with previous studies (Gellersen \& Brosens, 2014; Kuroda et al., 2013; Brar et al., 2001; Giudice, 2004; Lu et al., 2008; Takano et al., 2012), RNA-seq revealed that decidualization is associated with wholesale reprogramming of EnSC functions, exemplified by the induction and repression of 1,432 and 1,499 genes, respectively. Although different cultures were used, integrated ATAC-seq and RNA-seq analyses revealed a strong association between changes in DNA accessibility within 10 kb of the promoter and in gene expression.

De novo binding motif discovery using HOMER (Heinz et al., 2010) revealed that decidualization of EnSCs is associated with enrichment and depletion of 17 and 7 short sequence motifs, respectively. Analysis of footprints confirmed protein occupancy in 22 out of 24 binding motifs, suggesting TF binding in the majority of the biding sites. Highly enriched motifs in the opening ATAC-seq peaks included high affinity binding sites for known decidual TFs, including CEBPB/CEBPD, FOSL2, FOXO1, PGR, and STAT3/STAT5 (Gellersen \& Brosens, 2014; Mazur et al., 2015; Kaya et al., 2015; Jiang et al., 2015; Kim et al., 2005). Previous studies reported that interaction between TFs can differently modify chromatin accessibility (Christian et al., 2002; Christian et al., 2002; Lynch
et al., 2009). Evidence of TF cooperation in regulating decidual gene expression was also apparent in the footprint analysis. For example, cross-referencing of ATAC-seq data with published ChIP-seq data showed that enrichment for both FOXO1 and PGR binding sites correlate opening chromatin (Mazur et al., 2015; Vasquet et al., 2015). However, binding sites with high affinity for FOSL2 in the absence of PGR were enriched in closing chromatin regions. These observations fit well with the fact that FOSL2 physically interacts with PGR in decidualizing cells, making it a member of the growing family of PGR co-activators (Mazur et al., 2015).

Cross-referencing the binding motifs in the ATAC-seq data with RNA-seq data revealed putative TFs not yet implicated in decidualization. For example, transcript levels of RORA, ARNTL, and MEIS1 increase upon decidualization in parallel with enrichment of high-affinity binding sites for these TFs in opening ATAC-seq peaks. Conversely, down-regulation RUNX1, RUNX2, SOX12, TCF3 and ETS1 upon decidualization correlated with depletion of high affinity binding sites.

The role of these putative novel transcriptional regulators in decidual transformation of EnSCs requires further investigation. Time limitations prevented me of pursuing this line of investigation any further, although a graduate student subsequently demonstrated that siRNA-mediated knockdown of ARNTL, TCF3 and NFE2L1 perturbed the induction of PRL and IGFBP1 in decidualizing cultures. Knockdown of RUNX1 had little impact on the expression of decidual marker genes, although this does not necessarily preclude a role for this TF in other processes.

The ATAC-seq analysis of undifferentiated and decidualizing EnSCs is important on multiple levels. First, it provides an important resource to analyse chromatin changes associated with differential gene expression at specific loci. The footprint analysis provides insight into the transcriptional drivers of genes of interests, although confirmation still requires ChIP-PCR or cross-referencing with existing ChIP-seq data sets. Nevertheless, the ATAC-seq data will greatly facilitate mechanistic analysis of the pathways and downstream TFs that regulate specific
genes or gene networks. Second, although beyond the scope of my investigations, additional bioinformatics analysis yielded important insights into the emergence of 'spontaneous' decidualization in evolution (Gellersen \& Brosens, 2014). In most mammals, decidualization is triggered by the implanting embryo. However, in menstruating species, i.e. higher primates, four species of bats, the elephant shrew and the common (Cairo) spiny mouse, decidualization is 'spontaneous', meaning that it is initiated during the mid-luteal phase of each cycle, independently of an implanting embryo. It is thought that spontaneous decidualization in primates and other species evolved independently (Bellofiore et al., 2017; Emera et al., 2012). In keeping with this model, ATAC-seq analysis revealed overrepresentation of primate-specific transposable elements, especially Alu repeats, in opening chromatin loci in decidualizing cells. The overrepresented Alu elements are conserved in menstruating but not in nonmenstruating primates, suggesting that this transposable element was co-opted in the cis-regulatory landscape that drives spontaneous decidualization (Norris et al., 1995; Mason et al., 2010). Finally, my analysis provided proof of principle that ATAC-seq is a powerful tool to screen rapidly for dynamic chromatin changes in human endometrial cells. I envisage that applying this technique to various reproductive disorders associated with aberrant endometrial function, such as endometriosis, endometrial cancer, infertility and recurrent miscarriage, will yield important mechanistic insights into the underlying pathological pathways.

## Integrated ATAC-seq/RNA-seq analysis of eMSCs expanded in culture

I spent the second half of my PhD in the laboratory of Professor Caroline Gargett where I explored strategies to improve our understanding of the therapeutic potential of eMSCs in regenerative medicine.

The endometrium offers a new, readily available source of MSCs for cell-based therapy for women with reproductive health disorders, including Asherman's syndrome and POP (Patel et al., 2008; Bockeria et al., 2013; Darzi et al., 2016). For example, it has been recently shown that eMSCs seeded on
polyamide/gelatin meshes could improve clinical outcomes for POP treatment. They promoted angiogenesis, showed anti-infallmatory properties and differentiated into smooth cells and fibroblasts, when transplanted in an immunocompromised mouse. Based on these promising findings, a large animal model, such as ovine, has been developing as new system to explore if autologous transplanted eMSCs function through paracrine effect or if they differentiated themselves into epithelial and muscle cells of the vagina (Gargett et al., 2016). However, as in the case for adult MSCs from other tissues, the relative scarcity of eMSCs necessitates significant expansion of cells in culture for clinical applications (Baxter et al., 2004; Ulrich et al., 2013). eMSCs spontaneously differentiate during prolonged culture (Zhu et al., 2011; Ulrich et al., 2014; Gargett et al., 2016), lose their clonogenicity as well as their ability to reconstitute tissue in vivo (Baxter et al., 2004; Banfi et al., 2002).

A recent study showed that selective inhibition of TGF- $\beta-\mathrm{R}$ signalling using a small molecule, A83-01, increases proliferative potential and maintains the functional properties of eMSCs during prolonged culture (Gurung et al., 2015). For clinical application, it is of paramount importance to understand the mechanisms underlying pharmacological expansion of eMSCs in culture. My study was predicated on the observation that A83-01 can be used as chemical approach to modulate cell identity (Li et al., 2013). My aim was to map the genome-wide changes in chromatin landscape and gene expression in response to A83-01 treatment of eMSCs and to provide insights into the mechanisms of action of this compound.

First, I validated the effect of A83-01-induced TGF- $\beta-\mathrm{R}$ inhibition on the proliferative ability of eMSCs and expression of stem cell markers during prolonged culture. A83-01 conferred a clear proliferative advantage as demonstrated by cumulative population doubling. However, as freshly eMSCs are highly proliferative, the effect was only apparent after 22 or more days in culture. Next, flow cytometry analysis was used to assess expression of phenotypic markers. This analysis revealed that A83-01 treatment increases the percentage of CD140b- and SUSD2- positive cells as well as the MFI for the indicated markers. Hence, A83-01 maintains the surface phenotype of eMSCs
during prolonged culture. However, despite this effect of A83-01 on the expression of surface markers being consistent between different primary cultures, changes were not significantly difference. This underlies the intrinsic differences between different primary cultures, which should be taken into account for therapeutic use. Finally, CFU-F assays revealed that A83-01 treatment increases clonal efficiency, thus attenuating loss of clonogenicity during culture expansion. Again, the magnitude of the effect of treatment varied between primary cultures. A recent study showed that the abundance of eMSCs correlates inversely with increased body mass index (Murakami et al., 2014). In addition, eMSC deficiency has also been associated with recurrent pregnancy loss (Lucas et al., 2016). These observations raise the possibility that clinical variables determine the ability of eMSCs to be expanded in culture as well as the responsiveness of the cells to TGF- $\beta$-R inhibition. Hence, additional studies are required to determine the factors that determine the proliferative capacity of eMSCs in vitro.

Next, I hypothesized that TGF- $\beta-R$ blockade with A83-01 induced a reprogramming of gene expression responsible for the resulting undifferentiated state. Hence, to explore the effect of A83-01 on the genome-wide expression profile of expanded eMSCs, I performed RNA-seq. PCA revealed that TGF- $\beta$-R blockade results in a differential gene expression and, interestingly, underscored intrinsic variability between different primary cultures. Transcriptomic analysis of the differentially expressed genes showed, amongst others, that genes implicated in regulation of cell growth and cell fate commitment were induced and repressed, respectively. These observations supported the results generated from the functional analyses, demonstrating that A83-01 increases proliferative potential and prevents differentiation of expanded eMSCs. SUSD2 transcript levels were upregulated in response to A83-01 treatment in accordance with the flow cytometry data. However, the RNA-seq analysis did not confirm an increase in transcript levels of genes encoding either CD140b (PDGFRB) or other perivascular markers (Murakami et al., 2014), such as MCAM, ELN and MYH11.

Mining of the data revealed that TGF- $\beta-\mathrm{R}$ inhibition repressed the expression of numerous genes encoding for ECM components, including COL1A1, COL1A2
and SPARC. ECM production is a well characterized response to injury and TGF$\beta$ signalling is master regulator. More accurately, in the case of tissue damage, fibroblasts transit from a quiescent to an activated state, where TGF- $\beta$ signalling, amongst others signalling pathways, activates genes encoding for ECM proteins and cytoskeletal remodelling (Nakerakanti and Trojanowska, 2012; Biernacka, A., et al, 2011). Hence, this suggests that the effect of TGF- $\beta$-R blockade in maintaining eMSCs in a less differentiated state might be mediated by preventing fibroblast activation and limiting ECM deposition in prolonged culture.

To determine if A83-01 induces a stem cell signature, I compared the transcriptome profile of A83-01 treated and untreated eMSCs with the RNA-seq data obtained from another dataset, comparing clonal eMSCs to time-matched unselected PVCs. Concordant and discordant differentially expressed genes were extracted from these data sets. This analysis revealed that TGF- $\beta-R$ inhibition only partly recapitulates the transcriptional profile of clonal eMSCs. Interesting, attenuated expression of genes encoding for ECM constituents was both a feature of A83-01 treated eMSCs in prolonged cultures and clonal cells in CFU-F assays. These observations underscore my assumption that the effect of A83-01 on eMSCs in prolonged culture relate, at least in part, to the inhibition of genes coding ECM components.

Transcriptional profiling revealed that A83-01 partly maintains the expression of some genes associated with stemness (e.g. SUSD2) and, importantly, inhibits genes associated with fibroblast activation. However, RNA-seq analysis does not provide insight into the TF network that mediates the cellular responses to A8301 treatment. ATAC-seq analysis provided unbiased analysis of the changes in the cis-regulatory landscape that underpin the cellular responses to A83-01 treatment. I hypothesized that the responsiveness to A83-01-induced TGF- $\beta-\mathrm{R}$ blockade was dependent upon genome-wide remodelling of the chromatin architecture, which in turn enables recruitment or release of TFs likely responsible of maintaining eMSCs in an undifferentiated state during culture.

ATAC-seq revealed a wholesale remodelling of chromatin landscape and mapped genomic regions that dynamically change in response to the treatment.

Chromatin remodelling at specific loci alters binding of TFs and thus gene expression and because TFs can both activate and repress transcription, the correlation between dynamic changes in chromatin landscape and gene expression is not necessarily linear (Chen \& Dent, 2014). Nevertheless, analysis of 200 genes associated with open and closed chromatin regions revealed a strong statistical correlation between changes in gene expression and differentially organized chromatin. There was ample evidence of the importance of chromatin remodelling at specific loci in modulating expression of nearby genes. For example, induction of RARB, TGFBR3 and SUSD2 correlated with increased chromatin accessibility at, and upstream, of their promoters. Conversely, down-regulation of CADM1, CLO1A1 and WNT5A was associated with loss of chromatin accessibility at proximal promoters and distal enhancers.

De novo short sequence binding motifs using HOMER revealed enrichment and depletion of TF binding motifs upon opening or closing of chromatin. Combining ATAC-seq and RNA-seq identified several putative TFs likely to be involved in chromatin remodelling. Some of the most highly enriched cis-regulatory motifs showed high affinity for TFs implicated in eMSC differentiation, for example CEBPB and RORA (Frith \& Genever, 2008; Miyamoto et al., 2012). Hence, their role in maintaining cultured eMSCs in an undifferentiated state merits further investigation. Interestingly, footprint analysis also yielded some novel putative pharmacological targets that ultimately may enhance in vitro expansion of eMSCs even further. For example, RNA-seq data showed that A83-01 markedly increases NR4A1 expression, which in the ATAC-seq data was paralleled by genome-wide enrichment for NR4A1 binding site in A83-01 treated eMSCs. NR4A1, perhaps better known as NUR77, is nuclear receptor that negatively regulates TGF- $\beta$ signalling and prevents prolonged fibroblast activation, thereby limiting fibrosis (Palumbo-Zerr et al., 2015). These intriguing findings suggest that up-regulation of NR4A1 in A83-01 treated eMSCs functions as an endogenous inhibitor of TGF- $\beta$ signalling. Further, Palumbo-Zerr et al. (2005) showed that NR4A1 reduces collagen production, which again is in accordance with the A8301 responses in prolonged cultures. Interestingly, NR4A1 is an orphan nuclear receptor and its transcriptional activity can be enhanced using small molecules such as cytosporone-B (Zhan et al., 2008). Hence, it would be interesting to test
if cytosporone-B, alone and in synergy with A83-01, promotes in vitro expansion of eMSCs.

A83-01 treatment of cultured eMSCs exemplifies of how the use of small molecules can be an effective alternative to genetic approaches to regulate cellular states. In comparison to genetic manipulations, i.e. overexpression or silencing of specific TFs or signalling intermediates, reversibility is perceived as a major advantage of the use of chemically defined culture medium for MSC expansion (Li et al., 2013). However, in view of the extensive chromatin remodelling induced by A83-01, questions are raised regarding the degree of reversibility upon withdrawal of this inhibitor. Again, combined ATAC-seq and RNA-seq analyses provide a robust tool to answer these questions in exquisite detail. Arguably, total or near-total reversibility of the A83-01 effects is likely an important step in overcoming the regulatory hurdles associated with clinical translation.

In summary, by integrating advanced genome-wide expression and DNA accessibility profiling techniques, my work has advanced our understanding of the dynamic changes in the cis-regulatory DNA landscape underpinning decidualization of primary endometrial cells and maintenance of a stem-like phenotype of eMSCs in prolonged cultures. Analyses of these two large data sets revealed novel transcriptional regulators in cycling endometrium and putative new targets that could be exploited to accelerate clinical translation of autologous endometrial stem cell therapies for a variety of reproductive disorders. Furthermore, the data sets generated during the course of my investigations constitute an important resource to interrogate fundamental molecular questions pertaining to human endometrial cell biology.

## Future work

Analysis of dynamic chromatin changes in human decidualizing endometrial stromal cells revealed novel transcriptional regulators that might play a role in licencing specific genomic regions for chromatin remodelling upon decidualization.

The role of these putative transcriptional regulators in decidual transformation of EnSCs requires further investigation. Experimentally, Real Time quantitative PCR (RT-qPCR) and western blot could be applied to validate the induction of TFs of interest at a transcript and protein level. ChIP-qRT-PCR or crossreferencing with available ChIP-seq data (e.g. ENCODE database), would provide confidence in the transcriptional regulation of genes of interest by specific TFs. Furthermore, silencing of the most highly ranked conserved TFs by siRNAmediated gene silencing could be performed to validate their role upon decidualization. Time limitations prevented me of persuing this line of investigation even further, although a graduate student subsequently demonstrated that siRNA-mediated knockdown of ARNTL, NFE2L1 and TFC3 perturbated the induction of PRL and IGFBP1 in decidualizing cultures.

Furthermore, my analysis provided proof of principle that ATAC-seq is a powerful toll to screen rapidly for dynamic chromatin changes in human endometrial stromal cells. I envisage that applying this assay to various reproductive disorders associated with aberrant endometrial function, such as endometriosis, endometrial cancer, infertility and recurrent miscarriage, will yield important mechanistic insights into the underlying pathological pathways.

As part of my Warwick-Monash alliance studentship, I then joined the laboratory of Professor Caroline Gargett in Melbourne, Australia, where I applied RNA-seq and ATAC-seq analyses to study the impact of TGF- $\beta$-R signalling inhibition on eMSCs maintained in prolonged culture. Amongst others, a consistent and prominent gene signature in the RNA-seq data involves down-regulation of genes involved in ECM deposition and metabolism. Furthermoe, my analysis indicated, amongst others, the induction of Nur77 that may be an important TF that mediate
the repression of ECM genes in response to A83-01 treatment. Hence, it would be interesting to focus on these results and validate the induction of Nur77 at mRNA and protein level through RT-qPCR and westeren blot, respectively. As next step, it would be then interesting to test if the selective Nur77 agoinist cytosporone B, alone or in synergy with A83-01 promotes in vitro expansion and clonogenicity.

Time limitations prevented me of persuing this line of investigations, although these experiments are ongoing in our laboratory.

## Appendices

Appendix 1. Opening Motifs coupled to high affinity TFs

| Opening <br> Motifs | $\boldsymbol{P}$ | Matches to Known Motifs |
| :--- | ---: | :--- |
| Motif1 | 1E- |  |
|  | CEBPE/CEBPB/CEBPD/CEBPG/CEBPA/HLF/DBP/TEF |  |
| Motif2 | 1E-83 | AP-1/BATF/JDP2/FOS-JUN/FOSL2/Jun- |
| Motif3 | 1E-64 | Isgf3g/Foxj3/Foxo1/Foxd2/Foxp2/Foxp1/Foxp3/Foxl1/Fox |
| Motif4 | 1E-45 | Pgr/Gre/PR/ARE/NR3C2/NR3C1/AR/Sox13 |
| Motif5 | 1E-28 | Bcl6/Stat5a/Stat4/Stat1/Stat3/Stat5/Stat6 |

Appendix 2. Closing Motifs coupled to high affinity TFs

| Closing <br> Motifs | $\boldsymbol{P}$ | Matches to Known Motifs |
| :--- | ---: | :--- |
| Motif1 | $1 \mathrm{E}-$ | Tead1/Tead3/Tead4/Tead2/Spib/Nfatc1/Sox17/Nfatc3 |
|  | 32 |  |
| Motif2 | $1 \mathrm{E}-$ | Runx1/Runx2/Runx3/Znf354c/Foxk1/foxh1 |
|  | 26 |  |
| Motif3 | $1 \mathrm{E}-$ | Sox8/Sox17/Tead2/Tead4/Tead3/Stat6/Sox5 |
|  | 18 |  |
| Motif4 | $1 \mathrm{E}-$ | Sox5/Sry/Sox18/Sox30/Sox9/Sox12/HMG/Sox5/Sox13/Sox8 |
|  | 15 |  |
| Motif5 | $1 \mathrm{E}-$ | Zbtb18/Tcfe2a/Tal1-Tcf3/Ascl1/Scl/Ascl2/Atoh1/Scl/Tcf3 |
|  | 14 |  |
| Motif6 | $1 \mathrm{E}-$ | Pu.1/Sfpi1/Ets1/SpiB/Etv6/EHF/Etv2/Erg/Elf5 |
|  | 12 |  |
| Motif7 | $1 \mathrm{E}-$ | Hand1-Tcf3/Tead3/Tead4/Zbtb3/Tead2/Smad3/Tead1/Zfp410 |
|  | 12 |  |
|  |  |  |

Appendix 3. Up-regulated genes upon decidualization: Log2fold change $\geq 1$

| Gene Symbol | log2-fold change | $q$ |
| :---: | :---: | :---: |
| SST | 10.47197586 | 1.96E-126 |
| IGFBP1 | 10.04965709 | 5.32E-98 |
| LRRC15 | 7.385318639 | 7.45E-63 |
| PRL | 7.248956321 | 2.6E-93 |
| PROK1 | 7.113095846 | 1.15E-61 |
| PTPN5 | 7.065324986 | 2.51E-39 |
| RP11-480G7.1 | 6.849292565 | $2.78 \mathrm{E}-38$ |
| CGA | 6.83131967 | $1.57 \mathrm{E}-30$ |
| NTRK1 | 6.787199825 | 2.4E-46 |
| TMEM132C | 6.435175832 | 1.32E-48 |
| WNT4 | 6.31380214 | 1.26E-53 |
| SH2D2A | 6.267299957 | 1.17E-55 |
| MYLK3 | 6.13304507 | 1.16E-39 |
| TREM1 | 6.079634179 | 2.96E-37 |
| RP11-162I7.1 | 6.028422193 | 2.4E-21 |
| SORCS1 | 5.983804669 | 2.72E-48 |
| ALOX15B | 5.981615407 | $1.09 \mathrm{E}-24$ |
| ZBTB16 | 5.94979952 | 5.95E-32 |
| GPBAR1 | 5.895475533 | $1.39 \mathrm{E}-27$ |
| $\begin{aligned} & \text { RP11- } \\ & \text { 1260E13.4 } \end{aligned}$ | 5.833965583 | $2.31 \mathrm{E}-25$ |
| PRIMA1 | 5.814874592 | 3.33E-33 |
| LEFTY2 | 5.780800776 | $5.28 \mathrm{E}-28$ |
| ACTBP8 | 5.722620317 | 3E-17 |
| TRABD2B | 5.69109739 | 1.46E-35 |
| SLC46A2 | 5.640934147 | $1.13 \mathrm{E}-16$ |
| ADORA2BP | 5.529117037 | 6.96E-16 |
| CXCL14 | 5.527608904 | 1.36E-26 |


| IL1RL1 | 5.387245456 | 9.52E-15 |
| :---: | :---: | :---: |
| EDNRB | 5.246106726 | $1.04 \mathrm{E}-25$ |
| CHI3L2 | 5.207649519 | 2.61E-25 |
| OMD | 5.192877801 | 1.27E-30 |
| SIGLEC7 | 5.180944105 | 1.95E-15 |
| RP11-362F19.1 | 5.120734832 | 8.85E-38 |
| PCDH20 | 5.08386358 | 5.62E-13 |
| IGHV3-74 | 5.081227525 | 6.92E-14 |
| DKK1 | 5.077616084 | 2.51E-29 |
| LINC00473 | 5.067759137 | 4.52E-34 |
| LGI2 | 5.059443021 | 3.64E-32 |
| TRIM67 | 5.057619226 | 1.32E-19 |
| MAOA | 5.00976758 | 6.86E-35 |
| SLC7A8 | 4.977745742 | 2.57E-61 |
| TH | 4.973070729 | $5.46 \mathrm{E}-19$ |
| KLK4 | 4.963728367 | $1.18 \mathrm{E}-20$ |
| KCNA4 | 4.909844379 | $2.26 \mathrm{E}-15$ |
| EREG | 4.806409039 | 4.43E-17 |
| ENHO | 4.802584573 | 1.85E-24 |
| AADAC | 4.746973747 | 8.61E-12 |
| FST | 4.68077209 | 7.1E-17 |
| MAOB | 4.649769044 | $8.78 \mathrm{E}-28$ |
| CHST7 | 4.623372379 | 5.4E-45 |
| P2RY14 | 4.593757874 | 1.9E-18 |
| HSD17B13 | 4.55893132 | 5.61E-15 |
| BRINP2 | 4.479677862 | 4.8E-12 |
| RAMP3 | 4.459563596 | 3.88E-15 |
| SERPINA6 | 4.452100099 | 3.61E-10 |
| WNT10B | 4.437798811 | $9.96 \mathrm{E}-12$ |
| C11orf86 | 4.419743714 | 1.85E-09 |
| ABLIM2 | 4.416528841 | 9.3E-31 |
| HSD11B1 | 4.384625956 | 5.92E-09 |
| ENPP1 | 4.338704044 | 1.42E-19 |


| RP11-34211.2 | 4.336124752 | 5.26E-14 |
| :---: | :---: | :---: |
| GSG1L | 4.291571606 | $4.37 \mathrm{E}-10$ |
| CNR1 | 4.264000519 | $2.96 \mathrm{E}-08$ |
| SDIM1 | 4.214860169 | $4.26 \mathrm{E}-11$ |
| RP11-269G24.6 | 4.206309114 | 4.17E-09 |
| NKAIN1 | 4.194596227 | 5.71E-43 |
| GAL | 4.188934357 | 3.03E-11 |
| PLXNA4 | 4.168853569 | 6.87E-16 |
| ACE2 | 4.167646567 | $1.44 \mathrm{E}-10$ |
| CDKN1C | 4.146119667 | 6.3E-46 |
| WNT1 | 4.120520939 | 4.02E-08 |
| LINC00924 | 4.11595963 | $1.36 \mathrm{E}-17$ |
| RP11-752D24.2 | 4.106050485 | $3.31 \mathrm{E}-16$ |
| TUBA3D | 4.096919147 | 4.42E-08 |
| RP11-81H14.2 | 4.059016933 | 7.55E-10 |
| FKBP5 | 4.046394029 | $4.76 \mathrm{E}-23$ |
| THSD7A | 4.04610117 | 1.27E-18 |
| ABI3BP | 4.033320059 | 2.95E-62 |
| GADD45G | 4.027072616 | 7.19E-18 |
| MLC1 | 4.025057181 | 4.17E-16 |
| INSRR | 4.022887424 | $3.54 \mathrm{E}-13$ |
| GALNT15 | 4.012815118 | 4E-18 |
| CD38 | 4.003343934 | $1.94 \mathrm{E}-16$ |
| RP11-7F17.3 | 3.990978778 | $2.26 \mathrm{E}-12$ |
| SV2C | 3.986096842 | 3.55E-09 |
| PENK | 3.965407511 | 1.36E-65 |
| SAT1 | 3.937351564 | 1.29E-71 |
| P4HA3 | 3.934212991 | 2.81E-41 |
| RP11-466P24.7 | 3.927154372 | 3.96E-09 |
| RHOU | 3.893028986 | $1.48 \mathrm{E}-22$ |
| IL15 | 3.875560637 | 8.26E-25 |
| PODNL1 | 3.863771751 | 8.48E-26 |
| IL1R2 | 3.852387638 | $1.13 \mathrm{E}-10$ |


| GLB1L2 | 3.845927613 | 6.61E-31 |
| :---: | :---: | :---: |
| CRLF1 | 3.843238288 | $1.78 \mathrm{E}-08$ |
| GAPT | 3.806082812 | 0.000000525 |
| RBP4 | 3.796940024 | $1.41 \mathrm{E}-17$ |
| CD226 | 3.796832247 | $3.88 \mathrm{E}-22$ |
| RP11-138H11.1 | 3.791000196 | 0.000000207 |
| GPX3 | 3.780658286 | 9.52E-08 |
| RP11-443C10.1 | 3.763515959 | 0.000000267 |
| APOO | 3.752184168 | 7.76E-32 |
| MACC1-AS1 | 3.730832627 | 0.000000029 |
| MYOCD | 3.717760099 | 9.39E-30 |
| CSF3R | 3.7149218 | 2.25E-11 |
| WNT3A | 3.69559305 | 0.000000365 |
| MGST1 | 3.675309148 | $1.09 \mathrm{E}-24$ |
| EML6 | 3.673224722 | 3.12E-16 |
| ADAMTSL4 | 3.641957335 | 2.12E-23 |
| SYNDIG1 | 3.636533583 | 1.06E-08 |
| RAB3C | 3.630927248 | 0.00000106 |
| ENPEP | 3.618983138 | $2.75 \mathrm{E}-13$ |
| KLF15 | 3.617987956 | 1.64E-27 |
| STAR | 3.612420463 | $1.09 \mathrm{E}-10$ |
| RP11-161D15.3 | 3.606012286 | 0.00000036 |
| REM1 | 3.600479027 | $2.86 \mathrm{E}-08$ |
| FAM89A | 3.592188823 | 2.1E-37 |
| FAM167A | 3.590414973 | 5.8E-13 |
| ATOH8 | 3.552550157 | 2.67E-28 |
| Z98256.1 | 3.545890643 | 3.89E-16 |
| CPB1 | 3.544468175 | 0.000000789 |
| SLC7A2 | 3.544204907 | $2.72 \mathrm{E}-41$ |
| PPAP2B | 3.533435906 | 1.63E-59 |
| COL23A1 | 3.532051246 | 4.2E-09 |
| RP11-45901.2 | 3.527095274 | 0.00000484 |
| ELOVL3 | 3.525162464 | $3.77 \mathrm{E}-19$ |


| RP11-820L6.1 | 3.519510796 | 2.09E-09 |
| :---: | :---: | :---: |
| EFEMP1 | 3.519048676 | 8.71E-18 |
| ELMOD1 | 3.517731118 | 7.07E-14 |
| SLC10A6 | 3.514596188 | 0.00000027 |
| ACSM5 | 3.50622087 | 5.21E-09 |
| KAL1 | 3.47408889 | 7.87E-11 |
| IL1B | 3.461104128 | 0.00000578 |
| HAND2 | 3.444476979 | 7.08E-67 |
| PLCL1 | 3.444370106 | 1.3E-11 |
| TREML3P | 3.441577235 | 0.00000198 |
| INHA | 3.439702925 | $5.96 \mathrm{E}-17$ |
| SEC14L4 | 3.425292886 | $1.64 \mathrm{E}-08$ |
| C5AR2 | 3.415752326 | $9.68 \mathrm{E}-14$ |
| RORB | 3.41035228 | 8.64E-32 |
| ENPP2 | 3.402811339 | $1.14 \mathrm{E}-12$ |
| LPAR1 | 3.389651636 | $1.59 \mathrm{E}-25$ |
| ST8SIA4 | 3.37203793 | 6.03E-15 |
| ADRA2C | 3.371863689 | 1.19E-16 |
| SRGN | 3.367673477 | $2.76 \mathrm{E}-18$ |
| RP11-454P21.1 | 3.361843853 | 0.00000863 |
| ATP8A2 | 3.360169117 | $1.04 \mathrm{E}-17$ |
| CACNB2 | 3.358547479 | 6.61E-14 |
| ABCA8 | 3.345991159 | 1.62E-24 |
| DNAAF1 | 3.339761375 | 1.05E-09 |
| PC | 3.338982996 | 7.53E-14 |
| WNT16 | 3.332264686 | 1.65E-09 |
| INSC | 3.320834882 | 0.00000994 |
| RBKS | 3.316594539 | $6.57 \mathrm{E}-24$ |
| TM4SF1 | 3.315899528 | 5.7E-12 |
| RP11-486P11.1 | 3.308412128 | 2.06E-09 |
| C1QTNF1-AS1 | 3.305754084 | $2.34 \mathrm{E}-11$ |
| TMEM132B | 3.30338227 | 2.63E-24 |
| LINC00707 | 3.280406585 | 5.29E-09 |


| CHRDL1 | 3.26318667 | 0.000033 |
| :---: | :---: | :---: |
| IL1R1 | 3.241932375 | 1.22E-19 |
| RASL10B | 3.205076262 | 2.82E-18 |
| LMO3 | 3.202778655 | 0.00000301 |
| PYGM | 3.198443738 | 9.95E-10 |
| LINC00890 | 3.193117675 | 1.59E-09 |
| CRISPLD2 | 3.165844721 | 7.12E-34 |
| ANGPTL1 | 3.16250368 | 0.0000488 |
| ADAMTS15 | 3.153578985 | 0.0000241 |
| MFSD2A | 3.153369393 | $1.51 \mathrm{E}-10$ |
| C2orf72 | 3.146692749 | 6.48E-10 |
| TLE6 | 3.142154285 | 7.37E-21 |
| CRYAB | 3.110478952 | 2.1E-21 |
| PRRG4 | 3.110099954 | 7.89E-11 |
| AKR1C1 | 3.108742974 | 3.72E-23 |
| MUM1L1 | 3.102059793 | $1.51 \mathrm{E}-21$ |
| SIPA1L2 | 3.101856044 | 1.65E-09 |
| SPARCL1 | 3.096592976 | 1.95E-11 |
| IRS2 | 3.094442587 | 4.65E-31 |
| AGXT2 | 3.080450666 | 0.000000124 |
| TMEM37 | 3.075127651 | 2.47E-20 |
| SYN3 | 3.06806329 | 7.85E-09 |
| CFD | 3.065334389 | 0.000000734 |
| CAB39L | 3.059760683 | 3.69E-27 |
| LGR4 | 3.044146457 | 3.44E-15 |
| AADACL4 | 3.01738113 | $1.68 \mathrm{E}-11$ |
| PRR15 | 3.01124917 | 8.02E-11 |
| AC010132.11 | 3.006613955 | 0.0000526 |
| ADAMTS8 | 3.003929252 | 0.000000222 |
| ADAMTS3 | 2.978378146 | 2.02E-09 |
| INSR | 2.977190024 | $5.88 \mathrm{E}-22$ |
| ING1 | 2.976650207 | 8.75E-29 |
| KDR | 2.965615013 | 2.89E-09 |


| NDP | 2.963382526 | 0.000130516 |
| :---: | :---: | :---: |
| IGFBP4 | 2.940146489 | 2.03E-38 |
| PILRA | 2.936989746 | 0.000000566 |
| CST11 | 2.935149754 | 0.0001852 |
| KCNB1 | 2.928654945 | $1.31 \mathrm{E}-08$ |
| HTR2A | 2.92617072 | 0.00000013 |
| NELL2 | 2.926070602 | 0.0000687 |
| CXXC4 | 2.924649199 | 1.97E-08 |
| PRKG1-AS1 | 2.91779531 | 8.38E-08 |
| RASL11B | 2.914775361 | 1.17E-11 |
| FAM134B | 2.896450418 | $4.66 \mathrm{E}-21$ |
| SERPINB10 | 2.893105567 | 0.000231385 |
| IL18R1 | 2.890806163 | 0.00000025 |
| AOC3 | 2.889639667 | 5.68E-10 |
| APOA1 | 2.885217443 | 0.000178052 |
| STAC2 | 2.879099091 | 0.000000811 |
| PTPRN | 2.872427964 | 0.000000507 |
| ALDH1L1 | 2.869849601 | 0.000000044 |
| TVP23A | 2.865081508 | 0.00000448 |
| RP11-43F13.3 | 2.863221451 | 0.000000478 |
| C11orf96 | 2.859237683 | $1.21 \mathrm{E}-18$ |
| RSPO3 | 2.858672778 | 3.53E-10 |
| RP3-525N10.2 | 2.856645664 | 0.000000508 |
| IGFBP2 | 2.856103162 | 5.1E-30 |
| GRM7 | 2.854978585 | 0.00000614 |
| TEX26-AS1 | 2.852671601 | 0.00000549 |
| DNER | 2.848200953 | 0.00000124 |
| PRLR | 2.845442089 | $3.34 \mathrm{E}-10$ |
| RP11-158M2.3 | 2.845380187 | 0.00000828 |
| IL2RA | 2.844781241 | 0.000237571 |
| CLEC2D | 2.839847872 | 3.96E-18 |
| APOD | 2.838841917 | 3.39E-13 |
| PHEX | 2.821222499 | 7.29E-10 |


| RHOB | 2.814733046 | 1.97E-44 |
| :---: | :---: | :---: |
| MRAP2 | 2.80267586 | 0.00000249 |
| RP11-475B2.1 | 2.798291701 | $2.74 \mathrm{E}-13$ |
| KCNK3 | 2.795808362 | 0.000322205 |
| PAEP | 2.794514812 | 0.000000011 |
| RNF182 | 2.792860966 | 8.13E-21 |
| C3 | 2.790729345 | 6.54E-23 |
| STON2 | 2.789767743 | 0.0000668 |
| PRG2 | 2.773214417 | 0.000319426 |
| PPAPDC1A | 2.769183665 | $2.48 \mathrm{E}-10$ |
| COMP | 2.768723069 | 0.0000123 |
| NPR1 | 2.762976252 | 2.98E-22 |
| C7 | 2.76245137 | 0.00011759 |
| RP11- | 2.750717579 | 0.000325432 |
| 184M15.1 |  |  |
| RP11-38P22.2 | 2.75052607 | 0.000335178 |
| LSAMP | 2.748235961 | 1.2E-15 |
| KCTD12 | 2.737422484 | 0.000093 |
| SLC25A19 | 2.735331871 | 1.29E-11 |
| RP11-563P16.1 | 2.727282533 | 0.000206247 |
| CRYGN | 2.726571973 | 0.000000836 |
| SPP1 | 2.716754871 | 4.27E-17 |
| TNFRSF1B | 2.715807943 | $2.83 \mathrm{E}-15$ |
| GCOM1 | 2.715404443 | 0.00019947 |
| SAMD11 | 2.710910451 | 0.000000173 |
| RYR2 | 2.710310834 | 0.000156131 |
| AC005083.1 | 2.708454535 | 0.000139211 |
| TPPP | 2.696915146 | 0.000104982 |
| ADCY1 | 2.694803009 | 1.53E-27 |
| FLVCR2 | 2.69338035 | 3.01E-10 |
| PLA2G7 | 2.690407858 | $1.67 \mathrm{E}-24$ |
| 40238 | 2.688579507 | 0.000000162 |
| CD83 | 2.686105539 | 1.07E-11 |


| GGT5 | 2.684981133 | 3.28E-10 |
| :---: | :---: | :---: |
| COL15A1 | 2.684593456 | $4.86 \mathrm{E}-18$ |
| RP1-78014.1 | 2.679184464 | $8.48 \mathrm{E}-21$ |
| CELF2 | 2.676156704 | 1.66E-08 |
| DPEP2 | 2.6748813 | 0.000440448 |
| CILP | 2.672173371 | 0.000698901 |
| CSF3 | 2.669556077 | 0.000645905 |
| RAI2 | 2.662377305 | 3.29E-37 |
| RP11-356I2.4 | 2.662027825 | 6.64E-08 |
| IGHG1 | 2.652351567 | 0.000769645 |
| RP11-148L24.1 | 2.649836952 | 0.000000609 |
| FERMT2 | 2.648561372 | $2.12 \mathrm{E}-16$ |
| DEPTOR | 2.647989253 | 1.4E-33 |
| EVA1C | 2.644197411 | $2.06 \mathrm{E}-23$ |
| HAND2-AS1 | 2.642678371 | 4.18E-30 |
| ESYT3 | 2.642156739 | $2.38 \mathrm{E}-08$ |
| DRP2 | 2.641028267 | 0.00000434 |
| SLC31A2 | 2.637895279 | 3.54E-10 |
| RASGRP2 | 2.635932977 | 9.19E-32 |
| MAPK10 | 2.631828365 | 1.03E-20 |
| LYPD3 | 2.62605081 | 0.000000817 |
| RGCC | 2.62132235 | $1.08 \mathrm{E}-24$ |
| WDR86-AS1 | 2.620810486 | 1.18E-10 |
| PARM1 | 2.620266216 | 0.000413056 |
| BTC | 2.617570287 | 0.0000013 |
| RP11- | 2.613587544 | 0.000163051 |
| 284M14.1 |  |  |
| RP11-75L1.2 | 2.610696583 | 1.53E-09 |
| LTBP1 | 2.607729433 | 1.96E-15 |
| DEFB124 | 2.606719017 | 0.000883572 |
| SIX2 | 2.604723908 | 0.000000556 |
| HSPB6 | 2.600882898 | $3.58 \mathrm{E}-43$ |
| COLEC11 | 2.595650866 | 0.000000307 |


| PLAGL1 | 2.59564667 | 1.87E-21 |
| :---: | :---: | :---: |
| ARC | 2.593991507 | 0.000000027 |
| NEBL | 2.589869208 | 0.00000131 |
| CD14 | 2.582180472 | 0.000000126 |
| PCBP3 | 2.579244858 | $9.55 \mathrm{E}-15$ |
| ANXA13 | 2.570330787 | 0.00078588 |
| ADAMTS4 | 2.569027716 | $4.72 \mathrm{E}-11$ |
| CEBPD | 2.563077238 | $9.36 \mathrm{E}-12$ |
| RP11-5407.3 | 2.554464595 | 0.00000106 |
| SERPINB2 | 2.548866248 | 0.000000807 |
| ABCC8 | 2.545736678 | 0.000104418 |
| TSC22D3 | 2.535616042 | $2.72 \mathrm{E}-17$ |
| LRPAP1 | 2.526904008 | 2.2E-27 |
| ABTB2 | 2.525198788 | 2.58E-11 |
| FRMD3 | 2.522767179 | 0.00000141 |
| CA8 | 2.513865233 | 0.0000149 |
| TIE1 | 2.512235185 | 0.00011046 |
| XCR1 | 2.509119598 | 0.001357846 |
| DCN | 2.499266014 | $1.58 \mathrm{E}-16$ |
| TIMP4 | 2.495714827 | 0.0000136 |
| PPP1R14C | 2.495483138 | 6.67E-09 |
| SLC39A2 | 2.495180019 | 0.001439967 |
| HOMER2 | 2.494956053 | 0.0000204 |
| CORO2A | 2.494323166 | 0.00000166 |
| CD1D | 2.493559325 | 0.0000142 |
| AKR1C2 | 2.490894824 | 8.21E-08 |
| AC034110.1 | 2.490438497 | 0.00080321 |
| GNG4 | 2.484601337 | 4.17E-27 |
| HPD | 2.482700042 | 0.001288565 |
| OR7E36P | 2.480785938 | 0.000829077 |
| CTSL | 2.479685275 | 8.3E-24 |
| DUSP1 | 2.462416802 | 2.95E-16 |
| SIGLEC9 | 2.462303779 | 0.0000001 |


| TNFAIP8L3 | 2.458394417 | 0.000127388 |
| :---: | :---: | :---: |
| TMEM150C | 2.457997935 | $1.24 \mathrm{E}-24$ |
| PRKAG2-AS1 | 2.456612888 | 0.000120325 |
| AC040977.1 | 2.454376245 | 0.000100875 |
| CCDC73 | 2.448777583 | 0.000234999 |
| IL1RL2 | 2.442517108 | 0.00000201 |
| AC003984.1 | 2.439700733 | 0.000542473 |
| CTB-167B5.2 | 2.439122346 | 0.001846684 |
| RP11-390N6.1 | 2.438909681 | 0.000979772 |
| OSBPL10 | 2.438501607 | 6.11E-10 |
| RP11-130L8.2 | 2.43741056 | 0.000253823 |
| PCK1 | 2.433837924 | 0.002036516 |
| TAGAP | 2.427664836 | 0.000570617 |
| MEDAG | 2.425650406 | $3.07 \mathrm{E}-10$ |
| AVPI1 | 2.4252814 | 7.65E-15 |
| U82695.10 | 2.425079441 | 1.01E-13 |
| GLUL | 2.421411466 | 2E-16 |
| RP11-680A11.5 | 2.420874788 | 1.16E-09 |
| RASD1 | 2.420521067 | 3.73E-08 |
| LONRF2 | 2.418382933 | 7.19E-14 |
| ENPP3 | 2.417256681 | 0.002047524 |
| Pl15 | 2.414129026 | 0.001075189 |
| TNS4 | 2.410350541 | 0.00000114 |
| JPH1 | 2.402800382 | 7.82E-16 |
| G0S2 | 2.400494118 | $1.96 \mathrm{E}-14$ |
| TLE2 | 2.400376262 | 1.81E-34 |
| RGL3 | 2.398752517 | $6.29 \mathrm{E}-08$ |
| MDM1 | 2.392601339 | 8.77E-09 |
| TMC1 | 2.391852491 | 0.000148206 |
| HSD17B6 | 2.388527772 | 0.000000487 |
| CTD-2210P24.4 | 2.377240419 | 0.000340802 |
| RP11-215H22.1 | 2.373707017 | 0.00259798 |
| RPH3AL | 2.370824395 | $3.04 \mathrm{E}-08$ |


| GABRG3 | 2.370145799 | 0.002580067 |
| :---: | :---: | :---: |
| ATP2B3 | 2.369738076 | 0.00052022 |
| HIST1H1C | 2.366281484 | $2.48 \mathrm{E}-19$ |
| RP11-61L23.2 | 2.364445583 | 1.33E-10 |
| RP11-697N18.3 | 2.361958674 | 0.0000126 |
| SNAP91 | 2.355707318 | 3.27E-09 |
| RGS2 | 2.354410205 | 5.35E-20 |
| AC007255.8 | 2.353412025 | 0.001155953 |
| CRB2 | 2.347608039 | 0.00049717 |
| HS1BP3-IT1 | 2.342234466 | 0.000268151 |
| CTB-138E5.1 | 2.335562954 | 0.002362833 |
| GPR155 | 2.33281371 | 1.15E-08 |
| FAM153B | 2.331627823 | 0.001907821 |
| FAM19A4 | 2.331457076 | 0.002832473 |
| UBE2QL1 | 2.331382166 | 0.0000197 |
| FAM124B | 2.330030574 | 0.003056648 |
| COLEC10 | 2.328770807 | 0.000329714 |
| RP11-705C15.2 | 2.321890003 | 0.000000019 |
| KALRN | 2.318371634 | 0.00000332 |
| TMEM108 | 2.318105619 | $2.66 \mathrm{E}-11$ |
| RP11-362F19.3 | 2.31421067 | 0.003328399 |
| PID1 | 2.312728893 | $6.37 \mathrm{E}-27$ |
| KCNS2 | 2.298862356 | 0.000516423 |
| ITPR1 | 2.297806922 | 3.79E-09 |
| RP11-4F5.2 | 2.295799972 | 0.000218614 |
| FAM49A | 2.292906065 | 0.00000869 |
| SPTSSA | 2.292202464 | $8.74 \mathrm{E}-13$ |
| AGTR1 | 2.290032473 | 0.001302367 |
| RP11-43F13.4 | 2.289750124 | 0.000879877 |
| NNMT | 2.288165237 | $6.46 \mathrm{E}-13$ |
| SIK1 | 2.286956222 | $1.24 \mathrm{E}-13$ |
| PKP2 | 2.280055316 | 0.0000102 |
| ACVR1C | 2.279449767 | 0.000476169 |


| JAKMIP2 | 2.277582668 | 0.0000106 |
| :---: | :---: | :---: |
| ELN | 2.273805159 | 3.62E-08 |
| GREB1 | 2.272390023 | 1.24E-19 |
| UPK1B | 2.266062608 | 0.00000207 |
| LCN1 | 2.265784964 | 0.001734054 |
| ALOX15 | 2.264961647 | 0.003175063 |
| POM121L9P | 2.264273284 | 0.00132285 |
| UNC5C | 2.26426601 | 0.0000427 |
| SMIM5 | 2.252498077 | 0.0000939 |
| ITIH1 | 2.250628731 | 0.003338434 |
| CHSY1 | 2.250285829 | 0.00000373 |
| GAB3 | 2.247477377 | $1.39 \mathrm{E}-08$ |
| CD68 | 2.245477199 | 0.000000206 |
| ANO7P1 | 2.243657194 | 0.000000252 |
| REN | 2.237425659 | 0.002234535 |
| SCUBE1 | 2.236842716 | 0.000666088 |
| KERA | 2.236254819 | 0.001365505 |
| NKD1 | 2.234971396 | 0.0000429 |
| RP11-535A5.1 | 2.228661376 | 0.004733873 |
| CHN2 | 2.227420853 | 0.000634549 |
| EPB41L3 | 2.225909541 | 5.1E-15 |
| SDK1 | 2.219434722 | 0.000000318 |
| AL133318.1 | 2.219204853 | 0.000110788 |
| SYT12 | 2.217747168 | 0.001504721 |
| HTRA3 | 2.21761786 | 0.00000195 |
| PTPRZ1 | 2.215653588 | 0.004984428 |
| TUBA3E | 2.214177314 | 0.004665039 |
| LUM | 2.209702707 | 5.61E-24 |
| PRR24 | 2.208212708 | 6.21E-25 |
| RP1-124C6.1 | 2.208053259 | 0.002597368 |
| SFMBT2 | 2.204194415 | 3.01E-14 |
| C1orf21 | 2.200876433 | 1.81E-20 |
| NFIL3 | 2.198490269 | $2.09 \mathrm{E}-16$ |


| HIST1H3D | 2.194272965 | 0.000899822 |
| :---: | :---: | :---: |
| RP11-401P9.4 | 2.188285263 | 0.0000629 |
| RP11-13K12.1 | 2.188218935 | 0.00000352 |
| RET | 2.187829337 | 0.000000303 |
| CLMN | 2.183000541 | 0.0000919 |
| RP11-65J21.3 | 2.180237304 | 0.000564445 |
| MYO16 | 2.180044816 | 7.66E-08 |
| NRCAM | 2.178276846 | 0.00000232 |
| EFHC2 | 2.176542188 | 0.00000322 |
| C13orf45 | 2.172724027 | 0.005845543 |
| COL4A3 | 2.172668376 | 0.0000263 |
| TNFRSF8 | 2.172233323 | 1.53E-13 |
| RP11-760H22.2 | 2.168167014 | 5.21E-11 |
| KIAA1210 | 2.168049027 | 0.005790341 |
| XYLT1 | 2.166358022 | $2.28 \mathrm{E}-08$ |
| PPARGC1A | 2.165189242 | 0.00029744 |
| RAET1G | 2.164096611 | 0.000245 |
| CYP11A1 | 2.159513621 | 0.00000672 |
| KIAA1217 | 2.157664837 | 0.00000249 |
| PAK3 | 2.155893909 | $2.14 \mathrm{E}-10$ |
| CHST2 | 2.154306465 | $9.38 \mathrm{E}-15$ |
| RP11-505E24.3 | 2.142569561 | 0.005656615 |
| TAC1 | 2.139274229 | 0.004920471 |
| P2RY1 | 2.136230043 | 0.00675812 |
| AC002398.12 | 2.136029005 | 0.000398873 |
| SPHK1 | 2.135284513 | 1.11E-23 |
| SPATA41 | 2.131942923 | 0.000293665 |
| CCL8 | 2.131914903 | 0.006339395 |
| BAIAP2L2 | 2.13033707 | 0.00001 |
| MAPT | 2.129695095 | 0.000001 |
| CCDC151 | 2.124020051 | 0.000149908 |
| CCR7 | 2.122817938 | 0.006578185 |
| MAATS1 | 2.120692129 | 0.002638941 |


| ADAMTS2 | 2.11871963 | 1.6E-15 |
| :---: | :---: | :---: |
| LY6K | 2.117537003 | 0.0000177 |
| RP11-705C15.3 | 2.116297986 | $2.41 \mathrm{E}-08$ |
| FXYD1 | 2.116193253 | 0.0000646 |
| COL4A5 | 2.110105923 | 0.0000181 |
| SBSN | 2.109422264 | 0.000824308 |
| CHGA | 2.103326957 | 0.005978988 |
| MT2A | 2.103281735 | 7.14E-12 |
| C1orf132 | 2.102418278 | 0.00000665 |
| CORIN | 2.09938667 | 0.0000264 |
| SYTL4 | 2.097476589 | $3.49 \mathrm{E}-13$ |
| AC023469.2 | 2.091220996 | 0.00803818 |
| IGF1 | 2.090521567 | 0.00000923 |
| PPM1H | 2.090144719 | 0.0000295 |
| $\begin{aligned} & \text { LL22NC03- } \\ & \text { 104C7.1 } \end{aligned}$ | 2.087453779 | 0.007810831 |
| CCDC68 | 2.0842616 | $6.94 \mathrm{E}-11$ |
| HIST1H2BJ | 2.083320525 | 0.00000108 |
| GAS1 | 2.082295339 | 1.12E-12 |
| RBP1 | 2.081228961 | 1.02E-24 |
| RP11-25902.1 | 2.074070945 | 0.004680329 |
| SLC1A1 | 2.074045157 | 0.000000102 |
| AOX1 | 2.073108244 | 0.008424756 |
| MMP8 | 2.068261756 | 0.001212226 |
| C2orf50 | 2.067329017 | 0.008570288 |
| KLK2 | 2.065638443 | 0.005862767 |
| WNT9A | 2.062857151 | 0.00000864 |
| IGSF10 | 2.061919325 | 0.008710527 |
| KRT5 | 2.060907211 | 0.00000459 |
| RP11-1096D5.1 | 2.059360494 | 0.008518375 |
| ADAMTS1 | 2.056140475 | 1.98E-08 |
| AGFG2 | 2.056113598 | $2.16 \mathrm{E}-12$ |
| SERPINE1 | 2.053751819 | $4.04 \mathrm{E}-11$ |


| AC021016.6 | 2.052891805 | 0.002761976 |
| :---: | :---: | :---: |
| PTGS1 | 2.052170591 | 1.59E-20 |
| SLC22A31 | 2.051427789 | 0.005500795 |
| PRODH | 2.044665118 | 0.00920311 |
| BTBD3 | 2.035726596 | 0.0000041 |
| CTD-3064M3.3 | 2.031334734 | 0.004084508 |
| COL4A6 | 2.030235736 | 0.009343875 |
| COL5A3 | 2.029621976 | 5.94E-08 |
| SOAT2 | 2.027392275 | 0.000248683 |
| KCNC4 | 2.02668866 | 0.000000156 |
| CREG1 | 2.022620709 | $1.37 \mathrm{E}-20$ |
| CCDC69 | 2.022407114 | 0.0000462 |
| MFSD2B | 2.021896922 | 0.001906507 |
| ERBB3 | 2.020747714 | 0.000000356 |
| OGN | 2.01958994 | 0.0000175 |
| AC104695.3 | 2.019102385 | 0.000182034 |
| CTD-2263F21.1 | 2.014421207 | 0.002644507 |
| TGM2 | 2.00792395 | 4.23E-15 |
| CISH | 2.005385314 | 0.000000103 |
| RAMP1 | 2.003008678 | 8.32E-21 |
| VIT | 1.999971405 | 0.010723755 |
| RP11-403A21.1 | 1.999659057 | 0.010586459 |
| MAFB | 1.997339799 | 8.21E-08 |
| GATA3 | 1.99698369 | 0.009645591 |
| RP11-318G21.4 | 1.993980894 | 0.011504047 |
| TSHZ2 | 1.990682737 | 0.0000102 |
| MYPN | 1.987516609 | 0.002779504 |
| HPGD | 1.987356041 | 0.010165714 |
| LARGE | 1.986554184 | 0.00000248 |
| PDE7B | 1.986513789 | 0.000000502 |
| KCNK12 | 1.983299149 | 0.003518403 |
| ROCK2 | 1.981263416 | 1.23E-12 |
| SLC37A3 | 1.978529431 | $3.81 \mathrm{E}-23$ |


| NFASC | 1.975384731 | 0.0000384 |
| :---: | :---: | :---: |
| PTGIR | 1.972686301 | 0.000000551 |
| GALNT13 | 1.972123613 | 0.001246076 |
| COL4A4 | 1.970745129 | 0.00000455 |
| CCL26 | 1.969888091 | 0.005154014 |
| CAMKK1 | 1.968219824 | $1.29 \mathrm{E}-11$ |
| TNFSF14 | 1.966836794 | 0.009623982 |
| CCL20 | 1.959350787 | 0.000140337 |
| RP11-492E3.2 | 1.957865964 | 0.000000241 |
| PISD | 1.957106281 | $1.56 \mathrm{E}-17$ |
| RBM20 | 1.954980734 | 0.003829148 |
| RP11-95H3.1 | 1.953969952 | 0.012635101 |
| KIAA0040 | 1.949622444 | 0.000231995 |
| FAM9B | 1.948850389 | 0.013512975 |
| C20orf141 | 1.942305568 | 0.012955415 |
| STEAP4 | 1.940362848 | 0.004162187 |
| SLC40A1 | 1.939938727 | 0.0000146 |
| TIMP3 | 1.939849224 | 0.013136 |
| KRT23 | 1.939149223 | 0.0000351 |
| IRAK3 | 1.936990101 | $1.48 \mathrm{E}-13$ |
| AC002456.2 | 1.936343361 | 0.00104619 |
| AC023115.2 | 1.933376326 | 0.006371318 |
| LINC00856 | 1.932641266 | 0.008792996 |
| TRIM29 | 1.927215802 | 0.000000862 |
| STON1GTF2A1L | 1.927197856 | 0.000998425 |
| ACTN2 | 1.927076728 | 0.005455629 |
| SH3BP5 | 1.925701435 | 5.01E-17 |
| KCNJ8 | 1.925143998 | 2.02E-14 |
| F12 | 1.924108811 | 0.000226775 |
| AC073316.2 | 1.922991348 | 0.013395198 |
| MATN2 | 1.921985407 | 0.000000216 |
| RP11-254F19.2 | 1.921483868 | 0.012502595 |


| TPRG1 | 1.92136212 | 0.001407885 |
| :---: | :---: | :---: |
| PCDP1 | 1.91982718 | 0.001454165 |
| AOX3P | 1.919674922 | 0.013603004 |
| NR4A3 | 1.917690487 | 0.0000013 |
| MEI1 | 1.915401143 | 0.0000639 |
| C1QTNF1 | 1.913636436 | 6.98E-14 |
| TPBGL | 1.910544645 | 0.000884532 |
| MTR | 1.906553989 | $2.83 \mathrm{E}-10$ |
| SLC47A1 | 1.905851936 | 1.04E-09 |
| KLF4 | 1.904560124 | 0.000000134 |
| NKAIN3 | 1.902323233 | 0.001257516 |
| RP11-172E9.2 | 1.902068442 | 0.015588671 |
| IL1A | 1.899164372 | 0.012537653 |
| PER1 | 1.898010231 | 0.000000136 |
| HLX | 1.895989367 | 2.64E-19 |
| RP13-514E23.1 | 1.894852892 | 0.009881734 |
| MERTK | 1.89313357 | 0.00010487 |
| WNT6 | 1.892755782 | 0.0000383 |
| ZFP92 | 1.891622936 | 0.002812272 |
| CALN1 | 1.891562619 | 0.016236978 |
| METTL7A | 1.886246963 | 5.43E-10 |
| TSKU | 1.885993751 | $5.31 \mathrm{E}-21$ |
| SMOC2 | 1.878740166 | 8.28E-08 |
| C6orf57 | 1.878546301 | 1E-10 |
| LGI4 | 1.876874199 | 0.003255434 |
| RADIL | 1.875149293 | 0.0000284 |
| APCDD1 | 1.873749193 | 0.017034396 |
| ZNF189 | 1.873721399 | 7.67E-12 |
| RGS11 | 1.873253138 | 0.000713082 |
| RP11-589N15.2 | 1.870856561 | 0.00000211 |
| VCAN-AS1 | 1.867604186 | 0.007415789 |
| CPEB1 | 1.862006049 | 0.000000882 |
| WNT9B | 1.858748798 | 0.015433069 |


| PEMT | 1.854793196 | $2.49 \mathrm{E}-13$ |
| :---: | :---: | :---: |
| STX11 | 1.854551223 | 0.000238949 |
| ALOX5AP | 1.851394435 | 0.000666266 |
| ABHD5 | 1.849316202 | $2.35 \mathrm{E}-18$ |
| IL11 | 1.843390865 | 0.013007385 |
| EPYC | 1.840906121 | 0.0000142 |
| RGS22 | 1.840527825 | $6.21 \mathrm{E}-08$ |
| FAM213A | 1.839803701 | 3.56E-10 |
| LINC00570 | 1.837915645 | 0.017650363 |
| ACPL2 | 1.835315234 | $2.74 \mathrm{E}-08$ |
| ANKFN1 | 1.834611466 | 0.01183427 |
| RP11-98L5.2 | 1.834519099 | 0.012934036 |
| C20orf27 | 1.834273441 | 0.00000392 |
| PDLIM1 | 1.833971231 | 0.000000597 |
| PPP2R1B | 1.833026894 | $1.62 \mathrm{E}-21$ |
| CD248 | 1.824289986 | 0.0000797 |
| RGS16 | 1.820778907 | 0.00160499 |
| ST6GALNAC2 | 1.818607774 | 6.54E-12 |
| TMEM151A | 1.81822051 | 0.016750963 |
| MFI2 | 1.817968231 | 0.000273208 |
| CTD-2201G3.1 | 1.813813525 | 0.008704196 |
| ZNF804A | 1.810780044 | $1.49 \mathrm{E}-08$ |
| AJAP1 | 1.799153204 | 0.0000303 |
| RP11-38408.1 | 1.798691159 | 0.011446084 |
| NAP1L5 | 1.797648526 | 0.00000019 |
| COL26A1 | 1.797353634 | 0.0000112 |
| ADHFE1 | 1.796066604 | 0.000000155 |
| CXCR2 | 1.794334901 | 0.020731383 |
| CHEK2 | 1.789958181 | $4.56 \mathrm{E}-09$ |
| CXCR4 | 1.789755917 | 0.001670891 |
| CD82 | 1.785162508 | 0.000111714 |
| AL844165.1 | 1.783815882 | 0.021682345 |
| ITPKC | 1.783487945 | $2.34 \mathrm{E}-12$ |


| AC010987.6 | 1.78311582 | 0.02192402 |
| :---: | :---: | :---: |
| OR1H1P | 1.782993215 | 0.018584907 |
| NLGN4X | 1.782387072 | 8.71E-10 |
| RHCG | 1.781995295 | 0.022834498 |
| FBXO32 | 1.780183556 | 0.00000014 |
| RP11-64P14.7 | 1.776846853 | 0.024332074 |
| WBSCR27 | 1.776565994 | 0.00006 |
| IL1RN | 1.774281653 | 0.002173131 |
| ZC2HC1B | 1.772896981 | 0.024320223 |
| GLP2R | 1.772077833 | 0.019740582 |
| NKX6-1 | 1.768071386 | 0.0000702 |
| RP3-428L16.1 | 1.767523648 | 0.015726924 |
| ASIP | 1.765477802 | 0.025123389 |
| SNAP25 | 1.760054563 | 7.81E-08 |
| ELMO1 | 1.756964765 | 0.002760171 |
| MCOLN1 | 1.756296259 | $1.28 \mathrm{E}-19$ |
| RP11-466P24.2 | 1.756043789 | 2.2E-11 |
| WIPF1 | 1.753366802 | $2.75 \mathrm{E}-11$ |
| LEPREL1-AS1 | 1.750027705 | 0.008100875 |
| RNF144A-AS1 | 1.74832355 | 0.0000162 |
| POM121L10P | 1.747269944 | 0.017806299 |
| HSPB1 | 1.747140722 | $1.84 \mathrm{E}-10$ |
| ADA | 1.744586526 | 0.00000124 |
| DANCR | 1.742322963 | 5.45E-12 |
| FGD5 | 1.740369034 | 0.0000127 |
| RP11-124N19.3 | 1.740274582 | 0.003454559 |
| NID2 | 1.738702228 | $1.67 \mathrm{E}-08$ |
| APBB1IP | 1.736386863 | 0.000530101 |
| DNM1P46 | 1.73613965 | 0.002540208 |
| COL24A1 | 1.735862504 | 0.0000395 |
| NYAP1 | 1.73429676 | 0.00000255 |
| TNMD | 1.733655175 | 0.024283951 |
| RP11-75L1.1 | 1.732850603 | 0.024374358 |


| PLAC9 | 1.72953624 | 0.008836331 |
| :---: | :---: | :---: |
| RP1-117B12.4 | 1.728497752 | 0.014902217 |
| SLC2A8 | 1.726320172 | 1.69E-09 |
| LDLR | 1.72622817 | 0.00000218 |
| GCG | 1.723711344 | 0.028784311 |
| TMEM66 | 1.721824023 | 5.58E-16 |
| WT1 | 1.72049256 | 5.83E-19 |
| NCCRP1 | 1.720305891 | 0.010505177 |
| 38961 | 1.719607231 | 0.00000742 |
| OSTF1 | 1.717724792 | 3.88E-09 |
| ABLIM3 | 1.717264558 | 0.020766155 |
| TPST1 | 1.713417372 | 1.02E-19 |
| SYT13 | 1.713398126 | 0.000255464 |
| POPDC3 | 1.712196651 | 5.77E-08 |
| PCSK5 | 1.711378409 | 0.0000023 |
| RP11-767120.1 | 1.709168416 | 0.026049032 |
| LINC01140 | 1.70856529 | 0.018680581 |
| CYP26B1 | 1.708023792 | 0.00000178 |
| SERPING1 | 1.707873409 | 2.63E-15 |
| RNU6-813P | 1.704833427 | 0.02681177 |
| RP11-505E24.2 | 1.703192519 | 0.0307661 |
| HIST1H2BD | 1.700164415 | 8.41E-10 |
| RP11-488C13.1 | 1.699200951 | 0.028593049 |
| C11orf70 | 1.698889993 | 0.00000347 |
| RGS17 | 1.697438316 | 0.000784159 |
| HIST1H2BG | 1.696512206 | 0.009016291 |
| BASP1 | 1.69620046 | 7.06E-19 |
| RP11-736N17.4 | 1.695575058 | 0.002659976 |
| TYMP | 1.693888538 | 3.81E-09 |
| KLKP1 | 1.692543439 | 0.02460159 |
| LONRF3 | 1.689769019 | 0.003489262 |
| ZNF330 | 1.688357006 | 7.29E-14 |
| HIST1H2BC | 1.687774239 | 0.0000569 |


| USP46 | 1.687347195 | $4.38 \mathrm{E}-13$ |
| :---: | :---: | :---: |
| OACYLP | 1.686805448 | 0.027035782 |
| RP4-625H18.2 | 1.686773694 | 0.010259982 |
| SNX10 | 1.686037378 | 0.00000188 |
| ANG | 1.685816479 | 3.51E-08 |
| RPL21P13 | 1.684696804 | 0.031863424 |
| AC141928.1 | 1.676633419 | 0.00034053 |
| BMPER | 1.675722565 | 0.0000084 |
| RP13-39P12.3 | 1.674333915 | 0.027045492 |
| UBE2Q2L | 1.672800102 | 0.030681582 |
| KLHL13 | 1.672596827 | 0.00000174 |
| ABCC9 | 1.671842525 | $4.69 \mathrm{E}-13$ |
| PIR | 1.670779854 | 0.0000099 |
| ENTPD3 | 1.669963206 | 0.005952935 |
| KREMEN1 | 1.669576469 | 0.0000187 |
| TNFRSF11B | 1.669087811 | 5.04E-10 |
| SOCS3 | 1.666623686 | 5.22E-10 |
| ROR2 | 1.665399798 | $6.38 \mathrm{E}-10$ |
| IGDCC3 | 1.664417176 | 0.00311271 |
| DLG5 | 1.664370397 | 0.000000435 |
| RP3-368B9.2 | 1.664116756 | 0.02325028 |
| AC091878.1 | 1.663586543 | 0.001139514 |
| snoU13 | 1.663328265 | 0.021162639 |
| SLC22A3 | 1.662044393 | 0.002322128 |
| CA12 | 1.660847596 | 0.00000295 |
| RP1-86C11.7 | 1.660828799 | 0.00541163 |
| HHIPL2 | 1.659767391 | 0.028485885 |
| SGSH | 1.658077114 | 1.05E-15 |
| RP11-524F11.2 | 1.654601666 | 0.034211082 |
| RP3-428L16.2 | 1.653925646 | 0.002114019 |
| AC068610.3 | 1.653865983 | 0.034798177 |
| MTHFS | 1.653573936 | 0.0000153 |
| RP1-27K12.4 | 1.651833478 | 0.03489139 |


| CACNA2D3 | 1.650800325 | 7.63E-08 |
| :---: | :---: | :---: |
| COL28A1 | 1.65051731 | 0.000492613 |
| SLC24A2 | 1.64819369 | 0.001424714 |
| CLEC4E | 1.646774198 | 0.011191716 |
| TMEM27 | 1.646544729 | 0.015264134 |
| RP11-65J21.4 | 1.645604782 | 0.036865029 |
| CDC20P1 | 1.645287576 | 0.003656146 |
| CAMK1G | 1.642954507 | 0.000000491 |
| DNAI1 | 1.642363529 | 0.03729037 |
| CLU | 1.641978526 | 0.000186221 |
| SEC14L6 | 1.640842312 | 0.012982143 |
| COX7A1 | 1.640274229 | 1.72E-09 |
| ZSCAN1 | 1.63694011 | 0.003418033 |
| RAP1B | 1.636197865 | 1.1E-12 |
| SRD5A3 | 1.635740359 | 0.00000044 |
| TFPI | 1.635194284 | 4.11E-09 |
| RP11-342M1.3 | 1.634220063 | 0.00398794 |
| C19orf10 | 1.633841339 | 1.01E-08 |
| PNKD | 1.633838961 | 1.52E-10 |
| RP11-248N22.1 | 1.63298903 | 0.037490823 |
| EXOC3L4 | 1.632363523 | 0.010325967 |
| RP11-384F7.2 | 1.631701599 | 0.038485189 |
| IGHV3-72 | 1.630171214 | 0.032691356 |
| EOGT | 1.6295511 | 2.45E-08 |
| ARMC12 | 1.627348028 | 0.039184315 |
| TBC1D2B | 1.625926927 | 0.000000041 |
| ST3GAL5 | 1.625897913 | 0.000000017 |
| ADAMTS9 | 1.625787113 | 0.0002449 |
| TNNC2 | 1.625090415 | 0.019506203 |
| RDH12 | 1.622732926 | 0.038568852 |
| STON1 | 1.616073961 | $1.06 \mathrm{E}-10$ |
| MAMLD1 | 1.614312048 | 2.1E-15 |
| LEPREL1 | 1.614124441 | 0.0000024 |


| RP11-710C12.1 | 1.613666115 | 0.023506195 |
| :---: | :---: | :---: |
| ADAMTS7P4 | 1.612778158 | 0.000014 |
| KANK3 | 1.612630342 | 0.016232277 |
| HIST1H2AE | 1.611269219 | 0.023532348 |
| RBBP6 | 1.60876236 | 1.17E-12 |
| SLC11A1 | 1.608284831 | 0.010478563 |
| RP11-281015.7 | 1.608019876 | 0.040832526 |
| SCNN1A | 1.60754268 | 0.0000135 |
| CKMT2 | 1.607521118 | 0.014536029 |
| RNF13 | 1.606093863 | $3.79 \mathrm{E}-12$ |
| IGFBPL1 | 1.604253103 | 0.015963401 |
| RLTPR | 1.60362865 | 0.017066229 |
| BCO2 | 1.603121085 | 0.006769537 |
| PLCD4 | 1.600238354 | 0.0191573 |
| LINC-PINT | 1.599573226 | 5.72E-09 |
| LINC00957 | 1.599358467 | 0.000616252 |
| GTF2A1L | 1.598458585 | 0.024285248 |
| ANGPTL4 | 1.59731217 | 0.0000629 |
| DFNB31 | 1.597018101 | 0.000896154 |
| MOB3B | 1.596380282 | 0.000240263 |
| LRRC3DN | 1.596173696 | 0.0000155 |
| ARHGEF19 | 1.596127579 | 3.61E-13 |
| AP3B2 | 1.595354852 | 0.001627958 |
| OXCT2 | 1.594057127 | 0.018644895 |
| FSTL3 | 1.593781986 | $5.44 \mathrm{E}-10$ |
| RPGRIP1 | 1.592865683 | 0.03327251 |
| RP5-888M10.2 | 1.592687536 | 0.041885066 |
| GAREM | 1.592587623 | 0.000000986 |
| MCC | 1.591880799 | 0.000000236 |
| LMTK3 | 1.590443351 | 0.013137435 |
| LRFN4 | 1.589321593 | 0.00000403 |
| RP11-196016.1 | 1.588302246 | 0.002904708 |
| RP11-363E7.4 | 1.586750388 | 0.000172838 |


| FIGF | 1.58525248 | 0.039413035 |
| :---: | :---: | :---: |
| SLAIN1 | 1.583717188 | 0.001888544 |
| CHPT1 | 1.583200479 | 7.05E-14 |
| PRUNE2 | 1.582732391 | 0.000245256 |
| MAP7 | 1.579863615 | 0.00000107 |
| CCDC114 | 1.579862528 | 0.009497506 |
| RP11-64C1.1 | 1.579200313 | 0.005526407 |
| MT1M | 1.578739236 | 0.009431561 |
| RP1-137D17.2 | 1.574821354 | 0.045364381 |
| PTPN13 | 1.574816901 | 0.000123539 |
| RP11-582J16.4 | 1.574799524 | 0.023554159 |
| GATA6-AS1 | 1.574098702 | 0.013731044 |
| NR4A2 | 1.573138579 | 0.005924375 |
| GP5 | 1.572238002 | 0.037532608 |
| C10orf10 | 1.572166039 | 0.001085919 |
| DIRAS2 | 1.571677416 | 0.0000572 |
| SIL1 | 1.571586585 | 0.000000142 |
| AC079776.2 | 1.570458348 | 0.002371618 |
| RAB11FIP1 | 1.568670572 | 0.002107324 |
| ZCCHC6 | 1.566955241 | 0.0000015 |
| FAM115C | 1.566952217 | 0.0000679 |
| ARHGEF26 | 1.563564522 | 0.00000798 |
| C1QL1 | 1.561827045 | 0.012838042 |
| C5orf49 | 1.56146304 | 0.025887626 |
| SLC24A3 | 1.561041983 | 0.000000323 |
| AC073109.2 | 1.559576645 | 0.047673981 |
| ASL | 1.558861005 | 8.75E-08 |
| RP11-115D19.1 | 1.558407574 | 0.0414802 |
| SLC2A1 | 1.557620333 | 8.16E-15 |
| SPAG4 | 1.557050513 | 0.000136086 |
| KYNU | 1.556276415 | 0.006397526 |
| MT1G | 1.555203894 | 0.045381796 |
| CEP44 | 1.552662608 | 0.000000776 |


| SULF2 | 1.552028489 | 1.05E-09 |
| :---: | :---: | :---: |
| ATP6V0E1 | 1.550412077 | 2.06E-16 |
| ELTD1 | 1.54968019 | 0.0000467 |
| GPR20 | 1.54863589 | 0.030300081 |
| KCNE3 | 1.544742485 | 0.000980098 |
| SPON1 | 1.544152812 | 0.0000886 |
| LRRC8A | 1.543991023 | $2.23 \mathrm{E}-12$ |
| PLAUR | 1.543870838 | 3.03E-08 |
| CPM | 1.543241518 | 6E-11 |
| TAF7L | 1.542923194 | 0.004583988 |
| ADARB1 | 1.541344467 | $4.28 \mathrm{E}-12$ |
| TNNT3 | 1.54132338 | 0.042359958 |
| MIR1282 | 1.539102129 | 0.019627946 |
| RP11- | 1.539074351 | 0.016950237 |
| 439M11.1 |  |  |
| USP15 | 1.536410307 | 0.0000264 |
| RP11- | 1.534050221 | 0.034746251 |
| 314M24.1 |  |  |
| PSD | 1.52902121 | 5.89E-10 |
| MAGI3 | 1.528545516 | 0.001024342 |
| PKDCC | 1.528247274 | 0.001690803 |
| SLC9A9 | 1.526601414 | 0.0000126 |
| AC003090.1 | 1.526189808 | 0.0399755 |
| C3AR1 | 1.526117698 | 0.04987714 |
| KRT6A | 1.524559881 | 0.021305023 |
| SOAT1 | 1.522022355 | 0.0000646 |
| LINC01134 | 1.521115425 | 0.01609066 |
| CYP7B1 | 1.520247808 | 0.001005873 |
| AC078941.1 | 1.51983426 | 0.015792855 |
| PNP | 1.516108577 | 0.0000218 |
| DACT2 | 1.514763275 | 0.023362928 |
| SIGLEC17P | 1.512311602 | 0.04914162 |
| FYN | 1.511574626 | $4.44 \mathrm{E}-08$ |


| NRXN1 | 1.50989091 | 0.020737872 |
| :---: | :---: | :---: |
| C20orf24 | 1.508467653 | 8.6E-11 |
| TMEM45A | 1.508108084 | 0.0000205 |
| H6PD | 1.505643192 | 0.000207274 |
| ISPD | 1.505548604 | 0.000390502 |
| CXorf57 | 1.505513872 | 0.008164725 |
| TBXA2R | 1.50004816 | 0.0000062 |
| CEACAM1 | 1.499161192 | 0.002135964 |
| USP46-AS1 | 1.497633219 | 0.0000398 |
| SSR4P1 | 1.496857921 | 0.01509914 |
| RP11-21L23.2 | 1.496215125 | 0.000000645 |
| RP11-529E10.6 | 1.49479655 | 0.000354197 |
| TGFBR3 | 1.494637718 | 0.0000717 |
| KCND3 | 1.493084562 | 0.000307979 |
| FAM105A | 1.492336751 | 0.000000056 |
| PKD1L2 | 1.491889325 | 0.001083178 |
| RNF219-AS1 | 1.491583365 | 0.048429215 |
| RP11- | 1.49150246 | 0.048369196 |
| 544M22.8 |  |  |
| TNF AIP3 | 1.490937278 | $1.69 \mathrm{E}-12$ |
| RNF39 | 1.488020406 | 0.038550035 |
| DBI | 1.485287975 | $2.37 \mathrm{E}-08$ |
| LINC00035 | 1.483278542 | 0.016091548 |
| ALDOC | 1.479917132 | 0.001599301 |
| ZEB1 | 1.479761554 | 0.0000384 |
| LIX1 | 1.478230106 | 0.042768273 |
| VSIG1 | 1.474631676 | 0.026666768 |
| HIST2H2BE | 1.474322655 | 2.89E-09 |
| TRPM3 | 1.473365361 | 0.017972519 |
| ALDH3B1 | 1.47297686 | 1.82E-12 |
| CEND1 | 1.470511117 | 0.016121718 |
| IL13RA2 | 1.469481579 | 0.0000506 |
| C5orf27 | 1.469106373 | 0.034572032 |


| SLCO2B1 | 1.468948414 | 0.011963602 |
| :---: | :---: | :---: |
| SMAD6 | 1.468230888 | 0.0000179 |
| NEAT1 | 1.467005994 | 7.57E-08 |
| MCTP2 | 1.466771906 | 0.014329288 |
| MANF | 1.46663456 | $5.47 \mathrm{E}-10$ |
| VCAN | 1.466100429 | 0.04511107 |
| HTRA4 | 1.465842465 | 0.029091124 |
| SQRDL | 1.461878155 | 2.91E-08 |
| LCP2 | 1.461629571 | 0.034354988 |
| CD59 | 1.460756118 | 0.000000704 |
| HYAL1 | 1.459088453 | 0.021557352 |
| FOSL2 | 1.458755469 | $2.29 \mathrm{E}-14$ |
| ASPA | 1.458483612 | 0.027939425 |
| CDA | 1.458277475 | 0.001678315 |
| DLG5-AS1 | 1.457393131 | 0.016290274 |
| BAI3 | 1.455138585 | 0.012653458 |
| GATA6 | 1.454197069 | 0.000465182 |
| SLCO2A1 | 1.453544417 | 0.005358179 |
| ID4 | 1.452831194 | 0.003692418 |
| MT1X | 1.451121118 | 0.0000838 |
| KIAA0408 | 1.450783709 | 0.047788576 |
| TMEM35 | 1.446889048 | 7.17E-08 |
| RP11-327F22.2 | 1.446574396 | 0.018073007 |
| LYNX1 | 1.445602485 | 0.0000007 |
| HAP1 | 1.443033689 | 0.006199729 |
| AC013271.3 | 1.442320568 | 0.001928964 |
| LINC00632 | 1.440860512 | 0.009511506 |
| ADIRF | 1.439550752 | 0.009264352 |
| EPOR | 1.439285116 | 0.000106005 |
| SAMD13 | 1.438726946 | 0.021623122 |
| FZD10 | 1.436688703 | 0.003435848 |
| BEAN1 | 1.436675839 | 0.005832434 |
| COX6C | 1.436021586 | $2.07 \mathrm{E}-08$ |


| FBXO10 | 1.435682872 | 0.000000259 |
| :---: | :---: | :---: |
| GPRIN3 | 1.434384641 | 0.000765065 |
| IRF6 | 1.433724422 | 0.004734422 |
| TCTA | 1.430327145 | 0.00000505 |
| GPR150 | 1.428831498 | 0.041682211 |
| RP11-421L10.1 | 1.423575454 | 0.049827201 |
| LPCAT3 | 1.423422388 | 0.000207204 |
| ULBP2 | 1.421868856 | 0.000168362 |
| SUMF2 | 1.421258984 | 0.000000988 |
| TYW1B | 1.420644504 | 0.001393554 |
| METRN | 1.418983303 | 1.91E-10 |
| RBPMS-AS1 | 1.416660203 | 0.010841539 |
| CERS6 | 1.416448818 | 0.0000161 |
| CMC1 | 1.415341835 | 8.92E-09 |
| RP11-438B23.2 | 1.415024648 | 0.029928611 |
| DNASE1L1 | 1.412293872 | 0.00000579 |
| FBXO8 | 1.411753372 | 2.82E-08 |
| ANKRD37 | 1.410710427 | 0.000986198 |
| HIST1H2AC | 1.410230783 | $6.54 \mathrm{E}-12$ |
| HIST1H3E | 1.409730536 | 0.002508901 |
| SLC10A3 | 1.40882265 | 0.0000604 |
| SPTBN4 | 1.40808218 | 0.001729987 |
| APOC1 | 1.407565958 | 0.002643187 |
| FAM207A | 1.407539558 | 0.000000208 |
| SMCO3 | 1.406063313 | 0.020874443 |
| FAM155A | 1.405522768 | 0.000002 |
| ZNF331 | 1.402020257 | 0.0000244 |
| EMC7 | 1.402004748 | $2.78 \mathrm{E}-10$ |
| FAM86HP | 1.401575643 | 0.001584282 |
| LINC01006 | 1.401196189 | 0.020120663 |
| PPM1L | 1.39991773 | 0.001222086 |
| COQ2 | 1.399719062 | 3.27E-08 |
| LGALS3 | 1.399174101 | 0.000000419 |


| IL8 | 1.398747448 | 0.000590745 |
| :---: | :---: | :---: |
| PAQR7 | 1.398646515 | 0.000503643 |
| C1QTNF6 | 1.397303553 | 0.0000108 |
| DIRC2 | 1.39428555 | 8.75E-09 |
| LHFP | 1.394162847 | 1.19E-08 |
| OLFM1 | 1.392928998 | 0.000000235 |
| GAB2 | 1.391926782 | $5.28 \mathrm{E}-12$ |
| CPAMD8 | 1.391475682 | 0.002240131 |
| USP35 | 1.391421686 | 0.00000285 |
| CHSY3 | 1.391273656 | 0.001819096 |
| TMBIM1 | 1.390735086 | 3.05E-12 |
| TMEM150A | 1.390392103 | 0.000000279 |
| WDR86 | 1.38967353 | 0.0000011 |
| TMEM120A | 1.388859928 | 0.00000304 |
| TRMT44 | 1.386992255 | 5.29E-10 |
| CASC10 | 1.384272681 | 0.003761494 |
| RAB31 | 1.382513674 | 5.39E-12 |
| RND2 | 1.379724864 | 0.000630811 |
| SFTPB | 1.378650159 | 0.030301595 |
| CHRD | 1.375684447 | $1.73 \mathrm{E}-09$ |
| TMTC2 | 1.372589383 | 0.003510207 |
| MGAT3 | 1.371716582 | 0.000351618 |
| CYP1B1 | 1.371400515 | 0.001045482 |
| CDH20 | 1.37102203 | 0.030526128 |
| EMILIN2 | 1.368081944 | 3.52E-10 |
| TRPM6 | 1.367518421 | 0.019820343 |
| FAM46C | 1.3674966 | 0.002103078 |
| FKBP1B | 1.366564116 | 0.000496295 |
| HIST1H2BK | 1.366012737 | 0.00000104 |
| FASN | 1.364699132 | 0.004083817 |
| RP11-137H2.6 | 1.362079998 | 0.000000616 |
| RILP | 1.361963089 | 0.000555303 |
| TCEAL3 | 1.360373706 | 0.000000605 |


| AC002467.7 | 1.359700497 | 0.013158584 |
| :---: | :---: | :---: |
| PDK4 | 1.358889257 | 0.003350472 |
| CTTNBP2 | 1.35843633 | 0.000126656 |
| C11orf53 | 1.356336166 | 0.018004508 |
| ECHDC3 | 1.354543531 | 0.004479087 |
| IMPA2 | 1.35400468 | 0.000000183 |
| MAF | 1.353907966 | 0.000273758 |
| TTPAL | 1.353380987 | 0.000318663 |
| MAP3K5 | 1.352009231 | 0.000000591 |
| ATP8A1 | 1.351691881 | 0.001169042 |
| ELFN1 | 1.350464908 | 0.002316701 |
| RP13-884E18.4 | 1.35037637 | 0.022862038 |
| FAM198A | 1.348377853 | 0.002174158 |
| TCF21 | 1.346746771 | 0.025763122 |
| S100A4 | 1.346744457 | 0.001228556 |
| WIPI1 | 1.344698084 | 6.94E-11 |
| KIAA1377 | 1.342698955 | 0.000000373 |
| KIAA1045 | 1.34171414 | 0.020950697 |
| RCBTB1 | 1.339667844 | 0.0000298 |
| ZMYM6NB | 1.339617642 | 0.0000259 |
| CTD-3065J16.9 | 1.337747697 | 0.00693657 |
| NINJ2 | 1.335897348 | 0.036048508 |
| RP11-800A3.7 | 1.334510219 | 0.00245172 |
| DNAJC12 | 1.33424849 | 0.000125904 |
| FADS1 | 1.333672002 | 0.0002311 |
| RPRM | 1.332483764 | 0.010019141 |
| MAP3K14-AS1 | 1.331983179 | 0.045630792 |
| EPHB6 | 1.331793856 | 0.00000158 |
| IP6K3 | 1.328476968 | 0.0000188 |
| KLHL26 | 1.328137764 | 0.000105201 |
| NPTX2 | 1.32775582 | 0.007794316 |
| SEC11C | 1.323893725 | 1.59E-09 |
| DPM3 | 1.322717179 | 0.00000159 |


| ATG9B | 1.319763776 | 0.00608322 |
| :---: | :---: | :---: |
| CTB-92J24.3 | 1.31795796 | 0.000000146 |
| SNX22 | 1.317803828 | 0.00615265 |
| EPDR1 | 1.314627754 | 0.00000131 |
| SMPD1 | 1.314419474 | 3.82E-09 |
| JOSD2 | 1.310415416 | 0.00000209 |
| SMOX | 1.308640382 | 0.000000283 |
| IFI35 | 1.308251454 | 0.000000158 |
| RELT | 1.306211133 | 0.0000484 |
| CYB5R1 | 1.305883499 | $1.47 \mathrm{E}-11$ |
| C6orf211 | 1.30571037 | 0.00000388 |
| SHBG | 1.303051858 | 0.017237628 |
| CLDN23 | 1.302384729 | 0.013292533 |
| SLC3A2 | 1.299915147 | 2.6E-10 |
| NR4A1 | 1.299631832 | 3.8E-09 |
| FAH | 1.29847521 | 0.000000617 |
| GHR | 1.296999405 | 0.0000221 |
| CD151 | 1.29678032 | 5.32E-08 |
| KLF9 | 1.295996019 | $2.23 \mathrm{E}-11$ |
| CCDC102B | 1.295810211 | 0.004830063 |
| C9orf72 | 1.295808257 | 0.000000036 |
| TGFBR1 | 1.293281366 | 0.000000705 |
| HLA-E | 1.292392162 | 0.000000019 |
| HPSE | 1.292324872 | 0.0000395 |
| SNX21 | 1.290839163 | 0.000024 |
| TNFAIP2 | 1.290202033 | 3.78E-08 |
| GCKR | 1.289470995 | 0.031424088 |
| CNTN3 | 1.28855765 | 0.000026 |
| PYGL | 1.288448149 | $2.89 \mathrm{E}-11$ |
| GNG2 | 1.2884176 | 0.000357985 |
| MAPK14 | 1.288316698 | 0.000000531 |
| TMED8 | 1.287783342 | 0.00000196 |
| DERL1 | 1.287308042 | 0.0000209 |


| A1BG-AS1 | 1.287277746 | 0.0000102 |
| :---: | :---: | :---: |
| NOL3 | 1.285863101 | 5.32E-09 |
| FOX01 | 1.285107969 | 1.15E-08 |
| TMEM179B | 1.285095955 | 2.88E-08 |
| GPR115 | 1.284627328 | 0.007461423 |
| NUDT16 | 1.28294248 | 0.000288912 |
| BRE | 1.282485258 | 3.5E-10 |
| FAM46A | 1.282418667 | 0.0000841 |
| MFSD12 | 1.281400275 | 0.00000497 |
| NPC2 | 1.281239099 | 7.42E-10 |
| CCDC170 | 1.279231176 | 0.00000558 |
| ABHD14A | 1.277011673 | 0.000355965 |
| RAB6C-AS1 | 1.276021885 | 0.008766651 |
| IDI1 | 1.274859033 | 0.0000853 |
| ZC3H12A | 1.274687054 | 0.000881729 |
| STYK1 | 1.272989573 | 0.037332184 |
| WT1-AS | 1.271103024 | 0.000000147 |
| B3GAT3 | 1.268622331 | 2.22E-09 |
| NMNAT2 | 1.268451853 | 0.001568904 |
| FKBP2 | 1.267970084 | 5.27E-09 |
| PLCD1 | 1.267306988 | 0.000242223 |
| DOK6 | 1.265312429 | 0.000816392 |
| RMDN2 | 1.26521307 | 0.000000939 |
| LINC01160 | 1.264672265 | 0.018029252 |
| B4GALT3 | 1.263924166 | 7.83E-08 |
| MXRA7 | 1.263780533 | $2.48 \mathrm{E}-11$ |
| GPRC5B | 1.263221078 | 0.0000235 |
| UBAC2-AS1 | 1.263076139 | 0.037019624 |
| MAP1B | 1.263056365 | 0.002011341 |
| SOD2 | 1.262059337 | 0.0000103 |
| HSD17B14 | 1.261929502 | $9.83 \mathrm{E}-08$ |
| GPD1L | 1.261911037 | 0.002706501 |
| STRBP | 1.261279705 | 0.000539641 |


| ZDHHC12 | 1.259602536 | 0.0000173 |
| :---: | :---: | :---: |
| RP11-175K6.1 | 1.259537873 | 0.016555734 |
| HDAC4 | 1.258952843 | $1.54 \mathrm{E}-08$ |
| DNAJC1 | 1.258678785 | 0.00000117 |
| DCTN6 | 1.256819127 | 3.61E-08 |
| LRRC3 | 1.255557677 | 0.001962805 |
| STOM | 1.25469557 | 0.00000115 |
| CTD-2127H9.1 | 1.254528088 | 0.042689981 |
| SORBS1 | 1.254525583 | 0.001645484 |
| NR1D1 | 1.254266487 | 0.0000159 |
| SAA1 | 1.25338875 | 0.000542707 |
| CCDC85A | 1.252674254 | 0.013916287 |
| ALDH1 A3 | 1.24982956 | 0.000578113 |
| SCD5 | 1.249791289 | $2.14 \mathrm{E}-08$ |
| DIAPH2 | 1.24888199 | 0.002277153 |
| AHCY | 1.248670538 | 0.000412846 |
| CXCL1 | 1.247635794 | 0.004064576 |
| RP11-712B9.2 | 1.247343978 | 0.018917079 |
| SESTD1 | 1.247321262 | $4.66 \mathrm{E}-09$ |
| RP1-239B22.5 | 1.246964135 | 0.000226932 |
| ST20 | 1.246879908 | 0.007907312 |
| GLB1 | 1.245698287 | 0.0000152 |
| SLC19A2 | 1.245342785 | 0.00000423 |
| PCDH9 | 1.245329204 | 0.017244738 |
| FXYD5 | 1.244872787 | 0.001609889 |
| TAP1 | 1.244827201 | 0.000240871 |
| SLC6A8 | 1.243453477 | 1.3E-09 |
| ST6GALNAC1 | 1.243087397 | 0.03429316 |
| STARD8 | 1.243003102 | 0.018229593 |
| IL15RA | 1.242412492 | 0.00151752 |
| CDH11 | 1.241379801 | 0.00000827 |
| NDRG1 | 1.238357806 | 3.47E-08 |
| ZNF860 | 1.235799005 | 0.022143863 |


| CD302 | 1.235618669 | 2.42E-09 |
| :---: | :---: | :---: |
| DLEC1 | 1.235075075 | 0.037560565 |
| FZD4 | 1.23490267 | 0.002761287 |
| CERK | 1.233889305 | 0.00000421 |
| ROM1 | 1.232505182 | 0.001030049 |
| HEXIM2 | 1.232219654 | 0.000497571 |
| AQP8 | 1.231886586 | 0.042964808 |
| RP11-395B7.4 | 1.23171644 | 0.00257345 |
| XG | 1.228759824 | 0.00247024 |
| LYN | 1.227065704 | 0.000285928 |
| GCNT1 | 1.226682078 | 0.0000384 |
| SH3RF3-AS1 | 1.224889304 | 0.004522612 |
| RORA | 1.22485908 | 0.00000172 |
| OSTM1 | 1.224069459 | 1.11E-09 |
| CTU1 | 1.22269609 | 0.000696148 |
| TGFBR3L | 1.222214776 | 0.033970237 |
| FAM174A | 1.221909323 | 0.0000155 |
| USP38 | 1.221693262 | 2.91E-08 |
| HSD17B7 | 1.219710188 | 0.000550366 |
| GLA | 1.218623478 | 0.0000048 |
| LYSMD1 | 1.218352878 | 0.00000288 |
| GALNT18 | 1.218334521 | 0.000000437 |
| SNX24 | 1.218037675 | 4.67E-08 |
| ITGBL1 | 1.217328556 | 0.01226742 |
| IFNGR1 | 1.217122247 | 0.000000721 |
| ATP13A3 | 1.216529843 | 0.000210655 |
| PRADC1 | 1.216449479 | 0.0000397 |
| TMEM208 | 1.215824357 | 0.000000112 |
| SLC39A11 | 1.21563409 | 0.000172798 |
| PDE10A | 1.214474895 | 0.00000159 |
| ARNTL | 1.2133024 | 0.000086 |
| SEMA3A | 1.211066047 | 2.98E-10 |
| SLC2A1-AS1 | 1.210349071 | 0.004628834 |


| HIST1H2BN | 1.210343217 | 0.006716039 |
| :---: | :---: | :---: |
| H2AFJ | 1.20993956 | 0.00000212 |
| EMR2 | 1.208429212 | 0.000510335 |
| ENPP4 | 1.20729261 | 0.0000542 |
| FAM199X | 1.205435892 | 0.001030161 |
| PPIB | 1.203821728 | 0.00000661 |
| AIM1L | 1.20300416 | 0.031512518 |
| CRADD | 1.20218002 | 0.000327568 |
| MBNL1-AS1 | 1.200289053 | 0.0000179 |
| TSPAN7 | 1.200002248 | 0.019546689 |
| IFITM10 | 1.198074205 | 0.0000858 |
| ACER3 | 1.197363472 | 0.000155574 |
| IZUMO4 | 1.196846022 | 0.010854237 |
| ADORA2B | 1.196364629 | 0.006427161 |
| NCK1 | 1.195343596 | 0.00000319 |
| RCAN1 | 1.195233177 | 0.000488797 |
| PTRH1 | 1.194113953 | 0.000434252 |
| NOG | 1.193321521 | 0.025116592 |
| LGMN | 1.192056583 | 4.46E-08 |
| CDH26 | 1.191933177 | 0.037468574 |
| PON2 | 1.190572726 | 8.79E-10 |
| POLE4 | 1.189544017 | 0.000000217 |
| LAYN | 1.188554042 | 3.05E-09 |
| MICA | 1.187727177 | 0.000000487 |
| CLIC2 | 1.187028864 | 0.004015933 |
| BEST1 | 1.186467376 | 0.000000472 |
| PNCK | 1.186379202 | 0.032430098 |
| SRPX | 1.183474638 | 0.00000421 |
| ACAT1 | 1.183019365 | 0.0000745 |
| GPR157 | 1.182808523 | 0.00000994 |
| HS1BP3 | 1.182768399 | 0.0000718 |
| MAPRE3 | 1.182657498 | 0.0000326 |
| 38596 | 1.181907447 | 0.000484278 |


| IFI27L1 | 1.178090648 | 0.00000339 |
| :---: | :---: | :---: |
| RRAS | 1.177197916 | 0.000107884 |
| AC112229.4 | 1.176825588 | 0.0000212 |
| CMIP | 1.175257753 | $4.44 \mathrm{E}-08$ |
| SCML1 | 1.174274018 | 0.001463986 |
| AGTRAP | 1.17386477 | 0.000000806 |
| RP11-434C1.1 | 1.173791422 | 0.029360349 |
| LMAN2 | 1.172597157 | 0.00000268 |
| DHRS3 | 1.172355047 | 0.004174565 |
| WBSCR17 | 1.171885818 | 0.033031134 |
| SPOCK2 | 1.171220013 | 0.022798557 |
| ARL4D | 1.170340526 | 0.000857494 |
| MRPL33 | 1.170297073 | 3.98E-08 |
| ACTC1 | 1.169702054 | 0.039587383 |
| GNA15 | 1.169174741 | 0.045421767 |
| ERGIC1 | 1.168125626 | 0.0000528 |
| SEMA3B | 1.166835892 | 0.00000827 |
| LSS | 1.163226847 | 0.0000447 |
| PNPLA2 | 1.162722023 | 0.00000127 |
| CTC-786C10.1 | 1.162665543 | 0.005085051 |
| TMCC3 | 1.161419458 | 0.001242724 |
| KLK10 | 1.161365029 | 0.000241134 |
| ITGB8 | 1.159011565 | 0.000180976 |
| CTA-217C2.1 | 1.158754747 | 0.0000329 |
| AC011242.6 | 1.158571335 | 0.00203434 |
| FTL | 1.157893814 | 6.79E-08 |
| FBLN5 | 1.157737789 | 5.62E-08 |
| CTD-3184A7.4 | 1.157106714 | 0.005691721 |
| SLC2A12 | 1.155757066 | 0.011829383 |
| SUSD2 | 1.154675518 | 0.0000139 |
| ATG4A | 1.154148901 | 0.000168345 |
| RP11-112L6.4 | 1.153956918 | 0.044218449 |
| NUS1P2 | 1.153687326 | 0.021613466 |


| RPGR | 1.152777611 | 0.0000447 |
| :---: | :---: | :---: |
| LINC00467 | 1.151137456 | 0.011178493 |
| TMEM38B | 1.150365957 | 0.0000149 |
| CPEB4 | 1.150134818 | 0.0000585 |
| ARSG | 1.149769753 | 0.003486197 |
| EMP3 | 1.149069292 | 0.000366223 |
| HLA-DMA | 1.148560465 | 0.0288779 |
| CLDND1 | 1.148239127 | 0.00000116 |
| OSMR | 1.147305836 | 0.001019215 |
| LAMA2 | 1.147294857 | 0.007928491 |
| SASH1 | 1.145390577 | 0.002081366 |
| ALDH2 | 1.143446789 | 0.005064371 |
| TSPAN12 | 1.142079552 | 0.0000269 |
| AKAP13 | 1.141915461 | 0.000105697 |
| ADCY2 | 1.140664286 | 0.000307863 |
| ERVMER34-1 | 1.140009351 | 0.000806253 |
| RAB4B | 1.139526825 | 0.0000119 |
| HSD17B1 | 1.138711158 | 0.000504733 |
| LAMC3 | 1.135712506 | 0.008801155 |
| RP11-498C9.2 | 1.134756112 | 0.017917543 |
| MFAP3L | 1.133653452 | 0.003814681 |
| RP11-218E20.3 | 1.133452662 | 0.013084946 |
| STC1 | 1.130187335 | 0.006859142 |
| PTPRN2 | 1.130121597 | 0.000551775 |
| CLTB | 1.12990164 | 0.000000352 |
| CRELD2 | 1.129622723 | 0.0000123 |
| UNG | 1.128873806 | 0.00000026 |
| BRF2 | 1.12881169 | 0.0000033 |
| REXO2 | 1.128109716 | 0.000000113 |
| NCOA4 | 1.128104318 | 2.52E-08 |
| EML2 | 1.127891242 | 0.000896832 |
| CSPG4P12 | 1.127719537 | 0.000323929 |
| ABCA3 | 1.12601281 | 0.004207433 |


| CFH | 1.125513997 | 0.023063893 |
| :---: | :---: | :---: |
| DPP6 | 1.12512603 | 0.022958441 |
| SGCB | 1.125100737 | 0.0000357 |
| HYAL3 | 1.124332532 | 0.001510463 |
| SLC35D1 | 1.12409496 | 0.00188802 |
| CCDC86 | 1.123854357 | 0.000000667 |
| GLRX | 1.122144237 | 0.00000182 |
| TEX2 | 1.121391505 | 0.0000838 |
| EIF2AK3 | 1.120640933 | 0.000196224 |
| FGGY | 1.120616967 | 0.008607184 |
| C20orf195 | 1.120132272 | 0.043057855 |
| RNASEK- | 1.119505385 | 0.047665906 |
| C17orf49 |  |  |
| CTSB | 1.119490921 | 4.21E-08 |
| TSC22D4 | 1.117333849 | 0.00000288 |
| C1R | 1.116118394 | 0.000000253 |
| METAP2 | 1.115278155 | 2.27E-09 |
| ACYP2 | 1.11510513 | 0.0000072 |
| VWA1 | 1.114449057 | 0.006665227 |
| CYSTM1 | 1.111146641 | 0.00000146 |
| RAB18 | 1.109395178 | 0.000000311 |
| AIFM2 | 1.109168787 | 0.000000505 |
| ANKRD2 | 1.109100566 | 0.047686368 |
| HIST1H4H | 1.108581316 | 0.002599349 |
| RNASEL | 1.108375965 | 0.0000147 |
| FZD10-AS1 | 1.107655936 | 0.018088072 |
| SRCRB4D | 1.107554489 | 0.02815255 |
| WNT5B | 1.105209566 | 0.001966888 |
| BAMBI | 1.10448095 | 0.000429173 |
| RABAC1 | 1.103687875 | 0.00000571 |
| RP11-54A9.1 | 1.101367812 | 0.019773213 |
| ZNF438 | 1.101027807 | 0.001593901 |
| MMP19 | 1.100638915 | $4.34 \mathrm{E}-08$ |


| PRDX4 | 1.100284028 | 0.000262322 |
| :---: | :---: | :---: |
| ERO1L | 1.09986748 | $4.45 \mathrm{E}-09$ |
| UGT2B7 | 1.09955948 | 0.003858595 |
| HDAC9 | 1.097980161 | 0.028944414 |
| TPGS1 | 1.097876466 | 0.000496634 |
| TMED3 | 1.097415666 | 0.0000927 |
| LINC00598 | 1.096882326 | 0.021424385 |
| LINC00968 | 1.096546168 | 0.009986394 |
| CES1 | 1.096413808 | 0.0000925 |
| SLC44A1 | 1.094877748 | 0.0000226 |
| TLR4 | 1.094767652 | 0.000458681 |
| LITAF | 1.094359256 | 0.000000107 |
| LINC00683 | 1.093369924 | 0.035135295 |
| POLD4 | 1.093267027 | 0.0000151 |
| KCNK1 | 1.090654211 | 0.00000588 |
| IL18 | 1.087905837 | 0.002964625 |
| CTD- | 1.08524189 | 0.043466414 |
| 2013N24.2 |  |  |
| NEU1 | 1.084860955 | 0.000000274 |
| KL | 1.084734946 | 0.013388252 |
| TXN | 1.084233524 | 0.000637565 |
| SIK2 | 1.083300841 | 0.000000849 |
| GLUD2 | 1.082624907 | 0.006571167 |
| MFAP5 | 1.082565062 | 0.004334919 |
| LNX1 | 1.081700054 | 0.012808709 |
| CITED4 | 1.081315899 | 0.00042852 |
| TMEM154 | 1.081304161 | 0.000413826 |
| SLC1A2 | 1.080374367 | 0.011505658 |
| RP11-67L2.2 | 1.080280522 | 0.000895536 |
| CA5BP1 | 1.080052759 | 0.00249785 |
| WDFY3-AS2 | 1.080039528 | 0.003623417 |
| AIM1 | 1.07831128 | 0.026465849 |
| RP5-1065J22.8 | 1.076864223 | 0.034352436 |


| TRPC4 | 1.075830934 | 0.000280234 |
| :---: | :---: | :---: |
| C3orf58 | 1.075553155 | 0.0000772 |
| COPZ2 | 1.075328977 | 0.000491879 |
| RP11-395A13.2 | 1.075151917 | 0.007246924 |
| TMEM147 | 1.074745146 | $2.46 \mathrm{E}-08$ |
| SGK1 | 1.073660651 | 0.001509197 |
| MZT2B | 1.073244429 | 0.000492024 |
| MXRA8 | 1.07318014 | 0.000000104 |
| CCDC53 | 1.071789047 | 0.00000298 |
| PROSER2 | 1.071060963 | 0.000102915 |
| RBMS1 | 1.070952322 | $2.11 \mathrm{E}-08$ |
| TXNDC15 | 1.070442219 | 0.00000038 |
| TSPO | 1.070130726 | 0.0000994 |
| GCNT3 | 1.069924285 | 0.022182992 |
| ZBTB11-AS1 | 1.069815225 | 0.001269856 |
| LRP8 | 1.068148352 | 0.010331958 |
| ATRAID | 1.067975336 | 0.0000143 |
| DCXR | 1.066736824 | 0.000136486 |
| VKORC1 | 1.066147276 | 0.000331091 |
| ABHD17B | 1.065401919 | 0.000000662 |
| PHYH | 1.064819543 | 0.000000407 |
| PGD | 1.06426437 | 0.001787192 |
| TSPAN13 | 1.06421385 | 0.001140606 |
| GPR108 | 1.06366209 | 0.000000379 |
| FAM53B | 1.063583415 | 0.0000125 |
| RNF152 | 1.063388689 | 0.000446698 |
| BLVRB | 1.062577827 | 0.00000779 |
| RP11-295K3.1 | 1.059631591 | 0.046623711 |
| STAT3 | 1.058100669 | 0.000732367 |
| ALDH1A2 | 1.057537351 | 0.000177704 |
| RIOK3 | 1.056642824 | 0.000000374 |
| SLC30A1 | 1.055558017 | 0.0000162 |
| PGM2 | 1.053528289 | 0.000483417 |


| SSC5D | 1.053368668 | 0.000293832 |
| :---: | :---: | :---: |
| QPRT | 1.052884567 | 0.00000552 |
| MDFIC | 1.052005221 | 0.000000345 |
| RP11-465B22.3 | 1.051661615 | 0.038711172 |
| C19orf24 | 1.05054259 | 0.000013 |
| ADAP1 | 1.05048429 | 0.024833042 |
| TMEM53 | 1.050082701 | 0.002478145 |
| GREB1L | 1.049227112 | 0.000000236 |
| SLC35E3 | 1.049176373 | 0.0000837 |
| SLC35G2 | 1.048578471 | 0.0000498 |
| EDN2 | 1.048532984 | 0.01820462 |
| ABCA1 | 1.048038249 | 0.00209095 |
| OLFML2B | 1.047582624 | 0.010152895 |
| NUDT16P1 | 1.047532401 | 0.046368792 |
| ITPK1 | 1.046675966 | 0.000000176 |
| EDEM2 | 1.045872576 | 0.000184636 |
| SDF4 | 1.044939581 | 0.0000149 |
| CCDC159 | 1.044571961 | 0.0000765 |
| GBA | 1.043412178 | $4.64 \mathrm{E}-08$ |
| C9orf89 | 1.043302115 | 0.000000669 |
| DOCK8 | 1.041661138 | 0.009860664 |
| CA2 | 1.041220254 | 0.047874404 |
| MCTP1 | 1.041116503 | 0.000805821 |
| B3GNT2 | 1.040310437 | 0.000253715 |
| ABAT | 1.039645799 | 0.006275146 |
| HLA-F | 1.038637278 | 0.003970509 |
| C10rf85 | 1.038408754 | 0.00000661 |
| NAP1L3 | 1.037426698 | 0.00040181 |
| DDRGK1 | 1.037251581 | 0.00000206 |
| ADCY3 | 1.036446955 | 0.01131106 |
| AP1S2 | 1.036411698 | 0.003273882 |
| ITFG3 | 1.036073912 | 0.0000103 |
| ADD3 | 1.03509132 | 0.0000191 |


| ABCB8 | 1.032737998 | 0.000832048 |
| :---: | :---: | :---: |
| SLC7A11 | 1.031990316 | 0.002992049 |
| TM7SF2 | 1.031621121 | 0.000254867 |
| C4orf48 | 1.031587345 | 0.000824828 |
| SERPINB9 | 1.031164729 | 0.004860422 |
| RCN3 | 1.030229938 | 0.000243447 |
| SELM | 1.02887497 | 0.00000632 |
| OAT | 1.026786509 | 0.00000689 |
| LINC01003 | 1.026754129 | 0.01870097 |
| PDIA5 | 1.026426732 | 0.002507018 |
| CTD-253611.1 | 1.026226694 | 0.030369919 |
| CLYBL | 1.026125059 | 0.006889708 |
| SCPEP1 | 1.023603378 | 0.000000126 |
| MCUR1 | 1.023052194 | 0.000000693 |
| RP11-295G20.2 | 1.022734904 | 0.012459688 |
| PBLD | 1.021956036 | 0.000477084 |
| PLXND1 | 1.021697621 | 0.015850715 |
| KCNMB4 | 1.021311641 | 0.008571318 |
| AIMP2 | 1.020502087 | 0.0000388 |
| PIGP | 1.020279812 | 0.0000367 |
| PDCD5 | 1.020179948 | 0.000024 |
| MASP1 | 1.019252126 | 0.006980522 |
| DHCR7 | 1.019192468 | 0.009869387 |
| RNF14 | 1.018986653 | 0.000000758 |
| UNC79 | 1.01895397 | 0.047009399 |
| EMP2 | 1.018911752 | 0.00000251 |
| TBC1D1 | 1.01847604 | 0.005795156 |
| ATP6V0B | 1.016839267 | 0.000000122 |
| ARL4A | 1.015746742 | 0.000219986 |
| KIAA1549 | 1.015659147 | 0.0000788 |
| EPHX1 | 1.015589478 | 0.0000965 |
| CD63 | 1.014066646 | 0.00000684 |
| RN7SL3 | 1.014007665 | 0.028904959 |


| GPX7 | 1.013373015 | 0.000231373 |
| :---: | :---: | :---: |
| TAF13 | 1.01314447 | 0.00000085 |
| CASP9 | 1.012774883 | 0.000106155 |
| MIEN1 | 1.012570652 | 0.00011376 |
| SELPLG | 1.012549218 | 0.006583901 |
| RP11-355B11.2 | 1.011113976 | 0.021816117 |
| RP11-334C17.5 | 1.010745856 | 0.008119996 |
| IL10RB | 1.01021324 | 0.0000429 |
| FBLN1 | 1.010003497 | 0.0000108 |
| SPRYD4 | 1.009926545 | 0.000520667 |
| MOV10L1 | 1.00957762 | 0.0000115 |
| C19orf70 | 1.009104463 | 0.0000114 |
| SUSD3 | 1.00889758 | 0.0031879 |
| BNIP3P1 | 1.008148531 | 0.000943918 |
| HMGN3 | 1.007320653 | 0.0000904 |
| SERF2 | 1.006651206 | 0.0000427 |
| ACE | 1.006264416 | 0.029982176 |
| SNX25 | 1.005917218 | 0.000000648 |
| MVD | 1.005663721 | 0.000700055 |
| FKBP11 | 1.005568114 | 0.001894719 |
| LIMS3 | 1.005411808 | 0.000306247 |
| TIMP1 | 1.004995052 | 0.000281971 |
| SMAP1 | 1.003187967 | 0.0000773 |
| RP11-135L13.4 | 1.002763049 | 0.011294848 |
| UCP2 | 1.002259488 | 0.025851129 |
| UBE2D1 | 1.001839468 | 0.000000447 |
| C5AR1 | 1.001532007 | 0.023904805 |
| LINC00116 | 1.000665521 | 0.000792991 |

Appendix 4. Down-regulated genes upon decidualization: Log2-fold change $\leq-1$

| Gene Symbol | log2-fold change | q |
| :---: | :---: | :---: |
| TNFSF18 | -6.478964402 | 3.23E-32 |
| INHBE | -5.884321704 | $1.04 \mathrm{E}-18$ |
| EGR2 | -5.274229596 | $2.66 \mathrm{E}-17$ |
| SERTAD4 | -4.999475267 | 3.27E-26 |
| TNFRSF19 | -4.891775017 | 7.89E-76 |
| SSTR1 | -4.890083317 | 6.37E-43 |
| MXRA5 | -4.489495577 | 6.63E-33 |
| PHGDH | -4.430202293 | 1.18E-36 |
| SYTL5 | -4.419102984 | 5.6E-41 |
| DKK2 | -4.32675239 | 7.69E-10 |
| CALB2 | -4.12458001 | $1.54 \mathrm{E}-15$ |
| TNFSF4 | -3.960684243 | 2.01E-20 |
| SLC6A9 | -3.93819276 | 1.72E-19 |
| TNNT2 | -3.937206526 | 1.03E-14 |
| COL12A1 | -3.882128111 | 4.95E-59 |
| ADRA1D | -3.876341209 | 4.89E-13 |
| TMEM130 | -3.693861991 | 5.32E-11 |
| FAM196B | -3.676870569 | 5.26E-15 |
| GLI1 | -3.665220372 | 2.01E-12 |
| SBF2-AS1 | -3.665135925 | 4.97E-41 |
| HTR1D | -3.645204857 | 4.07E-09 |
| MYBL2 | -3.633644884 | $2.51 \mathrm{E}-33$ |
| LRP2 | -3.62009864 | 0.000000285 |
| PSAT1 | -3.607758077 | $3.74 \mathrm{E}-13$ |
| SULT1C4 | -3.604581401 | $2.17 \mathrm{E}-11$ |
| CNTN5 | -3.602621883 | 6.06E-09 |
| ADM2 | -3.594698793 | 4.29E-14 |


| ITIH3 | -3.558075628 | 2.49E-16 |
| :---: | :---: | :---: |
| 38047 | -3.501007808 | 9.45E-15 |
| MXRA5P1 | -3.484783246 | 0.000000478 |
| NCKAP5 | -3.480388334 | 3.33E-15 |
| OLFML2A | -3.478998768 | $1.26 \mathrm{E}-16$ |
| MKI67 | -3.462861154 | 3.93E-27 |
| FAM111B | -3.399998921 | $1.94 \mathrm{E}-14$ |
| MEOX1 | -3.39852901 | 9.06E-11 |
| SORCS3 | -3.386384818 | 0.0000109 |
| DOCK2 | -3.354057658 | 2.13E-08 |
| BUB1B | -3.341101433 | $3.11 \mathrm{E}-28$ |
| CACNG4 | -3.334648774 | 0.00000049 |
| NEIL3 | -3.332498259 | $1.01 \mathrm{E}-13$ |
| GBP4 | -3.319460316 | $9.71 \mathrm{E}-26$ |
| RASGRP3 | -3.317088224 | $6.91 \mathrm{E}-11$ |
| LINC00643 | -3.309890415 | 0.00000919 |
| CHRM2 | -3.304274792 | 1.37E-12 |
| RP11- | -3.281040135 | 0.000000128 |
| 284N8.3 |  |  |
| FMN2 | -3.259599217 | 2.21E-24 |
| DTL | -3.249761598 | 1.04E-15 |
| TNFSF15 | -3.235616735 | 1.3E-10 |
| WNT2 | -3.233514586 | 3.2E-12 |
| KCNA3 | -3.230462217 | 0.000000201 |
| ZNF365 | -3.221292117 | $4.35 \mathrm{E}-15$ |
| MIR143HG | -3.219573115 | 1.2E-22 |
| DPY19L2P1 | -3.184966903 | $2.09 \mathrm{E}-11$ |
| BRIP1 | -3.182414237 | 9.4E-22 |
| NCAPG | -3.175300379 | 1.49E-24 |
| CCNE2 | -3.15732126 | $1.15 \mathrm{E}-12$ |
| $\begin{aligned} & \text { RP11- } \\ & \text { 709B3.2 } \end{aligned}$ | -3.149127291 | 7.58E-09 |
| IQGAP3 | -3.143042706 | $2.84 \mathrm{E}-27$ |


| RIBC2 | -3.139096696 | 0.0000338 |
| :---: | :---: | :---: |
| AL121578.2 | -3.108761843 | 0.0000427 |
| SKA3 | -3.103322449 | 1.55E-14 |
| RP11- | -3.102458777 | 0.0000226 |
| 554D15.1 |  |  |
| HJURP | -3.088061719 | 1.18E-18 |
| NES | -3.087777528 | 1.05E-16 |
| DIO2 | -3.054472453 | 1.66E-18 |
| SYT1 | -3.043178477 | 8.65E-11 |
| E2F7 | -3.036895256 | 4.6E-12 |
| C1QTNF7 | -3.033298963 | 7.4E-12 |
| TYMS | -3.030154902 | 3.81E-20 |
| HUNK | -3.027191731 | 4.3E-22 |
| PDE5A | -3.02220806 | 2.22E-13 |
| RASGRP1 | -2.983978379 | 3.88E-10 |
| LINC00617 | -2.983070033 | 0.000000274 |
| ASF1B | -2.981733991 | 1.83E-15 |
| MIR145 | -2.979353524 | 4.42E-20 |
| FJX1 | -2.969208172 | $1.91 \mathrm{E}-08$ |
| ZNF469 | -2.959950264 | 1.2E-12 |
| CPA4 | -2.949856419 | 3.22E-14 |
| KIF20A | -2.942080275 | 2.07E-17 |
| ADAMTS16 | -2.933999798 | 1.93E-11 |
| LRRC17 | -2.922721978 | 4.15E-08 |
| CAND2 | -2.921606653 | 7.74E-15 |
| IGFBP5 | -2.915642343 | 0.000121201 |
| CAMK1D | -2.910196942 | 6.16E-13 |
| GINS2 | -2.901039018 | 1.94E-10 |
| AC131025.8 | -2.894287997 | 0.00000318 |
| CENPU | -2.883437441 | 8.25E-15 |
| $\begin{aligned} & \text { RP11- } \\ & \text { 426C22.4 } \end{aligned}$ | -2.882712369 | 0.000000176 |


| RP11- <br> 588K22.2 | -2.880159074 | 0.0000338 |
| :---: | :---: | :---: |
| FAM64A | -2.87355014 | 1.29E-16 |
| KIT | -2.866737402 | $4.62 \mathrm{E}-10$ |
| BUB1 | -2.865749724 | 1.88E-18 |
| RAD54L | -2.865290807 | $1.75 \mathrm{E}-10$ |
| ANLN | -2.86244239 | 4.2E-24 |
| MAP3K7CL | -2.862418319 | 5.03E-14 |
| TENM4 | -2.856956301 | 2.64E-08 |
| MRVI1 | -2.85019438 | $1.65 \mathrm{E}-18$ |
| RRM2 | -2.848489188 | 9.54E-30 |
| DPY19L2 | -2.84835008 | $2.48 \mathrm{E}-10$ |
| NUF2 | -2.845470417 | 1.19E-14 |
| EGR1 | -2.844014529 | 7.5E-38 |
| RAB3B | -2.837069233 | $1.61 \mathrm{E}-10$ |
| UHRF1 | -2.832300717 | 1.39E-23 |
| NRP2 | -2.828769535 | 8.91E-10 |
| E2F8 | -2.825564432 | 0.000000236 |
| FOXM1 | -2.8222335 | 6.49E-23 |
| POSTN | -2.818605362 | 3.66E-16 |
| CNTN1 | -2.815799532 | 0.000000013 |
| VASH2 | -2.812041267 | 3.44E-08 |
| NREP | -2.808165496 | $2.52 \mathrm{E}-14$ |
| CDC25C | -2.8075364 | 1.52E-10 |
| COL8A1 | -2.799157262 | 3.44E-17 |
| DPYSL3 | -2.79466439 | 0.0000738 |
| E2F2 | -2.787418993 | 0.000000584 |
| CASC5 | -2.784711854 | $7.48 \mathrm{E}-23$ |
| EXO1 | -2.767062159 | 3.62E-08 |
| TROAP | -2.766756916 | $1.67 \mathrm{E}-14$ |
| PLCB1 | -2.763230911 | 3.95E-09 |
| NCAPH | -2.762443973 | $1.44 \mathrm{E}-14$ |
| ERCC6L | -2.761729534 | 0.000000849 |
|  |  | 230 |


| GTSE1 | -2.760317869 | 1.27E-18 |
| :---: | :---: | :---: |
| GUCY1A3 | -2.755576835 | 0.00000929 |
| FAM83D | -2.749806384 | 2.23E-15 |
| CEP55 | -2.744744396 | 7.72E-24 |
| CAMK2A | -2.741106867 | 0.0000221 |
| TICRR | -2.737970191 | 4.97E-10 |
| CLSPN | -2.725606992 | 7.14E-12 |
| PKNOX2 | -2.723249265 | 0.00000012 |
| MCM10 | -2.71105548 | $1.48 \mathrm{E}-10$ |
| LINC00327 | -2.70742165 | 8.32E-09 |
| PRELP | -2.695510256 | $4.41 \mathrm{E}-11$ |
| NTF3 | -2.692058007 | 0.00000034 |
| HRK | -2.69176817 | 0.000405801 |
| RP1-140K8.5 | -2.687139142 | 0.000055 |
| CDK1 | -2.686430719 | 2.02E-20 |
| TNXB | -2.684158515 | 4.75E-13 |
| TMPO-AS1 | -2.683801139 | 0.000000782 |
| RASSF2 | -2.680154098 | 1.55E-19 |
| PRRG3 | -2.667713698 | 0.0000693 |
| KIF18B | -2.66690852 | 1.22E-11 |
| HEPACAM | -2.6613203 | 0.000604723 |
| LBH | -2.660207214 | 4.02E-13 |
| FNDC1 | -2.658126877 | $4.24 \mathrm{E}-10$ |
| LANCL3 | -2.658075168 | 0.00000202 |
| SGCD | -2.655198295 | $1.47 \mathrm{E}-08$ |
| ITM2A | -2.655176184 | 0.0000152 |
| ATP8B1 | -2.651453703 | $8.94 \mathrm{E}-12$ |
| FRMD4A | -2.648969956 | 9.57E-08 |
| SPAG5 | -2.647535803 | $4.59 \mathrm{E}-19$ |
| C6orf141 | -2.646631398 | 0.000157089 |
| KB-1410C5.2 | -2.645960662 | 0.000784577 |
| DLGAP5 | -2.641384938 | $2.29 \mathrm{E}-18$ |
| MYLK | -2.641246354 | $4.84 \mathrm{E}-16$ |


| SHCBP1 | -2.63963268 | $8.77 \mathrm{E}-21$ |
| :---: | :---: | :---: |
| MBOAT1 | -2.63852621 | 1.92E-14 |
| ZNF367 | -2.634271598 | $1.77 \mathrm{E}-12$ |
| CBLN2 | -2.632933831 | 0.000382016 |
| CDT1 | -2.623787024 | 3.06E-11 |
| ESCO2 | -2.621971973 | 4.9E-11 |
| SAPCD2 | -2.620799777 | 0.000000066 |
| TTK | -2.615696129 | $1.34 \mathrm{E}-15$ |
| PLEKHA4 | -2.607120201 | $2.27 \mathrm{E}-13$ |
| RGS4 | -2.605585551 | $1.75 \mathrm{E}-11$ |
| DUSP6 | -2.604070472 | 3.73E-10 |
| FBXL22 | -2.598403388 | 0.00028374 |
| AURKB | -2.590395231 | 9.71E-09 |
| AFF3 | -2.589586994 | 1.19E-34 |
| TOP2A | -2.586289371 | $1.68 \mathrm{E}-33$ |
| NCAM1 | -2.584530914 | 7.2E-10 |
| RNF165 | -2.582138394 | 0.00000829 |
| COL16A1 | -2.58096138 | 1.19E-09 |
| TCF19 | -2.580803063 | 7.8E-15 |
| FAT3 | -2.578357579 | 0.0000308 |
| SLC7A3 | -2.577730974 | 0.00000297 |
| C17orf107 | -2.575776026 | 8.91E-08 |
| ZNF711 | -2.573121138 | $2.81 \mathrm{E}-13$ |
| ATP8B4 | -2.570764748 | 0.00000244 |
| KCNA6 | -2.57030129 | 0.000222132 |
| SLC4A4 | -2.56674004 | 0.000111146 |
| RCOR2 | -2.559210209 | $6.46 \mathrm{E}-08$ |
| BIRC5 | -2.557153182 | $2.94 \mathrm{E}-23$ |
| GRIN2A | -2.556971109 | 0.0000493 |
| SH3BP1 | -2.556666562 | 1.13E-11 |
| CLDN11 | -2.555386995 | 0.00000469 |
| PLK1 | -2.555312528 | $2.04 \mathrm{E}-23$ |
| KIAA0101 | -2.552340448 | 3.08E-14 |


| CNGA1 | -2.545374806 | 0.0000828 |
| :---: | :---: | :---: |
| FIBIN | -2.545311685 | 0.00000125 |
| ARHGDIB | -2.544881595 | $1.54 \mathrm{E}-17$ |
| CTD2297D10.2 | -2.540334518 | 0.001277033 |
| PGM5 | -2.537295676 | 0.000000001 |
| KIF11 | -2.52217967 | $2.29 \mathrm{E}-22$ |
| RCAN2 | -2.52103494 | 0.00000024 |
| SETBP1 | -2.518417714 | 8.06E-08 |
| PREX2 | -2.518168046 | 0.00000114 |
| FLRT1 | -2.513214045 | 0.001269368 |
| CDC20 | -2.513119746 | 3E-13 |
| JPH4 | -2.511447318 | 3.61E-11 |
| LGR5 | -2.51028343 | 0.00000695 |
| LPAR4 | -2.506172281 | 0.000628627 |
| KIF18A | -2.50579416 | 2.86E-09 |
| B3GALT2 | -2.504062616 | 0.000022 |
| CDC6 | -2.503426398 | 7.23E-15 |
| SCHIP1 | -2.500726907 | 0.0000562 |
| MIR143 | -2.497194546 | 0.001384495 |
| ROBO3 | -2.494197514 | 0.00000238 |
| PKMYT1 | -2.493300237 | $1.07 \mathrm{E}-08$ |
| FHOD3 | -2.49218599 | 0.000584822 |
| PTCHD4 | -2.492171895 | 7.97E-08 |
| INPP5J | -2.490575513 | 0.0000725 |
| PLK4 | -2.490068687 | 2.03E-12 |
| CTD- <br> 2269F5.1 | -2.488974041 | 0.000692397 |
| PTHLH | -2.488465151 | 0.00000259 |
| LMNB1 | -2.487120932 | 2.53E-12 |
| CDCA5 | -2.484806913 | $2.04 \mathrm{E}-17$ |
| DEPDC1 | -2.482434201 | $2.36 \mathrm{E}-18$ |
| CDCA2 | -2.480510691 | $1.02 \mathrm{E}-10$ |


| POLQ | -2.478629246 | 9.35E-11 |
| :---: | :---: | :---: |
| IGDCC4 | -2.477579509 | 7.25E-11 |
| FGF9 | -2.475103095 | 0.00000694 |
| RHOJ | -2.473712537 | 7.16E-12 |
| AC010890.1 | -2.464496393 | 0.000437394 |
| RPS6KA6 | -2.460063483 | $1.55 \mathrm{E}-08$ |
| SYPL2 | -2.458308889 | $1.96 \mathrm{E}-22$ |
| SULF1 | -2.456466359 | 2.53E-15 |
| ASPM | -2.453593354 | 2.4E-11 |
| KIAA0754 | -2.451906867 | 1.16E-09 |
| ARMC4 | -2.449780727 | 0.000063 |
| PALM2 | -2.44869371 | $1.66 \mathrm{E}-08$ |
| PAPPA2 | -2.44733788 | 0.001173298 |
| KIF2C | -2.44468025 | $1.04 \mathrm{E}-15$ |
| CENPF | -2.444601607 | $1.91 \mathrm{E}-22$ |
| CDCA3 | -2.438101079 | 1.03E-14 |
| RP11- <br> 344E13.3 | -2.434641194 | $1.42 \mathrm{E}-08$ |
| PALM2AKAP2 | -2.422229159 | 0.000516258 |
| PLXDC1 | -2.419288127 | 3.01E-10 |
| NUSAP1 | -2.418966479 | $5.58 \mathrm{E}-23$ |
| NTM | -2.40698604 | 0.00000339 |
| BAI2 | -2.40556779 | 1.16E-09 |
| KIF14 | -2.405385085 | $1.61 \mathrm{E}-12$ |
| AC007362.1 | -2.404446376 | 0.000022 |
| CR1 | -2.404385258 | 0.000609959 |
| CSRP2 | -2.396168646 | 0.000000398 |
| CENPA | -2.395279822 | $1.08 \mathrm{E}-10$ |
| PRC1 | -2.393201969 | 9.64E-27 |
| EBF3 | -2.385871027 | 0.00010583 |
| USP53 | -2.375775592 | 1.33E-14 |
| SFRP1 | -2.373884818 | $2.48 \mathrm{E}-10$ |


| FMNL3 | -2.36835175 | 1.11E-13 |
| :---: | :---: | :---: |
| ADCY4 | -2.365269932 | 9.32E-12 |
| WEE1 | -2.363762306 | 4.54E-09 |
| MIR503HG | -2.361276121 | $4.77 \mathrm{E}-10$ |
| GREM2 | -2.360653989 | 0.000021 |
| C11orf82 | -2.356432581 | 1.12E-08 |
| NBEAP1 | -2.352763347 | 0.0000966 |
| ZFHX4 | -2.346937544 | 0.00000142 |
| RP11- | -2.344879178 | 0.002773462 |
| 354P17.15 |  |  |
| AKAP5 | -2.343047438 | 0.00000581 |
| LOXL1-AS1 | -2.342058003 | 9.76E-08 |
| IL17RB | -2.34034 | 0.00011532 |
| LINC01085 | -2.34002086 | 0.00049182 |
| BLM | -2.339699519 | 5.76E-08 |
| SMAD3 | -2.334169554 | 0.000000077 |
| FMO2 | -2.333362191 | 0.00176912 |
| RP11- | -2.332496978 | 0.002923398 |
| 693N9.2 |  |  |
| NPM2 | -2.3252047 | 0.000108454 |
| HOXD-AS1 | -2.324000374 | 0.000784553 |
| SHROOM3 | -2.322535646 | 2.03E-11 |
| CLEC14A | -2.321131034 | 0.002076507 |
| FOXS1 | -2.315029325 | 0.001130009 |
| ERP27 | -2.313765088 | 0.00088978 |
| CDCA8 | -2.312390941 | $1.77 \mathrm{E}-15$ |
| KIFC1 | -2.309665067 | 1.12E-14 |
| DIAPH3 | -2.309176469 | 4.44E-15 |
| TPX2 | -2.308886563 | 1.14E-13 |
| HTR7P1 | -2.307756798 | 0.00000197 |
| GRIP2 | -2.307248529 | 0.000037 |
| TOX | -2.307052786 | 0.000490731 |
| KIF4A | -2.30619643 | $3.81 \mathrm{E}-15$ |


| TGM1 | -2.305425486 | 0.0000488 |
| :---: | :---: | :---: |
| RP11- | -2.300902559 | 0.000226492 |
| 554A11.4 |  |  |
| ATP2B1 | -2.29889117 | 7.23E-18 |
| ANK2 | -2.296192964 | $4.98 \mathrm{E}-10$ |
| PAG1 | -2.288607519 | 5.24E-10 |
| TLL1 | -2.287836422 | 0.001528438 |
| PLCE1-AS1 | -2.282682834 | 0.001052457 |
| SPC25 | -2.28171544 | $1.37 \mathrm{E}-08$ |
| HMCN1 | -2.276924021 | $5.22 \mathrm{E}-11$ |
| MYH11 | -2.274267171 | 2.89E-09 |
| MBNL3 | -2.27078741 | 0.0000401 |
| PTGES3P1 | -2.268376082 | 0.001190105 |
| GUCY1B3 | -2.264289242 | 0.00000402 |
| RP11- | -2.262507875 | 8.85E-17 |
| 54801.3 |  |  |
| ATAD5 | -2.262433242 | 0.000000182 |
| ZBTB12 | -2.262034795 | $4.73 \mathrm{E}-08$ |
| NUP210 | -2.261351567 | 0.00000243 |
| SYT16 | -2.261269077 | 0.003037695 |
| LRRC4B | -2.258836845 | 5.62E-12 |
| TK1 | -2.258657083 | $4.01 \mathrm{E}-14$ |
| AC092667.2 | -2.257244242 | 0.003425463 |
| BMF | -2.249544411 | 0.00000549 |
| OIP5 | -2.245650261 | 0.00000897 |
| PTX3 | -2.242238557 | 0.00083907 |
| C2CD4C | -2.241011406 | 0.004468727 |
| CCDC81 | -2.238508096 | 1.07E-14 |
| B4GALNT4 | -2.23530012 | 0.0000855 |
| UBE2C | -2.231986792 | $4.89 \mathrm{E}-11$ |
| ITGA4 | -2.229440966 | $1.25 \mathrm{E}-15$ |
| TSPAN18 | -2.227738862 | 0.0000136 |
| MCM5 | -2.224744937 | 8.52E-19 |


| PCDH10 | -2.223533616 | 2.07E-08 |
| :---: | :---: | :---: |
| CCNB2 | -2.223365716 | $2.11 \mathrm{E}-13$ |
| DNM1 | -2.221740562 | 2.87E-08 |
| CCDC15 | -2.221575275 | 0.00000555 |
| GABRA5 | -2.220025516 | 0.000000793 |
| ARHGAP11A | -2.213086477 | 5.31E-16 |
| CDKN3 | -2.212165792 | 8.25E-11 |
| RAD51AP1 | -2.211759963 | 5.06E-10 |
| RASGRF1 | -2.208316027 | 0.000215123 |
| WNK4 | -2.20704619 | 0.0000174 |
| SYT7 | -2.199943493 | 0.000017 |
| TRHDE | -2.199250495 | 0.0000365 |
| PBK | -2.198957613 | $2.16 \mathrm{E}-13$ |
| RP11- | -2.197234193 | 0.000877263 |
| 297M9.2 |  |  |
| DOCK10 | -2.196527424 | 0.00000403 |
| COLGALT2 | -2.196303717 | 0.005259501 |
| ADAM12 | -2.19588053 | $2.74 \mathrm{E}-11$ |
| RHOBTB1 | -2.191464427 | 9.24E-09 |
| LZTS1 | -2.186449047 | 0.000148225 |
| ITGA11 | -2.182456477 | 0.000000341 |
| PPP1R12B | -2.180127579 | $2.25 \mathrm{E}-11$ |
| CENPH | -2.179755794 | 2.02E-09 |
| CSDC2 | -2.179361742 | $2.45 \mathrm{E}-09$ |
| OSR1 | -2.179180435 | 0.001112401 |
| OBSCN | -2.176311888 | 6.09E-19 |
| MELK | -2.168342884 | 5.24E-09 |
| GPSM2 | -2.166053494 | 1.03E-08 |
| ZNF521 | -2.164815144 | 0.000000164 |
| TRERF1 | -2.164382967 | $1.28 \mathrm{E}-16$ |
| STC2 | -2.1608153 | 0.0000266 |
| SAMD3 | -2.159316299 | 0.000165789 |
| PRRT2 | -2.158451148 | 0.00000353 |


| NDUFA4L2 | -2.156744044 | 0.000713615 |
| :---: | :---: | :---: |
| LINC00312 | -2.155708559 | 0.0000223 |
| ISM1 | -2.153585758 | 0.00000129 |
| ADCYAP1R1 | -2.151627836 | 0.006264154 |
| ZNF488 | -2.149789834 | 0.0000227 |
| CD200 | -2.144906872 | 0.001651094 |
| ROBO2 | -2.144216146 | 9.29E-12 |
| F2RL1 | -2.143275499 | 0.00000698 |
| OSBPL7 | -2.143185956 | 6.21E-11 |
| HOXA2 | -2.14255104 | 0.000412025 |
| NXPH4 | -2.142039282 | 0.002332883 |
| FAM69B | -2.140775781 | 0.001713747 |
| KIF23 | -2.140582139 | $7.71 \mathrm{E}-20$ |
| B3GALNT1 | -2.139120409 | 0.0000287 |
| KIF15 | -2.138303801 | 5.13E-08 |
| RASSF5 | -2.131736287 | 0.002741549 |
| C1orf198 | -2.129769249 | $2.66 \mathrm{E}-12$ |
| DNMT3B | -2.12767501 | 0.000000222 |
| CMAHP | -2.124354981 | 4.92E-08 |
| IL34 | -2.122671452 | 0.000666157 |
| DNAH100S | -2.122568844 | 0.0000143 |
| NEK2 | -2.118321753 | $1.11 \mathrm{E}-08$ |
| FLI1 | -2.115576482 | 0.000559807 |
| EZH2 | -2.112994951 | 0.000000043 |
| ITGA8 | -2.11227624 | 0.0000365 |
| PCP4 | -2.107991382 | 0.007378635 |
| BRCA2 | -2.107489482 | 0.00000021 |
| CDH4 | -2.10742278 | 0.000241856 |
| PRR11 | -2.106322877 | 9.22E-13 |
| ABCA10 | -2.105732423 | 0.000426767 |
| RP11-9G1.3 | -2.103722901 | 0.007149446 |
| PDGFC | -2.101487497 | $2.57 \mathrm{E}-10$ |
| ANO1 | -2.098828435 | 9.93E-08 |


| SDPR | -2.09717574 | 6.85E-09 |
| :---: | :---: | :---: |
| CTD- | -2.096782618 | 0.007809255 |
| 2267D19.6 |  |  |
| IQCA1 | -2.096128559 | 0.000150256 |
| NPAS4 | -2.094531787 | 0.006848542 |
| 37865 | -2.093158918 | 0.000132505 |
| DIRC3 | -2.093027873 | 0.001195316 |
| MYH10 | -2.092442709 | $9.72 \mathrm{E}-19$ |
| PRR5L | -2.086056771 | 0.00000301 |
| TSPAN8 | -2.082310376 | 0.00016909 |
| ETV4 | -2.080386428 | 0.0000317 |
| SLC35F3 | -2.079776176 | 0.0000322 |
| CRABP2 | -2.078102979 | 0.000116978 |
| KCNMA1 | -2.076545277 | 0.000403127 |
| AC109642.1 | -2.076026426 | 0.006765439 |
| ATCAY | -2.075964004 | 0.000000517 |
| SGOL1 | -2.074550197 | 0.000000774 |
| FBXO43 | -2.072747461 | 0.006625009 |
| TMEM119 | -2.072428559 | 2.37E-08 |
| RP11- | -2.07237848 | 0.000616602 |
| 686D22.3 |  |  |
| NFIX | -2.071397297 | 1.35E-17 |
| MRGPRF | -2.071241264 | 0.00000345 |
| LOXL4 | -2.069725536 | $2.22 \mathrm{E}-08$ |
| CREB5 | -2.067509004 | 0.000000489 |
| CIT | -2.066646783 | 0.00000578 |
| RP11- | -2.065650849 | 0.001883486 |
| 597 D 13.7 |  |  |
| MIAT | -2.059690778 | 0.000617955 |
| MCM7 | -2.058242981 | $2.88 \mathrm{E}-10$ |
| PLCH1 | -2.055381194 | 0.00000456 |
| NUAK1 | -2.054327639 | 1.33E-11 |
| CADPS | -2.05376396 | 0.000255413 |


| GINS4 | -2.053727295 | 2.19E-09 |
| :---: | :---: | :---: |
| IL17RD | -2.051129968 | 0.00000859 |
| ACBD7 | -2.047215239 | 0.002613015 |
| SSPN | -2.046301304 | 9.86E-08 |
| APOL3 | -2.042176051 | 0.000000533 |
| HELLS | -2.041555355 | 8.21E-14 |
| NFE2L3 | -2.037530469 | 1.31E-09 |
| C8orf34 | -2.034864051 | 0.00135787 |
| CDC45 | -2.033516062 | 0.000000179 |
| RECQL4 | -2.03291442 | $3.65 \mathrm{E}-08$ |
| SYNPO2 | -2.030453525 | 4.65E-15 |
| FGF17 | -2.021140331 | 0.003960524 |
| TRIP13 | -2.017705266 | 1.16E-12 |
| MPPED2 | -2.014741891 | 0.005830251 |
| RP11- | -2.001347621 | 0.002749451 |
| 567M16.1 |  |  |
| PREX1 | -2.001048423 | 3.69E-12 |
| LIG1 | -2.000529633 | 0.00000242 |
| WFDC1 | -2.000035491 | 4E-10 |
| RP11- | -1.996607518 | 0.006327423 |
| 355122.7 |  |  |
| SLC7A4 | -1.995333838 | 0.000742676 |
| CASS4 | -1.995056326 | 0.011440371 |
| GRIA1 | -1.991944274 | $3.42 \mathrm{E}-10$ |
| HYDIN | -1.991895351 | 0.000000325 |
| MEX3A | -1.990570326 | 0.0000426 |
| DPY19L2P4 | -1.988655744 | 0.011700205 |
| MMP11 | -1.988604124 | 0.008111229 |
| CCNA2 | -1.987248522 | $3.72 \mathrm{E}-16$ |
| ADAMTS6 | -1.982030154 | $1.76 \mathrm{E}-12$ |
| LINC00865 | -1.978518562 | $1.74 \mathrm{E}-08$ |
| ACTG2 | -1.977661141 | $1.87 \mathrm{E}-10$ |
| FAT1 | -1.976684522 | 7.1E-10 |


| JPH2 | -1.97536599 | 1.53E-11 |
| :---: | :---: | :---: |
| DIRAS1 | -1.97253106 | 0.0000004 |
| ZNF853 | -1.970571751 | 0.000000255 |
| PMAIP1 | -1.968399362 | 0.0000352 |
| MARK1 | -1.967200641 | 9.12E-08 |
| TRAC | -1.964563894 | 0.011549905 |
| LINC00920 | -1.961645081 | 0.009086035 |
| RP11- | -1.961549871 | 0.0000268 |
| 253E3.3 |  |  |
| BBC3 | -1.96118209 | 0.000136263 |
| RP11- | -1.960057795 | 0.000000696 |
| 268J15.5 |  |  |
| WTAPP1 | -1.959000805 | 0.008175978 |
| KIF20B | -1.956395893 | 3.97E-13 |
| KIAA1524 | -1.954749061 | 8.52E-12 |
| RP11- | -1.953872057 | 0.003194924 |
| 617 D 20.1 |  |  |
| PABPC4L | -1.951433807 | 0.000000993 |
| ARL4C | -1.950777366 | 0.000219631 |
| MSC | -1.950485075 | 0.000000603 |
| MKX | -1.949885089 | 0.001232259 |
| VANGL2 | -1.946924773 | 0.00000282 |
| FZD7 | -1.946408213 | 0.0000182 |
| RUNX2 | -1.943965268 | 0.0000449 |
| PDZD4 | -1.938897662 | 0.0000647 |
| HMMR | -1.937881597 | 1.23E-10 |
| ZSWIM4 | -1.93670169 | 0.00000027 |
| DYRK2 | -1.936550813 | $3.31 \mathrm{E}-14$ |
| RAC2 | -1.935924562 | 0.001116274 |
| CAV1 | -1.933403705 | 1.3E-11 |
| SPEG | -1.929911132 | 0.000000015 |
| XRCC2 | -1.929316382 | 0.0000064 |
| E2F1 | -1.927780115 | 0.000000683 |


| CENPM | -1.927533499 | 0.0000194 |
| :---: | :---: | :---: |
| GBP2 | -1.926595108 | $2.98 \mathrm{E}-09$ |
| VEGFC | -1.923791131 | 7.53E-16 |
| TRAIP | -1.923010562 | 0.0000257 |
| HCAR1 | -1.922036067 | 0.010227421 |
| FANCA | -1.920729548 | 6.66E-09 |
| SCN5A | -1.919804766 | 0.0000123 |
| GAL3ST4 | -1.917511439 | 0.000139598 |
| SERTAD4- | -1.916954057 | 0.014866845 |
| AS1 |  |  |
| FAR2 | -1.916097097 | 1.47E-11 |
| EPB41 | -1.915412376 | 0.000350185 |
| PSG1 | -1.914284258 | 0.007666882 |
| AC096677.1 | -1.913395871 | 0.009081171 |
| RP11-60L3.1 | -1.912369603 | 0.004841773 |
| CTC-30107.4 | -1.91190995 | 0.000913528 |
| LIN7A | -1.911016772 | 8.54E-09 |
| KIAA1683 | -1.910892544 | 1.75E-09 |
| THSD1 | -1.91031867 | 0.005677119 |
| TGFB3 | -1.899001275 | 0.00024946 |
| FMO3 | -1.897878764 | 0.013304985 |
| RP11- | -1.897824076 | 0.013176646 |
| 141M1.3 |  |  |
| ACKR4 | -1.892517339 | 0.003298757 |
| AC112721.2 | -1.892371892 | 0.014249004 |
| GREM1 | -1.891026865 | 0.012176514 |
| NEFL | -1.890870589 | 0.004033896 |
| FAM211A | -1.887511971 | 0.000000643 |
| SLC9A7 | -1.88685015 | 0.00000236 |
| FRMD6 | -1.885244063 | $1.25 \mathrm{E}-10$ |
| GINS1 | -1.883473084 | 0.000000022 |
| CCDC14 | -1.883381565 | 5.6E-10 |
| FGL2 | -1.882812898 | 0.006620856 |


| RNU2-52P | -1.881230061 | 0.017129922 |
| :---: | :---: | :---: |
| F2RL2 | -1.881214195 | 8.97E-14 |
| LRRC8C | -1.880597303 | 0.0000472 |
| DAPK2 | -1.878658283 | 0.0000672 |
| DCAF12L2 | -1.878595921 | 0.005014279 |
| NXPH3 | -1.878055992 | 0.000115543 |
| SCN9A | -1.876730197 | 0.001504701 |
| CCDC144CP | -1.876193306 | 0.002903279 |
| HMGA2 | -1.875666932 | 0.000366307 |
| C10orf105 | -1.873162701 | 0.010336008 |
| SCN8A | -1.872845873 | $4.08 \mathrm{E}-08$ |
| PSRC1 | -1.869171472 | 0.000000739 |
| SLC26A10 | -1.868488027 | 0.0000221 |
| CENPK | -1.868265253 | 0.00000107 |
| PCK2 | -1.867643111 | 0.00000247 |
| PPARGC1B | -1.867139173 | 0.0000738 |
| GPR137C | -1.866199668 | 0.000761738 |
| LYPD6B | -1.866192927 | 0.018022636 |
| ROR1 | -1.864768542 | 4.54E-11 |
| CCDC3 | -1.863388399 | 0.0000358 |
| DES | -1.863220615 | 0.000000801 |
| OLR1 | -1.862006401 | 5.07E-08 |
| CEACAM19 | -1.859660433 | 5.15E-14 |
| ARHGAP11B | -1.857594156 | 0.000000084 |
| RP11- <br> 286H15.1 | -1.856248991 | 0.010777556 |
| $\begin{aligned} & \text { RP11- } \\ & \text { 247C2.2 } \end{aligned}$ | -1.851388426 | 0.005193945 |
| CHAF1B | -1.849703914 | 0.000000285 |
| TMEM179 | -1.848532038 | 0.001975116 |
| MPZ | -1.848497285 | 0.000572506 |
| CCNB1 | -1.846246557 | 1.05E-11 |
| TUBB8P4 | -1.846232372 | 0.0192896 |


| XKR5 | -1.845863187 | 0.007856124 |
| :---: | :---: | :---: |
| NEURL1B | -1.845803546 | 0.0000355 |
| USP32P1 | -1.842980926 | 0.00253844 |
| PLN | -1.841838937 | 0.004614065 |
| SFRP4 | -1.83788442 | 0.00000304 |
| IFNA6 | -1.837880757 | 0.014739652 |
| GBP3 | -1.836634573 | 2.07E-10 |
| PALLD | -1.83603568 | 5.02E-16 |
| SEMA3D | -1.835610768 | 0.000045 |
| PPFIA4 | -1.832693756 | 0.000129416 |
| WDR62 | -1.832325732 | 0.00000234 |
| AMOT | -1.830689368 | 0.0000063 |
| PKD1L1 | -1.829997864 | 0.000204581 |
| LOXL1 | -1.829891462 | 9.89E-18 |
| C21orf58 | -1.828221021 | 0.000000459 |
| DOCK11 | -1.828123864 | $1.57 \mathrm{E}-16$ |
| APOBEC3B | -1.828029048 | 0.0000472 |
| MAD2L1 | -1.827297765 | 3.99E-10 |
| ARSI | -1.826719383 | 0.0000179 |
| MMP9 | -1.825552403 | 0.006680274 |
| KIF26A | -1.82432201 | 4.2E-14 |
| $\begin{aligned} & \text { RP11- } \\ & \text { 181G12.2 } \end{aligned}$ | -1.823513942 | 0.000814228 |
| GOLGA2P7 | -1.822313694 | $7.79 \mathrm{E}-08$ |
| C18orf54 | -1.821578505 | 0.000000036 |
| AP000349.1 | -1.820473363 | 0.011836815 |
| DMC1 | -1.817454667 | 0.00955226 |
| MCM2 | -1.817325909 | 2.87E-14 |
| FAM198B | -1.812823038 | 0.0000663 |
| CTD- <br> 2231H16.1 | -1.811141353 | 0.01817454 |
| TMSB15A | -1.810943725 | 0.000245525 |
| CCL7 | -1.808403526 | 0.017448233 |


| MTMR9LP | -1.807722446 | 0.00000544 |
| :---: | :---: | :---: |
| GRIK5 | -1.807200573 | 0.0000954 |
| MYOM1 | -1.807114506 | 0.004974024 |
| TMPO | -1.80215813 | $3.75 \mathrm{E}-10$ |
| FLNC | -1.800326892 | 3.69E-09 |
| KLK6 | -1.800322448 | 0.005601325 |
| USP44 | -1.800303636 | 0.000218816 |
| CCDC74A | -1.800080301 | 0.0000435 |
| MDGA1 | -1.799728979 | 3.33E-09 |
| SRPK3 | -1.798510852 | 0.019341211 |
| FGF1 | -1.798010233 | 0.000127062 |
| AK5 | -1.795712273 | 0.022826358 |
| C11orf87 | -1.792200284 | 0.00245873 |
| POLE2 | -1.78977476 | 0.000611249 |
| PTPLAD2 | -1.789772284 | $3.11 \mathrm{E}-10$ |
| RP11- | -1.789116808 | 0.017994533 |
| 685N10.1 |  |  |
| RP11-32B5.1 | -1.788454011 | 0.003113509 |
| CPE | -1.788442486 | 0.0000931 |
| ANGPTL2 | -1.788043611 | 0.0000544 |
| SKA1 | -1.787536914 | 0.00000324 |
| RP11- | -1.786571949 | 0.011006191 |
| 527D7.1 |  |  |
| KLF2 | -1.786497626 | 0.008051672 |
| NRIP2 | -1.785762169 | 0.017728445 |
| SLA | -1.78573073 | 0.000963978 |
| VSTM5 | -1.78295722 | 0.012060274 |
| GAS2L3 | -1.780834517 | $1.99 \mathrm{E}-08$ |
| RP11- | -1.77961457 | 0.004799796 |
| 222A11.1 |  |  |
| AC073046.25 | -1.775118993 | 0.022348384 |
| RNU6-26P | -1.770551692 | 0.023113799 |
| PCDH7 | -1.769437795 | $2.91 \mathrm{E}-10$ |


| APLN | -1.76830577 | 0.011371444 |
| :---: | :---: | :---: |
| RP11- | -1.765052435 | 0.00000581 |
| 448G15.3 |  |  |
| CASKIN1 | -1.763247907 | 0.01465852 |
| FANCI | -1.762243699 | 3.3E-14 |
| HS3ST5 | -1.759193538 | 0.007741988 |
| SNORD116- | -1.758500296 | 0.001794279 |
| 20 |  |  |
| TRIM22 | -1.758085411 | 0.000000388 |
| PSD2 | -1.7580503 | 0.003981133 |
| RP1- | -1.755253269 | 0.004110115 |
| 122P22.2 |  |  |
| DRAXIN | -1.750505849 | 0.017223147 |
| MOXD1 | -1.749189103 | 0.0000388 |
| TSPAN11 | -1.749101725 | 0.000292461 |
| RTKN2 | -1.745749387 | 4.32E-09 |
| RMI2 | -1.742682343 | 0.00000566 |
| PRICKLE1 | -1.741837149 | 5.62E-13 |
| ARHGAP29 | -1.74020055 | 0.000856342 |
| PEAK1 | -1.73650316 | 5.91E-11 |
| SHF | -1.73510917 | 0.000565903 |
| NIPAL1 | -1.733802347 | 0.000360891 |
| ADORA1 | -1.7330717 | 0.001408875 |
| ANK1 | -1.732827685 | 0.0000497 |
| NPBWR1 | -1.732286575 | 0.017906909 |
| GJC2 | -1.731255805 | 0.005167043 |
| EPHB3 | -1.729023239 | 0.000000112 |
| C7orf57 | -1.727852627 | 0.02798049 |
| TMEM132E | -1.724620555 | 0.027000018 |
| TRIM59 | -1.723766706 | 0.00000592 |
| ACTA2-AS1 | -1.723561158 | 0.000576473 |
| TRIB2 | -1.720899286 | 0.000000473 |
| ZWINT | -1.720865007 | 4.32E-08 |


| LRFN5 | -1.72045189 | 0.0000335 |
| :---: | :---: | :---: |
| RAB39B | -1.718522805 | 0.019316687 |
| C9orf106 | -1.715869013 | 0.02573332 |
| GRIP1 | -1.715550214 | 0.000021 |
| NHSL2 | -1.715119581 | 0.005966732 |
| SH2B3 | -1.713784046 | 1.1E-12 |
| CADM4 | -1.712784048 | 0.00000455 |
| DCHS1 | -1.712332019 | 1.82E-09 |
| MCM4 | -1.712241941 | 9.61E-12 |
| CAMK2B | -1.711896429 | 0.029812243 |
| PTTG1 | -1.711786302 | $9.11 \mathrm{E}-10$ |
| FLNB | -1.70698703 | 1.48E-08 |
| CAMK4 | -1.706056633 | 0.003752318 |
| CHDH | -1.705938677 | 0.006003894 |
| MICAL3 | -1.705415896 | $6.98 \mathrm{E}-11$ |
| GSG2 | -1.704088815 | 0.000358196 |
| ARHGAP25 | -1.703116022 | 0.001647108 |
| XK | -1.700723436 | 0.004310226 |
| ITGA7 | -1.699735264 | 0.000225809 |
| ADRA2A | -1.697015859 | 0.03129121 |
| NEDD4L | -1.696593454 | 0.0000699 |
| CTD- | -1.695415144 | 0.03020842 |
| 2078B5.2 |  |  |
| RP11-20123.8 | -1.695195966 | 0.000132832 |
| DLEU2 | -1.695185218 | 0.003959935 |
| ISLR2 | -1.694964387 | 0.0000102 |
| AP001476.2 | -1.692425771 | 0.023398745 |
| SH2D5 | -1.692328473 | 0.003513456 |
| PCDH18 | -1.687480488 | $1.31 \mathrm{E}-14$ |
| MIR181A2HG | -1.68612028 | 0.002150866 |
| GPC2 | -1.685960472 | 0.000176234 |
| TMEM215 | -1.68435687 | 0.015310482 |
| NAV1 | -1.682993442 | $2.47 \mathrm{E}-08$ |


| NMT2 | -1.682722095 | $1.43 \mathrm{E}-13$ |
| :---: | :---: | :---: |
| RP1- | -1.681957207 | 0.011076567 |
| 170019.14 |  |  |
| CST1 | -1.680962328 | 0.000000707 |
| ADAM19 | -1.679805175 | $1.46 \mathrm{E}-14$ |
| RFC3 | -1.677535287 | 6.56E-10 |
| ADAMTS10 | -1.676892793 | 0.000077 |
| AGAP2 | -1.676820528 | 0.015685399 |
| AC004893.11 | -1.676005119 | 0.001306439 |
| HSD17B2 | -1.673541288 | 0.001598932 |
| KRT34 | -1.672966874 | 0.00000264 |
| FZD8 | -1.672653261 | 0.000288208 |
| RP11-87H9.3 | -1.669927259 | 0.033915922 |
| PTGFRN | -1.66891837 | 8.25E-10 |
| MIR503 | -1.667480753 | 0.034518011 |
| SGCG | -1.6671746 | 0.008964827 |
| CHRNA1 | -1.664578872 | 0.034382718 |
| ALDH1L2 | -1.6640022 | 5E-10 |
| PPP2R2B | -1.663594296 | 0.030800635 |
| ETV5 | -1.662293651 | 7.94E-08 |
| GXYLT2 | -1.661920008 | 0.0000332 |
| MB21D2 | -1.661652215 | 0.00000785 |
| BMP6 | -1.661616821 | 0.019514548 |
| GPC4 | -1.659712398 | 0.001158888 |
| TMEM173 | -1.659445151 | 0.0000017 |
| ZNF385D | -1.659345827 | 0.030099417 |
| SPTBN2 | -1.657973416 | 0.000246614 |
| PDE6G | -1.657513675 | 0.029238427 |
| SYNJ2 | -1.657025058 | 0.0000401 |
| MTHFD2 | -1.657005597 | 0.00000154 |
| MND1 | -1.654556269 | 0.012990893 |
| PGM5P2 | -1.654345356 | 0.032709851 |
| HBEGF | -1.652849402 | 0.000326046 |


| CEP78 | -1.651638587 | $2.45 \mathrm{E}-08$ |
| :---: | :---: | :---: |
| MGARP | -1.651068213 | 0.000490408 |
| SBK1 | -1.650711437 | 0.01443076 |
| RGMA | -1.650670414 | 0.000233774 |
| NUDT10 | -1.650532493 | 0.000555501 |
| RP11- | -1.649734998 | 0.0000145 |
| 597D13.9 |  |  |
| P0C1A | -1.649302087 | 0.0000042 |
| ZFP69B | -1.647691096 | 0.000165893 |
| WNT2B | -1.643244118 | 0.003507653 |
| DLG3 | -1.642546546 | 0.000000472 |
| DCLK2 | -1.64215165 | 0.00000578 |
| EPPK1 | -1.640091166 | 0.008732266 |
| UNC5B | -1.639755011 | $3.81 \mathrm{E}-13$ |
| SOX8 | -1.639634415 | 0.027135821 |
| PHC1P1 | -1.639267514 | 0.002762733 |
| TCF7 | -1.638917029 | 0.0000158 |
| ATP10A | -1.638372307 | 0.000669216 |
| CNIH2 | -1.633551762 | 0.01485785 |
| ETV1 | -1.629130871 | 0.034298246 |
| SYDE2 | -1.628796786 | 0.000000843 |
| TANC1 | -1.628720787 | $1.22 \mathrm{E}-11$ |
| AC006115.3 | -1.628635998 | 0.030546688 |
| ENAH | -1.628162787 | 7.57E-16 |
| EDA2R | -1.628104984 | 0.00000153 |
| LINC00862 | -1.627814807 | 0.020210732 |
| LINC00993 | -1.62771216 | 0.032728566 |
| KLHL4 | -1.624113303 | 0.034556089 |
| DRAM1 | -1.623083633 | 7.95E-12 |
| LEF1 | -1.622431864 | 0.002807537 |
| FAIM3 | -1.621839898 | 0.010769048 |
| FILIP1L | -1.621673448 | 3.62E-17 |
| SOX6 | -1.621643913 | $1.04 \mathrm{E}-08$ |


| TNFRSF10C | -1.620792639 | 0.00046929 |
| :---: | :---: | :---: |
| FAM19A2 | -1.620424387 | 0.0000537 |
| RP11- | -1.620026123 | 0.039458475 |
| 445H22.4 |  |  |
| TCF7L1 | -1.61946676 | 4.43E-09 |
| KCNG1 | -1.618699124 | 0.0000123 |
| SH3D21 | -1.617139599 | 0.0000585 |
| FAXC | -1.615432034 | 0.004641804 |
| IQCJ-SCHIP1 | -1.614815648 | 0.00052 |
| RP11- | -1.613844065 | 7.24E-09 |
| 383H13.1 |  |  |
| GLYATL2 | -1.613412372 | 0.035711589 |
| RP4- | -1.613360452 | 0.017968122 |
| 791M13.3 |  |  |
| CDC42EP3 | -1.612880145 | 7.11E-17 |
| RP11- | -1.610943626 | 0.035752558 |
| 283G6.3 |  |  |
| NRGN | -1.608963903 | 0.012337824 |
| AF186192.5 | -1.608240507 | 0.041270455 |
| CDH10 | -1.607421759 | 0.026555053 |
| ASB2 | -1.606319826 | 0.008580819 |
| LINC00900 | -1.603852562 | 0.036317376 |
| SACS | -1.603313133 | 6.4E-13 |
| PRSS12 | -1.601901593 | 0.0000158 |
| RP11- | -1.601390758 | 0.036337694 |
| 381E24.1 |  |  |
| HPSE2 | -1.601310901 | 0.000560421 |
| KIF24 | -1.599637473 | 0.0000323 |
| RP11- | -1.598207404 | 0.023406044 |
| 1109F11.3 |  |  |
| GLIS3 | -1.597753021 | 0.000488311 |
| BMP7 | -1.595226462 | 0.020270206 |
| CACNA2D2 | -1.593408508 | 0.016975389 |


| $\begin{aligned} & \text { RP11- } \\ & \text { 424C20.2 } \end{aligned}$ | -1.593126561 | 0.016866107 |
| :---: | :---: | :---: |
| FABP4 | -1.591296184 | 0.000334233 |
| STOX1 | -1.589855479 | 0.01674256 |
| RP11- | -1.589551131 | 0.042512851 |
| 404P21.5 |  |  |
| MCOLN3 | -1.589424601 | 0.000323894 |
| TRHDE-AS1 | -1.586109168 | 0.031898047 |
| ELOVL2 | -1.584624849 | 0.04365474 |
| TACC1P1 | -1.583128231 | 0.038693541 |
| GALNT16 | -1.581054592 | 0.038396279 |
| LINGO1 | -1.577672542 | 0.018662404 |
| HMGA1 | -1.577583927 | 0.000118675 |
| THBS1 | -1.574846823 | 0.029258293 |
| FHL3 | -1.574142333 | 9.21E-08 |
| TGIF2 | -1.57305238 | 0.0000247 |
| OSBPL6 | -1.572264764 | 0.00072271 |
| DHRS11 | -1.571941918 | 0.00025779 |
| OLFML1 | -1.571686967 | 0.0000211 |
| ZNF93 | -1.569930194 | 0.00000462 |
| NPAS3 | -1.569767814 | 0.002551559 |
| AJUBA | -1.569338449 | 0.000489331 |
| COL11A1 | -1.5690582 | 0.04657872 |
| PPME1 | -1.568702433 | $4.95 \mathrm{E}-11$ |
| RP1- | -1.568621785 | 0.011669399 |
| 170019.20 |  |  |
| AHRR | -1.566767297 | $2.98 \mathrm{E}-10$ |
| ACVRL1 | -1.566358766 | 0.0000223 |
| RP11- | -1.566175208 | 0.001503159 |
| 540A21.2 |  |  |
| ARHGAP28 | -1.566013388 | 0.002403906 |
| PTGIS | -1.565773143 | 0.044445264 |
| LRRC2 | -1.565291004 | 0.000187532 |


| RP11- <br> 366L5.1 | -1.565010378 | 0.041578717 |
| :---: | :---: | :---: |
| BACH2 | -1.56464702 | 0.003266105 |
| PTCH2 | -1.562532006 | 0.001493651 |
| RSPO2 | -1.562079473 | 0.037414751 |
| DBF4B | -1.559554259 | 0.00000539 |
| IFNA2 | -1.557574195 | 0.041383462 |
| SLC25A37 | -1.557547739 | $3.48 \mathrm{E}-11$ |
| CELSR2 | -1.557132312 | 0.002582317 |
| RP5-858B6.3 | -1.555412204 | 0.045521957 |
| ARHGEF39 | -1.555198987 | 0.000835335 |
| CENPO | -1.554432965 | 0.000000026 |
| RHEBL1 | -1.554310536 | 0.003494227 |
| RAPGEFL1 | -1.551184821 | 0.0000733 |
| LINC00908 | -1.547372287 | 0.000518881 |
| CDHR3 | -1.54708137 | 0.002321191 |
| SLC1A4 | -1.544842525 | 0.00000172 |
| PTN | -1.543314208 | 0.0000777 |
| CDH2 | -1.542189852 | 0.000000891 |
| PYROXD2 | -1.541948398 | 3.32E-10 |
| ESPL1 | -1.53843873 | 0.000000927 |
| CDC25A | -1.538318341 | 0.000268729 |
| DOK3 | -1.538023688 | 0.004585771 |
| SGK223 | -1.536944578 | 0.00000141 |
| AKNA | -1.536347406 | 7.27E-11 |
| PKN3 | -1.535201427 | 0.000142514 |
| EVA1A | -1.535121079 | 0.001162841 |
| GPR63 | -1.531917986 | 0.033571953 |
| HOXA13 | -1.531695757 | 0.0000459 |
| LPHN2 | -1.530283137 | 0.0000163 |
| RAD51 | -1.529349107 | 0.00000752 |
| CPEB2 | -1.52866417 | 8.21E-12 |
| ST5 | -1.527230275 | $9.08 \mathrm{E}-11$ |


| CCDC144A | -1.525566948 | 0.013772522 |
| :---: | :---: | :---: |
| RP11- | -1.525560188 | 0.001883518 |
| 695J4.2 |  |  |
| NOTCH1 | -1.524473055 | 6.7E-12 |
| CALML4 | -1.523222336 | 0.00036323 |
| CEP128 | -1.521449918 | 0.000279471 |
| TCEA1P2 | -1.521375356 | 0.004219699 |
| TCL6 | -1.521346383 | 0.001589244 |
| CTD- | -1.520943546 | 0.002244243 |
| 2015H6.3 |  |  |
| RP11- | -1.520113457 | 0.007780136 |
| 177H13.2 |  |  |
| AURKA | -1.516774841 | 2.49E-09 |
| SGIP1 | -1.514044604 | 0.0000532 |
| IRF2BPL | -1.513709401 | 0.000000496 |
| EDIL3 | -1.511913965 | 0.000000447 |
| RP11- | -1.511847203 | 0.033965571 |
| 713M15.2 |  |  |
| FLT1 | -1.511017259 | 0.001144879 |
| HDAC5 | -1.509721703 | $5.29 \mathrm{E}-08$ |
| DSCC1 | -1.509211651 | 0.0000372 |
| MEX3B | -1.508899987 | 0.000585966 |
| NBPF3 | -1.50874211 | 0.0000195 |
| CLIC3 | -1.508697785 | 0.008345039 |
| CRNDE | -1.508655047 | 0.006539222 |
| PDGFB | -1.508436245 | 0.002761168 |
| FZD2 | -1.507952885 | 4.02E-11 |
| PTOV1-AS1 | -1.507338916 | 0.004084377 |
| RP11- | -1.505462904 | 0.008346365 |
| 757G1.6 |  |  |
| CSMD2 | -1.505175463 | 0.000121291 |
| C1RL-AS1 | -1.504551821 | 0.0000493 |
| N4BP2L1 | -1.504444466 | 0.003234086 |


| AMOTL1 | -1.504166592 | 0.00000541 |
| :---: | :---: | :---: |
| PARD3B | -1.501648786 | 0.0000151 |
| ABCA9 | -1.501594696 | 0.047124647 |
| ZNF33B | -1.501374816 | 0.000857743 |
| CDKL5 | -1.50120498 | 0.002536277 |
| FBXO5 | -1.501190079 | 9.37E-08 |
| CTD- | -1.500321745 | 0.026432252 |
| 2033D15.1 |  |  |
| GDPD3 | -1.50011567 | 0.005445737 |
| UHRF1BP1 | -1.499366112 | $1.29 \mathrm{E}-08$ |
| STRIP2 | -1.498181069 | 0.002095304 |
| KLHL29 | -1.49683536 | 0.0000136 |
| DENND2A | -1.493973043 | 0.000000295 |
| PELI2 | -1.491003595 | 3.37E-08 |
| EME1 | -1.490200542 | 0.004004551 |
| ANKRD34A | -1.489963569 | 0.001567841 |
| B4GALT6 | -1.489196358 | 0.000002 |
| NACAD | -1.488933234 | 0.000000052 |
| WI2- | -1.487581685 | 0.000469256 |
| 3658N16.1 |  |  |
| HS6ST2 | -1.486934847 | 0.039265471 |
| RP11- | -1.486474033 | 0.037961376 |
| 863P13.3 |  |  |
| GCNT4 | -1.486113463 | 3.51E-09 |
| KLF12 | -1.485180198 | 0.0000334 |
| ASXL3 | -1.484982554 | 0.042502922 |
| RAB15 | -1.48420716 | 0.0000291 |
| TNFRSF4 | -1.482660614 | 0.023299639 |
| GNB3 | -1.478152688 | 0.000556614 |
| MEST | -1.478132602 | $1.67 \mathrm{E}-10$ |
| USP32P3 | -1.477547429 | 0.001497884 |
| TAGLN | -1.476697993 | 9.79E-16 |
| GRM4 | -1.476624635 | 0.039242738 |


| PHLPP1 | -1.472823683 | 0.0000137 |
| :---: | :---: | :---: |
| CENPE | -1.471859128 | 8.45E-08 |
| RP11- | -1.469309114 | 0.041027316 |
| 125B21.2 |  |  |
| GABRQ | -1.468021248 | 0.018465657 |
| LINC00622 | -1.467128794 | 0.032413276 |
| RP11- | -1.46624281 | 0.00519144 |
| 309G3.3 |  |  |
| ICA1L | -1.465032203 | 0.0000092 |
| FIGNL1 | -1.463965944 | 0.00000692 |
| PLEKHG4B | -1.463618555 | 0.013027632 |
| UBA7 | -1.463494723 | 0.000000808 |
| APOL2 | -1.463335989 | 0.0000591 |
| FANCB | -1.462948376 | 0.001861117 |
| DNM3OS | -1.459711421 | 3.6E-09 |
| ZNF496 | -1.4596419 | 0.000000187 |
| SPRED2 | -1.459300317 | $6.11 \mathrm{E}-10$ |
| SMAGP | -1.458484637 | 0.004253701 |
| SLC8A1 | -1.457421675 | 0.000806803 |
| KIRREL | -1.455398426 | 0.000000038 |
| MMS22L | -1.454439087 | 0.000000986 |
| IKBKE | -1.454407118 | 0.000000139 |
| KCND1 | -1.453802555 | 0.000585458 |
| RP11-2E11.9 | -1.451197904 | 0.021900292 |
| GOLGA2P5 | -1.449698402 | 0.026338865 |
| MYH9 | -1.44952182 | 5.03E-14 |
| LPPR3 | -1.449283547 | 0.036930063 |
| RIMS1 | -1.449156673 | 0.004452538 |
| SLC4A8 | -1.447910891 | 0.001883194 |
| C1QTNF9B- | -1.44761888 | 0.000245651 |
| AS1 |  |  |
| MSH2 | -1.446372951 | 0.00000156 |
| SPDL1 | -1.446133877 | $6.44 \mathrm{E}-09$ |


| HEG1 | -1.445109492 | 3.96E-08 |
| :---: | :---: | :---: |
| RGS10 | -1.442616314 | 0.000000709 |
| ARHGEF6 | -1.441579487 | 0.000000472 |
| KAZN | -1.440779098 | 0.0000752 |
| C18orf56 | -1.440184479 | 0.0357386 |
| SLC9A7P1 | -1.438320261 | 0.026467991 |
| HAS2 | -1.437163925 | 0.001614362 |
| BMP4 | -1.43679476 | 0.0020705 |
| CASP12 | -1.434917743 | 0.038100334 |
| LRRC37A4P | -1.434687205 | 0.010096788 |
| IFIT2 | -1.433534172 | 0.001930176 |
| CKAP2L | -1.432096109 | 0.00108021 |
| TNC | -1.431099019 | 0.005179574 |
| THBS2 | -1.430939208 | 0.000846517 |
| DGKI | -1.429954503 | 0.00000151 |
| SLC23A3 | -1.429947864 | 0.011215685 |
| CTGF | -1.428736105 | 0.0000218 |
| ARHGAP18 | -1.428434511 | 0.000000153 |
| PDCD1LG2 | -1.42840129 | 0.0000194 |
| NR2F1 | -1.427948689 | 2.07E-10 |
| LOXL2 | -1.425555377 | $4.31 \mathrm{E}-15$ |
| RP11395P17.3 | -1.425157991 | 0.001939848 |
| FABP3 | -1.423115615 | 0.001106293 |
| AF001548.5 | -1.422515756 | 0.003754984 |
| TACC3 | -1.421840234 | 0.00001 |
| ICOSLG | -1.421497291 | 0.004166209 |
| CMKLR1 | -1.421460554 | 0.037647857 |
| TENM3 | -1.420721855 | 0.000000552 |
| MIR4442 | -1.420698902 | 0.030211827 |
| MAP3K14 | -1.420159166 | 0.000328164 |
| GSDMB | -1.419359195 | 0.0000061 |
| TMEM144 | -1.418295588 | 0.00047431 |
|  |  | 256 |


| ABCB4 | -1.418088052 | 0.029839818 |
| :---: | :---: | :---: |
| RFX2 | -1.41724588 | 0.0000607 |
| ZNF300 | -1.416859975 | 0.0000289 |
| KRT15 | -1.416079386 | 0.019112937 |
| RUNX1 | -1.415714938 | 1.72E-08 |
| CECR2 | -1.415476101 | 0.038795867 |
| RP11- | -1.415295468 | 0.026658804 |
| 474B16.1 |  |  |
| PHC1 | -1.414574124 | 1.58E-08 |
| SLFN13 | -1.410978498 | 0.00365457 |
| TCEA3 | -1.410908569 | 0.00117969 |
| IL18BP | -1.41076464 | 0.000893833 |
| PABPC1L | -1.408430963 | 0.000000276 |
| MTL5 | -1.408308299 | 0.041261491 |
| MCF2L2 | -1.404201856 | 0.007681263 |
| PPFIBP2 | -1.403062534 | 0.000966173 |
| RP5- | -1.402221832 | 0.002468038 |
| 1043L13.1 |  |  |
| ST8SIA1 | -1.401944478 | 0.00379539 |
| DACH1 | -1.401449425 | 0.003641002 |
| PDLIM7 | -1.400273022 | 0.00000007 |
| LINC01116 | -1.398624739 | 0.004634583 |
| RP11- | -1.398412559 | 0.00946113 |
| 134G8.8 |  |  |
| C9orf47 | -1.39788861 | 0.00175172 |
| TRANK1 | -1.396248833 | 0.00000262 |
| ARHGAP26 | -1.39601779 | 0.005866679 |
| UGCG | -1.395370101 | 0.000151035 |
| AC144831.1 | -1.391720847 | 0.032485191 |
| ORC1 | -1.391151079 | 0.005251692 |
| SLC27A6 | -1.389706612 | 0.025406767 |
| WARS | -1.3890727 | $1.79 \mathrm{E}-08$ |



| KLRAP1 | -1.363849765 | 0.003203857 |
| :---: | :---: | :---: |
| ACVR2B-AS1 | -1.362625786 | 0.028123354 |
| FOXF1 | -1.361150196 | 0.012797529 |
| WDR76 | -1.360826551 | 0.00000107 |
| CCDC85C | -1.360488229 | 0.001147627 |
| C19orf57 | -1.358467595 | 0.03643936 |
| RP11- | -1.357858612 | 0.000137443 |
| 686D22.7 |  |  |
| ANKRD53 | -1.35718578 | 0.037592942 |
| ATXN7L2 | -1.357013386 | 0.0000316 |
| HIC1 | -1.356934547 | 0.00000133 |
| C5 | -1.356634098 | 0.001018251 |
| MYBL1 | -1.354916666 | 0.0000453 |
| ST7-AS1 | -1.354765876 | 0.008404221 |
| RPLP0P2 | -1.354762699 | 0.045941518 |
| TIMELESS | -1.354621517 | 2.26E-08 |
| RARB | -1.354122753 | 0.000812739 |
| BDNF | -1.353318959 | 0.027321426 |
| AC005943.5 | -1.352821697 | 0.001470724 |
| RPL29P19 | -1.351839076 | 0.023303643 |
| CNNM1 | -1.351611465 | 0.000319195 |
| IFFO2 | -1.350890869 | 0.0000019 |
| RP11- | -1.350836638 | 0.03810824 |
| 259N19.1 |  |  |
| CYFIP2 | -1.35040911 | 0.001206655 |
| ZNF286B | -1.350212494 | 0.00726741 |
| PRIM1 | -1.350204058 | 0.003679031 |
| AC092835.2 | -1.350146741 | 0.044676665 |
| LINC00672 | -1.349764696 | 0.002540465 |
| RP1-257A7.4 | -1.347023943 | 0.03668313 |
| KIAA1211 | -1.346071862 | 8.38E-08 |
| STK33 | -1.343589083 | 0.003483176 |
| FANCD2 | -1.343104279 | 0.0000463 |



| RGS5 | -1.311276071 | 0.039685962 |
| :---: | :---: | :---: |
| VAT1L | -1.310036148 | 0.000873878 |
| LRRC61 | -1.309825088 | 0.018511246 |
| BNC2 | -1.309372636 | 0.00000004 |
| EPHA2 | -1.308849479 | 0.001233901 |
| GBP5 | -1.308549383 | 0.024648043 |
| CADM1 | -1.307999772 | 0.00000787 |
| PMEL | -1.307930346 | 0.023560355 |
| RP1- <br> 151F17.2 | -1.307181309 | 0.003705242 |
| MMP16 | -1.30675356 | 0.000000776 |
| ASGR1 | -1.305923369 | 0.046656859 |
| SALL2 | -1.301874564 | 0.000097 |
| MAST4 | -1.300613225 | 0.0000123 |
| BZRAP1 | -1.299439401 | 0.000172928 |
| DTX4 | -1.29941053 | 4.37E-09 |
| RP11582J16.5 | -1.296898943 | 0.00165944 |
| RP111055B8.7 | -1.2955117 | $6.66 \mathrm{E}-08$ |
| NXNL2 | -1.295055803 | 0.031650643 |
| VPS9D1-AS1 | -1.293581345 | 0.04504517 |
| RASL12 | -1.29341841 | 0.015329661 |
| ICAM1 | -1.293004511 | 0.003339837 |
| RP11- <br> 1002K11.1 | -1.292929214 | 0.018167233 |
| CDK18 | -1.292276068 | 0.001210027 |
| KLHL30 | -1.289754203 | 0.034954266 |
| PARP8 | -1.288721083 | 0.000346266 |
| TRIB3 | -1.288698562 | 5.07E-08 |
| AQP1 | -1.288168612 | 0.011936472 |
| BCL9 | -1.288133048 | 0.000000673 |



| AC005003.1 | -1.263231569 | 0.041498759 |
| :---: | :---: | :---: |
| HIVEP1 | -1.263218425 | 6.02E-08 |
| ZNF724P | -1.262153826 | 0.035350892 |
| RUNX1T1 | -1.261671785 | 0.00000433 |
| ARHGAP31 | -1.261247783 | 8.28E-08 |
| DNMBP | -1.260468962 | 0.000000071 |
| PSIP1 | -1.259244255 | 1.16E-08 |
| CHAF1A | -1.259175501 | 0.00000789 |
| DSP | -1.258532061 | 0.01521903 |
| RP11- | -1.257323171 | 0.021249836 |
| 617F23.1 |  |  |
| COL13A1 | -1.257164646 | 0.001820769 |
| TP53111 | -1.256929021 | $1.71 \mathrm{E}-10$ |
| SH3BP2 | -1.256763985 | 0.0000303 |
| PRPH2 | -1.256359897 | 0.000208766 |
| ANKRD36B | -1.256006666 | 0.04171958 |
| BATF3 | -1.255831028 | 0.032629743 |
| PDE8B | -1.255361587 | 0.0000868 |
| BGN | -1.254766465 | 0.000000143 |
| ULBP1 | -1.254751994 | 0.000703645 |
| TBKBP1 | -1.254476186 | 0.000362882 |
| EPHA7 | -1.254305005 | 0.007281265 |
| USP13 | -1.254159866 | 0.00000131 |
| PXN | -1.252664994 | 5.61E-09 |
| RP11- | -1.251649977 | 0.039368971 |
| 161M6.2 |  |  |
| DCSTAMP | -1.251072992 | 0.044230629 |
| ACTA2 | -1.250267253 | 9.69E-10 |
| BAIAP2L1 | -1.25026024 | 0.010162158 |
| ASNS | -1.250156095 | 0.000396643 |
| N4BP2 | -1.249501652 | 0.00000165 |
| TRIO | -1.248223273 | 9.72E-09 |
| SHMT2 | -1.244973596 | 0.000000256 |



| TIFA | -1.219918591 | 0.002271154 |
| :---: | :---: | :---: |
| FAM129A | -1.219714458 | 0.020853258 |
| SATB1 | -1.218988401 | 0.000000442 |
| RP11- | -1.218117599 | 0.025719132 |
| 1114A5.4 |  |  |
| PHTF2 | -1.217394833 | 3.6E-09 |
| A2M-AS1 | -1.215887657 | 0.02475154 |
| TNS3 | -1.215704937 | 7.16E-08 |
| SPRY4 | -1.214394363 | 0.000195127 |
| DLC1 | -1.214003512 | 7.79E-09 |
| TNFRSF12A | -1.213588332 | 0.010382058 |
| MXD3 | -1.212415208 | 0.000118109 |
| TNFRSF10B | -1.212130053 | 0.0000676 |
| CAMK2N2 | -1.212046787 | 0.034775701 |
| NNAT | -1.211327206 | 0.020136036 |
| ZWILCH | -1.211298793 | 0.000000164 |
| ITPRIP | -1.210954843 | 0.00436897 |
| GNPTAB | -1.208103696 | 0.0000077 |
| TMED10P2 | -1.207201996 | 0.031449302 |
| TMEM25 | -1.207070023 | 0.003699968 |
| FAM78A | -1.20673162 | 0.00235961 |
| SVEP1 | -1.20609739 | 0.0000751 |
| HOXD9 | -1.205121715 | 0.000000837 |
| NBPF1 | -1.202410191 | 0.00000575 |
| CTD- | -1.202402345 | 0.042359789 |
| 3099C6.9 |  |  |
| CDK2 | -1.202346531 | 0.0000232 |
| C3orf67 | -1.201197551 | 0.04394658 |
| MFAP2 | -1.200760549 | 0.007426188 |
| INA | -1.200573942 | 0.005243267 |
| TRAM2 | -1.19988506 | 0.00000996 |
| ADCY10P1 | -1.199523472 | 0.004912362 |
| SLC7A1 | -1.198908375 | 0.000000023 |


| ALS2CL | -1.198898665 | 0.000676618 |
| :---: | :---: | :---: |
| COL27A1 | -1.198196469 | 0.000117795 |
| GRIK2 | -1.196124247 | 0.004661553 |
| FRAS1 | -1.196097325 | 0.007292314 |
| FRY | -1.194695455 | $8.74 \mathrm{E}-08$ |
| CCDC18 | -1.19319172 | 0.00136731 |
| CHRNA5 | -1.192585393 | 0.035349048 |
| ZNF730 | -1.192411318 | 0.04248736 |
| RBFOX2 | -1.19156249 | 2.92E-08 |
| TMEM158 | -1.190050638 | 0.001028084 |
| RP4-565E6.1 | -1.188834088 | 0.007002391 |
| HMGB2 | -1.188083083 | 0.0000283 |
| TMEM26 | -1.187967834 | 0.001608951 |
| CNN1 | -1.187600711 | 5.46E-08 |
| FEN1 | -1.185363088 | 0.00000222 |
| ARNTL2 | -1.184756554 | 0.0000894 |
| SAMD12 | -1.184094847 | 0.015165964 |
| GSG1 | -1.182493827 | 0.041906944 |
| ASTN2 | -1.181508543 | 0.000187494 |
| KCNT2 | -1.181294189 | 0.026462531 |
| GPT2 | -1.181247427 | 0.0000239 |
| FAM227A | -1.180568971 | 0.003229582 |
| RP1- | -1.18049339 | 0.000914576 |
| 228H13.5 |  |  |
| LMO2 | -1.179274689 | 0.046212397 |
| RP11- | -1.178708581 | 0.008778984 |
| 958N24.1 |  |  |
| FHDC1 | -1.176484991 | 0.004009785 |
| NFIC | -1.176299496 | 6.68E-10 |
| NAV2 | -1.176141023 | 0.001325734 |
| PIK3CD | -1.17578646 | 5.25E-08 |
| COL11A2 | -1.175487692 | 0.01278411 |
| CCNJL | -1.175304048 | 0.000937345 |


| NBPF12 | -1.175210868 | 0.000106911 |
| :---: | :---: | :---: |
| CAP2 | -1.173834003 | 0.0000795 |
| CACNA1A | -1.172747402 | 0.019831595 |
| CBX2 | -1.172361832 | 0.001279255 |
| FAM171B | -1.172228479 | 0.0000892 |
| NEO1 | -1.171679324 | 0.00000324 |
| MEGF6 | -1.171088032 | 0.029066928 |
| TPBG | -1.169710891 | 0.000046 |
| ACTN4 | -1.16933254 | 7.86E-10 |
| DUSP5 | -1.168872929 | 0.017884078 |
| BARD1 | -1.168756381 | 0.000330992 |
| AC105020.1 | -1.168504116 | 0.011744936 |
| RBPMS2 | -1.167331814 | 0.005624776 |
| RNASEH2A | -1.167312265 | 0.0000272 |
| CAPRIN2 | -1.166670893 | 0.000340705 |
| RNF207 | -1.165624358 | 0.000101921 |
| LASP1 | -1.164899278 | 4.83E-09 |
| LIMD2 | -1.164429599 | 0.001468516 |
| MIR214 | -1.163749117 | 0.002512846 |
| RUSC2 | -1.162448379 | 0.00013797 |
| SLC7A5 | -1.161171942 | 0.007277869 |
| MURC | -1.160791269 | 0.042593277 |
| MTURN | -1.160462397 | 0.002683384 |
| ARHGEF40 | -1.160227042 | 0.00000176 |
| TRIM46 | -1.159917132 | 0.002186828 |
| PAK1 | -1.159200941 | 0.000000215 |
| FSD1 | -1.159140883 | 0.002731373 |
| PLEKHG2 | -1.15833448 | 0.00000155 |
| MET | -1.158082501 | 0.000904674 |
| TRBC2 | -1.157901293 | 0.02421002 |
| NLGN3 | -1.157543335 | 0.014477848 |
| DDB2 | -1.156902967 | 0.0000628 |
| MCM6 | -1.15647677 | 0.000000765 |


| LAMA4 | -1.156117037 | 0.0000143 |
| :---: | :---: | :---: |
| RP11-88118.2 | -1.155714697 | 0.004523915 |
| STK32A | -1.154681504 | 0.017149707 |
| KCNH2 | -1.154462815 | 0.0000759 |
| LIMD1 | -1.151760338 | 0.00000107 |
| MYO18A | -1.151596884 | 0.000216553 |
| SLFN11 | -1.151305948 | 0.000201634 |
| DNMT3A | -1.151176722 | 0.000201881 |
| KCNS3 | -1.150539956 | 0.007992634 |
| GLIPR2 | -1.150053564 | 0.0000431 |
| FAM171A1 | -1.149574216 | 0.000187138 |
| SOX4 | -1.149336469 | 0.004819044 |
| CDK19 | -1.149102806 | 0.000163662 |
| FHL2 | -1.147455887 | 0.0000203 |
| TBC1D30 | -1.147334755 | 0.036874908 |
| CRIM1 | -1.14632882 | 0.000000996 |
| BRD3 | -1.146323963 | 0.000217186 |
| RP4- | -1.145620627 | 0.02899806 |
| 756G23.5 |  |  |
| AVPR1A | -1.14558315 | 0.042924433 |
| KDM2B | -1.145391141 | 0.00000984 |
| EPHB4 | -1.145128178 | 0.0000967 |
| HLA-F-AS1 | -1.144806493 | 0.026798598 |
| CDRT4 | -1.144411844 | 0.029473413 |
| CHTF18 | -1.143637249 | 0.001046377 |
| C2CD3 | -1.143618031 | 0.00000821 |
| PACRG | -1.14268526 | 0.04806388 |
| DPYSL4 | -1.142324224 | 0.001954333 |
| SOGA2 | -1.142110616 | 0.0005771 |
| MAP3K1 | -1.142056498 | 0.000131048 |
| RP11- <br> 566E18.3 | -1.139559136 | 0.0000132 |
| SGOL2 | -1.13856315 | 0.0000673 |


| FCHSD2 | -1.136947724 | 0.00000256 |
| :---: | :---: | :---: |
| RGS3 | -1.136728252 | 0.000691761 |
| COCH | -1.136336287 | 0.000210805 |
| DCLRE1B | -1.136326494 | 0.0000753 |
| TMEM194A | -1.135987087 | 0.00000132 |
| NDC80 | -1.133264214 | 0.000528023 |
| TSPY26P | -1.132794286 | 0.00000618 |
| FKBP9L | -1.132598536 | 0.008770517 |
| FUT8 | -1.131481078 | 0.000000031 |
| MTBP | -1.130793374 | 0.004034171 |
| VAMP5 | -1.130348407 | 0.001671023 |
| ZFYVE9 | -1.130163167 | 0.000000622 |
| ZNF782 | -1.129429792 | 0.006484064 |
| ZCCHC14 | -1.129015541 | 0.000178437 |
| RGS9 | -1.127668401 | 0.001287474 |
| SLC35F2 | -1.1274915 | 0.009890064 |
| FANCG | -1.127206437 | 0.00000925 |
| CDC42EP1 | -1.126939861 | 0.0000139 |
| $\begin{aligned} & \text { RP11- } \\ & \text { 1212A22.1 } \end{aligned}$ | -1.12637014 | 0.014428195 |
| TRAF5 | -1.12615709 | 0.00000122 |
| TCF3 | -1.125987962 | 0.0000207 |
| ITPR3 | -1.125381357 | 0.006595103 |
| PTPRK | -1.124575805 | 0.00010066 |
| SHROOM4 | -1.123698357 | 0.001523654 |
| $\begin{aligned} & \text { RP11- } \\ & \text { 296110.6 } \end{aligned}$ | -1.123204973 | 0.011902392 |
| SLC16A14 | -1.12305411 | 0.024420571 |
| RBL1 | -1.120857967 | 0.000223393 |
| PARD6G | -1.119906733 | 0.001832317 |
| CCDC30 | -1.119838674 | 0.034166279 |
| BHLHE40 | -1.119562055 | 0.000509249 |
| POLA1 | -1.119230156 | 0.000137117 |


| HECTD2 | -1.118400746 | 0.0000471 |
| :---: | :---: | :---: |
| NETO1 | -1.118370929 | 0.022795101 |
| FIGN | -1.118048206 | 0.006588892 |
| NCAM2 | -1.117642603 | 0.013016414 |
| PIEZO2 | -1.117292343 | 0.021631813 |
| LCAT | -1.116548998 | 0.000165121 |
| TRIM45 | -1.115564355 | 0.000691792 |
| PEAR1 | -1.114158279 | 0.000101171 |
| GDF15 | -1.113507891 | 0.000956236 |
| ZFP36L2 | -1.113390402 | 0.000537559 |
| CCSAP | -1.113342087 | 0.000315921 |
| ADAM11 | -1.113293802 | 0.018978886 |
| COR01A | -1.113148222 | 0.033034266 |
| MIS18BP1 | -1.111946643 | 0.000108432 |
| H19 | -1.111927919 | 0.007002939 |
| CLUHP3 | -1.111855306 | 0.002292928 |
| PYGO1 | -1.111729829 | 0.000104343 |
| PDLIM5 | -1.1111692 | 0.000000174 |
| PLEKHG1 | -1.107771827 | 0.000462877 |
| FBLIM1 | -1.107267039 | 0.0000315 |
| ZNF362 | -1.106521037 | 0.0000242 |
| CYP1A1 | -1.105117456 | 0.036382833 |
| SLCO5A1 | -1.104476093 | 0.003502238 |
| RHBDF2 | -1.102277061 | 0.000221406 |
| PLCG1 | -1.100655673 | 0.00000816 |
| DDX12P | -1.100158962 | 0.04442761 |
| FARP1 | -1.099517358 | 0.000000308 |
| ANKRD36C | -1.099027922 | 0.014551052 |
| XPOT | -1.097821686 | 0.000000468 |
| TRIM47 | -1.09671528 | 0.00122602 |
| LYPD6 | -1.095956724 | 0.013743517 |
| ACTN1 | -1.095724246 | 0.000000221 |
| MPV17L | -1.095403014 | 0.033015631 |


| OXTR | -1.092966776 | 0.000253825 |
| :---: | :---: | :---: |
| TNS1 | -1.091593815 | 0.000104661 |
| RP11- | -1.091565644 | 0.004280014 |
| 686D22.8 |  |  |
| ZMYM3 | -1.09134313 | 0.000000266 |
| ZNF280B | -1.090307584 | 0.006611919 |
| TRPC6 | -1.090008016 | 0.000170223 |
| SOGA1 | -1.089100901 | 0.000000604 |
| FAM131B | -1.088371863 | 0.001147764 |
| GJC1 | -1.086945128 | 0.0000166 |
| DNHD1 | -1.085850664 | 0.000999064 |
| CDH24 | -1.085471588 | 0.00063774 |
| GDPD5 | -1.085316602 | 0.0000881 |
| UBE2T | -1.083656822 | 0.00055181 |
| SMAD1 | -1.083448681 | 0.0000419 |
| RP3- | -1.083002007 | 0.030356321 |
| 510D11.2 |  |  |
| YPEL2 | -1.082020462 | 0.000261445 |
| FAM85A | -1.081126968 | 0.00416424 |
| GALNT6 | -1.079665834 | 0.02079754 |
| HOXB3 | -1.078524862 | 0.004159137 |
| RCC2 | -1.078410247 | 0.000221127 |
| CIDEB | -1.077703057 | 0.010893043 |
| KIF22 | -1.077530502 | 0.0000321 |
| AL591479.1 | -1.077245961 | 0.047467226 |
| PRDM5 | -1.077062464 | 0.000444282 |
| PURG | -1.076499021 | 0.019667026 |
| SPOCD1 | -1.07615664 | 0.000865401 |
| ARVCF | -1.076021018 | 0.008718021 |
| PPP1R13L | -1.073884195 | 0.00056412 |
| ZNF792 | -1.07346174 | 0.009850432 |
| NFIA | -1.073217031 | 0.000927542 |
| C2orf27A | -1.072596429 | 0.015164259 |


| SYNE2 | -1.071817445 | 0.004954913 |
| :---: | :---: | :---: |
| C1orf112 | -1.071608884 | 0.000521399 |
| POLE | -1.071491013 | 0.0000252 |
| RP11- | -1.071088793 | 0.022300192 |
| 686D22.4 |  |  |
| MARS | -1.070559287 | 0.0000106 |
| PATZ1 | -1.070350184 | 0.00022409 |
| LAMA5 | -1.068415884 | 0.00000763 |
| CTD- | -1.06825393 | 0.023749188 |
| 2303H24.2 |  |  |
| ADSSL1 | -1.068134386 | 0.017556951 |
| SH3RF1 | -1.067707252 | 0.003837991 |
| CNN2 | -1.067168107 | 0.000021 |
| XRCC3 | -1.067148837 | 0.007830883 |
| LRRC8B | -1.066998618 | 0.026574184 |
| LMNB2 | -1.066982083 | 0.00000131 |
| NCAPD2 | -1.06564098 | 0.0000175 |
| FZD6 | -1.064960017 | 0.006317521 |
| ZNF70 | -1.064625932 | 0.002823639 |
| ZNF445 | -1.063563221 | 0.000000843 |
| PTRF | -1.062217321 | 0.000000208 |
| RP11- | -1.061550638 | 0.001343376 |
| 91J19.4 |  |  |
| LMCD1 | -1.060824527 | 0.010656084 |
| SAMD14 | -1.060594928 | 0.000277312 |
| CNIH3 | -1.059999208 | 0.00161139 |
| SPIN4 | -1.059910487 | 0.001089481 |
| HSPA12B | -1.059907076 | 0.046093692 |
| KLF11 | -1.059002361 | 0.003192926 |
| PSMC3IP | -1.058918079 | 0.000876837 |
| PHLDA3 | -1.05884121 | 0.014958181 |
| C21orf91 | -1.058435687 | 0.0000126 |
| EPHA5 | -1.058120727 | 0.049076699 |


| MAP4K5 | -1.057689861 | 0.000685563 |
| :---: | :---: | :---: |
| PYCARD | -1.057394783 | 0.008368763 |
| NLRP1 | -1.057087943 | 0.004626271 |
| PAXIP1-AS2 | -1.056366963 | 0.020182769 |
| AMER1 | -1.056357344 | 0.003338261 |
| DPY19L2P2 | -1.056285919 | 0.043705353 |
| KIF9-AS1 | -1.056015301 | 0.002864436 |
| ANO4 | -1.054962156 | 0.043909459 |
| SLC38A1 | -1.054542409 | 0.0000221 |
| NEFM | -1.054399395 | 0.010933198 |
| PLGLA | -1.054238932 | 0.031392285 |
| PCNA | -1.053805502 | 0.0000641 |
| FLNA | -1.052600437 | 0.000018 |
| AC159540.1 | -1.05248918 | 0.000946731 |
| EHD3 | -1.052361776 | 0.00000519 |
| ZMAT3 | -1.051328292 | 0.000659477 |
| DBN1 | -1.051250456 | 0.006786884 |
| ANKRD13A | -1.049319429 | 0.0000119 |
| TMSB15B | -1.048266108 | 0.017438993 |
| KIAA1324L | -1.045780736 | 0.005726442 |
| CYTH3 | -1.042887749 | 0.0000029 |
| NFKBIE | -1.042709036 | 0.000465455 |
| ZNF714 | -1.042557684 | 0.00097083 |
| FN1 | -1.042443407 | 0.00000465 |
| SWAP70 | -1.042209844 | 0.000218875 |
| PTPRJ | -1.04088043 | 0.002124488 |
| C1QTNF2 | -1.040029004 | 0.029836025 |
| NPTXR | -1.039890396 | 0.0000183 |
| TMEM237 | -1.039523543 | 0.0000502 |
| CARS | -1.038009484 | 0.00000751 |
| ZNF217 | -1.037858153 | 0.000123553 |
| ABCC4 | -1.037046174 | 0.00000132 |
| MKL2 | -1.036164386 | 0.000590451 |


| CENPI | -1.035135797 | 0.002979761 |
| :---: | :---: | :---: |
| RP11- | -1.033508827 | 0.022425999 |
| 383J24.6 |  |  |
| SPECC1 | -1.032669097 | 0.002102084 |
| RMI1 | -1.032629472 | 0.000789099 |
| TCEAL7 | -1.030782692 | 0.001443588 |
| ORC2 | -1.029965812 | 0.000621963 |
| AFAP1L1 | -1.029704346 | 0.001150282 |
| PKD1P5 | -1.028832348 | 0.014916348 |
| HCP5 | -1.028130342 | 0.004647442 |
| PAMR1 | -1.027187906 | 0.003150013 |
| AC125232.1 | -1.025722079 | 0.019999514 |
| FGD1 | -1.02545259 | 0.00000238 |
| SASS6 | -1.024865472 | 0.003211091 |
| NF1 | -1.024856454 | 0.00000063 |
| INCENP | -1.023891448 | 0.0000346 |
| NANOS1 | -1.023429121 | 0.018366556 |
| KMT2A | -1.023277883 | 0.00000403 |
| ERF | -1.02158642 | 0.00000674 |
| B3GALTL | -1.021576433 | 0.001747701 |
| PMEPA1 | -1.021213655 | 0.033085669 |
| KMT2E | -1.020986328 | 0.000162622 |
| PIWIL4 | -1.019412275 | 0.023999684 |
| EHMT2 | -1.019251802 | 0.0000293 |
| CDKN1A | -1.018002509 | 0.001996708 |
| PARD3 | -1.017132589 | 0.002210396 |
| LDB2 | -1.01570263 | 0.000293129 |
| GOLGA6L20 | -1.015062286 | 0.01785534 |
| CDKL1 | -1.014635336 | 0.004629265 |
| RP11- <br> 698N11.4 | -1.014210345 | 0.03245145 |
| PCDHGC3 | -1.014021254 | 0.013081356 |
| GLI3 | -1.013396565 | 0.00000598 |


| SLC20A2 | -1.012381853 | 0.002983501 |
| :--- | :--- | :--- |
| NR2F1-AS1 | -1.011226759 | 0.0000174 |
| TMEM200A | -1.010061958 | 0.000609005 |
| ATXN7L1 | -1.008790677 | 0.00018566 |
| ANKRD50 | -1.008685596 | 0.000104994 |
| CNTRL | -1.008494808 | 0.001884598 |
| EXT1 | -1.008457345 | 0.000000223 |
| TCF4 | -1.00806519 | 0.00000344 |
| SV2A | -1.007973786 | 0.0000065 |
| AEBP1 | -1.007722692 | 0.0000203 |
| EXTL1 | -1.007362086 | 0.021566498 |
| C10orf12 | -1.00600794 | 0.015777561 |
| TFAP4 | -1.005799915 | 0.006620903 |
| SLC22A15 | -1.005227405 | 0.012762106 |
| DTWD2 | -1.003067569 | 0.001348091 |
| ERCC2 | -1.00148498 | 0.0000251 |
| ZNF436 | -1.000559927 | 0.000662032 |
| SPEF2 | -1.000452891 | 0.038311373 |

Appendix 5. Up-regulated genes upon A83-01 treatment: Log2-fold change $\geq 1$

| Gene Symbol | log2-fold change | 9 |
| :---: | :---: | :---: |
| DMKN | 4.523963536 | 8.27978E-28 |
| DPP6 | 4.447884761 | 1.34849E-19 |
| CPVL | 4.250279449 | 4.08576E-18 |
| STAR | 3.999001852 | 7.5428E-28 |
| WDR86-AS1 | 3.988012684 | 6.38718E-13 |
| INSC | 3.972614236 | 8.65087E-14 |
| THBD | 3.897921319 | 6.06721E-14 |
| NPR1 | 3.863393913 | 1.1083E-22 |
| PLA2G7 | 3.83005198 | 1.16967E-22 |
| CEACAM1 | 3.641867474 | 2.00749E-12 |
| GDF7 | 3.614411536 | 3.05962E-18 |
| CDK18 | 3.60803325 | $1.2436 \mathrm{E}-25$ |
| WNK2 | 3.506100657 | 1.04066E-13 |
| KDR | 3.494189986 | 3.48995E-11 |
| PDE3B | 3.456980678 | 7.73737E-21 |
| RRAGD | 3.346332525 | 4.66204E-15 |
| WDR86 | 3.33783044 | 2.72936E-09 |
| STAC | 3.32618256 | 5.3289E-16 |
| SCARA5 | 3.265194702 | 2.71209E-07 |
| NR0B1 | 3.254839379 | 1.25831E-08 |
| RARB | 3.254517463 | 1.05697E-33 |
| EPB41L3 | 3.24712539 | 8.10396E-08 |
| SNX10 | 3.234557287 | 1.66061E-18 |
| ASPA | 3.206758651 | 4.74258E-21 |
| WISP2 | 3.203273617 | 1.35691E-11 |
| NFIB | 3.188784186 | 1.2835E-14 |
| PTGES | 3.175727149 | 5.01326E-18 |
| SLC25A18 | 3.166413619 | 1.13659E-23 |
| TLR3 | 3.126577806 | 1.616E-20 |
| AC012065.7 | 3.110767063 | 9.18381E-10 |
| SPTLC3 | 3.105330742 | 1.21654E-10 |
| AK4 | 3.067240747 | 3.21233E-16 |
| COLEC12 | 3.050666458 | 5.93249E-17 |
| RARRES1 | 3.034939537 | 1.27095E-08 |
| IRAK3 | 3.024529749 | 1.58869E-15 |
| ADORA2B | 2.991345949 | 1.12806E-13 |
| TMEM132D | 2.985047005 | 5.61955E-06 |


| MFI2 | 2.97843671 | 1.07552E-22 |
| :---: | :---: | :---: |
| SUSD3 | 2.973538383 | 1.36158E-11 |
| HEYL | 2.965177293 | 2.2063E-10 |
| DOCK8 | 2.939295355 | 4.26296E-10 |
| IL18R1 | 2.897917158 | 1.14773E-05 |
| BIRC7 | 2.859490391 | 3.05314E-05 |
| CARD11 | 2.84867975 | 4.68215E-09 |
| TNFRSF1B | 2.834311013 | 1.09547E-11 |
| ENPP2 | 2.806957931 | 5.55734E-14 |
| LCP1 | 2.781189271 | 1.51376E-06 |
| CYP1B1 | 2.772837679 | 6.77781E-10 |
| KIAA1199 | 2.767241795 | 1.41034E-08 |
| COL4A3 | 2.753078616 | 5.95851E-05 |
| EMILIN2 | 2.747028523 | 9.09765E-17 |
| SHANK2 | 2.745602509 | $2.12864 \mathrm{E}-05$ |
| RP11676J15.1 | 2.727317276 | 5.52855E-05 |
| FCGR2A | 2.726253335 | 1.27801E-08 |
| SLC6A12 | 2.709309964 | 3.83362E-05 |
| MALL | 2.702227732 | 4.54745E-14 |
| EYA4 | 2.701854815 | 1.92203E-07 |
| PCBP3 | 2.690009113 | 2.49393E-13 |
| A2M | 2.685826988 | 4.58496E-10 |
| IGFBP2 | 2.682062571 | 4.16842E-21 |
| FGF12 | 2.66710222 | 1.30051E-05 |
| ANXA9 | 2.662632645 | 3.19569E-08 |
| CLUL1 | 2.646851668 | 0.000143838 |
| PCDH15 | 2.6378804 | 0.000146101 |
| EPB41L4A | 2.626440236 | 9.83805E-07 |
| GPM6B | 2.612022103 | 8.16355E-09 |
| HPSE | 2.605262634 | 3.66991E-09 |
| HAP1 | 2.600477197 | 2.27683E-16 |
| JAG1 | 2.599824365 | 6.096E-13 |
| WWC1 | 2.589294338 | 2.2207E-05 |
| BEAN1 | 2.58898313 | 6.74382E-08 |
| PKDCC | 2.586019047 | 3.90644E-09 |
| SLC29A2 | 2.581876316 | 6.18842E-08 |
| ITGAX | 2.566678816 | 2.60427E-05 |
| CD1D | 2.565439561 | 5.83812E-05 |
| NKX3-1 | 2.563516505 | 3.90031E-07 |
| GALNT14 | 2.562490981 | 5.90425E-05 |
| FAM134B | 2.560937864 | 3.56057E-10 |
| PHYHIP | 2.543511954 | 5.18379E-13 |
| MOB3B | 2.520525723 | 2.07946E-08 |
| TMEM132B | 2.51333156 | $4.03316 \mathrm{E}-10$ |


| HS3ST1 | 2.504067064 | 0.000430696 |
| :---: | :---: | :---: |
| NUP210 | 2.496907546 | 4.98953E-05 |
| SEC14L6 | 2.495839368 | 2.98825E-06 |
| IGSF10 | 2.493264337 | 6.50805E-15 |
| C12orf68 | 2.491911348 | 2.07946E-08 |
| CRISPLD2 | 2.486811635 | 4.2032E-16 |
| GALNT12 | 2.479525817 | 4.00894E-09 |
| WNK4 | 2.478640235 | 1.06225E-15 |
| SLIT2 | 2.473951358 | 7.35122E-15 |
| IRX6 | 2.469015342 | 0.00040394 |
| GPRIN3 | 2.468411206 | 2.51111E-09 |
| FAM53B-AS1 | 2.461353726 | 0.000700851 |
| GRB7 | 2.456059026 | 1.15263E-06 |
| CA12 | 2.453152357 | 4.21463E-05 |
| ALDH1L1 | 2.452772946 | 3.65219E-07 |
| OVCH1 | 2.442647096 | 2.84701E-05 |
| FOXQ1 | 2.43845721 | 0.000213923 |
| ALDH1A1 | 2.436511865 | 6.06834E-07 |
| RASD1 | 2.430125164 | 3.52987E-07 |
| TGFBR3 | 2.430091326 | 1.23317E-22 |
| ST6GALNAC2 | 2.428743255 | 1.46198E-12 |
| TMTC1 | 2.426034584 | 5.84608E-13 |
| LPAR3 | 2.420949228 | 2.67461E-05 |
| RAB37 | 2.418521654 | 0.000304863 |
| EFEMP1 | 2.414959522 | 0.000125276 |
| SPARCL1 | 2.411961701 | 0.000188828 |
| SNAP25 | 2.402941015 | 2.22317E-06 |
| FAM49A | 2.397166601 | 1.00266E-07 |
| EVA1C | 2.394314513 | 5.06751E-11 |
| KCNS2 | 2.393600715 | 2.28935E-05 |
| CLIC6 | 2.392098494 | 2.0434E-08 |
| SLC47A1 | 2.387770364 | 1.11859E-07 |
| PPP2R2B | 2.387676432 | 0.000411282 |
| STX11 | 2.374666889 | 5.4405E-05 |
| LCN1 | 2.361756013 | 0.001356513 |
| VNN2 | 2.357695437 | 0.001097313 |
| TNK1 | 2.355294234 | 1.83822E-05 |
| ACSL5 | 2.347195501 | 2.04579E-18 |
| PTGS2 | 2.345045543 | 0.000358164 |
| MTSS1 | 2.345028166 | 0.000229975 |
| PRUNE2 | 2.338687402 | $2.63245 \mathrm{E}-07$ |
| GSTA3 | 2.338421156 | 0.0003586 |
| CSF1 | 2.32912662 | 8.26615E-21 |
| LINC00173 | 2.324517303 | 0.001089943 |
| PTPRH | 2.323339268 | 7.69833E-13 |


| BAALC | 2.314032091 | 1.73447E-07 |
| :---: | :---: | :---: |
| HSD11B1 | 2.299083588 | 0.000420319 |
| TACSTD2 | 2.292031066 | 6.06834E-07 |
| WBSCR27 | 2.290034976 | 2.11262E-08 |
| KRT19 | 2.289988397 | 9.44957E-08 |
| IL1R1 | 2.286786853 | 1.55004E-18 |
| MBP | 2.281683096 | 9.11926E-13 |
| PRRG4 | 2.280315786 | 6.06834E-07 |
| CEBPD | 2.279009202 | 2.65443E-13 |
| CHRNA7 | 2.2722242 | 0.001131056 |
| ITGA8 | 2.265306779 | 7.06923E-06 |
| KCP | 2.263149919 | $1.4024 \mathrm{E}-06$ |
| SEMA3E | 2.257695697 | 0.000327788 |
| KLHL13 | 2.250326334 | 3.61727E-07 |
| BZRAP1 | 2.247542371 | 7.96642E-13 |
| SYT7 | 2.245343485 | 1.83595E-05 |
| FAM131C | 2.239988227 | 0.000970877 |
| C2 | 2.239522183 | 1.40224E-06 |
| IGSF9B | 2.237634849 | 0.00296644 |
| IL22RA1 | 2.22014095 | 0.003286968 |
| TMEM179 | 2.218808786 | 0.001967934 |
| RASL11A | 2.218642102 | 1.52336E-06 |
| SIGLEC9 | 2.217268398 | 0.000204675 |
| WT1 | 2.205052539 | 4.94047E-16 |
| AC003092.1 | 2.197358563 | 0.000229894 |
| SOD3 | 2.195734142 | 1.07211E-08 |
| AC114730.2 | 2.194370162 | 0.00353063 |
| HAAO | 2.192090932 | 2.82808E-06 |
| MGAT3 | 2.191976493 | 2.40669E-08 |
| DDO | 2.19159744 | 2.17449E-05 |
| GAS7 | 2.189862499 | 6.28562E-18 |
| RXFP1 | 2.173700497 | 1.95337E-13 |
| ADIRF | 2.167450623 | 0.000125276 |
| CCDC64 | 2.165715653 | 0.002803297 |
| ENPEP | 2.161418536 | 4.02974E-11 |
| SLCO2A1 | 2.149658578 | 0.003995374 |
| VWA1 | 2.148738069 | 2.7777E-14 |
| LLGL2 | 2.143426419 | 3.18206E-05 |
| IGFBP6 | 2.141735288 | 3.52079E-11 |
| CX3CL1 | 2.135027985 | 7.06923E-06 |
| EPHX2 | 2.130591807 | 2.60273E-05 |
| C10orf10 | 2.130463137 | 3.59575E-15 |
| FMNL1 | 2.128784066 | 4.84454E-07 |
| SLC27A2 | 2.126684912 | 0.003752742 |


| RP1 | 2.122916908 | 0.000301592 |
| :---: | :---: | :---: |
| 359E10.1 |  |  |
| TTC39A | 2.116888593 | 1.41735E-05 |
| CELF2 | 2.116112463 | 9.24492E-07 |
| RHBDL3 | 2.114921136 | 0.00109169 |
| CCRL2 | 2.111913494 | 0.001371502 |
| TNXB | 2.110264254 | 9.77476E-06 |
| RP11-720L2.3 | 2.110186858 | 0.003408966 |
| KCNMA1 | 2.10729627 | 1.39426E-09 |
| TMCC3 | 2.101051662 | 0.000261671 |
| CD68 | 2.097302317 | 0.000398317 |
| GGT5 | 2.093313077 | 2.16403E-06 |
| KIAA1644 | 2.090563642 | 0.000317106 |
| BHLHE41 | 2.076202399 | 3.8026E-06 |
| PCSK1 | 2.075156712 | 0.005072554 |
| RASGRP2 | 2.060568562 | 1.09781E-08 |
| NR4A2 | 2.059908396 | 4.42847E-06 |
| TNFSF10 | 2.055611403 | 0.000430696 |
| CNGA1 | 2.047774018 | 0.000726675 |
| ADRA2C | 2.039742228 | 7.11175E-06 |
| PPARGC1A | 2.039072568 | 4.18599E-07 |
| CD40 | 2.03335826 | 0.000825255 |
| AQP3 | 2.032532679 | $2.34409 \mathrm{E}-05$ |
| NEFM | 2.023641263 | $2.4806 \mathrm{E}-06$ |
| RAI2 | 2.021674816 | 0.001985238 |
| ST8SIA4 | 2.013057439 | 0.001922268 |
| FAM81A | 2.009167347 | 8.94335E-05 |
| CD22 | 2.007740113 | 0.002567913 |
| CCL26 | 1.990041559 | 0.004564531 |
| SFRP1 | 1.9883606 | 0.000453217 |
| MTUS2 | 1.988131651 | 0.004882914 |
| BCAM | 1.987940233 | $2.91416 \mathrm{E}-07$ |
| RBM11 | 1.985564415 | 0.010870819 |
| RIPPLY3 | 1.98266121 | 0.00470003 |
| SIGLEC17P | 1.982431716 | 0.005998417 |
| LIFR | 1.979845235 | 2.01342E-10 |
| STK32B | 1.974266625 | $1.91354 \mathrm{E}-05$ |
| GPR126 | 1.973104203 | 2.60436E-09 |
| RAB27B | 1.971163404 | 0.001460373 |
| SCN5A | 1.968503563 | 2.1737E-06 |
| FGD5 | 1.96654739 | 0.01260517 |
| $\begin{aligned} & \text { RP11- } \\ & 445 \mathrm{H} 22.4 \end{aligned}$ | 1.964153348 | 0.006115711 |
| KCNK15 | 1.96241556 | 0.002204983 |
| ANK1 | 1.958808226 | 1.97632E-05 |
| KIAA1671 | 1.957076721 | 6.90508E-10 |


| AIM1 | 1.95604009 | 5.60674E-08 |
| :---: | :---: | :---: |
| LPPR5 | 1.954591765 | 0.01402222 |
| ARHGAP20 | 1.954432836 | 2.82808E-06 |
| SORL1 | 1.953170741 | 4.04745E-06 |
| COL4A4 | 1.952375834 | 0.00333102 |
| AC073621.2 | 1.947334368 | 0.009692452 |
| FYB | 1.945720617 | 0.01468672 |
| FAIM2 | 1.944773608 | 3.97606E-06 |
| IL15RA | 1.942579999 | 4.50291E-05 |
| CLCN1 | 1.941902813 | 0.010441548 |
| DDIT4L | 1.93980802 | 5.93878E-08 |
| LINC00341 | 1.931266954 | 6.32514E-07 |
| PBX4 | 1.928398759 | 0.001506052 |
| CRYGN | 1.924223059 | 0.013040332 |
| PPP1R14A | 1.919632954 | 2.91201E-06 |
| CSF3R | 1.91938153 | 0.007025045 |
| FAM162B | 1.917912872 | 0.000303997 |
| FAM65B | 1.916883734 | 0.000144225 |
| $\begin{aligned} & \text { CTD- } \\ & \text { 2135D7.5 } \end{aligned}$ | 1.913329928 | 0.015543126 |
| CAMK1G | 1.910271099 | 1.26221E-09 |
| $\begin{aligned} & \text { CTD- } \\ & \text { 2020K17.1 } \end{aligned}$ | 1.909588466 | $2.79705 \mathrm{E}-06$ |
| TMEM150C | 1.899790525 | 4.70718E-05 |
| CLDN23 | 1.897888265 | 6.69316E-05 |
| RBP7 | 1.896386936 | 0.012293622 |
| SOD2 | 1.896275782 | 3.84895E-13 |
| GPR133 | 1.883512898 | 0.000873841 |
| PRDM6 | 1.876969623 | 6.22772E-05 |
| PRRX2 | 1.87332607 | 9.11352E-05 |
| SDK1 | 1.868196907 | 1.27369E-09 |
| WT1-AS | 1.859541701 | 7.62226E-05 |
| HTRA3 | 1.857444656 | 1.74216E-05 |
| CLMN | 1.855458502 | 0.021223295 |
| KRT18 | 1.84966319 | 6.84516E-10 |
| NETO1 | 1.849658017 | 0.003031901 |
| KB-1517D11.4 | 1.845777402 | 0.010663211 |
| L1CAM | 1.840736089 | 8.86643E-07 |
| RP11- 752D24.2 | 1.840493452 | 0.01611129 |
| CHRD | 1.840030848 | 1.53076E-08 |
| C1orf21 | 1.839820231 | 1.55285E-05 |
| RARRES3 | 1.837329367 | 0.000231354 |
| ANKRD33 | 1.835770256 | 0.015456307 |
| CYP26B1 | 1.835511141 | 0.002356232 |
| TNFRSF21 | 1.834795607 | 1.25831E-08 |


| RP11-598F7.5 | 1.833651375 | 0.025151608 |
| :---: | :---: | :---: |
| C1orf226 | 1.826696728 | 0.00109169 |
| KRT36 | 1.823564063 | 0.026798346 |
| GIPC3 | 1.820024903 | 2.18119E-05 |
| FAM89A | 1.818275949 | 2.50964E-06 |
| FAM149A | 1.816691743 | 1.1658E-06 |
| AQP8 | 1.813109165 | 0.000205496 |
| AGPAT9 | 1.805893901 | 0.000432837 |
| TSHZ2 | 1.805310743 | 0.00109169 |
| NKAIN3 | 1.801582145 | 0.025936388 |
| HOXB-AS3 | 1.799948725 | 5.17495E-06 |
| PLEKHG1 | 1.793390244 | 1.26686E-11 |
| PZP | 1.782568147 | 0.03082676 |
| STEAP4 | 1.781518692 | 0.032899001 |
| RUNX3 | 1.777179975 | 0.033530971 |
| GUCY1A3 | 1.776166189 | 0.000265919 |
| IL1RL1 | 1.769501192 | 0.021118209 |
| DLL4 | 1.768041165 | 0.001883777 |
| LZTS1 | 1.764682053 | 0.015221302 |
| ACVRL1 | 1.764650886 | 3.21036E-06 |
| AC141928.1 | 1.762500738 | 1.01773E-07 |
| IL6R | 1.761348952 | 1.65336E-06 |
| AOX1 | 1.757923896 | 0.001478439 |
| TRPC3 | 1.751912591 | 0.000202698 |
| ZC3H12D | 1.751761725 | 0.004257433 |
| ASS1 | 1.748304032 | 2.09204E-07 |
| TRIM54 | 1.748233372 | 0.035384371 |
| RGL3 | 1.746918249 | 6.90517E-05 |
| SNCA | 1.744003674 | 5.6389E-05 |
| ADAMTSL4 | 1.739635622 | 0.000357704 |
| ANKRD30A | 1.737203339 | 0.04047545 |
| TMEM54 | 1.733808631 | 2.05321E-06 |
| ANKRD6 | 1.733063398 | 4.95358E-06 |
| RP4-647C14.2 | 1.73215444 | 0.001151843 |
| TNFSF13B | 1.729353708 | 0.000899094 |
| NDNF | 1.729300438 | 0.009254167 |
| LINC00944 | 1.728920623 | 0.03332757 |
| APOC1 | 1.726457981 | 0.00561843 |
| LAG3 | 1.722711494 | 1.6558E-05 |
| MTL5 | 1.722319621 | 0.00308804 |
| GUCY1B3 | 1.721334515 | 7.62226E-05 |
| VWA7 | 1.716909972 | 0.004393848 |
| FAM124A | 1.714595229 | 1.0725E-05 |
| LY75 | 1.711691279 | 0.032146864 |
| EYA1 | 1.709760525 | 0.001624348 |


| AGT | 1.708283288 | 0.00586709 |
| :---: | :---: | :---: |
| APOBEC3H | 1.707550314 | 0.041563844 |
| HCAR1 | 1.702847111 | 3.93872E-05 |
| FGF13 | 1.70217859 | 0.008135816 |
| ANKRD29 | 1.701871102 | 0.006739214 |
| LXN | 1.697707304 | $2.39674 \mathrm{E}-05$ |
| AL512428.1 | 1.69738468 | 0.035912336 |
| ZNF536 | 1.695833179 | 0.047067663 |
| SNCG | 1.694735372 | 0.016040854 |
| LINC01140 | 1.693137092 | 0.01917327 |
| RP11- 151D14.1 | 1.692546093 | 0.042028167 |
| WNT2B | 1.692447913 | 0.005746005 |
| CELSR1 | 1.688147127 | 1.19057E-06 |
| LAPTM5 | 1.686789244 | 0.044921489 |
| KIAA0040 | 1.68605153 | 0.025251802 |
| LINGO2 | 1.685412258 | 0.000538878 |
| KCND3 | 1.68306562 | 0.028276098 |
| GMFG | 1.680649595 | 0.014080865 |
| RP11173M11.2 | 1.680326244 | 0.025251802 |
| GS1-72M22.1 | 1.679163915 | 0.006279484 |
| OAF | 1.674403747 | $2.47584 \mathrm{E}-09$ |
| CRABP2 | 1.669425218 | 0.00693407 |
| GPR150 | 1.665151428 | 0.012051353 |
| CGN | 1.664064218 | 0.029499099 |
| RP11- 432J24.5 | 1.660024916 | 0.044071243 |
| ADH1C | 1.659787099 | 0.006225331 |
| APOL1 | 1.658247568 | $2.43688 \mathrm{E}-06$ |
| PSG4 | 1.657846522 | 0.003296631 |
| SCIN | 1.655170655 | 0.036084131 |
| GRIN2A | 1.654360276 | 0.024309705 |
| MAN1C1 | 1.654323616 | 0.000234311 |
| TRIM29 | 1.653541594 | 0.042028167 |
| OSR2 | 1.653345632 | 9.77476E-06 |
| RAC2 | 1.653345399 | 6.92963E-06 |
| LAMA3 | 1.651664455 | 0.003226389 |
| ABCC3 | 1.650547965 | 0.003138053 |
| CD14 | 1.64814649 | 0.016257208 |
| BRINP1 | 1.648118019 | 0.015375891 |
| TM4SF1 | 1.646736937 | 0.011232018 |
| RP11-713C5.1 | 1.646262938 | 0.017609351 |
| PARM1 | 1.645774083 | 0.005721504 |
| LAMB3 | 1.642943186 | 0.0109364 |
| TMEM255B | 1.64060797 | 0.015491297 |


| GPRC5C | 1.640099608 | 0.001093143 |
| :--- | :--- | :--- |
| NOV | 1.639269298 | $3.33823 \mathrm{E}-05$ |
| EBF3 | 1.636274319 | 0.003076395 |
| CMKLR1 | 1.634792833 | 0.035389921 |
| PLA2G4A | 1.626903412 | 0.000800598 |
| CFD | 1.625732726 | 0.028343057 |
| MAP3K5 | 1.619323813 | $1.10872 \mathrm{E}-09$ |
| NR4A3 | 1.61795794 | 0.042991452 |
| MYL3 | 1.613585655 | 0.006644119 |
| ADH1B | 1.61186906 | 0.027826811 |
| SYNPO | 1.610739375 | $1.59543 \mathrm{E}-05$ |
| SH3GL2 | 1.609013909 | 0.006078516 |
| IL2RB | 1.597459461 | 0.000661427 |
| CCBE1 | 1.595626984 | 0.009869886 |
| ADRA2A | 1.59513277 | 0.016211049 |
| RP4-555D20.2 | 1.592825663 | 0.044540924 |
| ADRA1D | 1.585888458 | 0.001430055 |
| KCNC4 | 1.584437737 | 0.002693654 |
| ANKEF1 | 1.582988106 | 0.006271271 |
| PRSS21 | 1.582238863 | 0.000165226 |
| UNC13D | 1.578590633 | 0.000166431 |
| ABCC6P2 | 1.577734092 | 0.041605335 |
| ASPHD1 | 1.576820627 | 0.006644119 |
| ERVMER34-1 | 1.576663805 | 0.006111317 |
| NIPAL1 | 1.574220669 | 0.007420398 |
| MBNL3 | 1.573338718 | $1.41432 \mathrm{E}-05$ |
| IGJ | 1.572530241 | 0.041950636 |
| NYAP1 | 1.57093959 | 0.003840841 |
| PTER | 1.570038425 | 0.000393474 |
| TPD52 | 1.564382943 | 0.002227432 |
| AK7 | 1.560029048 | 0.014740148 |
| ZNF204P | 1.559283703 | 0.049542875 |
| ADAP2 | 1.555993019 | 0.012299707 |
| NAV2 | 1.553840141 | 0.000914577 |
| PTPRU | 1.551596041 | 0.00437233 |
| RP11- | 1.550805053 | 0.007004965 |
| 549B18.1 | 1.534775469 | $1.73447 \mathrm{E}-07$ |
| B4GALT6 | 1.550671888 | $3.76252 \mathrm{E}-05$ |
| PYGM | 1.54689077 | 0.002527125 |
| MAMDC2 | 1.542290814 | 0.007347731 |
| RNF125 | 1.538223848 | 0.003212115 |
| TMEM100 | 1.536019281 | 0.048801662 |
| CFB | 1.535984209 | 0.032906323 |
| TPIRE2 | 1.5347583902 | 0.019821074 |
|  |  |  |
| TMP4 |  |  |


| GRTP1 | 1.529418482 | 0.001655179 |
| :--- | :--- | :--- |
| SDC4 | 1.529115886 | $1.34414 \mathrm{E}-05$ |
| RP11-49111.1 | 1.528205636 | 0.002117165 |
| DHRS13 | 1.527301594 | $8.41752 \mathrm{E}-05$ |
| AC005481.5 | 1.526944868 | 0.038938096 |
| LINC00939 | 1.525755982 | 0.021167122 |
| TWIST1 | 1.523062967 | $6.06834 \mathrm{E}-07$ |
| PDE10A | 1.519513962 | 0.005683109 |
| PTH1R | 1.519333506 | 0.008339494 |
| SBSN | 1.513657833 | 0.047067663 |
| ACE | 1.512927923 | $4.08035 \mathrm{E}-05$ |
| HSPB6 | 1.507190644 | $7.9336 \mathrm{E}-09$ |
| BATF2 | 1.502972086 | $3.43693 \mathrm{E}-05$ |
| LIMCH1 | 1.502886463 | 0.001486947 |
| CHST1 | 1.502046824 | 0.02172337 |
| PLXND1 | 1.501729376 | $8.06006 \mathrm{E}-09$ |
| DAPK2 | 1.501296834 | $1.54492 \mathrm{E}-05$ |
| HYAL1 | 1.499989246 | 0.001412677 |
| NOS3 | 1.493074484 | 0.009657902 |
| SYNE3 | 1.491809312 | 0.000917734 |
| RCSD1 | 1.485676051 | 0.039891499 |
| TINAGL1 | 1.485465059 | 0.033495137 |
| APOL3 | 1.48333261 | $1.25077 \mathrm{E}-06$ |
| C11orf96 | 1.476891495 | 0.00599711 |
| NPR3 | 1.47445021 | 0.030609329 |
| IL33 | 1.474274344 | $5.4405 \mathrm{E}-05$ |
| CAMK2A | 1.47084691 | 0.040949429 |
| BACH2 | 1.47036775 | 0.003408966 |
| NRG1 | 1.467271357 | 0.002083118 |
| RTN4R | 1.461587321 | 0.014050753 |
| PTX3 | 1.460529681 | $8.94335 \mathrm{E}-05$ |
| NR4A1 | 1.458169973 | 0.001726673 |
| CLDN7 | 1.457785205 | 0.000777721 |
| EGFLAM | 1.457025475 | 0.027320913 |
| SCN1B | 1.454941628 | 0.001001161 |
| S100A3 | 1.453367855 | 0.005651751 |
| MRGPRF | 1.451845167 | 0.001600468 |
| SUSD2 | 1.451695217 | $2.71674 \mathrm{E}-05$ |
| PSG2 | 1.443829899 | 0.007602201 |
| COL4A6 | 1.44380629 | 0.000937182 |
| CDCP1 | 1.440790459 | 0.009925089 |
| IL20RA | 1.440441521 | 0.007121537 |
| KCNQ3 | 1.439756561 | 0.018525025 |
| MCOLN2 | 1.437923395 | 0.003225921 |
| METRN | 1.437009089 | $2.34409 \mathrm{E}-05$ |
|  |  |  |


| RFX8 | 1.436750574 | 0.014652461 |
| :--- | :--- | :--- |
| HLA-F | 1.436053771 | $1.07393 \mathrm{E}-05$ |
| NDRG1 | 1.435817461 | $6.66947 \mathrm{E}-06$ |
| PRKAA2 | 1.431110912 | 0.003650729 |
| NOD1 | 1.429575348 | $5.6389 \mathrm{E}-05$ |
| RP11- | 1.42909879 | 0.00109169 |
| 554A11.4 |  |  |
| BAIAP2 | 1.429078737 | $9.29958 \mathrm{E}-07$ |
| TFAP2C | 1.428792702 | $1.18899 \mathrm{E}-05$ |
| DUSP5 | 1.427846146 | 0.010950435 |
| CDCA7 | 1.427786342 | 0.0007725 |
| ALDH3B1 | 1.425976588 | 0.000124743 |
| STEAP3 | 1.418049433 | 0.004666912 |
| CARD9 | 1.414073277 | $7.63135 \mathrm{E}-06$ |
| ITPR3 | 1.408630292 | $9.01351 \mathrm{E}-05$ |
| FBLN1 | 1.408265903 | $3.25267 \mathrm{E}-05$ |
| TGFB3 | 1.407106045 | 0.000825285 |
| PTPRN2 | 1.405428247 | 0.002747605 |
| DKK1 | 1.404919246 | 0.012761395 |
| TMC6 | 1.397746214 | 0.002986748 |
| IL17RE | 1.396969013 | 0.029357578 |
| CDH13 | 1.392151414 | 0.001655179 |
| SYNM | 1.391171769 | 0.001471107 |
| ERBB3 | 1.385790779 | 0.047383084 |
| SLC40A1 | 1.384537885 | 0.006050549 |
| FCRLB | 1.383434547 | 0.024804674 |
| EMX2OS | 1.382595206 | 0.000762315 |
| OLFM1 | 1.3819068 | 0.032196461 |
| CSDC2 | 1.380703895 | 0.000229245 |
| CCDC109B | 1.380272393 | $1.18585 \mathrm{E}-05$ |
| MLPH | 1.380252655 | 0.000281469 |
| TGFBR3L | 1.372084197 | 0.044869396 |
| TPPP3 | 1.37036954 | 0.000385163 |
| DAAM2 | 1.370317619 | $8.84796 \mathrm{E}-06$ |
| PITPNM2 | 1.370052987 | $4.6018 \mathrm{E}-05$ |
| MARK1 | 1.368896386 | 0.00394273 |
| CKB | 1.365744984 | 0.012088881 |
| RGS16 | 1.365646483 | 0.02071941 |
| CHST15 | 1.36382792 | $6.7843 \mathrm{E}-05$ |
| TIMP3 | 1.363798957 | $4.19014 \mathrm{E}-05$ |
| FAM47E- | 1.361033246 | 0.032906323 |
| STBD1 | 1.359154944 | 0.000188828 |
| MCOLN3 | 1.352028996 | 0.032553511 |
| PODXL | 1.351383141 | 0.016663228 |
| CTSD | $7.42898 \mathrm{E}-05$ |  |
|  | 286 |  |
|  |  |  |


| TRIM7 | 1.350681127 | 0.03082676 |
| :--- | :--- | :--- |
| TJP2 | 1.349469533 | 0.001499913 |
| C10orf54 | 1.347600265 | 0.001143401 |
| GJD3 | 1.346549024 | 0.006160294 |
| SEMA4D | 1.344491513 | 0.001804856 |
| TNIK | 1.343289275 | 0.001572324 |
| BZRAP1-AS1 | 1.342638446 | 0.029983115 |
| NANOS1 | 1.341674036 | 0.031661553 |
| RPS6KA1 | 1.340729147 | 0.006078516 |
| THRB | 1.336690973 | 0.003580244 |
| POU2F3 | 1.335924891 | 0.035951111 |
| ELOVL2 | 1.331747314 | 0.020730963 |
| DSG2 | 1.326258114 | 0.008074757 |
| USP53 | 1.324271227 | 0.042613412 |
| TEC | 1.320295003 | 0.042864515 |
| GPX3 | 1.318845405 | 0.002384039 |
| PLD1 | 1.312467124 | $4.84454 \mathrm{E}-07$ |
| STXBP2 | 1.310721317 | 0.000876848 |
| IFITM1 | 1.308812993 | 0.003237857 |
| CCDC69 | 1.308649799 | 0.001827044 |
| BAIAP3 | 1.308331353 | 0.019005565 |
| PLIN2 | 1.306614061 | $6.71354 \mathrm{E}-06$ |
| KIAA1456 | 1.30657947 | 0.000486965 |
| ARID5A | 1.300386354 | 0.000813092 |
| VAMP5 | 1.298555392 | $2.66866 \mathrm{E}-05$ |
| FAM167B | 1.295742354 | 0.005240048 |
| ISG20 | 1.292668926 | 0.003092007 |
| EFCAB1 | 1.285779815 | 0.032637814 |
| CCDC102B | 1.285618971 | 0.024865899 |
| PEG10 | 1.283229825 | 0.009542099 |
| GCK | 1.280194206 | 0.028459154 |
| ALS2CL | 1.277219617 | 0.005679358 |
| PRELP | 1.275467478 | 0.002554584 |
| NEURL1B | 1.274111575 | 0.000633865 |
| RP11- | 1.273994642 | 0.01015546 |
| 1002K11.1 | 1.25819009 | 0.011905589 |
| TENC1 | 1.271881699 | 0.001351068 |
| TCEA3 | 1.271684069 | $4.19407 \mathrm{E}-05$ |
| FBLN7 | 1.270609949 | 0.000140301 |
| C6orf141 | 1.266773931 | 0.002060293 |
| NHS | 1.258263736 | 0.006378622 |
| ETV7 | 1.254257562 | 0.012761395 |
| HRH1 |  |  |
| FLC35G2 | 0.001649238 |  |
|  | 10.2059008 |  |
| FCHO1 | 10362 |  |


| ICAM4 | 1.252307872 | 0.032005769 |
| :--- | :--- | :--- |
| GGT1 | 1.251732276 | 0.011806992 |
| SH2D4A | 1.25051618 | 0.00125498 |
| PIM3 | 1.249157991 | 0.000281705 |
| DBNDD2 | 1.247155985 | 0.041804588 |
| LITAF | 1.247145832 | 0.000847011 |
| FOXP2 | 1.246752195 | 0.001048841 |
| FXYD5 | 1.24598431 | 0.014793522 |
| P2RX4 | 1.24390261 | 0.009060811 |
| HHEX | 1.24243162 | 0.024036631 |
| NOTCH1 | 1.241351473 | 0.000229975 |
| HLA-DPB1 | 1.239268154 | 0.003384651 |
| HMSD | 1.236778624 | 0.040774626 |
| APLP2 | 1.234153469 | 0.029511801 |
| RAB3IL1 | 1.234066073 | 0.000180262 |
| DPP4 | 1.232574345 | 0.021880853 |
| GCNT1 | 1.230093595 | 0.014626339 |
| FAM83H | 1.228624522 | 0.030940891 |
| ITGB8 | 1.227647718 | $6.44376 \mathrm{E}-05$ |
| NR1H3 | 1.223999107 | 0.013648987 |
| TCL6 | 1.223044046 | 0.009939553 |
| DIRAS1 | 1.220036294 | 0.047068973 |
| ABCA6 | 1.217429856 | 0.009647418 |
| MEIS3P2 | 1.217253701 | 0.001336329 |
| MOCOS | 1.215936801 | 0.015369103 |
| RADIL | 1.215884982 | 0.00696336 |
| SCARA3 | 1.214674204 | 0.004093897 |
| PSG5 | 1.213017996 | 0.033946007 |
| FLT1 | 1.2130058 | 0.038627879 |
| NAMPTL | 1.212624022 | 0.014793522 |
| ABHD17C | 1.212385815 | 0.015277797 |
| BOC | 1.206289516 | $5.17495 \mathrm{E}-06$ |
| SH2D5 | 1.203824676 | 0.045697933 |
| HOXB3 | 1.200178066 | 0.001881039 |
| GNAL | 1.193791036 | 0.015534194 |
| ADARB1 | 1.19346543 | 0.00071735 |
| ACOT4 | 1.191418345 | 0.041130536 |
| PSG1 | 1.189668647 | 0.037080325 |
| RIN1 | 1.189415677 | 0.001336329 |
| TMOD1 | 1.188562866 | 0.048712928 |
| LINC00346 | 1.185953254 | 0.004856198 |
| OSMR | 1.185644885 | 0.000158044 |
| CEBPB | 1.185191119 | 0.000490638 |
| USP44 | 1.18154356 | 0.035116313 |
|  | 177821879 | 0.021123504 |
|  |  |  |


| ZFP36 | 1.175490795 | 0.000552164 |
| :--- | :--- | :--- |
| KRT8 | 1.175072805 | 0.002561479 |
| ATCAY | 1.173446416 | 0.046574328 |
| HMGB2 | 1.172832857 | 0.003953641 |
| FAM174B | 1.170811811 | 0.018390492 |
| LAMA4 | 1.170238057 | 0.007146069 |
| PLA2G16 | 1.169842557 | 0.008089805 |
| SMIM10 | 1.16734237 | 0.001001481 |
| CLGN | 1.165518837 | 0.006437564 |
| SNED1 | 1.163689746 | 0.017609351 |
| MFSD6 | 1.157255583 | 0.009132511 |
| TPCN1 | 1.155667732 | 0.001777491 |
| AVPI1 | 1.152689668 | 0.009060811 |
| ADCY1 | 1.149872228 | 0.012663968 |
| EPDR1 | 1.148877891 | 0.044675384 |
| MTMR10 | 1.148295798 | 0.003408966 |
| EPAS1 | 1.147139127 | 0.002526727 |
| FRAS1 | 1.146654177 | 0.033168116 |
| THPO | 1.14593051 | 0.041937297 |
| CYGB | 1.142345734 | 0.029983115 |
| KCNIP3 | 1.140362619 | 0.032213465 |
| PC | 1.132900465 | 0.001558976 |
| HSPB8 | 1.131874496 | 0.029983115 |
| VAT1L | 1.130569703 | 0.009789871 |
| GPRC5A | 1.128236542 | 0.000140947 |
| ALDOC | 1.127243299 | 0.0066582 |
| AFAP1L2 | 1.124755159 | 0.000700851 |
| COL18A1 | 1.119668778 | 0.000534247 |
| GLUL | 1.118551849 | 0.002150489 |
| ROR2 | 1.115151721 | 0.000653496 |
| BDKRB2 | 1.11124515 | 0.00014157 |
| TAPSAR1 | 1.109356942 | 0.001641384 |
| ADCY4 | 1.10654184 | 0.007039999 |
| CORO2B | 1.105766585 | 0.004551005 |
| MAP7 | 1.103051669 | 0.03082676 |
| MPV17L | 1.10009602 | 0.040563078 |
| SIGIRR | 1.094363208 | 0.000970877 |
| TOX2 | 1.086051217 | 0.018909858 |
| CDC42EP4 | 1.084500411 | 0.000273656 |
| HNMT | 1.080154102 | 0.003104592 |
| HLA-DPA1 | 1.075685283 | 0.007979228 |
| DUSP1 | 1.07275888 | 0.021880853 |
| CHCHD10 | 1.072486169 | 0.005046582 |
| DMTN | 1.071717369 | 0.042402279 |
| ADPRH | 1.070568468 | 0.041605335 |
|  |  |  |


| FLI1 | 1.066356976 | 0.005753723 |
| :--- | :--- | :--- |
| ST6GALNAC6 | 1.060895452 | $8.08985 \mathrm{E}-05$ |
| SLC37A1 | 1.058678612 | 0.006113425 |
| AGFG2 | 1.057885166 | 0.012232955 |
| PCK2 | 1.056623505 | 0.030609329 |
| CNTNAP1 | 1.054960024 | 0.000315922 |
| ANXA11 | 1.054392449 | $8.94028 \mathrm{E}-05$ |
| CTSH | 1.053912196 | 0.008971679 |
| F10 | 1.053837078 | 0.000216637 |
| STOM | 1.053687356 | 0.000928467 |
| CCR10 | 1.052157152 | 0.014538748 |
| SMAD3 | 1.050685388 | 0.014024537 |
| ECHDC3 | 1.049695467 | 0.01839861 |
| NFIL3 | 1.046759285 | 0.008043276 |
| TBC1D8 | 1.046047397 | 0.023201167 |
| KREMEN1 | 1.045257026 | 0.033530971 |
| MAP3K8 | 1.042897362 | 0.015167486 |
| ECE1 | 1.037655876 | 0.009605174 |
| SLC9A3R1 | 1.037511759 | 0.002886058 |
| CNKSR3 | 1.034133864 | 0.000861636 |
| SFMBT1 | 1.032669129 | 0.01084408 |
| CBX7 | 1.028514082 | 0.02995244 |
| PLCL2 | 1.027016713 | 0.00241592 |
| NAMPT | 1.025073603 | 0.018802824 |
| BCL3 | 1.021382376 | 0.010765852 |
| EFNB2 | 1.020425232 | 0.002204983 |
| SAV1 | 1.018245629 | 0.000586984 |
| CTNNAL1 | 1.018163363 | 0.009254167 |
| PLA2R1 | 1.017670146 | 0.000243211 |
| ENOSF1 | 1.013115315 | 0.000308971 |
| EFNA5 | 1.011668295 | 0.008133989 |
| TMCO4 | 1.008810151 | 0.002342093 |
| APOE | 1.007265735 | 0.034935787 |
| C16orf45 | 1.00642347 | 0.043682696 |
| SECTM1 | 1.002140968 | 0.01714322 |
| IL6ST | 1.001329341 | 0.000548785 |
| PLEKHF1 | 1.000538546 | 0.017802588 |
|  |  |  |

Appendix 6. Down-regulated genes upon A83-01 treatment:
Log2-fold change <-1

| Gene Symbol | Log2-fold change | q |
| :---: | :---: | :---: |
| KCNE4 | $1.003149166$ | 0.023400333 |
| CASK | $1.004025572$ | 0.005004505 |
| PTPRD | $1.006076373$ | 0.003879865 |
| APCDD1 | $1.007142571$ | 0.030585672 |
| DOCK9 | $1.007263856$ | 0.000459728 |
| TGIF2 | $1.007503321$ | 0.044798066 |
| THAP2 | $1.007929303$ | 0.041605335 |
| KIAA1217 | -1.02636513 | 0.041950636 |
| NNAT | $1.027689615$ | 0.006998066 |
| ZNF804A | -1.03050877 | 0.00350631 |
| CLCN4 | $1.035221971$ | 0.020775617 |
| FHDC1 | $1.036443976$ | 0.040638383 |
| PDCD1LG2 | $1.037729473$ | 0.039346794 |
| NR2F1-AS1 | -1.03927625 | 0.006102824 |
| EPHA5 | -1.04291727 | 0.001794243 |
| DRP2 | $1.043467631$ | 0.041499829 |
| FKBP7 | $1.043502863$ | 0.000635843 |
| MMP16 | $1.044806272$ | 0.001181136 |
| SH3BGRL2 | $1.045457829$ | 0.006748617 |
| ANTXR1 | $1.050840211$ | 0.000134035 |
| PDE4B | $1.053041202$ | 0.005679358 |
| COL4A2 | -1.0537044 | 0.013599398 |
| MRAS | $1.056193934$ | 0.000554393 |
| PCDHGA4 | $1.056737862$ | 0.012655969 |
| SLC9A7 | $1.061226157$ | 0.037812983 |
| LINC00936 | $1.067703727$ | 0.002384039 |


| MCAM | -1.07241098 | 0.039707804 |
| :---: | :---: | :---: |
| LNX2 | $1.072814049$ | 0.004246079 |
| PRDM1 | $1.074108008$ | 0.031863329 |
| AGPS | $1.074231581$ | 0.001309704 |
| GOLGA2P7 | $1.079265479$ | 0.010740254 |
| CAMK1D | $1.080119378$ | 0.006476974 |
| MAST4 | $1.080595166$ | 0.001120906 |
| TMEM132A | $1.084946743$ | 0.007557099 |
| ITGB5 | $1.086350007$ | 0.000442129 |
| PTGFR | $1.086879014$ | 0.021073957 |
| OPN3 | $1.091174654$ | 0.000265656 |
| CCNJL | $1.092917669$ | 0.009673355 |
| STK38L | $1.096948485$ | 9.07075E-05 |
| ITGA4 | $1.098594161$ | 0.010849903 |
| WISP1 | $1.101516718$ | 0.005787411 |
| PDGFC | $1.105000744$ | 0.017427635 |
| HUS1 | $1.108211886$ | 0.002943876 |
| TLN2 | $1.109650392$ | 0.001437035 |
| SPRY2 | $1.110911261$ | 0.015816043 |
| F2R | $1.113998498$ | 0.005985014 |
| SSTR1 | $1.115747394$ | 0.007261605 |
| SLC41A2 | $1.119065717$ | 0.01887024 |
| COL7A1 | $1.119540585$ | 0.013738984 |
| DDHD1 | $1.124079887$ | 0.0061883 |
| TGFBI | $1.124128147$ | 0.00897028 |


| COL5A2 | $1.127308874$ | 0.004459059 |
| :---: | :---: | :---: |
| MIR29A | $1.129449339$ | 0.001122534 |
| ZNF117 | $1.131753719$ | 0.003036148 |
| MMP11 | $1.135015314$ | 0.006751631 |
| MEX3B | $1.137225808$ | 0.023213668 |
| LANCL3 | $1.137507206$ | 0.019093473 |
| OSBPL10 | $1.137865244$ | 0.000495968 |
| SEMA3F | $1.138236678$ | 0.019188062 |
| ITGA1 | $1.139799575$ | 0.045531016 |
| LIMS1 | $1.141557877$ | 0.011025236 |
| LAMC1 | $1.141837269$ | 0.001222061 |
| TTYH3 | $1.144267757$ | 4.94212E-05 |
| C14orf37 | $1.149887062$ | 0.000229894 |
| SNHG14 | $1.150003734$ | 0.016893762 |
| RBM24 | $1.157266358$ | 0.001175412 |
| SPARC | $1.164087614$ | 0.000842631 |
| FGFRL1 | $1.164484984$ | 3.44974E-05 |
| FAM101B | $1.168483087$ | 0.001889011 |
| LAMA2 | $1.169086526$ | 0.040949429 |
| C16orf87 | $1.169351706$ | 0.000180681 |
| COTL1 | $1.170453619$ | 0.001804856 |
| COL1A2 | $1.172149664$ | 0.001443097 |
| ANO8 | $1.173091179$ | 0.007300823 |
| FOXP4 | $1.174786281$ | 2.49822E-05 |
| NR2F1 | -1.17673198 | 0.001857707 |


| LOX | $1.178259568$ | 0.003076992 |
| :---: | :---: | :---: |
| PXDN | $1.187066842$ | 1.72344E-05 |
| ZFP69B | $1.187253556$ | 0.0017013 |
| RP1-228H13.5 | $1.188399244$ | 0.001991292 |
| RHOBTB1 | $1.188776082$ | 0.000796754 |
| SAT1 | $1.194987128$ | 0.000497223 |
| ZNF219 | $1.196247338$ | 0.009254167 |
| MMP15 | $1.198106652$ | 0.000495968 |
| SMO | $1.198732661$ | 0.029357578 |
| ADSSL1 | -1.19926368 | 0.04601717 |
| SERINC5 | $1.201607473$ | 0.001160839 |
| HMGA2 | $1.204896222$ | 0.020159737 |
| FBN1 | $1.206465317$ | 0.000284386 |
| RP1-152L7.5 | -1.21041747 | 0.001275461 |
| BNC2 | $1.212704769$ | 1.11255E-05 |
| PCDHGA3 | $1.214480147$ | 0.040949429 |
| TES | $1.219858226$ | 0.006578619 |
| IKZF2 | $1.220414426$ | 0.017161504 |
| KLHL4 | $1.225259106$ | 0.035073566 |
| PABPC4L | $1.226571518$ | 0.001244734 |
| JAM2 | $1.227277766$ | 0.007854584 |
| MGAT5 | $1.238116822$ | 0.000547369 |
| FRY | $1.241011031$ | 0.001727492 |
| ADAM19 | $1.246014971$ | 0.009516703 |
| SLC2A1 | $1.248094746$ | 0.013289106 |
| KIAA1549 | $1.250277587$ | 6.164E-06 |


| TOX | $1.251902577$ | 0.048712928 |
| :---: | :---: | :---: |
| TET3 | $1.252089565$ | 0.000805929 |
| LMBR1 | -1.25311301 | 0.000654643 |
| PSD3 | $1.257862165$ | $2.41624 \mathrm{E}-05$ |
| ABTB2 | -1.25796413 | 0.000359178 |
| FNBP1L | -1.25812032 | 0.001386618 |
| C8orf4 | $1.264007616$ | 0.006768668 |
| SLC22A23 | $1.264259341$ | 0.01132718 |
| FRK | -1.26443841 | 0.006522989 |
| NRIP2 | $1.267076433$ | 0.035079594 |
| RP11686D22.8 | $1.270115707$ | 0.004654208 |
| EFNA4 | $1.270949937$ | 0.000213923 |
| FANK1 | $1.275628938$ | 0.02068082 |
| MAP3K7CL | $1.283530009$ | 0.018451985 |
| PCDHB3 | $1.283864339$ | 0.037786411 |
| ENC1 | $1.285030612$ | 6.70829E-06 |
| CLDN1 | $1.290732138$ | 0.008421189 |
| TRPA1 | $1.292388207$ | 0.00676838 |
| CREB5 | -1.29338688 | 0.027572656 |
| L3MBTL3 | $1.297024981$ | $2.06522 \mathrm{E}-05$ |
| NTN4 | -1.29914414 | 0.005325635 |
| GLIS1 | -1.30747925 | 0.027358655 |
| AP001062.7 | -1.30900451 | 0.004523561 |
| CCDC144A | $1.309756847$ | 0.028644374 |
| CASP12 | $1.311001491$ | 0.037432615 |
| CDK5R1 | $1.314336233$ | 0.000100564 |
| IGFBP7 | $1.319145465$ | 0.000621772 |
| TSPAN6 | $1.319288866$ | 1.77497E-05 |


| ABCC9 | $1.322317937$ | 0.03082676 |
| :---: | :---: | :---: |
| SLC38A5 | -1.32285975 | 0.001842652 |
| DCHS1 | $1.325317729$ | 0.000849285 |
| PYCR1 | $1.330892276$ | 6.12745E-06 |
| RNF182 | $1.341012926$ | 0.002763086 |
| AMPD3 | $1.346627957$ | 0.000265397 |
| PCDHGB1 | $1.349929566$ | 0.015393363 |
| MFAP2 | $1.355247718$ | 3.33823E-05 |
| ALDH1B1 | $1.356180747$ | 0.001246048 |
| KIAA1324 | $1.357008409$ | 0.028797227 |
| GAD1 | $1.358593458$ | 0.01973426 |
| TMEM206 | $1.362198323$ | 1.56787E-05 |
| FAM227A | $1.370965522$ | 0.005850622 |
| THBS 1 | $1.371079975$ | 0.032672691 |
| ADAMTS7 | $1.372188293$ | 7.7583E-05 |
| PHEX | $1.372874097$ | 0.0149599 |
| C1orf51 | $1.374624865$ | 4.6018E-05 |
| FAM26E | $1.377731044$ | 0.029115663 |
| CD163L1 | $1.378619683$ | 0.003172064 |
| AF131217.1 | $1.382223554$ | 0.023213668 |
| ZSWIM4 | $1.383558111$ | 1.40224E-06 |
| ENAH | $1.386617794$ | $1.4965 \mathrm{E}-06$ |
| RP11-119F7.5 | $1.387767464$ | 0.024141061 |
| ATP2B1 | $1.388464409$ | 1.55267E-05 |
| LOXL2 | $1.389164896$ | 0.000380555 |


| SLC2A11 | $1.391924448$ | 0.000159286 |
| :---: | :---: | :---: |
| GPT2 | $1.392727847$ | $2.08771 \mathrm{E}-05$ |
| ADCY10P1 | $1.396532475$ | 0.017237376 |
| IL16 | $1.398390325$ | 0.025258388 |
| GDPD1 | $1.401964189$ | 0.001135726 |
| TNFSF4 | $1.402163045$ | 0.001267358 |
| TMEM2 | $1.403966675$ | 0.000155569 |
| PNMAL1 | $1.408520236$ | 0.005634212 |
| PDGFD | $1.410703296$ | 0.00339235 |
| ESYT3 | $1.411181232$ | 0.043750738 |
| PLCB4 | $1.411219979$ | 0.026820317 |
| BAMBI | $1.411853181$ | 1.85693E-05 |
| CACNG8 | $1.412146447$ | 0.024309705 |
| NCKAP5 | $1.413899184$ | $2.59287 \mathrm{E}-05$ |
| H2BFM | $1.414542706$ | 0.033701805 |
| MARCKS | $1.416283968$ | 1.14773E-05 |
| DOK6 | $1.419033544$ | 3.33823E-05 |
| SHANK1 | $1.421431465$ | 0.000400802 |
| SORBS1 | $1.422419026$ | 0.005544643 |
| RASGRP3 | $1.428881558$ | 0.022005216 |
| RNF122 | $1.429753738$ | 0.000660983 |
| SPECC1 | -1.4366618 | 8.23588E-07 |
| HECW1 | $1.440795498$ | 1.68787E-06 |
| HIST1H2BG | $1.443212222$ | 0.041866862 |
| ADAMTS17 | $1.446770911$ | 0.027826811 |
| TTC3P1 | -1.4477692 | 0.010617819 |


| BCAT1 | $1.447927052$ | 9.98812E-06 |
| :---: | :---: | :---: |
| HK2 | $1.450353498$ | 0.008830174 |
| PDE3A | $1.458311355$ | 0.000825255 |
| INPP5F | $1.460886265$ | 4.12816E-05 |
| COL12A1 | $1.469260357$ | 0.000166257 |
| SHROOM2 | $1.474328076$ | 0.000213923 |
| SEMA5A | $1.474500872$ | 0.000381306 |
| PURG | $1.475279704$ | 0.043377258 |
| SOX6 | $1.477099608$ | 1.08454E-05 |
| RP11-395N3.1 | $1.483508707$ | 0.02306876 |
| ARVCF | -1.4837121 | 4.57545E-06 |
| PPP1R3C | $1.484019939$ | 0.002731269 |
| TFAP2A-AS1 | $1.485280498$ | 0.040125482 |
| PWAR6 | $1.485836086$ | 0.011781972 |
| SRPX2 | $1.488479386$ | 0.000136313 |
| $\begin{aligned} & \text { RP11- } \\ & \text { 686D22.4 } \end{aligned}$ | $1.489184837$ | 0.019869472 |
| MB21D2 | $1.490246593$ | 3.33823E-05 |
| COL16A1 | $1.497024556$ | 5.07311E-06 |
| COL24A1 | $1.498617123$ | 0.000125842 |
| OSR1 | $1.500672423$ | 3.18028E-05 |
| COL5A1 | $1.503160529$ | 2.34409E-05 |
| TSC22D3 | $1.507345225$ | 4.99372E-05 |
| HIST1H4E | $1.511785965$ | 0.026988238 |
| FBLN5 | $1.515640932$ | 4.69642E-06 |
| TRO | -1.51692688 | 0.002281829 |
| ACTR3C | $1.517474916$ | 0.00566621 |


| PCDH19 | $1.518343602$ | 0.006953228 |
| :---: | :---: | :---: |
| PODXL2 | $1.518730208$ | 0.016864566 |
| TENM3 | $1.524353939$ | 0.000308121 |
| SH3D19 | $1.528917744$ | 1.02405E-05 |
| KBTBD11 | $1.529607402$ | 0.002336982 |
| ANGPT2 | $1.531015922$ | 0.037080325 |
| WNT7B | $1.533691952$ | 0.047454216 |
| PGM5 | $1.534794535$ | 0.005980265 |
| NTF3 | $1.535110115$ | 1.15377E-05 |
| PARD6G | $1.535480587$ | 0.000498801 |
| PRLR | $1.539551628$ | 0.013508143 |
| GPR155 | $1.539953129$ | 5.46935E-06 |
| PCDHA4 | $1.540860516$ | 0.027630666 |
| RHOJ | $1.544526966$ | 1.00154E-07 |
| LMO3 | $1.545548621$ | 0.004551005 |
| CSRNP3 | $1.548603444$ | 0.003584309 |
| SBF2-AS1 | $1.549928484$ | 7.91267E-05 |
| BPGM | $1.561932566$ | 4.77212E-06 |
| FMNL2 | $1.571927714$ | 1.27904E-05 |
| LPPR3 | $1.574643815$ | 0.040949429 |
| GNA14 | $1.579398062$ | 0.005157507 |
| GALNT5 | $1.584237721$ | 0.003552645 |
| UPP1 | $1.593358504$ | 4.19014E-05 |
| NANOS3 | $1.594091298$ | 0.037665144 |
| HIST1H4H | $1.599534715$ | 0.000824108 |


| PDPN | $1.600446433$ | 9.9702E-08 |
| :---: | :---: | :---: |
| SPSB1 | $1.605025244$ | 2.6791E-07 |
| RP1-193H18.2 | $1.609181398$ | 0.035190579 |
| ST6GALNAC3 | -1.61226093 | 1.09888E-05 |
| MYH11 | -1.61349125 | 0.044305347 |
| NAP1L2 | $1.614649932$ | 0.011755049 |
| RP11-87H9.3 | $1.615292441$ | 0.01956656 |
| SEMA3C | -1.61577532 | 7.31795E-09 |
| SLCO5A1 | $1.619284633$ | 0.026284186 |
| XIRP2 | $1.621276141$ | 0.037295553 |
| COL4A1 | $1.621504462$ | 4.87212E-05 |
| ANGPTL1 | $1.622425104$ | 0.043661089 |
| SCUBE3 | $1.622757257$ | 2.12396E-05 |
| MIR199A2 | $1.625092927$ | 0.008069264 |
| ADAMTSL2 | $1.628121765$ | 0.011483887 |
| SHF | $1.631137764$ | 0.002317168 |
| HAS2-AS1 | $1.631192461$ | 0.02975416 |
| ACTG2 | $1.634381075$ | 0.011025236 |
| LMCD1 | $1.639124472$ | 0.000552164 |
| EPYC | $1.644425141$ | 0.001335308 |
| IRS1 | $1.646936353$ | 2.46447E-06 |
| ECM2 | $1.653077895$ | 0.006815095 |
| SLC4A4 | $1.659243729$ | 0.025041723 |
| SEMA6D | $1.659755959$ | 0.002851451 |
| LEF1 | $1.660127734$ | 0.000747302 |
| AC004538.3 | $1.660866504$ | 0.04729791 |


| P4HA3 | $1.663550791$ | 9.45778E-05 |
| :---: | :---: | :---: |
| LRRC61 | $1.663691362$ | 0.000653496 |
| PIK3R3 | $1.671560077$ | 2.74875E-05 |
| PXDNL | $1.680036286$ | 0.044451674 |
| PCDHB2 | $1.683913875$ | 0.006717169 |
| LINC00519 | $1.684341972$ | 0.012761395 |
| SOBP | $1.684519558$ | 0.000255061 |
| $\begin{aligned} & \text { RP11- } \\ & \text { 524D16__A. } 3 \end{aligned}$ | $1.685089113$ | $2.4806 \mathrm{E}-06$ |
| AJ006998.2 | $1.693964008$ | 0.008938635 |
| FBXL22 | $1.699466273$ | 0.012223654 |
| PADI1 | $1.700826383$ | 0.017098404 |
| CSF2RB | $1.706529007$ | 1.17292E-05 |
| KCNN2 | $1.707053902$ | 0.043377258 |
| DPYSL4 | $1.710701553$ | 8.44023E-06 |
| BMP3 | $1.711521652$ | 0.033495137 |
| LNX1 | $1.711534267$ | 0.010975419 |
| ESRP1 | $1.714575875$ | 0.043750738 |
| MMP2 | $1.717831326$ | 2.02679E-12 |
| SOX4 | $1.720659977$ | 1.89129E-09 |
| KCNMB4 | $1.722101657$ | 1.48268E-05 |
| GLI1 | $1.722653907$ | 0.002628812 |
| NRXN3 | $1.723792538$ | 6.29253E-05 |
| SLC29A4 | $1.725642473$ | 0.000593291 |
| ISM1 | $1.731069475$ | 0.00010277 |
| SYNE1 | $1.732383285$ | 7.41093E-09 |


| CCDC170 | $1.732680173$ | 8.73345E-05 |
| :---: | :---: | :---: |
| PCSK1N | $1.732995374$ | 0.006620563 |
| MSC | $1.733359878$ | 0.003591872 |
| SIPA1L2 | $1.736737869$ | 0.000111656 |
| BMF | $1.736775691$ | 0.000105355 |
| C8orf34 | $1.741338599$ | 0.006955252 |
| ST6GAL1 | -1.74270831 | 1.85949E-06 |
| RP11344E13.3 | $1.745093794$ | 0.001743546 |
| KIAA1755 | $1.745286778$ | 0.001335599 |
| MAP2K6 | -1.75008688 | 0.000425727 |
| PCDHB15 | $1.753361409$ | 0.021688801 |
| PLCXD2 | $1.754012476$ | 0.022708116 |
| RP11999E24.3 | $1.757371818$ | 0.000816311 |
| NIPAL4 | $1.760066575$ | 0.008832518 |
| SLA | $1.764507261$ | 0.001504071 |
| ABCA10 | $1.767574885$ | 0.004609152 |
| RP11-395N3.2 | $1.768553061$ | 0.001077919 |
| PALLD | $1.768929957$ | 1.96057E-05 |
| ALOX5AP | $1.770102664$ | 0.013892233 |
| SERTAD4 | $1.775632289$ | 0.000182362 |
| LUZP2 | $1.786071731$ | 0.008339494 |
| ANGPT1 | $1.789041681$ | 4.02869E-06 |
| FGFR2 | $1.800175494$ | 0.030031761 |
| AC112721.2 | $1.806036677$ | 0.024909504 |
| PKNOX2 | $1.808554295$ | $8.45414 \mathrm{E}-05$ |
| RP11383H13.1 | $1.809784162$ | 0.000376712 |


| ZNF556 | $1.813232902$ | 0.00038131 |
| :---: | :---: | :---: |
| SBK1 | $1.814995582$ | 0.004920988 |
| SLC38A4 | $1.818133548$ | 1.03868E-05 |
| ADAM12 | $1.821092874$ | $4.5738 \mathrm{E}-05$ |
| COL1A1 | $1.821888216$ | 1.37122E-09 |
| CDKN2B | $1.828118795$ | $1.9991 \mathrm{E}-05$ |
| SNCAIP | $1.837460177$ | 5.07311E-06 |
| DNAJC12 | $1.838496715$ | 0.003442091 |
| RP11-64C1.1 | $1.841637234$ | 0.024424023 |
| DIRAS3 | $1.844292306$ | 1.34221E-05 |
| ARHGEF37 | $1.852600692$ | 6.0002E-07 |
| ASXL3 | $1.854011793$ | 0.023213668 |
| CTB-92J24.3 | -1.85508656 | 7.06923E-06 |
| IGF1 | $1.856528567$ | 0.011722464 |
| SLIT3 | $1.859527234$ | 0.005852752 |
| TP5313 | $1.860572775$ | 1.86186E-08 |
| GRIK2 | $1.861757438$ | $2.01288 \mathrm{E}-11$ |
| PCDHB16 | $1.862425516$ | 0.000649431 |
| S1PR1 | $1.866720885$ | 0.001300327 |
| GDPD4 | $1.875445416$ | 0.020856394 |
| PCDHB14 | $1.878082461$ | 0.005817001 |
| OLFM2 | $1.879542171$ | 0.002660167 |
| C3orf80 | $1.881880926$ | 0.000651633 |
| CDK6 | $1.882687652$ | 1.01967E-09 |
| PCDHB5 | $1.883891519$ | 0.005634212 |


| MIAT | $1.888796323$ | 0.002790803 |
| :---: | :---: | :---: |
| GFRA1 | -1.89538925 | 0.002353612 |
| PCDHB13 | $1.896723764$ | 0.00586709 |
| 37226 | $1.896946291$ | 0.013725437 |
| PCDHB7 | $1.897147537$ | 0.002497579 |
| GSG1 | $1.900783444$ | 0.001437689 |
| RASGRF2 | $1.906070575$ | 2.35792E-05 |
| SCN7A | $1.908018363$ | 0.002010818 |
| GRIA4 | $1.910300625$ | 0.000136306 |
| TMEFF1 | $1.913425936$ | 0.011613234 |
| SKIL | $1.915778883$ | 2.42406E-11 |
| RP11- <br> 521J24.1 | $1.923299875$ | 0.016411465 |
| CXXC4 | $1.928185525$ | 0.009127827 |
| SGCG | $1.929804786$ | 0.015760477 |
| FAM133A | $1.932333981$ | 0.015742101 |
| CDH3 | $1.935500276$ | 0.007854584 |
| CASC15 | $1.936042809$ | 2.60866E-05 |
| BMP6 | $1.941438062$ | 0.01501158 |
| BGN | $1.942471854$ | 7.7583E-05 |
| ZBED6CL | $1.942767625$ | 5.58625E-06 |
| $\begin{aligned} & \text { RP11- } \\ & 396020.2 \end{aligned}$ | $1.948523049$ | 0.013190197 |
| GPC2 | $1.957790243$ | 2.99335E-05 |
| TCF21 | $1.957847136$ | 0.006330892 |
| HR | $1.959784299$ | 0.000732708 |
| MLLT11 | $1.960333104$ | 1.56379E-06 |


| ADAMTS6 | $1.965858384$ | 5.34313E-08 |
| :---: | :---: | :---: |
| PDE1A | $1.983061604$ | 0.000647074 |
| RP11-33A14.1 | $1.985375604$ | 0.00927709 |
| ZCCHC18 | $1.985654204$ | 7.63135E-06 |
| LPCAT2 | $1.986084239$ | 5.2384E-07 |
| SYTL2 | $1.989465333$ | 1.06372E-05 |
| INHBA | $1.991681265$ | 4.48737E-06 |
| TSPAN33 | $1.998348802$ | $1.99148 \mathrm{E}-05$ |
| VCAN | $2.000872024$ | $2.7168 \mathrm{E}-07$ |
| ZSWIM5 | $2.002110149$ | 2.76986E-07 |
| PALM2 | $2.008745712$ | 4.19407E-05 |
| AC093850.2 | $2.019469294$ | 0.009528213 |
| TNC | $2.019688856$ | 0.009906615 |
| FN1 | $2.030019716$ | 2.34691E-08 |
| PCDH9 | $2.038941333$ | 1.64866E-05 |
| ABCA4 | $2.044160168$ | 0.000543869 |
| PID1 | -2.04577043 | 1.46269E-08 |
| HSD17B2 | $2.046792065$ | 0.000141109 |
| PRSS12 | $2.047138713$ | 8.83331E-09 |
| POU2F2 | $2.047781744$ | 6.64233E-10 |
| KCNIP4 | $2.051655215$ | 0.006373718 |
| DNM3OS | $2.056635784$ | 6.64692E-12 |
| PGM2L1 | $2.058903908$ | 3.68887E-12 |
| ZNF853 | $2.059176282$ | 0.00116375 |
| MIR214 | $2.077086281$ | 2.10176E-07 |
| ELFN2 | -2.07761603 | 0.000254485 |
|  |  | 305 |


| NRG4 | $2.077785815$ | 0.006637224 |
| :---: | :---: | :---: |
| ACTC1 | $2.077868744$ | 0.005623645 |
| CILP | $2.083974109$ | 0.001646899 |
| CBX2 | -2.08534355 | 1.41801E-07 |
| NRP2 | -2.08881767 | 9.54412E-12 |
| PCDHB10 | $2.089264836$ | 0.000495968 |
| FAT4 | $2.090498953$ | 4.62532E-09 |
| KCNAB1 | -2.09215729 | 0.006030614 |
| LINC00607 | $2.092652766$ | 0.00214605 |
| LINC00704 | $2.098788964$ | 0.00566621 |
| TPRG1 | $2.104058143$ | 0.0010915 |
| CHN1 | $2.110348483$ | 6.33932E-18 |
| PCDH10 | $2.110894338$ | 6.96592E-18 |
| RP11259N19.1 | $2.114475572$ | 7.06923E-06 |
| RP3-512B11.3 | $2.114966522$ | 0.001292137 |
| PIEZO2 | $2.116217993$ | 0.000225883 |
| COMP | -2.11700877 | 0.00595781 |
| PCYT1B | $2.118240967$ | 0.000149493 |
| AL163953.3 | $2.122136092$ | 4.00854E-06 |
| WNT11 | $2.125401916$ | 0.005349686 |
| KMO | $2.132484737$ | 0.002679196 |
| ATP10A | $2.132586423$ | 0.003408966 |
| ADCY2 | $2.133326866$ | 0.000189456 |
| MDFI | $2.137221049$ | 0.005121291 |
| IGDCC4 | $2.137547393$ | 2.92181E-06 |
| RP1-212P9.2 | $2.138702321$ | 0.00486077 |


| RARRES2 | $2.140130773$ | 4.57586E-07 |
| :---: | :---: | :---: |
| PADI2 | $2.144327327$ | 0.004504975 |
| F2RL2 | $2.147575246$ | 2.06025E-05 |
| CTTNBP2 | $2.158318266$ | 1.54362E-09 |
| NEGR1 | $2.159862065$ | 4.02974E-11 |
| AFF3 | $2.190235275$ | 1.26447E-08 |
| CDH2 | $2.193611787$ | 1.03483E-19 |
| VANGL2 | $2.206635944$ | 0.000784123 |
| NOX4 | $2.220046417$ | 1.24764E-05 |
| MXRA5P1 | $2.249008056$ | 0.000256989 |
| ISLR2 | $2.249123842$ | 8.64341E-05 |
| KCNA3 | $2.249408613$ | 0.001697363 |
| LINC00900 | $2.264860417$ | 0.000935529 |
| HPGD | $2.270325101$ | 7.94326E-06 |
| METTL21C | $2.270517404$ | 0.002361551 |
| CAPN6 | -2.28554698 | 2.5647E-08 |
| C7orf57 | $2.285945053$ | 0.001953313 |
| AC090954.5 | $2.294486951$ | 0.002037008 |
| LRRC4 | $2.296541943$ | 0.000157283 |
| RP11-664D7.4 | $2.301500146$ | 0.001990311 |
| SPOCK1 | $2.302065838$ | 6.80844E-14 |
| NTM | $2.302989034$ | 7.62015E-05 |
| NEDD9 | $2.307341468$ | 9.18381E-10 |
| $\begin{aligned} & \text { CTD- } \\ & 2319112.1 \end{aligned}$ | $2.318731887$ | 0.00109352 |
| EMB | -2.3198147 | 0.00114359 |
| PCDHB11 | -2.33218444 | 0.000559367 |


| RP11- |  | 2.80777E-07 |
| :---: | :---: | :---: |
| 356J5.12 | 2.348906194 |  |
| ITIH3 | $2.353078942$ | 2.54561E-14 |
| LPAR4 | $2.358580512$ | 3.34022E-06 |
| ENTPD1 | $2.362963218$ | 3.59017E-07 |
| EYA2 | $2.386555528$ | 0.00116375 |
| AC007362.1 | $2.392631785$ | 6.50233E-10 |
| RP11-247C2.2 | $2.402232247$ | 5.79095E-05 |
| MIR181A2HG | $2.404314535$ | 4.05952E-05 |
| LYPD1 | $2.405967201$ | 1.45035E-08 |
| ZFHX2 | $2.417346378$ | 1.56379E-06 |
| IGF2 | -2.43232945 | 4.95358E-06 |
| NELL2 | $2.437755324$ | 0.00033082 |
| ATRNL1 | $2.439154069$ | 2.99645E-10 |
| PLN | $2.441706135$ | $1.2446 \mathrm{E}-05$ |
| ICOSLG | $2.451293011$ | $3.20588 \mathrm{E}-05$ |
| CHRDL2 | $2.456564271$ | 0.000687626 |
| NREP | $2.457605771$ | 1.47961E-13 |
| TC2N | -2.47261367 | 3.98997E-07 |
| CALB2 | $2.482153596$ | 7.63135E-06 |
| NAP1L3 | $2.489862215$ | $3.21884 \mathrm{E}-10$ |
| TYRP1 | $2.492135907$ | 0.000571964 |
| HAS2 | $2.502709898$ | 3.98997E-07 |
| C1QTNF7 | $2.514075758$ | 1.58884E-09 |
| LRIG1 | $2.516046911$ | 1.37558E-06 |
| EPHA3 | $2.526027008$ | 0.000339918 |
| ZNF711 | $2.532562333$ | 2.24528E-07 |


| SAMD11 | $2.569954012$ | 1.71666E-05 |
| :---: | :---: | :---: |
| SPON2 | $2.570959665$ | 7.73188E-11 |
| COL11A1 | $2.582648258$ | 1.42922E-14 |
| ABCB1 | -2.59211482 | 2.24791E-06 |
| TFAP2A | $2.610557762$ | 4.67241E-15 |
| ZPLD1 | $2.620526229$ | 0.000177111 |
| OMD | $2.625436366$ | 1.19181E-05 |
| IGFBP5 | $2.631341953$ | 3.49489E-06 |
| LRRC17 | $2.635369491$ | 7.17366E-07 |
| DSP | $2.643963469$ | 4.65973E-17 |
| F2RL1 | $2.657762185$ | 1.98857E-09 |
| KANK4 | $2.658604239$ | 0.000100564 |
| RP11817J15.3 | $2.681678672$ | 0.000152405 |
| LRP1B | $2.687776713$ | 2.53746E-09 |
| LRRTM3 | $2.692726315$ | 0.00014002 |
| FAM150B | $2.696500954$ | 0.000119098 |
| FRMPD4 | $2.699785495$ | 5.43443E-07 |
| FAM196B | $2.708649168$ | 5.96792E-12 |
| TSPAN2 | $2.719526283$ | 1.75464E-05 |
| PLXDC1 | $2.721731043$ | 3.90681E-06 |
| C7 | $2.725249371$ | 1.04659E-05 |
| KCNS1 | $2.758504959$ | 1.14968E-06 |
| MFAP5 | -2.76710485 | 1.07393E-05 |
| RPRM | $2.771648594$ | $2.41624 \mathrm{E}-05$ |
| COL6A6 | $2.788141942$ | 2.52776E-06 |
| KIF26B | $2.791833575$ | 6.36016E-19 |


| DGKI |  | 3.67936E-10 |
| :---: | :---: | :---: |
|  | 2.828958785 |  |
| SEMA3D | -2.83683745 | $5.4236 \mathrm{E}-11$ |
| PDE1C | $2.855529834$ | 3.08091E-05 |
| CACNA2D3 | $2.885658644$ | 5.3376E-08 |
| PLXDC2 | $2.888677529$ | 1.16369E-15 |
| TSPAN11 | -2.90836048 | 4.48737E-06 |
| SCXA | $2.932908207$ | 3.45263E-09 |
| ST6GAL2 | $2.943521012$ | 1.59405E-26 |
| B3GALT1 | $2.945703352$ | 7.18904E-13 |
| FIBIN | $2.953214283$ | 7.29682E-07 |
| RP11-284N8.3 | $2.962164216$ | 8.10658E-06 |
| GPR68 | $2.962568733$ | 3.20797E-06 |
| ROBO2 | $2.982732036$ | 5.16738E-18 |
| PRR5L | $2.993391908$ | $1.7856 \mathrm{E}-13$ |
| APCDD1L | $3.000400747$ | 5.50638E-09 |
| SLC14A1 | $3.001994959$ | 7.06923E-06 |
| GRIA3 | $3.016047443$ | 6.18385E-15 |
| NRK | -3.02929229 | 1.85949E-06 |
| FGF10 | $3.065540603$ | 1.48849E-06 |
| EFHD1 | $3.068058255$ | 3.46431E-14 |
| CCDC88C | $3.078824502$ | 1.06751E-06 |
| LDLRAD4 | $3.082221409$ | $1.9009 \mathrm{E}-07$ |
| MXRA5 | $3.083071792$ | 3.1317E-16 |
| SULT1C4 | -3.08329137 | 1.45394E-06 |
| MEX3A | $3.098310067$ | 1.88422E-10 |
| AL121578.2 | $3.103729147$ | 2.81945E-07 |


| PKD1L1 | $3.111127904$ | 1.16495E-11 |
| :---: | :---: | :---: |
| CHRM2 | $3.135166063$ | 3.01436E-12 |
| RP11567M16.1 | $3.161690977$ | 6.51053E-10 |
| FIGF | $3.179697294$ | 1.27095E-08 |
| CTGF | $3.182807582$ | 2.60982E-27 |
| COCH | $3.254932222$ | 2.59236E-09 |
| PKIA | $3.255853823$ | 8.46252E-11 |
| COL8A1 | $3.295080925$ | $2.46596 \mathrm{E}-11$ |
| $\begin{aligned} & \text { RP11- } \\ & 355122.7 \end{aligned}$ | $3.296662383$ | 5.44243E-09 |
| DLX5 | $3.299609446$ | 1.45035E-08 |
| SGCD | $3.313037252$ | 6.52922E-13 |
| SIK1 | $3.315847491$ | $9.70607 \mathrm{E}-25$ |
| RFTN2 | -3.3711162 | 4.41541E-24 |
| CXCR4 | $3.376829738$ | 1.52624E-09 |
| DIO2 | $3.400051234$ | $9.37958 \mathrm{E}-41$ |
| TEK | $3.403354152$ | 2.55349E-35 |
| OSGIN2 | $3.426117412$ | $6.52168 \mathrm{E}-35$ |
| CORIN | $3.433010421$ | $2.29708 \mathrm{E}-13$ |
| HEPH | $3.433775639$ | 1.88631E-18 |
| MKX | $3.442720859$ | $1.00524 \mathrm{E}-25$ |
| SYT16 | $3.458110791$ | 1.88977E-09 |
| MMP7 | $3.476306817$ | 8.0129E-12 |
| PREX2 | $3.479914644$ | 5.60209E-11 |
| SERPINE2 | $3.487519343$ | 8.71652E-22 |
| TMEM215 | $3.495134405$ | 6.90297E-08 |


| CSMD3 | $3.512134402$ | 2.64262E-09 |
| :---: | :---: | :---: |
| EGR2 | $3.522310021$ | 6.58807E-11 |
| EDNRB | $3.522936121$ | 1.89129E-09 |
| HUNK | $3.528167826$ | 4.16842E-21 |
| WNT5A | $3.540337265$ | 4.99808E-30 |
| TNFSF18 | $3.548948163$ | 6.41625E-14 |
| NPBWR1 | $3.554439652$ | 3.17381E-08 |
| ALPL | $3.554476968$ | 2.26167E-09 |
| WNT2 | $3.602851955$ | 4.33008E-14 |
| CCND2 | $3.616496445$ | 4.4211E-10 |
| SYTL5 | $3.636929333$ | 3.74035E-31 |
| ESR1 | $3.664376545$ | 7.03795E-29 |
| TENM4 | -3.67136597 | 7.45585E-28 |
| EPHA7 | $3.690076245$ | 8.93497E-11 |
| NCAM1 | $3.724242248$ | 5.16738E-18 |
| KCNMB2 | $3.736265991$ | $1.43528 \mathrm{E}-22$ |
| NKD2 | $3.743045934$ | 4.14815E-10 |
| HMCN1 | $3.745331708$ | 2.24101E-19 |
| DIRC3 | $3.881284809$ | 7.73959E-19 |
| CLSTN2 | $3.933863047$ | $2.42606 \mathrm{E}-26$ |
| PTHLH | $3.935931394$ | 8.31702E-15 |
| COL25A1 | $3.980171784$ | 4.59105E-18 |
| TNFSF15 | $4.036151947$ | 4.20505E-25 |
| CST4 | -4.04063998 | 2.17525E-11 |
| MEOX1 | $4.131813768$ | 1.05628E-12 |
| RASSF2 | $4.227649306$ | 2.83959E-32 |


| CHRNA1 | $4.244059875$ | 1.50826E-16 |
| :---: | :---: | :---: |
| ELN | $4.266666039$ | 7.82622E-15 |
| COL10A1 | $4.317286369$ | 7.16832E-19 |
| KCNC1 | $4.338936901$ | 7.79828E-15 |
| CST2 | $4.382294904$ | 2.86349E-14 |
| C11orf87 | $4.435728175$ | 3.13546E-19 |
| KCNH1 | -4.48977746 | 2.03115E-18 |
| PLCH1 | $4.508772564$ | 2.57512E-44 |
| VASH2 | $4.563993386$ | $3.13504 \mathrm{E}-40$ |
| MMP10 | $4.578072389$ | 1.19757E-17 |
| HTRA1 | $4.673379334$ | 3.54806E-30 |
| HTR1D | $5.583471612$ | 2.37595E-28 |
| CADM1 | $5.817100237$ | 1.92958E-46 |
| LINC00643 | $6.236143291$ | 7.07665E-37 |
| PMEPA1 | $6.743359183$ | 1.67117E-57 |
| CST1 | $6.771958173$ | 2.80323E-64 |

## Appendix 7. A83-01 Up-regulated GO categories

| Go Term | Term | P |
| :---: | :---: | :---: |
| GO:0005886 | plas | 9.26 |
| GO:0019838 | growth factor binding | 3.83E-05 |
| GO:0004896 | cytokine receptor activity | 0.000271 |
| GO:0030522 | intracellular receptor signaling pathway | 0.00045 |
| GO:0043034 | costamere | 0.000458 |
| GO:0004016 | adenylate cyclase activity | 476 |
| GO:0004016 | adenylate cyclase activity | 0.00 |
| GO:0004016 | adenylate cyclase activity | 0.000476 |
| GO:0001558 | regulation of cell growth | 0.000776 |
| GO:0003707 | steroid hormone receptor activity | 0.00089 |
| GO:0017080 | sodium channel regulator activity | 0.000913 |
| GO:0017080 | sodium channel regulator activity | 0.000913 |
| GO:0043401 | steroid hormone <br> mediated signaling <br> pathway  | 0.001199 |
| GO:0004879 | RNA polymerase II transcription factor activity, ligandactivated sequencespecific DNA binding | 0.001734 |
| GO:0030054 | cell junction | 0.002582 |
| GO:000716 | transmembrane | 0.00312 |
|  | receptorprotein <br> tyrosine <br> kinasesignaling pathway |  |
| GO:0004924 | oncostatin-M receptor activity | 0.003867 |
| GO:0002003 | angiotensin maturation | 0.00686 |
| GO:0004897 | ciliary neurotrophic factor receptor activity | 0.007547 |
| GO:0038165 | oncostatin-Mmediated signaling pathway | 0.007968 |
| GO:0043565 | sequence-specific DNA binding | 0.00842 |


| GO:0016021 | integral component of membrane | 0.00853 |
| :---: | :---: | :---: |
| GO:0006069 | ethanol oxidation | 0.008895 |
| GO:0009190 | cyclic nucleotide biosynthetic process | 0.008895 |
| GO:0009190 | cyclic nucleotide biosynthetic process | 0.008895 |
| GO:0005201 | extracellular matrix structural constituent | 0.010719 |
| GO:0006367 | transcription initiation from RNA polymerase Il promoter | 0.01183 |
| GO:0070120 | ciliary neurotrophic factor-mediated signaling pathway | 0.012953 |
| GO:0001657 | ureteric bud development | 0.013026 |
| GO:0008076 | voltage-gated potassium channel complex | 0.014011 |
| GO:0010951 | negative regulation of endopeptidase activity | 0.015361 |
| GO:0014069 | postsynaptic density | 0.016133 |
| GO:0005587 | collagen type IV trimer | 0.017675 |
| GO:0001665 | alpha-N- <br> acetylgalactosaminide <br> alpha-2,6- <br> sialyltransferase <br> activity | 0.0179 |
| GO:0008191 | metalloendopeptidase inhibitor activity | 0.018828 |
| GO:0003081 | regulation of systemic arterial blood pressure by renin-angiotensin | 0.018951 |
| GO:0071376 | cellular response to corticotropin-releasing hormone stimulus | 0.018951 |
| GO:0006869 | lipid transport | 0.023361 |
| GO:0004908 | interleukin-1 receptor activity | 0.024563 |
| GO:0019221 | cytokine-mediated signaling pathway | 0.02525 |
| GO:0032755 | positive regulation of interleukin-6 production | 0.025647 |
| GO:0005112 | Notch binding | 0.026002 |
| GO:0001574 | ganglioside biosynthetic process | 0.027945 |
| GO:0005044 | scavenger receptor activity | 0.029617 |


| GO:0032760 | positive regulation of tumor necrosis factor production | 0.030316 |
| :---: | :---: | :---: |
| GO:0050700 | CARD domain binding | 0.031971 |
| GO:0010765 | positive regulation of sodium ion transport | 0.032286 |
| GO:0045747 | positive regulation of Notch signaling pathway | 0.033592 |
| GO:0014068 | positive regulation of phosphatidylinositol 3kinase signaling | 0.034247 |
| GO:0097503 | sialylation | 0.036956 |
| GO:0007189 | adenylate cyclaseactivating G-protein coupled receptor signaling pathway | 0.038265 |
| GO:0008074 | guanylate cyclase complex, soluble | 0.039487 |
| GO:0004383 | guanylate cyclase activity | 0.04013 |
| GO:0001822 | kidney development | 0.041942 |
| GO:0051894 | positive regulation of focal adhesion assembly | 0.041952 |
| GO:0003208 | cardiac ventricle morphogenesis | 0.042225 |
| GO:0061314 | Notch signaling involved in heart development | 0.042225 |
| GO:0034097 | response to cytokine | 0.044208 |
| GO:0005581 | collagen trimer | 0.048347 |
| GO:0001223 | transcription coactivator binding | 0.048976 |
| GO:0004716 | receptor signaling protein tyrosine kinase activity | 0.048976 |

## Appendix 8. A83-01 Down-regulated GO categories

| GO Term | Term | P |
| :--- | :--- | :--- |
| GO:0005578 | proteinaceous | $4.31 \mathrm{E}-22$ |
|  | extracellular matrix |  |


| GO:0030574 | collagen catabolic process | $1.73 \mathrm{E}-13$ |
| :---: | :---: | :---: |
| GO:0007156 | homophilic cell adhesion via plasma membrane adhesion molecules | 1.17E-10 |
| GO:0005509 | calcium ion binding | 4E-10 |
| GO:0005201 | extracellular matrix structural constituent | 4.17E-09 |
| GO:0005886 | plasma membrane | $4.74 \mathrm{E}-09$ |
| GO:0005788 | endoplasmic reticulum lumen | $2.27 \mathrm{E}-08$ |
| GO:0016339 | calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules | $2.08 \mathrm{E}-07$ |
| GO:0030199 | collagen fibril organization | $4.59 \mathrm{E}-06$ |
| GO:0005581 | collagen trimer | 9.99E-06 |
| GO:0050919 | negative chemotaxis | $1.34 \mathrm{E}-05$ |
| GO:0050919 | negative chemotaxis | $1.34 \mathrm{E}-05$ |
| GO:0007416 | synapse assembly | 3.4E-05 |
| GO:0001755 | neural crest cell migration | 0.000115 |
| GO:0001837 | epithelial to mesenchymal transition | 0.000117 |
| GO:0048843 | negative regulation of axon extension involved in axon guidance | 0.000187 |


| GO:0045499 | chemorepellent activity | 0.00022 |
| :---: | :---: | :---: |
| GO:0022617 | extracellular matrix disassembly | 0.000229 |
| GO:0004222 | metalloendopeptidase activity | 0.000395 |
| GO:0048846 | axon extension <br> involved in axon <br> guidance  | 0.000513 |
| GO:0030215 | semaphorin receptor binding | 0.000835 |
| GO:0060070 | canonical Wnt signaling pathway | 0.001909 |
| GO:0021612 | facial nerve structural organization | 0.002762 |
| GO:0070493 | thrombin receptor signaling pathway | 0.002762 |
| GO:0045165 | cell fate commitment | 0.004291 |
| GO:0045211 | postsynaptic membrane | 0.004509 |
| GO:0071526 | semaphorin-plexin signaling pathway | 0.004678 |
| GO:0048407 | platelet-derived growth factor binding | 0.005008 |
| GO:0005088 | Ras guanylnucleotide exchange factor activity | 0.005171 |
| GO:0050918 | positive chemotaxis | 0.006055 |
| GO:0003873 | 6-phosphofructo-2kinase activity | 0.006393 |
| GO:0006813 | potassium ion transport | 0.006409 |


| GO:0036486 | ventral trunk neural crest cell migration | 0.006527 |
| :---: | :---: | :---: |
| GO:0097490 | sympathetic neuron projection extension | 0.006527 |
| GO:0097491 | sympathetic neuron projection guidance | 0.006527 |
| GO:1902285 | semaphorin-plexin signaling pathway involved in neuron projection guidance | 0.006527 |
| GO:0005109 | frizzled binding | 0.006547 |
| GO:0071805 | potassium ion transmembrane transport | 0.007899 |
| GO:0008076 | voltage-gated potassium channel complex | 0.008582 |
| GO:0071300 | cellular response to retinoic acid | 0.009208 |
| GO:0015459 | potassium channel regulator activity | 0.010249 |
| GO:0004331 | fructose-2,6bisphosphate 2phosphatase activity | 0.01042 |
| GO:0015057 | thrombin receptor activity | 0.01042 |
| GO:0006003 | fructose 2,6- bisphosphate metabolic process | 0.010635 |
| GO:1901166 | neural crest cell migration involved in autonomic nervous system development | 0.010635 |


| GO:0016021 | integral component of membrane | 0.011279 |
| :---: | :---: | :---: |
| GO:0005161 | platelet-derived growth factor receptor binding | 0.012505 |
| GO:0005161 | platelet-derived growth factor receptor binding | 0.012505 |
| GO:0038191 | neuropilin binding | 0.012505 |
| GO:0007215 | glutamate receptor signaling pathway | 0.012868 |
| GO:0045725 | positive regulation of glycogen biosynthetic process | 0.012868 |
| GO:0050930 | induction of positive chemotaxis | 0.012868 |
| GO:0040007 | growth | 0.013837 |
| GO:0051482 | positive regulation of cytosolic calcium ion concentration involved in phospholipase Cactivating G-protein coupled signaling pathway | 0.013837 |
| GO:0030182 | neuron differentiation | 0.014985 |
| GO:0048341 | paraxial mesoderm formation | 0.015598 |
| GO:0005158 | insulin receptor binding | 0.018974 |
| GO:0005520 | insulin-like growth factor binding | 0.020827 |


| GO:0005004 | GPI-linked ephrin receptor activity | 0.02093 |
| :---: | :---: | :---: |
| GO:0008373 | sialyltransferase activity | 0.024131 |
| GO:0016055 | Wnt signaling pathway | 0.025146 |
| GO:0048015 | phosphatidylinositolmediated signaling | 0.027072 |
| GO:0097503 | sialylation | 0.028468 |
| GO:0007160 | cell-matrix adhesion | 0.032473 |
| GO:0070700 | BMP receptor binding | 0.034329 |
| GO:0021675 | nerve development | 0.035006 |
| GO:0061549 | sympathetic ganglion development | 0.035006 |
| GO:0001568 | blood vessel development | 0.038366 |
| GO:0005796 | Golgi lumen | 0.039666 |
| GO:0046835 | carbohydrate phosphorylation | 0.041067 |
| GO:0006000 | fructose metabolic process | 0.042795 |
| GO:0035235 | ionotropic glutamate <br> receptor signaling <br> pathway  | 0.045793 |

## References

Accili, D. \& Arden, K. C. (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 117 (4): 421-426.

Acharya, A., Baek, S. T., Huang, G., Eskiocak, B., Goetsch, S., Sung, C. Y., Banfi, S., Sauer, M. F., Olsen, G. S., Duffield, J. S., Olson, E. N. \& Tallquist, M. D. (2012) The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development, 139 (12): 2139-2149.

Al-Sabbagh, M., Fusi, L., Higham, J., Lee, Y., Lei, K., Hanyaloglu, A. C., Lam, E. W., Christian, M. \& Brosens, J. J. (2011) NADPH oxidase-derived reactive oxygen species mediate decidualization of human endometrial stromal cells in response to cyclic AMP signaling. Endocrinology, 152 (2): 730-740.

Anon (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489 (7414): 57-74.

Aplin, J. D., Charlton, A. K. \& Ayad, S. (1988) An immunohistochemical study of human endometrial extracellular matrix during the menstrual cycle and first trimester of pregnancy. Cell Tissue Res, 253 (1): 231-240.

Baek, S., Sung, M. H. \& Hager, G. L. (2012) Quantitative analysis of genomewide chromatin remodeling. Methods Mol Biol, 833 433-441.

Banfi, A., Bianchi, G., Notaro, R., Luzzatto, L., Cancedda, R. \& Quarto, R. (2002) Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng, 8 (6): 901-910.

Barragan, F., Irwin, J. C., Balayan, S., Erikson, D. W., Chen, J. C., Houshdaran, S., Piltonen, T. T., Spitzer, T. L., George, A., Rabban, J. T., Nezhat, C. \& Giudice, L. C. (2016) Human Endometrial Fibroblasts Derived from Mesenchymal Progenitors Inherit Progesterone Resistance and Acquire an Inflammatory Phenotype in the Endometrial Niche in Endometriosis. Biol Reprod, 94 (5): 118.

Baxter, M. A., Wynn, R. F., Jowitt, S. N., Wraith, J. E., Fairbairn, L. J. \& Bellantuono, I. (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22 (5): 675-682.

Bell, O., Tiwari, V. K., Thoma, N. H. \& Schubeler, D. (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet, 12 (8): 554-564.

Bellofiore, N., Ellery, S. J., Mamrot, J., Walker, D. W., Temple-Smith, P. \& Dickinson, H. (2017) First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol, 216 (1): 40.e41-40.e11.

Biernacka, A., Dobaczewski, M. \& Frangogiannis, N. G. (2011) TGF-beta signaling in fibrosis. Growth Factors, 29 (5): 196-202.

Bockeria, L., Bogin, V., Bockeria, O., Le, T., Alekyan, B., Woods, E. J., Brown, A. A., Ichim, T. E. \& Patel, A. N. (2013) Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J Transl Med, 1156.

Bossard, P. \& Zaret, K. S. (1998) GATA transcription factors as potentiators of gut endoderm differentiation. Development, 125 (24): 4909-4917.

Brar, A. K., Frank, G. R., Kessler, C. A., Cedars, M. I. \& Handwerger, S. (1997) Progesterone-dependent decidualization of the human endometrium is mediated by cAMP. Endocrine, 6 (3): 301-307.

Brar, A. K., Handwerger, S., Kessler, C. A. \& Aronow, B. J. (2001a) Gene induction and categorical reprogramming during in vitro human endometrial fibroblast decidualization. Physiol Genomics, 7 (2): 135-148.

Brar, A. K., Handwerger, S., Kessler, C. A. \& Aronow, B. J. (2001b) Gene induction and categorical reprogramming during in vitro human endometrial fibroblast decidualization. Physiol Genomics, 7 (2): 135-148.

Brosens, J. J. \& Gellersen, B. (2006) Death or survival--progesterone-dependent cell fate decisions in the human endometrial stroma. J Mol Endocrinol, 36 (3): 389-398.

Brosens, J. J., Pijnenborg, R. \& Brosens, I. A. (2002) The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol, 187 (5): 1416-1423.

Brosens, J. J., Salker, M. S., Teklenburg, G., Nautiyal, J., Salter, S., Lucas, E. S., Steel, J. H., Christian, M., Chan, Y. W., Boomsma, C. M., Moore, J. D., Hartshorne, G. M., Sucurovic, S., Mulac-Jericevic, B., Heijnen, C. J., Quenby, S., Koerkamp, M. J., Holstege, F. C., Shmygol, A. \& Macklon, N. S. (2014) Uterine selection of human embryos at implantation. Sci Rep, 43894.

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. \& Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods, 10 (12): 1213-1218.

Cao, X., Li, Y., Luo, R. Z., Zhang, L., Zhang, S. L., Zeng, J., Han, Y. J. \& Wen, Z. S. (2015) Expression of Cystatin SN significantly correlates with recurrence, metastasis, and survival duration in surgically resected non-small cell lung cancer patients. Sci Rep, 58230.

Cavalli, G. (2007) Chromosome kissing. Curr Opin Genet Dev, 17 (5): 443-450.

Chan, R. W., Schwab, K. E. \& Gargett, C. E. (2004a) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod, 70 (6): 1738-1750.

Chan, R. W., Schwab, K. E. \& Gargett, C. E. (2004b) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod, 70 (6): 1738-1750.

Chen, T. \& Dent, S. Y. (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet, 15 (2): 93-106.

Christian, M., Pohnke, Y., Kempf, R., Gellersen, B. \& Brosens, J. J. (2002a) Functional association of PR and CCAAT/enhancer-binding protein beta isoforms: promoter-dependent cooperation between PR-B and liver-enriched inhibitory protein, or liver-enriched activatory protein and PR-A in human
endometrial stromal cells. Mol Endocrinol, 16 (1): 141-154.

Christian, M., Zhang, X., Schneider-Merck, T., Unterman, T. G., Gellersen, B., White, J. O. \& Brosens, J. J. (2002b) Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with CCAAT/enhancer-binding protein beta in differentiating human endometrial stromal cells. J Biol Chem, 277 (23): 2082520832.

Cirillo, L. A., McPherson, C. E., Bossard, P., Stevens, K., Cherian, S., Shim, E. Y., Clark, K. L., Burley, S. K. \& Zaret, K. S. (1998) Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. Embo j, 17 (1): 244-254.

Cirillo, L. A. \& Zaret, K. S. (1999) An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell, 4 (6): 961-969.

Cloke, B., Huhtinen, K., Fusi, L., Kajihara, T., Yliheikkila, M., Ho, K. K., Teklenburg, G., Lavery, S., Jones, M. C., Trew, G., Kim, J. J., Lam, E. W., Cartwright, J. E., Poutanen, M. \& Brosens, J. J. (2008) The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology, 149 (9): 4462-4474.

Cornillie, F. J., Lauweryns, J. M. \& Brosens, I. A. (1985) Normal human endometrium. An ultrastructural survey. Gynecol Obstet Invest, 20 (3): 113-129.

Darzi, S., Werkmeister, J. A., Deane, J. A. \& Gargett, C. E. (2016) Identification and Characterization of Human Endometrial Mesenchymal Stem/Stromal Cells and Their Potential for Cellular Therapy. Stem Cells Transl Med, 5 (9): 11271132.

Dekker, J., Rippe, K., Dekker, M. \& Kleckner, N. (2002) Capturing chromosome conformation. Science, 295 (5558): 1306-1311.

DiMattia, G. E., Gellersen, B., Duckworth, M. L. \& Friesen, H. G. (1990) Human prolactin gene expression. The use of an alternative noncoding exon in decidua and the IM-9-P3 lymphoblast cell line. J Biol Chem, 265 (27): 16412-16421.

Dimitriadis, E., White, C. A., Jones, R. L. \& Salamonsen, L. A. (2005) Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update, 11 (6): 613-630.

Emera, D., Romero, R. \& Wagner, G. (2012) The evolution of menstruation: a new model for genetic assimilation: explaining molecular origins of maternal responses to fetal invasiveness. Bioessays, 34 (1): 26-35.

Emmerson, S. J. \& Gargett, C. E. (2016) Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse. World J Stem Cells, 8 (5): 202215.

Evans, J., Salamonsen, L. A., Winship, A., Menkhorst, E., Nie, G., Gargett, C. E.
\& Dimitriadis, E. (2016) Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol, 12 (11): 654-667.

Evers, J. L. (2002) Female subfertility. Lancet, 360 (9327): 151-159.

Favier, B. \& Dolle, P. (1997) Developmental functions of mammalian Hox genes. Mol Hum Reprod, 3 (2): 115-131.

Fedoroff, N. V. (2012) Presidential address. Transposable elements, epigenetics, and genome evolution. Science, 338 (6108): 758-767.

Fraser, J. D., Irving, B. A., Crabtree, G. R. \& Weiss, A. (1991) Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science, 251 (4991): 313-316.

Frith, J. \& Genever, P. (2008) Transcriptional control of mesenchymal stem cell differentiation. Transfus Med Hemother, 35 (3): 216-227.

Gao, F., Ma, X., Rusie, A., Hemingway, J., Ostmann, A. B., Chung, D. \& Das, S. K. (2012) Epigenetic changes through DNA methylation contribute to uterine stromal cell decidualization. Endocrinology, 153 (12): 6078-6090.

Gargett, C. E. (2007) Uterine stem cells: what is the evidence? Hum Reprod Update, 13 (1): 87-101.

Gargett, C. E. \& Healy, D. L. (2011) Generating receptive endometrium in 329

Asherman's syndrome. J Hum Reprod Sci, 4 (1): 49-52.

Gargett, C. E., Nguyen, H. P. \& Ye, L. (2012a) Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord, 13 (4): 235-251.

Gargett, C. E., Nguyen, H. P. \& Ye, L. (2012b) Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord, 13 (4): 235-251.

Gargett, C. E., Schwab, K. E. \& Deane, J. A. (2016a) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update, 22 (2): 137-163.

Gargett, C. E., Schwab, K. E. \& Deane, J. A. (2016b) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update, 22 (2): 137-163.

Gargett, C. E., Schwab, K. E., Zillwood, R. M., Nguyen, H. P. \& Wu, D. (2009a) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod, 80 (6): 1136-1145.

Gargett, C. E., Schwab, K. E., Zillwood, R. M., Nguyen, H. P. \& Wu, D. (2009b) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod, 80 (6): 1136-1145.

Gargett, C. E. \& Ye, L. (2012) Endometrial reconstruction from stem cells. Fertil Steril, 98 (1): 11-20.

Gellersen, B., Brosens, I. A. \& Brosens, J. J. (2007) Decidualization of the human
endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med, 25 (6): 445-453.

Gellersen, B. \& Brosens, J. (2003) Cyclic AMP and progesterone receptor crosstalk in human endometrium: a decidualizing affair. J Endocrinol, 178 (3): 357-372.

Gellersen, B. \& Brosens, J. J. (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev, 35 (6): 851-905.

Gellersen, B., DiMattia, G. E., Friesen, H. G. \& Bohnet, H. G. (1989) Prolactin (PRL) mRNA from human decidua differs from pituitary PRL mRNA but resembles the IM-9-P3 lymphoblast PRL transcript. Mol Cell Endocrinol, 64 (1): 127-130.

Ghirlando, R., Litt, M. D., Prioleau, M. N., Recillas-Targa, F. \& Felsenfeld, G. (2004) Physical properties of a genomic condensed chromatin fragment. J Mol Biol, 336 (3): 597-605.

Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. \& Lieb, J. D. (2007) FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res, 17 (6): 877-885.

Giudice, L. C. (2004a) Microarray expression profiling reveals candidate genes for human uterine receptivity. Am J Pharmacogenomics, 4 (5): 299-312.

Giudice, L. C. (2004b) Microarray expression profiling reveals candidate genes
for human uterine receptivity. Am J Pharmacogenomics, 4 (5): 299-312.

Godbole, G. \& Modi, D. (2010) Regulation of decidualization, interleukin-11 and interleukin-15 by homeobox A 10 in endometrial stromal cells. J Reprod Immunol, 85 (2): 130-139.

Gray, C. A., Bartol, F. F., Tarleton, B. J., Wiley, A. A., Johnson, G. A., Bazer, F. W. \& Spencer, T. E. (2001) Developmental biology of uterine glands. Biol Reprod, 65 (5): 1311-1323.

Grimaldi, G., Christian, M., Quenby, S. \& Brosens, J. J. (2012a) Expression of epigenetic effectors in decidualizing human endometrial stromal cells. Mol Hum Reprod, 18 (9): 451-458.

Grimaldi, G., Christian, M., Quenby, S. \& Brosens, J. J. (2012b) Expression of epigenetic effectors in decidualizing human endometrial stromal cells. Mol Hum Reprod, 18 (9): 451-458.

Grimaldi, G., Christian, M., Steel, J. H., Henriet, P., Poutanen, M. \& Brosens, J. J. (2011) Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol Endocrinol, 25 (11): 1892-1903.

Gross, D. S. \& Garrard, W. T. (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem, 57 159-197.

Gualdi, R., Bossard, P., Zheng, M., Hamada, Y., Coleman, J. R. \& Zaret, K. S. (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev, 10 (13): 1670-1682.

Gurung, S., Werkmeister, J. A. \& Gargett, C. E. (2015) Inhibition of Transforming Growth Factor-beta Receptor signaling promotes culture expansion of undifferentiated human Endometrial Mesenchymal Stem/stromal Cells. Sci Rep, 515042.

Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., NatansonYaron, S., Prus, D., Cohen-Daniel, L., Arnon, T. I., Manaster, I., Gazit, R., Yutkin, V., Benharroch, D., Porgador, A., Keshet, E., Yagel, S. \& Mandelboim, O. (2006) Decidual NK cells regulate key developmental processes at the human fetalmaternal interface. Nat Med, 12 (9): 1065-1074.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H. \& Glass, C. K. (2010) Simple combinations of lineagedetermining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell, 38 (4): 576-589.

Herlofsen, S. R., Bryne, J. C., Hoiby, T., Wang, L., Issner, R., Zhang, X., Coyne, M. J., Boyle, P., Gu, H., Meza-Zepeda, L. A., Collas, P., Mikkelsen, T. S. \& Brinchmann, J. E. (2013) Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells. BMC Genomics, 14105.

Hesselberth, J. R., Chen, X., Zhang, Z., Sabo, P. J., Sandstrom, R., Reynolds, A. P., Thurman, R. E., Neph, S., Kuehn, M. S., Noble, W. S., Fields, S. \& Stamatoyannopoulos, J. A. (2009) Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods, 6 (4): 283-289.

Jiang, Y., Liao, Y., He, H., Xin, Q., Tu, Z., Kong, S., Cui, T., Wang, B., Quan, S., Li, B., Zhang, S. \& Wang, H. (2015) FoxM1 Directs STAT3 Expression Essential for Human Endometrial Stromal Decidualization. Sci Rep, 513735.

Jin, C. \& Felsenfeld, G. (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev, 21 (12): 1519-1529.

Jones, M. C., Fusi, L., Higham, J. H., Abdel-Hafiz, H., Horwitz, K. B., Lam, E. W. \& Brosens, J. J. (2006) Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci U S A, 103 (44): 16272-16277.

Kaya, H. S., Hantak, A. M., Stubbs, L. J., Taylor, R. N., Bagchi, I. C. \& Bagchi, M. K. (2015) Roles of progesterone receptor $A$ and $B$ isoforms during human endometrial decidualization. Mol Endocrinol, 29 (6): 882-895.

Kessler, C. A., Bachurski, C. J., Schroeder, J., Stanek, J. \& Handwerger, S. (2008) TEAD1 inhibits prolactin gene expression in cultured human uterine decidual cells. Mol Cell Endocrinol, 295 (1-2): 32-38.

Kim, M. R., Park, D. W., Lee, J. H., Choi, D. S., Hwang, K. J., Ryu, H. S. \& Min,
C. K. (2005) Progesterone-dependent release of transforming growth factorbeta1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol Hum Reprod, 11 (11): 801-808.

Koido, M., Sakurai, J., Tsukahara, S., Tani, Y. \& Tomida, A. (2016) PMEPA1, a TGF-beta- and hypoxia-inducible gene that participates in hypoxic gene expression networks in solid tumors. Biochem Biophys Res Commun, 479 (4): 615-621.

Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128 (4): 693-705.

Labied, S., Kajihara, T., Madureira, P. A., Fusi, L., Jones, M. C., Higham, J. M., Varshochi, R., Francis, J. M., Zoumpoulidou, G., Essafi, A., Fernandez de Mattos, S., Lam, E. W. \& Brosens, J. J. (2006) Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium. Mol Endocrinol, 20 (1): 35-44.

Lalmansingh, A. S., Karmakar, S., Jin, Y. \& Nagaich, A. K. (2012) Multiple modes of chromatin remodeling by Forkhead box proteins. Biochim Biophys Acta, 1819 (7): 707-715.

Lekstrom-Himes, J. \& Xanthopoulos, K. G. (1998) Biological role of the CCAAT/enhancer-binding protein family of transcription factors. JBiol Chem, 273 (44): 28545-28548.

Li, L. \& Xie, T. (2005a) Stem cell niche: structure and function. Annu Rev Cell Dev Biol, 21 605-631.

Li, L. \& Xie, T. (2005b) Stem cell niche: structure and function. Annu Rev Cell Dev Biol, 21 605-631.

Li, W. \& Ding, S. (2010) Generation of novel rat and human pluripotent stem cells by reprogramming and chemical approaches. Methods Mol Biol, 636 293-300.

Li, W., Jiang, K. \& Ding, S. (2012) Concise review: A chemical approach to control cell fate and function. Stem Cells, 30 (1): 61-68.

Li, W., Li, K., Wei, W. \& Ding, S. (2013) Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell, 13 (3): 270-283.

Li, W., Zhou, H., Abujarour, R., Zhu, S., Young Joo, J., Lin, T., Hao, E., Scholer, H. R., Hayek, A. \& Ding, S. (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27 (12): 2992-3000.

Li, Z., Liu, C., Xie, Z., Song, P., Zhao, R. C., Guo, L., Liu, Z. \& Wu, Y. (2011) Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One, 6 (6): e20526.

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J.,

Mirny, L. A., Lander, E. S. \& Dekker, J. (2009) Comprehensive mapping of longrange interactions reveals folding principles of the human genome. Science, 326 (5950): 289-293.

Logan, P. C., Ponnampalam, A. P., Rahnama, F., Lobie, P. E. \& Mitchell, M. D. (2010) The effect of DNA methylation inhibitor 5-Aza-2'-deoxycytidine on human endometrial stromal cells. Hum Reprod, 25 (11): 2859-2869.

Lu, Z., Hardt, J. \& Kim, J. J. (2008a) Global analysis of genes regulated by HOXA10 in decidualization reveals a role in cell proliferation. Mol Hum Reprod, 14 (6): 357-366.

Lu, Z., Hardt, J. \& Kim, J. J. (2008b) Global analysis of genes regulated by HOXA10 in decidualization reveals a role in cell proliferation. Mol Hum Reprod, 14 (6): 357-366.

Lucas, E. S., Dyer, N. P., Murakami, K., Lee, Y. H., Chan, Y. W., Grimaldi, G., Muter, J., Brighton, P. J., Moore, J. D., Patel, G., Chan, J. K., Takeda, S., Lam, E. W., Quenby, S., Ott, S. \& Brosens, J. J. (2016) Loss of Endometrial Plasticity in Recurrent Pregnancy Loss. Stem Cells, 34 (2): 346-356.

Lynch, V. J., Brayer, K., Gellersen, B. \& Wagner, G. P. (2009) HoxA-11 and FOXO1A cooperate to regulate decidual prolactin expression: towards inferring the core transcriptional regulators of decidual genes. PLoS One, 4 (9): e6845.

Lynch, V. J., Leclerc, R. D., May, G. \& Wagner, G. P. (2011) Transposon-
mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet, 43 (11): 1154-1159.

Lynch, V. J., Nnamani, M. C., Kapusta, A., Brayer, K., Plaza, S. L., Mazur, E. C., Emera, D., Sheikh, S. Z., Grutzner, F., Bauersachs, S., Graf, A., Young, S. L., Lieb, J. D., DeMayo, F. J., Feschotte, C. \& Wagner, G. P. (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep, 10 (4): 551-561.

Mahoney, J. A., Ntolosi, B., DaSilva, R. P., Gordon, S. \& McKnight, A. J. (2001) Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. Genomics, 72 (3): 243-251.

Mantena, S. R., Kannan, A., Cheon, Y. P., Li, Q., Johnson, P. F., Bagchi, I. C. \& Bagchi, M. K. (2006) C/EBPbeta is a critical mediator of steroid hormoneregulated cell proliferation and differentiation in the uterine epithelium and stroma. Proc Natl Acad Sci U S A, 103 (6): 1870-1875.

Maruyama, T. \& Yoshimura, Y. (2008) Molecular and cellular mechanisms for differentiation and regeneration of the uterine endometrium. Endocr J, 55 (5): 795-810.

Mason, C. E., Shu, F. J., Wang, C., Session, R. M., Kallen, R. G., Sidell, N., Yu, T., Liu, M. H., Cheung, E. \& Kallen, C. B. (2010) Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread
binding within repetitive DNA elements. Nucleic Acids Res, 38 (7): 2355-2368.

Masuda, H., Anwar, S. S., Buhring, H. J., Rao, J. R. \& Gargett, C. E. (2012a) A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant, 21 (10): 2201-2214.

Masuda, H., Anwar, S. S., Buhring, H. J., Rao, J. R. \& Gargett, C. E. (2012b) A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant, 21 (10): 2201-2214.

Mazur, E. C., Vasquez, Y. M., Li, X., Kommagani, R., Jiang, L., Chen, R., Lanz, R. B., Kovanci, E., Gibbons, W. E. \& DeMayo, F. J. (2015) Progesterone receptor transcriptome and cistrome in decidualized human endometrial stromal cells. Endocrinology, 156 (6): 2239-2253.

McGinty, R. K. \& Tan, S. (2015) Nucleosome structure and function. Chem Rev, 115 (6): 2255-2273.

Miyamoto, S., Cooper, L., Watanabe, K., Yamamoto, S., Inoue, H., Mishima, K. \& Saito, I. (2010) Role of retinoic acid-related orphan receptor-alpha in differentiation of human mesenchymal stem cells along with osteoblastic lineage. Pathobiology, 77 (1): 28-37.

Miyazaki, K., Maruyama, T., Masuda, H., Yamasaki, A., Uchida, S., Oda, H., Uchida, H. \& Yoshimura, Y. (2012) Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo
endometrial stem cell assay. PLoS One, 7 (12): e50749.

Mulac-Jericevic, B. \& Conneely, O. M. (2004) Reproductive tissue selective actions of progesterone receptors. Reproduction, 128 (2): 139-146.

Munro, S. K., Farquhar, C. M., Mitchell, M. D. \& Ponnampalam, A. P. (2010) Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod, 16 (5): 297-310.

Murakami, K., Lee, Y. H., Lucas, E. S., Chan, Y. W., Durairaj, R. P., Takeda, S., Moore, J. D., Tan, B. K., Quenby, S., Chan, J. K., Gargett, C. E. \& Brosens, J. J. (2014) Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology, 155 (11): 4542-4553.

Nair, R. R., Jain, M. \& Singh, K. (2011) Reduced expression of gap junction gene connexin 43 in recurrent early pregnancy loss patients. Placenta, 32 (8): 619-621.

Nakerakanti, S. \& Trojanowska, M. (2012) The Role of TGF-beta Receptors in Fibrosis. Open Rheumatol J, 6 156-162.

Naso, M. F., Liang, B., Huang, C. C., Song, X. Y., Shahied-Arruda, L., Belkowski, S. M., D'Andrea, M. R., Polkovitch, D. A., Lawrence, D. R., Griswold, D. E., Sweet, R. W. \& Amegadzie, B. Y. (2007) Dermokine: an extensively differentially spliced gene expressed in epithelial cells. J Invest Dermatol, 127 (7): 1622-1631.

Norris, J., Fan, D., Aleman, C., Marks, J. R., Futreal, P. A., Wiseman, R. W.,

Iglehart, J. D., Deininger, P. L. \& McDonnell, D. P. (1995) Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers. J Biol Chem, 270 (39): 22777-22782.

Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W. \& Fraser, P. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 36 (10): 1065-1071.

Padykula, H. A. (1991) Regeneration in the primate uterus: the role of stem cells. Ann $N$ Y Acad Sci, 622 47-56.

Palumbo-Zerr, K., Zerr, P., Distler, A., Fliehr, J., Mancuso, R., Huang, J., Mielenz, D., Tomcik, M., Furnrohr, B. G., Scholtysek, C., Dees, C., Beyer, C., Kronke, G., Metzger, D., Distler, O., Schett, G. \& Distler, J. H. (2015) Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat Med, 21 (2): 150-158.

Patel, A. N., Park, E., Kuzman, M., Benetti, F., Silva, F. J. \& Allickson, J. G. (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant, 17 (3): 303-311.

Piper, J., Elze, M. C., Cauchy, P., Cockerill, P. N., Bonifer, C. \& Ott, S. (2013) Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data. Nucleic Acids Res, 41 (21): e201.

Plante, B. J., Kannan, A., Bagchi, M. K., Yuan, L. \& Young, S. L. (2009) Cyclic regulation of transcription factor C/EBP beta in human endometrium. Reprod Biol Endocrinol, 715.

Pohnke, Y., Kempf, R. \& Gellersen, B. (1999) CCAAT/enhancer-binding proteins are mediators in the protein kinase A-dependent activation of the decidual prolactin promoter. J Biol Chem, 274 (35): 24808-24818.

Richer, J. K., Jacobsen, B. M., Manning, N. G., Abel, M. G., Wolf, D. M. \& Horwitz, K. B. (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem, 277 (7): 5209-5218.

Schwab, K. E. \& Gargett, C. E. (2007a) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod, 22 (11): 2903-2911.

Schwab, K. E. \& Gargett, C. E. (2007b) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod, 22 (11): 2903-2911.

Simon, J. M., Giresi, P. G., Davis, I. J. \& Lieb, J. D. (2012) Using formaldehydeassisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc, 7 (2): 256-267.

Sivasubramaniyan, K., Harichandan, A., Schumann, S., Sobiesiak, M., Lengerke, C., Maurer, A., Kalbacher, H. \& Buhring, H. J. (2013) Prospective isolation of
mesenchymal stem cells from human bone marrow using novel antibodies directed against Sushi domain containing 2. Stem Cells Dev, 22 (13): 1944-1954.

Song, L. \& Crawford, G. E. (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc, 2010 (2): pdb.prot5384.

Spitzer, T. L., Rojas, A., Zelenko, Z., Aghajanova, L., Erikson, D. W., Barragan, F., Meyer, M., Tamaresis, J. S., Hamilton, A. E., Irwin, J. C. \& Giudice, L. C. (2012) Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod, 86 (2): 58.

Sung, M. H., Baek, S. \& Hager, G. L. (2016) Genome-wide footprinting: ready for prime time? Nat Methods, 13 (3): 222-228.

Swinstead, E. E., Miranda, T. B., Paakinaho, V., Baek, S., Goldstein, I., Hawkins, M., Karpova, T. S., Ball, D., Mazza, D., Lavis, L. D., Grimm, J. B., Morisaki, T., Grontved, L., Presman, D. M. \& Hager, G. L. (2016) Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions. Cell, 165 (3): 593-605.

Takahashi, K. \& Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126 (4): 663-676.

Takano, M., Lu, Z., Goto, T., Fusi, L., Higham, J., Francis, J., Withey, A., Hardt, J., Cloke, B., Stavropoulou, A. V., Ishihara, O., Lam, E. W., Unterman, T. G., Brosens, J. J. \& Kim, J. J. (2007a) Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol, 21 (10): 2334-2349.

Takano, M., Lu, Z., Goto, T., Fusi, L., Higham, J., Francis, J., Withey, A., Hardt, J., Cloke, B., Stavropoulou, A. V., Ishihara, O., Lam, E. W., Unterman, T. G., Brosens, J. J. \& Kim, J. J. (2007b) Transcriptional cross talk between the forkhead transcription factor forkhead box O1A and the progesterone receptor coordinates cell cycle regulation and differentiation in human endometrial stromal cells. Mol Endocrinol, 21 (10): 2334-2349.

Taylor, H. S., Igarashi, P., Olive, D. L. \& Arici, A. (1999) Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab, 84 (3): 1129-1135.

Telgmann, R. \& Gellersen, B. (1998) Marker genes of decidualization: activation of the decidual prolactin gene. Hum Reprod Update, 4 (5): 472-479.

Telgmann, R., Maronde, E., Tasken, K. \& Gellersen, B. (1997) Activated protein kinase $A$ is required for differentiation-dependent transcription of the decidual prolactin gene in human endometrial stromal cells. Endocrinology, 138 (3): 929937.

Thurman, R. E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M. T., Haugen, E., Sheffield, N. C., Stergachis, A. B., Wang, H., Vernot, B., Garg, K., John, S., Sandstrom, R., Bates, D., Boatman, L., Canfield, T. K., Diegel, M., Dunn, D., Ebersol, A. K., Frum, T., Giste, E., Johnson, A. K., Johnson, E. M., Kutyavin, T., Lajoie, B., Lee, B. K., Lee, K., London, D., Lotakis, D., Neph, S., Neri, F., Nguyen, E. D., Qu, H., Reynolds, A. P., Roach, V., Safi, A., Sanchez, M. E., Sanyal, A., Shafer, A., Simon, J. M., Song, L., Vong, S., Weaver, M., Yan, Y., Zhang, Z., Lenhard, B., Tewari, M., Dorschner, M. O., Hansen, R. S., Navas, P. A., Stamatoyannopoulos, G., Iyer, V. R., Lieb, J. D., Sunyaev, S. R., Akey, J. M., Sabo, P. J., Kaul, R., Furey, T. S., Dekker, J., Crawford, G. E. \& Stamatoyannopoulos, J. A. (2012) The accessible chromatin landscape of the human genome. Nature, 489 (7414): 75-82.

Tsompana, M. \& Buck, M. J. (2014) Chromatin accessibility: a window into the genome. Epigenetics Chromatin, 7 (1): 33.

Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., Alm, T., Edqvist, P. H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J. M., Hamsten, M., von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J. \& Ponten, F. (2015) Proteomics. Tissue-based map of the human proteome. Science, 347 (6220): 1260419.

Ulrich, D., Muralitharan, R. \& Gargett, C. E. (2013) Toward the use of endometrial
and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther, 13 (10): 1387-1400.

Uysal, G., Acmaz, G., Madendag, Y., Cagli, F., Akkaya, H., Madendag, I. \& Karakilic, E. U. (2017) The Efficacy of Dienogest in the Treatment of Simple Endometrial Hyperplasia without Atypia. Gynecol Obstet Invest,

Valouev, A., Johnson, S. M., Boyd, S. D., Smith, C. L., Fire, A. Z. \& Sidow, A. (2011) Determinants of nucleosome organization in primary human cells. Nature, 474 (7352): 516-520.
van Es, M. A., van Vught, P. W., Blauw, H. M., Franke, L., Saris, C. G., Van den Bosch, L., de Jong, S. W., de Jong, V., Baas, F., van't Slot, R., Lemmens, R., Schelhaas, H. J., Birve, A., Sleegers, K., Van Broeckhoven, C., Schymick, J. C., Traynor, B. J., Wokke, J. H., Wijmenga, C., Robberecht, W., Andersen, P. M., Veldink, J. H., Ophoff, R. A. \& van den Berg, L. H. (2008) Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat Genet, 40 (1): 29-31.

Vasquez, Y. M., Mazur, E. C., Li, X., Kommagani, R., Jiang, L., Chen, R., Lanz, R. B., Kovanci, E., Gibbons, W. E. \& DeMayo, F. J. (2015) FOXO1 is required for binding of PR on IRF4, novel transcriptional regulator of endometrial stromal decidualization. Mol Endocrinol, 29 (3): 421-433.

Verrecchia, F. \& Mauviel, A. (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and
regulation. J Invest Dermatol, 118 (2): 211-215.

Voss, T. C. \& Hager, G. L. (2014) Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet, 15 (2): 69-81.

Wang, W., Taylor, R. N., Bagchi, I. C. \& Bagchi, M. K. (2012) Regulation of human endometrial stromal proliferation and differentiation by C/EBPbeta involves cyclin E-cdk2 and STAT3. Mol Endocrinol, 26 (12): 2016-2030.

Wolff, E. F., Wolff, A. B., Hongling, D. \& Taylor, H. S. (2007) Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci, 14 (6): 524-533.

Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P. \& Smith, A. (2008) The ground state of embryonic stem cell selfrenewal. Nature, 453 (7194): 519-523.

Yu, C., Liu, K., Tang, S. \& Ding, S. (2014) Chemical approaches to cell reprogramming. Curr Opin Genet Dev, 28 50-56.

Zaret, K. S. \& Carroll, J. S. (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev, 25 (21): 2227-2241.

Zelenko, Z., Aghajanova, L., Irwin, J. C. \& Giudice, L. C. (2012) Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and
abnormalities in endometriosis. Reprod Sci, 19 (2): 152-162.

Zhan, Y., Du, X., Chen, H., Liu, J., Zhao, B., Huang, D., Li, G., Xu, Q., Zhang, M., Weimer, B. C., Chen, D., Cheng, Z., Zhang, L., Li, Q., Li, S., Zheng, Z., Song, S., Huang, Y., Ye, Z., Su, W., Lin, S. C., Shen, Y. \& Wu, Q. (2008) Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat Chem Biol, 4 (9): 548-556.

Zhu, S., Wei, W. \& Ding, S. (2011) Chemical strategies for stem cell biology and regenerative medicine. Annu Rev Biomed Eng, 13 73-90.

## Publications


#### Abstract

Pavle Vrljicak*, Emma S. Lucas*, Lauren Lansdowne*, Raffaella Lucciola*, Joanne Muter, Nigel P. Dyer, Jan J. Brosens, Sascha Ott (2017). Analysis of chromatin accessibility in decidualizing human endometrial stromal cells. In press The FASEB Journal.


* These authors contributed equally to this work.

Raffaella Lucciola, Pavle Vrljicak, Sascha Ott, Jan J Brosens, Caroline Gargett (2017). Genome-wide mapping of regulatory transcriptional networks in human endometrial mesenchymal stem/stromal cells by ATAC-seq and RNA-seq. Abstract in press Gene Medicine.

Paul J. Brighton, Yojiro Maruyama, Katherine Fishwick, Pavle Vrljicak, Shreeya Tewary, Risa Fujihara, Joanne Muter, Emma S. Lucas, Taihei Yamada, Laura Woods, Raffaella Lucciola, Yie Hou Lee, Satoru Takeda, Sascha Ott, Myriam Hemberger, Siobhan Quenby, Jan J. Brosens (2017). Clearance of senescent decidual cells by uterine natural killer cells drives endometrial remodeling during the window of implantation. In press eLife.

