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Phase synchronisation between different neural groups is considered an important source of information to understand the underlying
mechanisms of brain cognition. This Letter investigated phase-synchronisation patterns from electroencephalogram (EEG) signals recorded
from ten healthy participants performing motor imagery (MI) tasks using schematic emotional faces as stimuli. These phase-synchronised
states, named synchrostates, are specific for each cognitive task performed by the user. The maximum and minimum number of
occurrence states were selected for each subject and task to extract the connectivity network measures based on graph theory to feed a set
of classification algorithms. Two MI tasks were successfully classified with the highest accuracy of 85% with corresponding sensitivity
and specificity of 85%. In this work, not only the performance of different supervised learning techniques was studied, as well as the
optimal subset of features to obtain the best discrimination rates. The robustness of this classification method for MI tasks indicates the
possibility of expanding its use for online classification of the brain–computer interface (BCI) systems.
1. Introduction: The human brain can be considered as a dynamic
network changing its configuration at each time instant.
Relationships and connections between neurons under a specific
given cognitive task can be studied from an anatomical point of
view [1]. However, there are other aspects to consider
investigating brain connectivity, one of the most important ones
is the temporal evolution of connections across brain regions. In
order to be able to develop a physical and mathematical model to
represent the temporal dynamic of the networks, a measure of
phase synchrony is needed [2].

Several approaches have been developed with the intention of
measuring brain connectivity, e.g. coherence, magnitude squared
coherence, event related coherence, phase locking value, Granger
causality or partial directed coherence [3]. The work of Jamal
et al. [4] introduced the concept of unique stable phase-
synchronisation patterns from the electroencephalogram (EEG)
recorded over the scalp during a face perception task named syn-
chrostates. Afterwards, the concept of synchrostates was translated
into brain network measures [2] with the aim of identifying the
main differences between two groups; one presenting autism spec-
trum disorder and a healthy participants group used as a control.
Based on this idea of unique synchronisation patterns or synchros-
tates, this paper proposes the use of the brain networks parameters
obtained from the use of the maximum (most frequently) and
minimum occurring states calculated during a motor imagery
(MI) task. The aim is to try to identify the potential differences
between the two MI tasks proposed, imagined right and left hand
movements. To this end, EEG recording from ten participants
was obtained during the execution of different MI tasks using sche-
matic faces, popularly known as emoticons, showing different emo-
tions as stimuli.

The study of the differences between diverse MI tasks for classi-
fication purposes has been widely investigated and has been
demonstrated to be an adequate approach to increase motor func-
tions for disabled and healthy subjects [5]. As the intrinsic nature
of the brain activity related to MI tasks presents temporal and
spatial features, it is a natural extension to search for algorithms
able to benefit from both characteristics in order to identify the
intention of the user. In the work presented by Park et al. [6];
a classification accuracy of 77.7% was achieved by using
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an Empirical Mode Decomposition (EMD) technique. In the
same way, wavelet analysis has been widely used in EEG-based
MI applications due to its ability to offer temporal-spectral analysis
across different resolution levels [7]. Most recently, there have been
a few attempts to use graph metrics as features for MI classification
algorithms [8]. The main difference in this research with respect to
the above-mentioned analysis lies in the fact that the classification
process is made using graph theory features extracted from the syn-
chrostates, a novel concept never used before for classification of
MI tasks. Based on the number of occurrences for each individual
synchrostate and its temporal stability, the connectivity maps and
graph metrics are obtained for the maximum and minimum occur-
rence state for each individual, condition (right and left hand tasks)
and across two frequency bands (α and β bands). Those parameters
are then used as features to feed a small variety of supervised learn-
ing algorithms with the aim of distinguishing between the two con-
ditions. Finally, the performance of the different groups of features
and classifiers is compared to obtain the more suitable combination
for this binary class classification problem.

2. Experimental protocol: The dataset consisted of ten healthy
volunteers, eight males and two females, recruited by means of
public announcements across the university campus. Written
consent was signed by each participant after they were informed
of the nature of the study, which they fully understood and were
comfortable with. The University of Warwick Ethical committee
approved the study (REGO-2014-821).

The experiment was conducted in 4 blocks of 78 trials each with
resting periods between blocks as shown is Fig. 1. For each trial,
two types of emotional faces were randomly shown on the
screen, for half a second, showing happiness and sadness respect-
ively. Afterwards, the participants were asked to imagine perform-
ing the movement, without executing any motor action, of
squeezing a ball with right or left hand according to the emotion
showed previously. Finally, they had to press the ‘m’ or ‘z’ key
with the right or left hand in concordance with the schematic
faces and the MI task performed.

Data was acquired at a sampling frequency of 256 Hz using
62 active electrodes mounted in an electrode cap (g.Tec), plus
two electrode references placed on the earlobes. Furthermore,
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Fig. 1 Scheme of the experimental protocol. Each experiment was divided
into 4 blocks of 78 trials each, with a resting period between them. Each
trial started with a mask face, followed by a happy or sad schematic face,
indicating which imagined movement participants had to perform during
the ‘thinking period’. A black cross over a white circle indicates the end
of the trial

Fig. 2 Example of maximum (max) and minimum (min) number of occur-
rence synchrostates for one of the conditions under study, imaged movement
of the right hand (‘Thinking R’) and β band. It can be seen from the tem-
poral transition plot graph that state 2 has the lower number of time
samples (min state). Between states 1 and 3, state 3 has a larger number
of occurrences (max state)
an online notch filter (50 Hz) and online Butterworth band-pass
filter (0.1–100 Hz) were employed. All the dataset was baseline cor-
rected and all of the trials over a 200 μV threshold were rejected as
artefacts. Finally, a visual inspection of the dataset was performed
to detect and reject any other possible artefacts. Then, artefact-free
trials were divided into 1 s epochs for each condition; happy and
sad emotions. The epochs start 100 ms before the stimulus onset
to 900 ms after (256 samples in total). More details about the
dataset and pre-processing details can be found in [9, 10].
Table 1 List of brain network metrics used in this Letter. This table is an
adaptation from the more complete table of mathematical definition of
complex network measures described in [14]

Network measure Definition

degree Number of links connected to a node
CPL It is defined by the averaged shorted path length

between all pairs of nodes in the network. It is a
measure of integration.

global efficiency It is defined as the averaged inverse shortest path
length. It is a measure of segregation.

transitivity (T ) It is the ratio of the triangle to triplets of the
network. It is not defined for individual nodes.

It is a measure of segregation.
diameter Largest number of vertices which must be traversed

to travel from one vertex to another.
density It is the fraction of present edges to all possible

connections.
modularity (Q) Quantifies the degree to which a network can be

subdivided into smaller and non-overlapping groups.
It is a measure of segregation.
3. Methodology: The artefact-free trials for both MI tasks were
used to feed the algorithm described in [2] aimed to find the
necessary features to establish a reliable and efficient
classification procedure.
The continuous wavelet transform was applied to each EEG

channel, for each participant and condition to calculate the instant-
aneous phase across all channels for each time instant and fre-
quency. Afterwards, the instantaneous phase difference was
calculated for each time point and frequency. The results were a
series of square and symmetric matrices whose main diagonal is
zero as it represents the phase difference of an electrode with
itself [2, 4]. To obtain the variation of the phase along time for a
specific frequency band, the set of square matrices was averaged
across two frequencies of interest: α and β bands.
The second step was to identify the existence of these unique

spatiotemporal patterns of phase difference for each MI task,
named synchrostates. To pursue this objective, an iterative refine-
ment unsupervised pattern recognition technique was used;
k-means. This clustering algorithm is based on the Euclidean dis-
tance to measure the dissimilarity between data vectors [11]. The
final result of this clustering step was the optimal number of cen-
troids, their value and a vector with the state labels for each time
sample. These labels were used to plot the temporal transition
between synchrostates during the performance of the task.
This process was repeated for each participant, condition and fre-

quency band of interest. It was observed that the number of syn-
chrostates varies slightly across all participants, so for the
following step, only the maximum and minimum number of occur-
rences synchrostates were used. Meaning, those states with the
larger and lower number of time samples belonging to them were
selected for each participant and frequency band. Fig. 2 illustrates
an example of maximum and minimum synchrostates for the
imaged movement of the right hand (labelled ‘Thinking R’) for
the β band. The maximum and minimum number of occurrences
synchrostates will be simplified as max and min states during the
rest of this Letter to be in line with the existent literature [12].
In the third step of the algorithm, an exploration of the connect-

ivity metrics was performed with the aim of obtaining a more
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quantitative description of the information coupling obtained
from the synchrostates. Synchronisation index was used to obtain
the adjacency matrix to obtain the complex network measures
based on graph theory [2].

Core measures from graph theory referring to the concepts of
brain integration and segregation have been employed to determine
the brain connectivity under different situations [13]. Networks can
be characterised at different levels ranging from properties explain-
ing the whole network at the global scale to properties of network
components at a local scale. The chosen features selected for this
study are listed in Table 1. Table 1 is an adaptation of the table
of mathematical definitions of complex network measure described
in [14]. In addition to this list of features, two additional features
were added, the number of edges and the number of components.
The number of subgraphs in which any two vertices are connected
to each other by paths but not connected to any other vertices in the
subgraph is known as the number of components of the network.
The complex network measures were calculated for the max and
min states for each participant. All the brain connectivity metrics
calculations and plots were made using the EEGNET software [15].

4. Classification: The brain complex network measures can be
used as features to feed a classification algorithm to differentiate
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Fig. 3 FDR values for cases I (top) to III (bottom) in α band in descendent
order. Case I, all features all included. Case II only max state features are
considered. Case III only min state features are incorporated into the algo-
rithm. Red lines indicate the groups of features with similar FDR value,
hence, similar discrimination power
between MI tasks. One of the most important properties of a
classification system is its ability to find the most discriminative
features describing the objects to be classified. This guarantees as
compact decision rules as possible. In this work, the separability
criterion used is Fisher’s discriminant ratio (FDR).

FDR is a measure of the distance between two normal distribu-
tions inspired by the z-score [16]. The distance has larger values
when the mean difference between the two populations is large
with small within-class variances. Therefore, features presenting
high FDR values possess more discriminative power than those
with lower values [3]. The FDR is defined by using the mean
{μ1, μ2} and variance {σ1, σ2} of each class as described in the fol-
lowing equation:

FDR = m1 − m2

( )2
/ s2

1 + s2
2

( )
. (1)

Once the feature selection criteria are defined, six different
classification algorithms were compared. The limited number of
participants in this study implies that the use of non-parametric
learning methods is more suitable for offering a higher flexibility
in comparison with parametric approaches [17]. Consequently,
the selected algorithms are k-nearest neighbour, two discriminant
analysis classifiers (linear and quadratic) and three types of
support vector machine (SVM) methods (linear, quadratic and
cubic kernels).

The k-nearest (3-nn) neighbour classifier is very popular due to
its simplicity, excellent empirical performance and its ability to
handle binary and multi-class data [18]. One drawback of this algo-
rithm is the selection of the optimal value of k, as if it is too small
the classification results will be affected by noise [19]. By contrast,
if it is too large the computational cost will increase. In this case, the
value selected for this work is k= 3 as a good compromise between
computational cost and accuracy rates.

Discriminant analysis and SVMs have been used successfully in
different MI-based BCI applications as they present an excellent
empirical performance [20]. In SVM algorithms, the number of
parameters that must be used is related to the number of training
objects instead of the number of attributes [17].

In addition, to avoid the problem of over-fitting the classifier
and to reduce the sensitivity regarding the selection of training
and testing sets, a cross-validation technique is needed. In this par-
ticular case, having a reduced dataset, the leave-one-out cross-
validation method is the most suitable. It is the most extreme case
of k-fold validation scheme where data from each subject is left
out for validating the model and the remaining observations are
used to train the algorithm. Then, the accuracy obtained for each
one of the data-points was averaged to obtain the final classifier’s
accuracy [12].

The performance of each one of the classifier methodologies used
in this paper was calculated using the standardised measures of ac-
curacy (acc), true positive rate (TPr) or sensitivity and true negative
rate (TNr) or specificity. TP and TN represent correct classifica-
tions, by contrast, false positive (FP) and false negative (FN) repre-
sent misclassifications. FP is when the outcome is incorrectly
predicted as positive when it is actually negative and FN is the op-
posite when the outcome is labelled as negative when it is positive.
According to this nomenclature, the TPr is defined as TP divided by
the total number of positives (TP + FN); TNr is FP divided by the
total number of negatives (FP +TN). Finally, the overall classifica-
tion success rate or accuracy is defined as the number of correct
classifications (TP +TN) divided by the total number of classifica-
tions (TP +TN+FP+FN) [21].

5. Results: Connectivity metrics were calculated for each
participant, frequency band of interest (α and β bands), and
condition (‘Thinking R’ referring to the imagined movement of
the right hand and ‘Thinking L’ for the left hand).
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The complete set of features was divided into three different
cases in order to determine which subset of features provides
greater classification accuracies. For the first case, named case I,
the whole set of features is considered. Hence, the features from
max and min states are included for classification. By contrast,
the next two cases, case II and case III, only the features from the
max and min states, respectively, are incorporated into the classifi-
cation process. This might define which state has the higher dis-
crimination ability for this particular study.

The results for the FDR for cases I–III in α band are illustrated in
Fig. 3. FDR values are re-organised in descending order so features
can be easily grouped by their discrimination capability before
feeding the classifiers. Red ellipses indicate those groups of features
with similar FDR values, hence, similar classification ability. From
Fig. 3, it can be seen that the set of features for cases I and II can be
divided into five subgroups.

For case III only four groups are formed. In this case, the first
group contains the feature with the highest FDR value, the next
group is formed by three features, the third group with four and
the last one holding the whole set of features. The large difference
between the FDR values of case I or III is noticeable, sharing the
initial top features, and case II with considerably lower values.
Consequently, case II presents a lower ability to discriminate
between the two MI tasks. Similarly, the FDR results for the β
band were calculated and features grouped. For case I, five different
groups have been selected: the first group contains the feature with
the highest FDR value, the following groups are formed by 2, 6, 11
and all features, respectively. For case II, also five groups were
Healthcare Technology Letters, 2018, Vol. 5, Iss. 3, pp. 88–93
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formed with 2, 3, 4, 7 and all features. In the last situation, case III,
the number of groups increased to 6 with 1, 2, 3, 4, 5 and all fea-
tures, respectively.
Once the set of features is correctly grouped by their FDR value,

the classification process can take place with the formed groups for
each case and frequency band. The results of the classification are
shown in Figs. 4–6 for cases I–III, respectively, for α band. For
Fig. 4 Comparison of the performance of six different classifiers for case I
in the α band. All features were previously grouped accordingly to their
FDR values. For each group of features the acc, the TNr and the TPr are
shown. The classifiers from top to bottom and left to right: 3-nearest neigh-
bour, linear discriminant, quadratic discriminant, SVM linear kernel, SVM
kernel order 2 and SVM kernel order 3

Fig. 5 Comparison of the performance of six different classifiers for case II
in the α band. Max state features were previously grouped accordingly to
their FDR values. For each group of features the acc, the TNr and the
TPr are shown. The classifiers from top to bottom and left to right:
3-nearest neighbour, linear discriminant, quadratic discriminant, SVM
linear kernel, SVM kernel order 2 and SVM kernel order 3
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case I, as shown in Fig. 4, it can be seen that for the linear discrim-
inant analysis (ldc), 3-nn and linear SVM classifiers, the accuracy
decreased when the whole set of features was used, a phenomenon
due to an over-fitting on the classification algorithms [19]. The
highest accuracy in this case, across all classifiers, is 83% (83%
TNr and TPr). It is obtained when the top four features are used
to feed the quadratic discriminant algorithm (qdc): diameter,
density, number of edges and characteristic path length (CPL).
All these top four features come from the min state,
consequently, the best performance for case III, when only
features for the min state are considered, is the same as that for
case I, as can be seen from Fig. 6. For case II, represented in
Fig. 5, the overall performance of the whole set of classifiers is
lower than case I or case III. The accuracy percentages are
between 50 and 60% for the whole range of classifiers under
study. In addition, they represent a clear unbalance behaviour
between the TPr and TNr as can be appreciated from Fig. 5. The
best result achieved in this case is an accuracy of 73% (with 89%
TNr and merely 58% of TPr). All the classifiers, except for 3-nn,
performed similar obtained the same accuracy rates for the top
two features.

Classification results for β band were similar to those obtained
for α band, over 80% of accuracy. For illustrative purposes,
results for cases I and II are represented in Figs. 7 and 8, respective-
ly. The performance for case III is similar to case I as the two
first groups of features are the same for both cases; degree and
diameter. For case I, the highest accuracy obtained is 80% (with
80% TPr and TNr) for the SVM with a second-order kernel
algorithm when the top one feature, degree from mix state is
used. From Fig. 7 can be seen than qdc also presented an accuracy
of 80%. However, their TNr (100%) and TPr (60%) are not
balanced; consequently, qdc cannot be selected as a good classifier
for this case.

Case II results, when only features from the max state are consid-
ered, are shown in Fig. 8. It can be seen than the general perform-
ance of the classifiers is slightly lower than in case I. Excepting the
3-nn algorithm that presented the highest accuracy (85%, 85% TPr,
85% TNr). Followed by the three types of SVM algorithms with a
Fig. 6 Comparison of the performance of six different classifiers for case III
in the α band. Min state features were previously grouped accordingly to
their FDR values. For each group of features the acc, the TNr and the
TPr are shown. The classifiers from top to bottom and left to right:
3-nearest neighbour, linear discriminant, quadratic discriminant, SVM
linear kernel, SVM kernel order 2 and SVM kernel order 3
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Fig. 7 Comparison of the performance of six different classifiers for case I
in the β band. All features were previously grouped accordingly to their
FDR values. For each group of features the acc, the TNr and the TPr are
shown. The classifiers from top to bottom and left to right: 3-nearest neigh-
bour, linear discriminant, quadratic discriminant, SVM linear kernel, SVM
kernel order 2 and SVM kernel order 3

Fig. 8 Comparison of the performance of six different classifiers for case II
in the β band. All features were previously grouped accordingly to their
FDR values. For each group of features the acc, the TNr and the TPr are
shown. The classifiers from top to bottom and left to right: 3-nearest neigh-
bour, linear discriminant, quadratic discriminant, SVM linear kernel, SVM
kernel order 2 and SVM kernel order 3
75% of accuracy (90% TNr and 61% TPr). This discrepancy
between true positive and true negative rates, joined to the poor
results of the discriminant analysis classifiers and the lower FDR
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values presented in β band may lead to think that 3-nn classifier
has been affected with noise to obtain a more optimistic and non-
realistic result.
6. Discussion and conclusions: There are many investigations
in the literature to detect MI tasks from EEG by means of
supervised learning algorithms. Bashashati et al. [22] performed a
comparative study using 14 different BCI configurations finding
that the logistic regression algorithm and multi-layer perceptron
classifiers were among the best in all different designs. These
results go against to findings in publications in the MI-based
BCI field, where the most recommended and utilised classifiers
are ldc [23] or SVM algorithms [20]. The main difference
between the above-mentioned work and the present study is that
these results are based on the existence of task- specific
synchrostates.

The proposed method combining phase-synchronisation infor-
mation with clustering led to the validation of the existence of
quasi-stable states in the order of milliseconds named synchrostates
during the execution of different MI tasks. The transformation of
these states, specific for each task, into connectivity networks
using graph theory led to a set of features than can be used for clas-
sification purposes with accuracies over 80% for the two typical fre-
quency bands studied in MI-based BCI systems.

This methodology helps to understand which is the adequate
mixture of features to achieve the highest performance. It seems
than density and diameter are between the most discriminative fea-
tures for both frequency bands. Followed by CPL in α band or
degree for β band. In addition, it has been studied which one of
the two states, max or min, or the combination of both has the
highest discriminative ability to differentiate between the two MI
tasks. The results indicate that the min state has a slightly more
powerful differentiation capability than the max state. In the com-
bination of both states is always the features of min state heading
the FDR lists, consequently the results of both cases are the same
for the top features.

With regarding’s to the classification algorithms, in the α band
the best results were obtained from the qdc, followed by the differ-
ent SVM algorithms. On the other hand, SVM order 2 stands out in
comparison with the rest of models for β band.

The study of phase synchrony measures derived from the scalp
EEG is often criticised as it can be affected by volume conduction
effects. The particular property of the synchrostates of switching
between the reduced set of states in the order of milliseconds
cannot be explained under the volume conduction premise as this
phenomenon occurs in the order of seconds [2].

In addition, synchrony results caused by volume conduction
would lead to a constant synchronisation configuration across the
different areas of the brain along time instead of a switching
pattern [4].

The use of synchrostates in combination with connectivity mea-
sures to classify MI tasks presents promising results. However, a
larger number of participants are needed to achieve a more rigorous
and significant classification methodology. Further work will not
only focus on increasing the population dataset but also in increas-
ing the number of tasks performed by the users to create a multi-
tasks classification problem.

In addition, the use of schematic faces showing emotions
as stimuli for MI-BCI has demonstrated a good performance.
However, a deeper comparison with state-of-the-art classification
techniques should be undertaken to quantify the increment on the
BCI’s performance using schematic faces.
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