
Kirk, P; Witkover, A; Bangham, CR; Richardson, S; Lewin, AM;
Stumpf, MP (2013) Balancing the robustness and predictive perfor-
mance of biomarkers. Journal of computational biology, 20 (12). pp.
979-89. ISSN 1066-5277 DOI: https://doi.org/10.1089/cmb.2013.0018

Downloaded from: http://researchonline.lshtm.ac.uk/4649151/

DOI: 10.1089/cmb.2013.0018

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/161124068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/4649151/
http://dx.doi.org/10.1089/cmb.2013.0018
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


Balancing the robustness and predictive performance
of biomarkers

Paul Kirk, Aviva Witkover, Charles R. M. Bangham, Sylvia Richardson,

Alexandra M. Lewin∗ and Michael P. H. Stumpf∗

∗ to whom correspondence should be addressed

Abstract

Recent studies have highlighted the importance of assessing the robustness of putative

biomarkers identified from experimental data. This has given rise to the concept of

stable biomarkers, which are ones that are consistently identified regardless of small

perturbations to the data. Since stability is not by itself a useful objective, we present

a number of strategies that combine assessments of stability and predictive perfor-

mance in order to identify biomarkers that are both robust and diagnostically useful.

Moreover, by wrapping these strategies around logistic regression classifiers regularised

by the elastic net penalty, we are able to assess the effects of correlations between

biomarkers upon their perceived stability.

We use a synthetic example to illustrate the properties of our proposed strategies.

In this example, we find that: (i) assessments of stability can help to reduce the num-

ber of false positive biomarkers, although potentially at the cost of missing some true

positives; (ii) combining assessments of stability with assessments of predictive perfor-

mance can improve the true positive rate; and (iii) correlations between biomarkers can

have adverse effects on their stability, and hence must be carefully taken into account

when undertaking biomarker discovery. We then apply our strategies in a proteomics

context, in order to identify a number of robust candidate biomarkers for the human

disease HTLV1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).
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1 Introduction

Several recent articles have emphasised the importance of considering the stability

of gene signatures and biomarkers of disease identified by feature selection algorithms

(see, for example, Zucknick et al., 2008; Meinshausen and Bühlmann, 2010; Abeel et al.,

2010; Alexander and Lange, 2011; Ahmed et al., 2011). The aim is to establish if the

selected predictors are specific to the particular dataset that was observed, or if they are

robust to the noise in the data. Although not a new concept (see, for example, Turney,

1995, for an early discussion), selection stability has received a renewed interest in

biological contexts due to concerns over the irreproducibility of results (Ein-Dor et al.,

2005, 2006). Assessments of stability usually proceed by: (i) subsampling the original

dataset; (ii) applying a feature selection algorithm to each subsample; and then (iii)

quantifying stability using a method for assessing the agreement among the resulting

sets of selections (e.g. Kalousis et al., 2007; Kuncheva, 2007; Jurman et al., 2008).

There is an increasing body of literature on this subject, and we refer the reader to He

and Yu (2010) for a comprehensive review.

One of the principal difficulties with stability is that it is not by itself a useful

objective: a selection strategy that chooses an arbitrary fixed set of covariates regard-

less of the observed data will achieve perfect stability, but the predictive performance

provided by the selected set is likely to be poor (Abeel et al., 2010). Since we ulti-

mately seek biomarkers that are not only robust but which also allow us to discriminate

between (for example) different disease states, it is desirable to try to optimise both

stability and predictive performance simultaneously. The first contribution of this ar-
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ticle is to present a number of strategies for doing this. We follow Meinshausen and

Bühlmann (2010) in estimating selection probabilities for different sets of covariates,

but diverge from their approach by combining these estimates with assessments of

predictive performance. Given that our approach uses subsampling for both model

structure estimation and performance assessment, it is somewhat related to double

cross validation (see Stone, 1974, and also Smit et al., 2007 for an application similar

to the one considered here); however, we do not employ a nested subsampling step.

Our second contribution is to provide a procedure for quantifying the effects of

correlation upon selection stability. As discussed in Yu et al. (2008), correlations

among covariates can have a serious impact upon stability. Since multivariate covariate

selection strategies often seek a minimal set of covariates that yield the best predictive

performance, a single representative from a group of correlated covariates is often

selected in favour of the whole set. This can have a negative impact upon stability (Kirk

et al., 2010), as the selected representative is liable to vary from dataset to dataset.

We hence consider a covariate selection strategy based upon logistic regression with

the elastic net likelihood penalty (see Zou and Hastie, 2005; Friedman et al., 2007,

2010, and Section 2.4), which allows us to control whether we tend to select single

representatives or whole sets of correlated covariates. This allows us to investigate

systematically how our treatment of correlation affects stability.

2 Methods

Let D be a dataset comprising observations taken on n individuals, D = {(xi, yi)}ni=1.

Each xi = [xi1, . . . , xip]
⊤ ∈ Rp is a vector of measurements taken upon p covariates

v1, . . . , vp, and yi ∈ {0, 1} is a corresponding binary class label (e.g. case/control).

A classification rule is a function, h, such that h(x) ∈ {0, 1} is the predicted class
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label for x ∈ Rp. For the time being, we assume only that h was obtained by fitting

some predictive model Hθ to a training dataset (here, θ denotes the parameters of

the model). We write Hθ(D) to denote the fitted model obtained by training Hθ on

dataset D.

2.1 Assessing predictive performance

Given dataset D and classification rule h, we can calculate the correct classification

rate when h is applied to D as the proportion of times the predicted and observed class

labels are equal,

c(D;h) =
1

n

n∑
i=1

I[h(xi) = yi], (1)

where I(Z) is the indicator function, which equals 1 if Z is true and 0 otherwise.

One approach for assessing the predictive performance of model Hθ is random

subsampling cross validation (Kohavi, 1995). We train our predictive model on a

subsample, Dk, of the training dataset, and then calculate the correct classification rate,

ck, when the resulting classifier is applied to the remaining (left-out) data,D\k = D\Dk.

Repeating for k = 1, . . . , K, we may calculate the mean correct classification rate and

take this as an estimate of the probability that our model classifies correctly,

P̂({classify correctly}|Hθ) =
1

K

K∑
k=1

ck. (2)

2.2 Assessing stability

We suppose that – as well as a classification rule – we also obtain a set of selected

covariates, sk, when we train Hθ on subsample Dk. More precisely, we assume that

only the covariates in sk appear with non-zero coefficients in the fitted predictive model

Hθ(Dk) (for example, this will be the case if we fit logistic regression models with lasso
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or elastic net likelihood penalties). For any subset of the covariates, V ⊆ {v1, . . . , vp},

we may then estimate the probability that the covariates in V are among those selected,

P̂({select V }|Hθ) =
1

K

K∑
k=1

I(V ⊆ sk). (3)

This quantifies the stability with which the covariate set V is selected (Meinshausen

and Bühlmann, 2010).

2.3 Combining stability and predictive performance

Equation (2) provides an assessment of predictive performance, but gives no informa-

tion regarding whether or not there is any agreement among the selected sets sk. On

the other hand, Equation (3) allows us to assess the stability of a covariate set V , but

does not tell us if the covariates in V are predictive. Since these assessments of stability

and predictive performance both require us to subsample the training data, it seems

natural to combine them in order to try to resolve their limitations. We here provide

a method for doing this.

We shall henceforth assume that the parameters, θ, of Hθ may be tuned in order to

ensure that preciselym covariates are selected. We then write smk for the selected set of

size m obtained when Hθ is trained on Dk, and hmk for the corresponding classification

rule. Similarly, we define cmk = c(D\k;hmk). Figure 1 provides a summary of this

notation and the way in which we find smk and cmk. Having made these definitions,

we may additionally condition on m in Equations (2) and (3) to obtain,

P̂({classify correctly}|Hθ,m) =
1

K

K∑
k=1

cmk, (4)
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and

P̂({select V }|Hθ,m) =
1

K

K∑
k=1

I(V ⊆ smk). (5)

[Figure 1 about here.]

Instead of estimating the probability of correct classification as in Equation (4), we

may wish to restrict our attention to those subsamples for which a particular subset V

of the covariates were among the selections. This allows us to quantify the predictive

performance associated with a particular set of covariates, rather than averaging the

predictive performance over all covariate selections. We therefore calculate the mean

correct classification rate over the subsamples Dk for which V ⊆ smk, and identify this

as an estimate of the conditional probability that our classifier classifies correctly given

that it selects V ,

P̂({classify correctly}|{select V },Hθ,m) =
1∑K

k=1 I(V ⊆ smk)

K∑
k=1

cmkI(V ⊆ smk). (6)

By multiplying together Equations (5) and (6), we obtain an estimate of the joint

probability of our classifier both selecting V and classifying correctly,

P̂({select V and classify correctly}|Hθ,m) =
1

K

K∑
k=1

cmkI(V ⊆ smk). (7)

Equation (7) provides a simple probabilistic score that combines assessments of pre-

dictive performance and stability.

2.3.1 Covariate selection strategies

Adopting the procedure described in Figure 1 provides us with a collection, {smk, cmk}Kk=1

of K covariate sets and corresponding correct classification rates. In general, the smk
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will not all be the same, so we must apply some strategy in order to decide which to

return as our final set of putative biomarkers. We could, for example, return the set

that is most frequently selected; i.e. choose the set V whose probability of selection

(Equation (5)) is maximal. In Table 1, we present a number of probabilistic and heuris-

tic strategies (S1 – S7) that exploit Equations (5) – (7) in order to optimise prediction

performance, stability, or combinations of the two. All strategies are defined for a given

model Hθ and set size m.

[Table 1 about here.]

Strategies S1 – S4 of Table 1 are joint strategies, which consider the joint selection

and correct classification probabilities associated with sets of covariates. The differences

between these strategies are illustrated in Figure 2. In contrast, S5 and S6 make use of

the marginal selection and correct classification probabilities associated with individual

covariates. S7 is of a slightly different type, discussed further in Section 2.3.2.

[Figure 2 about here.]

2.3.2 Choosing between different m and Hθ

Each of the strategies in Table 1 returns a final selected set and an associated score

(for each pair Hθ,m). If we have a range of predictive models and values for m, then

we can consider all of them and return as our final selected set the one that gives the

highest score (over all m and Hθ). Adopting this approach, strategy S7 can be viewed

as finding the optimal pair (H∗
θ,m

∗) for which the estimated probability of correct

classification (Equation (4)) is largest, and then returning the most predictive set of

size m∗ selected by H∗
θ. This is analogous to the common practice of using predictive

performance to determine an appropriate level of regularisation.
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2.4 Implementation

We focus on selection procedures that use logistic regression models with elastic net

likelihood penalties (Zou and Hastie, 2005). The standard logistic regression model for

the binary classification problem is as follows ,

P (y = 1|v1 = x1, . . . , vp = xp) = g(β0 + βTx), (8)

where β0 ∈ R, β = [β1, . . . , βp]
⊤ ∈ Rp, x = [x1, . . . , xp]

⊤ ∈ Rp, and g is the logistic

function. Estimates for the coefficients β0, β1, . . . , βp can be found by maximisation of

the (log) likelihood function.

The elastic net introduces a penalty term λQα(β) comprising a mixture of ℓ1 and

ℓ2 penalties, so that the estimates for the coefficients are given by,

β̂
(EN)
0 , β̂(EN) = argmax

β0,β

[
1

N

N∑
i=1

{
yi log(f(β0 + βTxi))

+(1− yi) log(1− f(β0 + βTxi))
}
− λQα(β)

]
,

(9)

where

Qα(β) =

p∑
j=1

[
1

2
(1− α)β2

j + α|βj|
]
. (10)

The estimated coefficients now depend upon the values taken by the parameters α

and λ. When α = 1, we recover the lasso (ℓ1) penalty, and when α = 0 we recover

the ridge (ℓ2) penalty. As α is decreased from 1 toward 0, the elastic net becomes

increasingly tolerant of the selection of groups of correlated covariates. In the following,

we consider a grid of α values (α = 0.1, 0.2, . . . , 1), and consider the order in which

covariates are selected (acquire a non-zero β coefficient) as λ is decreased from λcrit

(the smallest value of λ such that β̂(EN) = [0, 0, . . . , 0]⊤) toward 0. Each different value
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of α defines a different classification/selection procedure, H(1)
α , . . . ,H(10)

α , where H(j)
α

corresponds to α = j/10. Throughout, we use the glmnet package in R (Friedman

et al., 2010) to fit our models.

Although we use the elastic net penalty to select covariates, we use an unpenalised

logistic regression model when making predictions. This two-step procedure of using

the elastic net for variable selection and then obtaining unpenalised estimates of the

coefficients in the predictive model is similar to the LARS-OLS hybrid (Efron et al.,

2004) or the relaxed lasso (Meinshausen, 2007).

3 Examples

3.1 Simulation example

Following a similar illustration from Meinshausen and Bühlmann (2010), we consider

an example in which we have p = 500 predictors v1, . . . , v500 and n = 200 observations.

The predictors v1, . . . , v500 are jointly distributed according to a multivariate normal

whose mean µ is the zero vector and whose covariance matrix Σ is the identity, except

that the elements Σ1,2 = Σ3,4 = Σ3,5 = Σ4,5 and their symmetric counterparts are equal

to 0.9. Thus, there are two strongly correlated sets, C1 = {v1, v2} and C2 = {v3, v4, v5},

but otherwise the predictors are uncorrelated. Observed class labels y are either 0 or

1, according to the following logistic regression model:

P (y = 1|v1, . . . , v500) =
1

1 + exp (−
∑5

i=1 vi))
. (11)

Due to correlations among the covariates, it is also useful to consider the following
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approximation:

P (y = 1|v1, . . . , v500) ≈
1

1 + exp (−(2vi1 + 3vi2))
, (12)

where vi1 ∈ C1 and vi2 ∈ C2.

Since v1, . . . , v5 are the only covariates that appear in the generative model given in

Equation (11), we refer to these as relevant covariates, and to the remainder as noise

covariates.

We simulate 1,000 datasets — each comprising 200 observations — by first sampling

from a multivariate normal in order to obtain realisations of the covariates v1, . . . , v500,

and then generating values for the response y according to Equation (11). We consider

a range m = 1, . . . , 20 and use K = 100 subsamples.

3.2 HTLV1 biomarker discovery

Human T-cell lymphotropic virus type 1 (HTLV1) is a widespread human virus asso-

ciated with a number of diseases (Bangham, 2000a), including the inflammatory con-

dition HTLV1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). How-

ever, the vast majority (∼95%) of individuals infected with HTLV1 remain lifelong

asymptomatic carriers (ACs) of the disease (Bangham, 2000b). We seek to identify

protein peak biomarkers from SELDI-TOF mass spectral data which allow us to dis-

criminate between ACs and individuals with HAM/TSP.

We have blood plasma samples from a total of 68 HTLV1-seropositive individuals

(34 HAM/TSP, 34 AC), processed as in Kirk et al. (2011). Here we analyse the

combined dataset, DC , comprising measurements from all 68 patients. We consider

m = 1, . . . , 12 and use K = 250 subsamples.
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4 Results

4.1 Simulation example

We applied our selection strategies (Table 1) to each of our 1000 simulated datasets. For

each simulation, each strategy returned a final set, V , containing the selected covariates.

Each selected covariate must either be a noise or a relevant covariate. We can hence

consider that V = R ∪ N , where R ⊆ V is a set containing only relevant covariates

and N ⊆ V is a set containing only noise covariates. The case |R| = 5, |N | = 0 is

the ideal, as this corresponds to selecting all 5 relevant covariates, but none of the

noise covariates. To assess the quality of our strategies, we therefore calculated for

each the proportion of simulated datasets for which this ideal case was achieved. This

information is provided in Table 2, along with a summary of the proportion of times

that other combinations of the covariates were selected.

[Table 2 about here.]

4.1.1 Fewer false positives for strategies involving stability selection

The selected sets returned by Strategies S2, S3 and S5 always contained at least one

relevant covariate, and never any noise covariates. The lack of false positives for these

three strategies contrasts with the strategy that uses predictive performance alone

(S1), which returned a selected set containing at least 1 noise covariate for 97.4% of

the simulated datasets. Additionally enforcing a stability threshold upon the final

selected set (S4) decreases this percentage (to 15.3% when τ = 0.1 and 4.3% when

τ = 0.2). One of the best performing strategies overall is S6 (the marginal analogue

of Strategy S3), which selects all 5 relevant and 0 noise covariates for about two-thirds

of the simulated datasets. In contrast to S2, S3 and S5, however, S6 does make some
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false positive selections, with noise covariates being included among the final selections

in 3.3% of cases. S7 also performs well, selecting all 5 relevant and 0 noise covariates

for 38.5% of the simulated datasets and making at least one false positive selection in

only 8% of cases.

4.1.2 Smaller values of α yield more stable selections

As well as looking at the final selection made for each dataset (chosen over all classi-

fication models), we can also consider the results for each of the classification models

H(1)
α , . . . ,H(10)

α considered separately. We focus on Strategy S3. For each simulated

dataset and for each H(j)
α , we use S3 in order to select a final set. Associated with

each of these selected sets is a score (the joint probability of selection and correct

classification). In Figure 3, we illustrate the distributions of the scores obtained for

H(2)
α ,H(4)

α ,H(6)
α ,H(8)

α and H(10)
α (i.e. for α = 0.2, 0.4, 0.6, 0.8 and 1).

[Figure 3 about here.]

We can see from Figure 3 that smaller values of α tend to yield higher values of

the score. Recall that there are two strongly correlated groups of relevant covariates

(see Section 3.1), and smaller values of α will tend to allow all of the covariates in

these two groups to be selected, while larger values of α will tend to result in a single

representative from each of the two groups being selected. Although this does not have

a significant impact in terms of predictive performance (since Equation (12) is a good

approximation to Equation (11)), it does have a negative effect upon stability (since,

for different subsamples of the data, different representatives can be selected).
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4.2 HTLV1 biomarker discovery

We applied our selection strategies to the HTLV1 combined dataset, DC . The selected

covariates (protein peaks) are summarised in Table 3.

[Table 3 about here.]

All strategies included the 11.7 and 13.3kDa peaks among their selections. As

might be expected from the results of the previous section, Strategy S1 yields the

largest selected set. The strategies that we found to provide the best performance in

our simulation example (namely, S2, S3, S6 and S7) all selected the same 3 covariates.

In Figure 4 we further illustrate the selections made using Strategy S3 by showing how

the score returned by this strategy varies as a function of m for each of the classification

models H(1)
α , . . . ,H(10)

α (i.e. for α = 0.1, 0.2, . . . , 1).

[Figure 4 about here.]

We can see from Figure 4 that the highest joint scores are again achieved for smaller

values of α. The second peak in the joint score curve atm = 6 (observed for α = 0.1, 0.2

and 0.3) is notable, and leads us to propose the proteins corresponding to the 13.3, 11.7

and 14.6kDa peaks as “high confidence” biomarkers, and the proteins corresponding

to the 11.9, 17.3 and 17.5kDa peaks as potential biomarkers that might be worthy of

further investigation. In Kirk et al. (2011) the 11.7 and 13.3kDa peaks were identified

as β2-microglobulin and Calgranulin B, and the 17.3kDa peak as apolipoprotein A-II.

5 Discussion

We have considered a number of strategies for covariate selection that employ assess-

ments of stability, predictive performance, and combinations of the two. We have con-

ducted empirical assessments of these strategies using both simulated and real datasets.
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Our work indicates that including assessments of stability can help to reduce the num-

ber of false positive selections, although this might come at the cost of only making

a conservative number of (high confidence) selections. In the context of biomarker

discovery, where follow-up work to identify and validate putative biomarkers is likely

to be expensive and time-consuming, assessments of stability would seem to provide a

useful way in which to focus future study. However, for large-scale hypothesis genera-

tion, selection strategies that employ stability assessments might be too conservative.

Our simulation results (Section 4.1) suggest that combining assessments of stability

and predictive performance can yield selection strategies that have lower false positive

rates than strategies based on prediction alone, and lower false negative rates than pure

stability selection strategies. We also found that classification/selection models that do

not select complete sets of correlated predictive covariates run the risk of appearing to

make unstable selections (Section 4.1.2). This will have a detrimental effect on stability

selection approaches, further increasing the number of false negatives. It would there-

fore seem that if we are concerned with the stability with which selections are made

(which should always be the case if our main aim is covariate selection/biomarker

discovery), then it might be counter-productive just to search for the sparsest classifi-

cation model that yields the maximal predictive performance. In particular, in order

to improve the stability of selections, it would seem sensible to favour mixtures of ℓ1

and ℓ2 likelihood penalties (i.e. the elastic net) over lasso (ℓ1 only) penalties.
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List of Figures

1 Summary of the notation and basic procedure used throughout this ar-
ticle. The training dataset, D, is repeatedly subsampled to obtain a
collection of datasets, {Dk}Kk=1, and left-out datasets, {D\k}Kk=1. For
k = 1, . . . , K, a predictive model is trained on Dk and then used to
predict the class labels of the observations in D\k, yielding a selected set
of size m, smk, and a correct classification rate, cmk. . . . . . . . . . . 19

2 Illustration of the differences between the joint strategies (S1 – S4). The
round markers correspond to different covariates sets (of various sizes)

returned by 10 different models, H(1)
α , . . . ,H(10)

α , when applied to one
of the simulated datasets of Section 3.1. Each model corresponds to a
different value of α (see Section 2.4), hence the colours of the markers
indicate the model that was used to select each covariate set. The larger,
labelled markers correspond to the final sets of selections returned by
strategies S1 – S4 (as indicated). S1 returns the set, V , that maximises
predictive performance, regardless of how stably it is selected; S2 returns
the most stably selected set, regardless of the predictive performance it
offers; S3 seeks a compromise between stability and predictive perfor-
mance; and S4 returns the most predictive covariate set, subject to a
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Figure 1: Summary of the notation and basic procedure used throughout this article.
The training dataset, D, is repeatedly subsampled to obtain a collection of datasets,
{Dk}Kk=1, and left-out datasets, {D\k}Kk=1. For k = 1, . . . , K, a predictive model is
trained on Dk and then used to predict the class labels of the observations in D\k,
yielding a selected set of size m, smk, and a correct classification rate, cmk.
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Figure 2: Illustration of the differences between the joint strategies (S1 – S4). The
round markers correspond to different covariates sets (of various sizes) returned by

10 different models, H(1)
α , . . . ,H(10)

α , when applied to one of the simulated datasets of
Section 3.1. Each model corresponds to a different value of α (see Section 2.4), hence
the colours of the markers indicate the model that was used to select each covariate
set. The larger, labelled markers correspond to the final sets of selections returned
by strategies S1 – S4 (as indicated). S1 returns the set, V , that maximises predictive
performance, regardless of how stably it is selected; S2 returns the most stably selected
set, regardless of the predictive performance it offers; S3 seeks a compromise between
stability and predictive performance; and S4 returns the most predictive covariate set,
subject to a stability threshold, τ .
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Figure 3: Distributions of the scores returned by S3 which were obtained in the simu-
lation example for 5 different values of α.
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Figure 4: Score returned by S3 considered as a function of m (when applied to the
HTLV1 proteomics dataset).
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of the number of relevant covariates, |R|, and the number of noise co-
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SELECTION STRATEGIES

Joint strategies Select set V to maximise:

S1
Prediction only P1(V ) = P̂({classify correctly}|{select V },Hθ,m).

S2
Stability only P2(V ) = P̂({select V }|Hθ,m).

S3

Joint prob. of selection
& correct classification

P3(V ) = P̂({select V & classify correctly}|Hθ,m).

= P1(V )P2(V )

S4

Prediction with
stability threshold, τ

P4(V ) = P̂({classify correctly}|{select V },Hθ,m),
subject to the constraint P̂({select V }|Hθ,m) ≥ τ .

Marginal strategies Select set V to maximise:

S5

Stability only
(marginal case)

P5(V ) =
1

m

∑
vi∈V

P̂({select {vi}}|Hθ,m)

=
1

m

∑
vi∈V

P2({vi}).

S6

Joint prob. of selection
& correct classification
(marginal case)

P6(V ) =
1

m

∑
vi∈V

P̂({select vi & classify correctly}|Hθ,m)

=
1

m

∑
vi∈V

P3({vi}).

Other Select set V to maximise:

S7
Average prediction

P1(V ) = P̂({classify correctly}|{select V },Hθ,m).
Also calculate P7 = P̂({classify correctly}|Hθ,m).

Table 1: Selection strategies considered in this article. In each case, we assume that
we have a predictive model, Hθ, and that we specify the number, m, of covariates that
we wish to select. For j = 1, . . . , 6, strategy Sj returns selected set, V ∗, together with
maximised score Pj(V

∗). S7 returns selected set V ∗ together with the score P7.
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Strategy: S1 S2 S3 S4 S4 S5 S6 S7

(τ = 0.1) (τ = 0.2)

|R| |N | Percentage of selections
5 0 0 36.3 50.5 5.2 10.6 42.5 66.9 38.5
4 0 0.6 2.4 8.5 32.4 40.3 3.4 16 50.2
3 0 1.8 57.4 39.1 39.6 36.9 52.9 13.6 2.9
2 0 0.2 1.4 0.5 7.5 7.8 0.6 0.1 0.4
1 0 0 2.5 1.4 0 0.1 0.6 0.1 0
5 1 10.5 0 0 11.6 4.1 0 0 0.5
4 1 9.2 0 0 2.8 0.2 0 1.3 4.8
3 1 2.8 0 0 0.6 0 0 0.4 2
5 2 19.7 0 0 0.2 0 0 0 0
4 2 5.1 0 0 0 0 0 0 0.1
3 2 1.8 0 0 0 0 0 0.5 0.2
5 3 12.5 0 0 0 0 0 0 0
4 3 3.5 0 0 0 0 0 0 0
5 4 7 0 0 0 0 0 0 0
4 4 1.9 0 0 0 0 0 0 0
5 5 4.7 0 0 0 0 0 0 0
5 6 2.6 0 0 0 0 0 0 0
4 6 1.1 0 0 0 0 0 0 0
5 7 1.5 0 0 0 0 0 0 0
5 8 1.8 0 0 0 0 0 0 0
5 9 1.8 0 0 0 0 0 0 0
5 10 1 0 0 0 0 0 0 0

Table 2: Summary of the final selections made using the strategies described in Table 1.
The first two columns summarise the final selections in terms of the number of relevant
covariates, |R|, and the number of noise covariates, |N |, that appear in the final selected
set. The entries in the table indicate the percentage of simulated datasets for which
each of the combinations of relevant and noise covariates was obtained. Any rows for
which the percentage is < 1% for all strategies are omitted (hence columns need not
sum to 100%).
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Covariate selections Strategies
11.7 13.3 S4 (τ = 0.2)

11.7 13.3 17.5 S4 (τ = 0.1)
11.7 13.3 14.6 S2, S3, S5, S6, S7

10.8 11.7 11.9 13.3 14.6 25.1 S1

Table 3: Covariates selected by strategies S1–S7. Covariates correspond to protein
peaks in the mass-spectrum, and are labelled according to the m/z value at which the
peak was located (units: kDa).
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