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The facile silane functionalization of graphene oxide (GO) was achieved yielding 

vinyltrimethoxysilane-reduced graphene oxide (VTMOS-rGO) nanospheres located in the inter-

layer spacing between rGO sheets via an acid-base reaction using aqueous media. The successful 

grafting of the silane agent with pendant vinyl groups to rGO was confirmed by a combination of 

Fourier-transform infrared (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy 

(XPS) and X-ray diffraction (XRD). The structure and speciation of the silane-graphene network 

(nanosphere) and, the presence of free vinyl groups verified from solid-state magic angle 

spinning (MAS) and solution 13C and 29Si nuclear magnetic resonance (NMR) measurements. 

Evidence from Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron 

Microscopy (HRTEM) and TEM-High-angle annular Dark-field (TEM-HAADF) imaging 

showed that these silane networks aided the exfoliation of the rGO layers preventing 
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 2

agglomeration, the interlayer spacing increased by 10Å. The thermal stability (TGA/DTA) of 

VTMOS-rGO was significantly improved relative to GO, displaying just one degradation process 

for the silane network some 300 oC higher than either VTMOS or GO alone. The reduction of 

GO to VTMOS-rGO induced sp2 hybridization and enhanced the electrical conductivity of GO 

by 105 Sm-1. 

KEYWORDS:  reduced graphene oxide (rGO), vinytrimethoxysilane (VTMOS), 

functionalization; silane nanospheres, covalent grafting  

 

1. Introduction 

Graphene, an allotrope of carbon, is a monolayer of sp2 hybridized carbon atoms in a two 

dimensional lattice and continues to gain intense attention due to its extraordinary intrinsic 

properties. These include high surface area (>2600 m2/g)1, exceptional thermal conductivity, 

(~3000 W m-1 K-1)2 mechanical properties (Young’s modulus of 1.0 TPa)3-5, electrical 

conductivity (2 x 103 S cm-1)6 and 97.7% optical transparency7-8. The structure of graphene is 

that of a densely packed honeycomb structure of individual layers, characterised through single-

crystal X-ray crystallography. As the atoms of the carbon form strong covalent bonds throughout 

the honeycomb lattice, the strength to weight ratio outweighs all metals and metal composites. 

Regardless of its high strength, it is still relatively flexible and can be wrapped up into 0-D 

fullerenes, rolled into 1-D nanotubes or stacked in a 3-D graphite9. Due to its exceptional 

properties, it can be used for a wide range of applications as diverse as transparent conductive 

electrodes10, energy storage devices11, for biomedical purposes such as drug delivery12, cancer 

therapy13 and can be incorporated into polymer matrices as a functional filler14.  
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 3

For composites of graphene and polymers, full translation of properties from the graphene to 

the polymer matrix is highly dependent on the extent of dispersion and distribution of the 

graphene layers within the polymer matrix and the interfacial interaction between these two 

phases. Agglomerates of graphene are formed from a combination of high surface area, strong 

van der Waals interactions and π-π bonding between layers which makes them insoluble in 

organic polymers15. Therefore, it is essential to modify graphene with functional groups to 

increase compatibility between the graphene and polymer matrix and to promote interfacial 

interactions.  

Graphene Oxide (GO) can be homogenously dispersed in water and other polar media due to 

its various carbonyl and other polar moieties present on the basal planes and edges16-17. These 

functional groups are available as reactive sites for further functionalization. Recently, silane 

coupling agents have been employed as compatibilizers for nanofillers and polymers promoting 

interfacial interactions. These silane coupling agents consist of organosilanes, (R1, R2, R3)SiXn, 

where X substituents are hydrolysable to form RSi(OH)3 when reacted with water, whereas the R 

groups are usually unreactive18. Different silane agents such as aminopropyltriethoxy silane 

(APTES)19-24, triethoxymethoxysilane (MTES), 3-glycidyloxypropyl trimethoxysilane  

(GPTMS)25-27 and triethoxysilane (TEOS)28-30, have been widely explored and investigated for 

GO functionalization. However, to the best of our knowledge no studies have been reported that 

have focused on using vinyltrimethoxysilane (VTMOS) to modify reduced GO (rGO). VTMOS 

has three hydrolysable methoxy groups and one vinyl group attached to silicon. Ma et al. 

functionalized GO using VTMOS via ultrasonication to incorporate GO into a silicone matrix by 

solvent mixing25. The mechanical properties and thermal stability of this matrix was improved 

significantly with very low GO loadings. The enhancement in properties was due to the vinyl 
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 4

group of the silane agent reacting with the silicone matrix facilitating interfacial interactions. 

Additionally, Wang et al. modified GO with vinyltriethoxy silane (VTES) in acidic conditions 

and then reduced the GO using hydrazine/ammonia prior to inclusion in a LDPE matrix via 

solvent mixing to investigate mechanical and barrier properties of the nano-composite26. The 

method used to silanise graphene included the use of water as a solvent medium. However, in 

both papers, the functionalized graphene obtained was not characterized to a level that 

unequivocally confirmed functionalization of the graphene network. In this work ‘nanoballs’, 

spherical particles with diameters in the range 10-30nm were produced from VTES and although 

observed by TEM, they were not further characterized. The ‘nanoballs’ produced were actually 

silsesquioxane nanoparticles obtained from the hydrolysis/condensation reactions aided by acidic 

and basic conditions. These silica spheres were first produced by Stöber31 in 1968 and widely 

investigated in the last decade. This method involved a silane precursor, usually 

tetraethoxysilane (TEOS) in a mixture of water, ammonia and alcohol. To modify these silica 

particles with different functional groups, mixtures of TEOS and organotrialkoxysilane 

precursors can be utilized. More than one starting precursor is usually used and the experiment 

becomes more complex with the need to manage ratios of the ethanol:water solvent medium.  

In contrast, in the experimental procedure described in our work, only one silane precursor was 

used in a water medium to form silica-nanospheres.  In this study, GO was modified by VTMOS 

using acidic conditions and then reduced using hydrazine, providing the silane agent acidic and 

basic conditions for the hydrolysis/condensation reactions to form silane nanospheres. Therefore, 

we report a facile route to synthesise VTMOS-rGO which was then studied in detail using 

microscopic methods such as TEM and TEM-HAADF and SEM, and the chemical and surface 

composition determined using FTIR, XPS, XRD and Raman spectroscopy. Additionally, solid 
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 5

state 13C and 29Si MAS NMR and solution state NMR studies were undertaken to analyse the 

speciation defining these systems. DC measurements and thermal properties were measured 

using a two-point probe method and TGA, respectively. To the best of our knowledge, this is the 

first study using this method to produce VTMOS-rGO silica nanospheres, a silane-graphene 

network and characterized in detail. This facile methodology can be expected to provide well 

controlled modified graphene(s) which can thereby enhance interfacial interactions with any 

polymer matrix of interest during melt mixing. 

 

2. Experimental 

Materials: GO (1 nm thick/ size of flakes 2-20µm) was purchased from Abalonyx, VTMOS 

(98%) from Alfa Aesar, hydrazine yydrate (78-82%) and ammonia solution (2M in methanol) 

were purchased from Honeywell Fluka and, Hydrochloric acid (37%) from Fisher Chemical. 

VTMOS-rGO. For modification of GO, GO powder was added to a mixture of diluted HCl (0.40 

M) and VTMOS and heated for 2 hours at 75°C. Modified GO dissolved in water and formed a 

dark brown solution. This solution precipitated out when the hydrazine/ammonia mixture was 

added and the mixture was heated for another 4 hours at 90°C under reflux. After the acquired 

time, this mixture was then filtered and washed off with water, ensuring that the sample had a 

neutral pH and, dried off in a vacuum oven. For comparison, VTMOS-GO was also prepared 

using the same method but dried in a freeze dryer. 

Characterization. Scanning Electron Microscopy (SEM) micrographs were obtained using a 

Zeiss Sigma using InLens detector at 5kV. The samples imaged were sputter coated using an 

Au/Pd target. Transmission Electron Microscopy (TEM) micrographs were obtained using a 

Talos (FEI) F200X for TEM/STEM with Super-X EDS operated at 200kV for both TEM and 
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 6

STEM elemental mapping. Samples for TEM analysis were prepared via drop-casting a few 

milliliters of sample dispersions after ultrasonication onto holey carbon grids, allowing the 

solvent evaporate and leaving the sample to rest for 24 hours at RT. 

Fourier-transform infrared (FTIR) spectra were recorded on a Bruker Spectrometer with a scan 

range from 500 cm-1 to 4000 cm-1. 

X-ray Diffraction (XRD) measurements were completed on a Panalytical Empyrean instrument 

in Bragg-Brentano geometry with Co-Kα radiation (1.7903 Å) and a solid state Pixcel detector 

for fast data collection. A variable divergence slit was used to control the size of the beam on the 

sample to be 6mm parallel to the beam and a beam mask of 15mm. 20 minute scans were 

collected in the range 4 – 40° 2θ with a step size of ~ 0.026 ° 2θ. 

Raman Spectra were recorded on a Renishaw inVia Reflex Raman Microscope with a 532 nm 

excitation source and a 100X microscope objective. Samples were in pellet form. 

X-ray Photoelectron Spectroscopy (XPS) was carried out using a Kratos Axis Ultra DLD 

Spectrometer at RT and with a base pressure of 2 x 10-10 mbar, using a monochromated Al kα X-

ray source. In order to prevent surface charging, the data was collected while the sample was 

exposed to a flux of low energy electrons from the charge neutralizer built in to the 

hemispherical analyser entrance, with the binding energy scale retrospectively calibrated to the 

sp3 C-C peak at 284.6 eV. The data was analyzed with the CasaXPS package, using Shirley 

backgrounds and mixed Gaussian-Lorentzian (Voigt) line shapes and asymmetry parameters 

where appropriate. For compositional analysis, the analyser transmission function was 

determined using clean metallic foils to determine the detection efficiency across the full binding 

energy range. 
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 7

All solid-state 13C magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectra 

were acquired at 7.05 T using a Bruker Avance HD-300 spectrometer operating at 1H and 13C 

Larmor frequencies (ν0) of 300.13 MHz and 75.8 MHz, respectively. A Bruker 4 mm dual 

channel HX MAS probe was utilized to enable MAS frequencies (νr) of ~12 kHz for all 

measurements. Single pulse experiments were employed where a π/2 excitation pulse of 4µs 

duration was implemented in conjunction with 100 kHz of 1H decoupling which was applied 

during acquisition, and the recycle delay was 10 s. The 13C MAS NMR data were chemical shift 

referenced (indirectly) to neat TMS (δiso = 0.0 ppm) via an alanine secondary (solid) reference 

which yields three distinct resonances for the methyl, backbone and carbonyl carbon species (δiso 

= 20.5, 50.5 and 178 ppm with respect to TMS, respectively). 

Corresponding 29Si MAS NMR data were also measured at 7.05 T (Larmor frequency ν0 = 59.59 

MHz) on a Bruker Avance HD-300 Spectrometer. A Bruker 7 mm dual channel HX MAS probe 

was utilized to facilitate MAS frequencies (νr) of ~5 kHz for all measurements. The single pulse 

experiments consisted of a π/2 excitation pulse of 4.0 µs duration, 100 kHz of 1H decoupling 

during acquisition, and a measured recycle delay of 10s. All 29Si chemical shifts were indirectly 

referenced to TMS (δiso = 0.0 ppm) via a kaolinite secondary (solid) reference (δiso = −93 ppm 

with respect to TMS), and the 29Si pulse length calibration was undertaken on the kaolinite 

secondary reference. 

Both 13C and 29Si solution state NMR experiments were performed at 7.05 T in a Bruker 7 mm 

MAS NMR probe; the excitation pulse parameters mirrored those implemented in the solid 

experiments, however no 1H decoupling or magic angle spinning were utilized. 

Thermogravimetric Analysis (TGA) was carried out using a Mettler Toledo thermal analyzer 

over the temperature range of 25°C to 800°C at a heating rate of 10 °K/min under nitrogen. 
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 8

Electrical conductivity measurements were performed using a two-point probe method on 

hydraulic pressed pellets. An electrometer (Keithley, Ohio, USA, model 6517B) was used to 

measure the volume resistivity using an applied voltage of 1V. 

 

3.  Results and Discussion 

The synthetic route to produce VTMOS-rGO is divided into two major steps, see Scheme 1. The 

first step shows the addition of the silane agent in acidic conditions which encourages the 

simultaneous hydrolysis of the O-Me groups in VTMOS and the grafting with GO via OH 

groups through a condensation reaction. 

 

Scheme 1: Schematic representation of the modification of GO. SEM image (left): magnification 

x 700k), Step 1: silane addition and Step 2: reduction of silane modified GO. SEM image (right): 

magnification x 50k)  
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 9

 This acid-catalyzed hydrolysis yields a rapid protonation of the methoxy group followed by a 

SN2-type displacement of the leaving group by water as illustrated in Scheme 2. This step yields 

a brown solution that precipitates and turns black when the pH was increased in the second step 

after the addition of hydrazine/ammonia. The reducing agent partially retains π-π conjugation. 

The second step can proceed by two different routes. Route 1 follows the self-condensation 

reaction to form poly(siloxane) bonds, whereas route 2 results in the formation of siloxane bonds 

via nucleophilic attack of the amine followed by rapid attack of neighbouring silanols. 

SiHO OH

OH

SiO OH

OH

H

SiHO

OH

SiO OH

OH

Route 1:

SiHO

OH

SiO OH

OH

SiHO OH

OH

NH2

R

-H2O
SiHO NHR

OH

SiHO OH

OH

Route 2:

Step 2

Si OO

O

Me

MeMe

H
+

Si OO

O

Me

MeMe

H

Si

OMeMeO

O
Me

O
H

H H Si OO

O

Me

HMe

H
+

Step 1

 
 

Scheme 2. Reaction mechanisms for step 1 and step 2, (two possible routes).  

The concept of amines acting as nucleophiles was supported by the work of Chojnowoski and 

Chrzczonowicz who demonstrated that condensation reactions could also be catalyzed by 
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 10

secondary and tertiary amines via nucleophilic attack on the silicon28. The polycondensation 

pathway is dependent on the functional groups attached and can result in different reactivities. 

Differences in reactivity may be caused by steric hindrance associated with these functional 

groups and the type of intramolecular interactions caused between ring systems. Steric hindrance 

causes straight chains to form rings rather than branched chains to form further chains. When 

two poly(silanol) rings are in close proximity strong hydrogen bonding can be formed to yield 

micro-spheres, which are evident from SEM and TEM images (see Figure 1 and Figure )32.  

 

Figure 1. SEM images showing GO before a) and after b) modification with VTMOS and c) is b) 

at higher magnification showing layers of rGO exfoliated with silane spheres. The silane-sphere 

network formed is illustrated diagrammatically in d). 
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 11

 

Figure 2. SEM and TEM images of GO, VTMOS-GO and VTMOS-rGO at different 

magnifications, clearly showing the silica nano-spheres located in the interlayer spacing of rGO.  

The nanospheres are uniform in shape but not monodisperse, having diameters typically in the 

range 10nm to 500nm. The basic conditions promote self-condensation of the silanols to form 

siloxane networks to yield spherical structures, i.e. silane nanospheres readily observed in the 

SEM and TEM images of VTMOS-rGO but not for VTMOS-GO. Furthermore, it can be seen 

that the silane spheres are distributed between the rGO layers which induces exfoliation. Grafting 

with the silane forms uniform spheres located mainly within the rGO interlayer spacing and is 

expected to prevent agglomeration of these layers when later mixed with polymers. Moreover, in 

previous studies33-35, silica spheres were formed either by using TEOS or a mixture of silane 

precursors that aided the nucleation of silica spheres. Instead of using various silane precursors, 

Hay et al
35 used a sodium silicate solution as a seed for further growth of silica spheres. Whereas 

in this study, it can be seen from the SEM images, that graphene sheets provide sites for silica 

sphere formation and act as seeds (Figure 2). From the TEM images in Figure 2, the few layer 
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 12

GO is transparent with a wrinkled structure, whereas the structure of VTMOS-rGO shows an 

even distribution of the nano-spheres on the surface and between rGO layers, verified with 

elemental analysis (Figure 3). Figure 3 shows EDS elemental mapping of carbon, oxygen and 

silicon in red, blue and green, respectively. These images confirm the presence of the silane 

nanospheres causing exfoliation of the rGO layers. After modification, the layers of rGO were 

well-separated with silane nanospheres located in the inter-gallery spaces. 

 

Figure 3. TEM-EDS HAADF images of VTMOS-rGO. Elemental mapping showing carbon 

(red), oxygen (blue) and silicon (green). Each map is independent of its own maximum intensity. 

 

To confirm covalent bonding of the silane agent to the rGO, FTIR spectra of the precursors 

and VTMOS-rGO were collected (Figure 4). The FTIR spectrum of GO has a broad band 
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 13

associated with the hydroxyl groups between 2874-3678 cm-1. Additionally, other peaks at 1720 

cm-1, 1612 cm-1 and 1035 cm-1 corresponded to carbonyl (C=O stretching), aromatics (C=C) and 

epoxy groups (C-O-C), respectively. The FTIR spectrum of pure VTMOS was also recorded and 

contains bands derived from methoxy groups at 1188 cm-1 and 1078 cm-1, and vinyl group at 

1008 cm-1 and 966 cm-1 36-37. For VTMOS-GO, the peaks corresponding to the hydroxyl (2892-

3690 cm-1) and the carbonyl groups (1608-1730 cm-1) remained, with extra peaks for the Si-O-C 

(1016 cm-1) bond and the Si-O-Si (1109 cm-1) vibration obtained.  In the FTIR spectrum of 

VTMOS-rGO, the broad band derived from the hydroxyl groups in GO had disappeared for this 

sample due to complete reduction, relative to VTMOS-GO. Furthermore, the epoxy groups on 

the GO (peak at 1035 cm-1) were reduced by hydrazine and used for grafting to the silane agent 

and, a new peak evolved at 1026 cm-1 corresponding to Si-O-C bonding. Additionally, the peak 

at 1087 cm-1 corresponds to Si-O-Si vibrations, evidence for the hydrolysis of the methoxy 

groups to OH groups on the silane agent that then formed siloxane networks under basic 

conditions (Si-O-Si). Furthermore, the presence of Si-O-C bonds confirms the successful 

grafting of rGO with the silane agent through hydroxyl functionality. These results confirm the 

complete reduction of GO to rGO and grafting of the siloxane network to the surface of rGO. 

The peaks at 995/958 cm-1 are from free unreacted vinyl groups present. 
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 14

 

Figure 4. FTIR spectra of VTMOS-rGO, VTMOS-GO, GO and VTMOS. 

XRD was used to determine changes within the interlayer spacing of GO and crystalline 

properties of the samples. Using the measured diffraction angle 2θ, the interlayer spacing d 

between the layers of graphene was calculated using Bragg’s law, nλ = 2d.sinθ (where λ= 

0.1789). Figure 5 shows the XRD spectrum for GO which displays a peak at 2θ=12.20°, 

corresponding to an interlayer spacing of 0.84 nm. Relative to GNPs (2θ= 30.85, d-spacing: 0.37 

nm38) the interlayer spacing for GO is significantly larger due to the presence of oxygen 

functionalities on the surface of GO. The different carbonyl functionalities on GO are located 

between the layers resulting in greater interlayer spacing. After the addition of VTMOS onto 

GO, the Bragg angle for 2θ=11.31° decreased and the interlayer spacing of 0.91nm increased 

indicating exfoliation of GO layers by VTMOS. A broad peak was also seen in the range 2θ=15-

35°, related to the amorphous VTMOS grafted onto the GO.39 Furthermore, after the addition of 
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 15

the silane agent to GO and reduction, VTMOS-rGO displayed two main peaks. Firstly, a peak at 

2θ=10.90° corresponding to an increase in interlayer spacing up to 0.94nm due to the silane 

grafting successfully to rGO. The grafted silane agent hinders π-π interactions between the rGO 

sheets facilitating intercalation of the silane within the graphene layers. The increased interlayer 

distance was observed during SEM imaging (see Figure 3)38.  The second peak at 2θ=26.91°, 

corresponding to an interlayer spacing of 0.24nm, demonstrates effective reduction of the 

hydroxyl groups. The breadth of this peak corresponds to the different size ranges of silica 

nanospheres present which cause variations in the intercalation between the graphene layers. The 

broad peak is also associated with amorphous silica structure at 23.6°40. These results confirm 

the successful grafting and presence of the silane cross-linked network between the rGO layers. 

 

Figure 5. XRD patterns of VTMOS-rGO, VTMOS-GO and GO.  

The Raman spectrum of graphene classically displays two main peaks, the G band (at 1581 cm-

1) and a second overtone of an in-plane vibration, the D band (at 1347 cm-1). The G band 

corresponds to sp2 hybridisation whereas the evolution of the D band is derived from defects and 
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 16

a decrease in the size of the in-plane sp2 domains caused by oxidation41. For example, for 

graphene nanoplatelets (GNPs), there is much more sp2 hybridisation (i.e. fewer defects). This 

can be seen in Figure 6 which shows a lower D band intensity relative to the G band. In contrast, 

for GO and VTMOS-rGO a more intense D band relative to that for GNPs was observed. The 

ratio of the two bands (ID/IG) quantifies the number of defects within the sample and is given in 

Table 1. As GO is reduced the G band shifts from 1595 cm-1 to 1590 cm-1, which is similar to 

that for GNPs (1582 cm-1), confirming some restoration of the sp2 network42. As GO is 

functionalised with the silane cross linker, ID/IG increased from 0.90 to 0.91 for VTMOS-GO. 

Even after functionalisation, the ID/IG remained almost the same, implying that the covalent 

bonding between the VTMOS and GO sheets has been successful without much destruction to 

the carbon lattice26. This value increased for VTMOS-rGO to 1.0 confirming grafting of the 

silane cross-linker between the rGO layers. 

 

Figure 6. Raman spectra of VTMOS-rGO, VTMOS-GO, GO and GNPs.  
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 17

Table 1. Wavenumber positions of the D and G bands and, the measured intensity ratio for ID/IG 

for GNPs, GO, VTMOS-GO and VTMOS-rGO 

 D band (cm-1) G band (cm-1) ID/G 

GNPs 1347 1582 0.12 

GO 1345 1595 0.90 

VTMOS-rGO 1345 1605 0.91 

 

 

Further evidence for the success of the silane grafting was obtained from XPS measurements, 

which were carried out on VTMOS-rGO and GO. As seen from the survey spectra in Figure 7 

and the data in Table 2, VTMOS-rGO displays two new peaks in the XPS spectra corresponding 

to a silicon signal at 153.59 eV and 102.59 eV, binding energies for 2s and 2p respectively, 

relative to the GO spectra. The C1s spectrum was deconvoluted into seven different peaks 

attributed to binding energies for C-C/C-H (284.7 eV), C-O / C-O-Si (285.9 eV), C=O (287.4 

eV), O=C-O (288.9 eV), sp2 C shake-up (290.6 eV) and C-Si (283.7 eV), shown in Figure 7. The 

peak for C-Si reveals the presence of the vinyl group present and the C-O-Si confirms the 

grafting of the graphene with the nano-spheres through the carboxyl groups of the GO later 

reduced. This is further verified from the Si 2p spectra that shows peaks for Si-C, Si-O-C (101.9 

eV) and Si-O-Si (104.6 eV) which were absent in the XPS spectrum of GO20. 
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Figure 7. a) i XPS survey spectra for GO and a) ii for VTMOS-rGO and, XPS spectra for b) C1s 

of GO and c) C1s and d) Si 2p of VTMOS-rGO. 

 
Table 2. Deconvoluted XPS data for C1s and O1s of GO. 

 Binding 

energy (eV) 

Atomic % Bonding 

environment 

C 1s 284.5 42.17 C-C 

 286.43 36.3 C-O 

 287.2 11.44 C=O 

 288.47 7.67 O=C-O 

 290.04 2.41 Shake-up 
feature 

O 1s  531.33 11.47 O=C 
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 532.31 75.62 O-C / Atm O 

 533.5 10.36 Atm O 

 535.34 2.55 H2O 

 

Table 3. Deconvoluted XPS data for C1s, O1s and Si2p of VTMOS-rGO. 

 

 

 

 

 

 

 

Combined solid-state MAS and solution 13C and 29Si NMR were undertaken to confirm the 

bonding arrangement of VTMOS to the reduced graphene oxide (rGO) surface. The 13C solution 

NMR data (B0 = 7.05 T, without 1H decoupling during acquisition) for the VTMOS monomer 

 Binding 

energy (eV) 

Atomic % Bonding 

environment 

C1s 284.2 40.39 Graphene 

 284.7 26.94 C-C/C-H (sp3) 

 285.9 15.73 C-O / C-O-Si 

 287.4 5.65 C=O 

 288.9 3.13 O=C-O 

 290.6 2.27 sp2 C shake-up 

 283.7 5.88 C-Si  

 

O1s 530.1 5.75 O=C 
(aromatics)  

 531.8 48.26 SiO2/O=C/Atm O 

 532.9 30.55 SiOx/O-C/Atm O 

 

Si 2p 101.9 59.84 Si-C/Si-O-C 

 103.2 30.58 SiO2 

 104.6 9.59 O-Si(-O)-O 

Page 19 of 29 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
5 

A
ug

us
t 2

01
8.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

W
ar

w
ic

k 
on

 8
/1

6/
20

18
 1

0:
32

:5
2 

A
M

. 

View Article Online
DOI: 10.1039/C8NR04781B

http://dx.doi.org/10.1039/c8nr04781b


 20

shows three clearly resolved resonances; a quartet at 47 ppm derived from the methoxy group 

(1
JCH = 148 Hz), a doublet at 125 ppm from vinyl CH resonance (1

JCH = 145 Hz), and a triplet at 

134 ppm corresponding to the terminal CH2 of the vinyl group (1
JCH = 153 Hz), see Figure 8 (a). 

The analogous 29Si solution NMR data (B0 = 7.05 T, without 1H decoupling during acquisition) 

exhibits a single T0 resonance at −57 ppm, Figure 9 (b). The  T environments represent the 

number of oxygen nuclei attached to a silicon environment forming either mono (M), di (D), tri 

(T) or tetra (Q) silanol bonds, with the subscript corresponding to the number of mono-, di-, tri- 

substituted siloxane bonds (hence Xn, where X= M, D, T or Q  and n= 0,1, 2, 3) 37. The solid-

state 13C MAS NMR spectrum of graphene oxide (GO) presented in Figure 8(c) (B0 = 7.05 T, 1H 

decoupled) shows a series of surface terminate oxygen functional groups and a broad bulk sp
2 

hybridized graphene resonance (δiso = 130 ppm), which have been previously assigned in the 

literature17, 43.  

After functionalisation of GO with VTMOS, the 13C NMR in Figure 8(d) showed similar peaks 

to that of GO where both the carbonyl peaks (δiso = 61.50-71.76 ppm) and the bulk sp2 

hybridized graphene resonance (δiso = 127.21-137.32 ppm) remained. The presence of the vinyl 

peak (δiso = 132.02 (CH) and 130.17 (CH2) ppm) showed the successful grafting of the silane 

moiety with the graphene surface. Furthermore, the 29Si spectrum of VTMOS-GO in Figure 8(e) 

shows traces of T1 structures and significant increase in T2 and T3 structures relative to the T0 

structure seen for VTMOS in Figure 8b. 

Despite the intrinsic quantitative nature of the NMR experiment, there are inherent difficulties 

in quantifying the number of active surface sites compared to the bulk graphene due to the 

paramagnetic nature of graphene, which can cause signal quenching. Hence, those species 

proximate to a paramagnetic center will be broadened significantly. The quenching is a result of 
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the electron-nuclear dipolar coupling which stimulates vastly increased relaxation rates, thus 

broadening the NMR signal beyond the detection limit of typical solid-state NMR experiments.  

The reduction of the graphene oxide (GO) surface and addition of VTMOS causes significant 

changes in the solid-state 13C MAS NMR spectrum as shown in Figure 8(f). A complete removal 

of the carboxylic, hydroxyl and ether species suggest that efficient reduction of the graphene 

oxide (GO) has occurred thus producing a ‘clean’ graphene surface relative to GO and VTMOS-

GO. The presence of 13C vinyl (δiso = 130 (CH) and 135 (CH2) ppm) and methyl (δiso = 3 ppm) 

resonances in the spectrum indicates that chemical interaction of VTMOS with the graphene 

surface has been achieved. These significantly broader VTMOS resonances in comparison to 

their 13C solution NMR counterparts (see Figure 8(a)) provide direct evidence that VTMOS has 

been grafted onto the graphene surface. The increased linewidths observed in the solid-state 

measurements emanate from reduced/hindered mobility of the VTMOS on the graphene surface, 

which would introduce a stronger 1H-13C hetero-nuclear dipolar interaction, and from some 

chemical shift dispersion from disorder on the graphene surface.       

There is an approximate 2:1 ratio between the vinyl groups and the methoxy end group, 

suggesting that some degree of VTMOS polymerization has occurred to form a low molecular 

weight polymer. Whilst, the sp
2 hybridized graphitic region (Figure 8f)) can be deconvoluted 

into two regions (δcg = 161 and 122 ppm), neither coincide with the sp
2 hybridized shift in the 

graphene oxide (GO) spectrum (δcg =130 ppm).  These two resonances are assigned to graphitic 

sites that are in close proximity to the grafted VTMOS groups, and form more isolated and 

unperturbed graphene regions. The resonance at 122 ppm gives a good agreement with the 13C 

experimental measurements previously achieved on graphene (reduced from graphene oxide)17, 

44.  
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The corresponding 29Si spectrum of the VTMOS-rGO system (see Figure 8(g)) shows three 

broad resonances which are assigned to the T1, T2 and T3 silicon environments grafted to the 

GO45. The comprehensive removal of the T0 resonances from the starting monomer shows that 

compete grafting of the polymer to the GO has taken place. The presence of T1, T2 and T3 

species shows that VTMOS ‘polymer’ has a range of lengths, as the T1 and T2 would give 

monomers and dimers exclusively, whilst the T3 site is expected from trimeric (and larger) 

structures.  
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Figure 8. Solution state 13C (a) and 29Si (b) NMR data from VTMOS (B0 =  7.05 T) compared 

and contrasted with solid-state 13C MAS NMR data from GO (c), the 13C MAS NMR (d) and (e) 

29Si MAS NMR data from the hybrid VTMOS-GO system (νr = 12 kHz, B0 =  7.05 T in each 

case) and the 13C MAS NMR (f) and (g) 29Si MAS NMR data from the hybrid VTMOS-rGO 

system (νr = 12 kHz, B0 =  7.05 T in each case). The simulation of these VTMOS-rGO data is 

given below each MAS NMR spectrum.  

 

The thermal stability of VTMOS-rGO was measured using TGA and compared to GNPs, GO, 

VTMOS and VTMOS-GO, see Figure 9. For GO, two major decomposition pathways were 

observed, firstly at 55°C corresponding to evaporation of water and second at 209°C 

corresponding to the degradation of carbonyl groups. Like GO, VTMOS was also not thermally 

stable and started to degrade shortly after it was heated from RT. When GO was functionalised 

with VTMOS, the thermal degradation of the carbonyls was delayed until ~150°C due to the 

grafting of the silane however, after continuous heating it degraded rapidly. However, for 

VTMOS grafted with GO and reduced to VTMOS-rGO, the thermal stability was significantly 

increased. As shown in Figure 9, there is only one degradation pathway for VTMOS-rGO having 

an onset of degradation at 590°C corresponding to the oxidative thermal decomposition of the 

silane grafted to graphene46.  The thermal stability of rGO is derived from the complete reduction 

of the hydroxyl groups and the grafting of the carbonyl groups with the silane network. As 

silicon has lower surface energy, the Si-O-Si network formed would be expected to migrate to 

the char surface forming a protective layer that prevents further degradation at higher 

temperatures47.  
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Figure 9. a) TGA (weight loss as a function of temperature) of VTMOS-rGO, GO, VTMOS and 

GNPs, respectively and b) DTG curves for GO and VTMOS-rGO. 

 

The effect of silane functionalisation on the DC electrical conductivity of VTMOS-rGO was 

determined using a two-point probe method to measure the electrical resistance of each sample. 

The resistivity was then determined using  		� � �	
�

�
    (1), where, ρ is resistivity (Ωm), R is 

resistance, A is area (m2) of the test specimen produced and � is length (m) of these sample. The 

electrical conductivity, σ (Sm)-1 was calculated taking the inverse of ρ, according to the 

relationship- 			� � 	
	



 .  

The electrical conductivity (Sm-1) of GNPs, GO and VTMOS-rGO was measured as 1.45 Sm-1, 

6.72 x 10-7 Sm-1 and 0.040 Sm-1, respectively. Graphene has planar and hexagonal structures 

with alternating single and double carbon bonds causing delocalisation of sp2 carbon electrons 

that allows zero band gap energy giving rise to the highest relative conductivity. Due to the 

various hydroxyls and carbonyls present on GO, this planar structure is distorted and causes 

hindrance to the delocalisation of electrons, resulting in lower electrical conductivity compared 
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to GNPs. The significant increase in electrical conductivity for VTMOS-rGO relative to GO is 

attributed to the reduction reaction by hydrazine that retained sp2 hybridisation. VTMOS-rGO 

consists of both sp2 domains and point defects of non-conducting GO areas therefore, electrons 

can hop from one sp2 domain to another resulting in flow of current48. Additionally, the increase 

in σ can also attributed to the successful grafting of the silane precursor within graphene sheets 

followed by the reduction reaction. However, the electrical conductivity of VTMOS-rGO is still 

lower than that of the GNPs due to the bulky silane spheres located within the graphene sheets 

causing band gap opening49.  

4. Conclusions 

VTMOS-rGO was readily synthesized using a facile approach using an aqueous media via an 

acid-base reaction. The disappearance of the peak in the FTIR spectrum associated with GO 

hydroxyl groups confirmed complete reduction of modified GO to rGO. Furthermore, the 

detection of C-O-Si bonding by both FTIR and XPS verified the grafting of rGO with the silane 

agent and, evidence from Raman spectroscopy confirmed a higher density of defect sites on GO 

as a consequence of the grafting reaction. SEM images showed the distribution of silane spheres 

on the rGO surface and within the inter-galley space of GO sheets, which also aided exfoliation 

of the GO layers. From solid-state NMR measurements, C and Si environments were deduced 

which supported the T1, T2 and T3 chemical structure of the silane spheres. The grafted VTMOS-

rGO network had significantly improved thermal stability and electrical conductivity relative to 

neat GO. The silane networks are efficient spacers between the rGO layers and will be useful in 

increasing compatibility with and assisting dispersion of rGO when blended with polymers. 

Moreover and most critically, the pendant unreacted vinyl groups of the silane provides a route 
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to crosslinking the silane-rGO network structure to other moieties. This includes grafting the 

modified 2D nanofiller with various polymer matrices to promote interfacial interactions 

between both phases which will be reported in future publications.   
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